WO2022199030A1 - 膜层及其形成方法 - Google Patents

膜层及其形成方法 Download PDF

Info

Publication number
WO2022199030A1
WO2022199030A1 PCT/CN2021/128070 CN2021128070W WO2022199030A1 WO 2022199030 A1 WO2022199030 A1 WO 2022199030A1 CN 2021128070 W CN2021128070 W CN 2021128070W WO 2022199030 A1 WO2022199030 A1 WO 2022199030A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
carbon
diamond
forming
carbon film
Prior art date
Application number
PCT/CN2021/128070
Other languages
English (en)
French (fr)
Inventor
邓新莲
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Publication of WO2022199030A1 publication Critical patent/WO2022199030A1/zh
Priority to US18/150,258 priority Critical patent/US20230142204A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/276Diamond only using plasma jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/277Diamond only using other elements in the gas phase besides carbon and hydrogen; using other elements besides carbon, hydrogen and oxygen in case of use of combustion torches; using other elements besides carbon, hydrogen and inert gas in case of use of plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments

Definitions

  • the present disclosure relates to, but is not limited to, a film layer and a method of forming the same.
  • Diamond Like Carbon (DLC) as a metastable material combined in the form of Sp3 hybrid bond and Sp2 hybrid bond, has both the excellent characteristics of diamond and graphite, and has high hardness, High resistivity, good optical properties and excellent tribological properties make it widely used in the semiconductor industry. Due to the high hardness of the diamond-like carbon film layer, in the semiconductor patterning process, the use of the diamond-like carbon film layer can effectively reduce the thickness of the photoresist and avoid collapse due to excessively high photoresist.
  • DLC Diamond Like Carbon
  • the diamond-like carbon film layer has a high internal stress, which has a serious impact on the transfer effect of the pattern, and easily causes the warpage of the wafer.
  • Embodiments of the present disclosure provide a film layer and a method for forming the same, so as to improve the hardness of the diamond-like carbon layer and reduce the internal stress of the diamond-like carbon layer.
  • a method for forming a film layer comprising: providing a substrate; forming a diamond-like carbon film layer on the substrate, wherein the diamond-like carbon film layer has a carbon-hydrogen chemical bond; The diamond-like carbon layer is subjected to photocatalytic treatment to break at least part of the carbon-hydrogen chemical bonds, thereby reducing the hydrogen content in the diamond-like carbon layer.
  • a film layer comprising: a diamond-like carbon film layer that has undergone photocatalytic treatment, and the content of carbon-hydrogen chemical bonds in the diamond-like carbon film layer accounts for less than 5% of all chemical bonds. %; the diamond-like carbon film layer is doped with metal elements; part of the diamond-like carbon film layer is the first diamond-like carbon film layer containing the fifth group element.
  • FIG. 1 , FIG. 3 , FIG. 5 and FIG. 7 are schematic structural diagrams corresponding to each step of a method for forming a film layer provided by an embodiment of the present disclosure
  • FIG. 2 , FIG. 4 , FIG. 6 , and FIG. 8 are schematic diagrams of partial microstructures corresponding to each step of the method for forming a film layer provided by an embodiment of the present disclosure.
  • the atomic arrangement in the diamond-like carbon film layer is irregular, and the irregular atomic arrangement leads to the low hardness of the diamond-like carbon film layer; Sp3 hybrid bond, so the density of carbon atoms in the local area of the diamond-like carbon layer is relatively high, and the average coordination number of most atoms in the diamond-like carbon layer is high, resulting in a high internal stress of the diamond-like carbon layer.
  • the diamond-like carbon film layer with high internal stress has an adverse effect on the transfer effect of the pattern, and easily causes the warpage of the wafer.
  • Embodiments of the present disclosure provide a film layer and a method for forming the same.
  • Photocatalytic treatment is performed on the diamond-like carbon film layer to remove part of the hydrogen element in the diamond-like carbon film layer, and then ion implantation is performed on the diamond-like carbon film layer to reduce the amount of the diamond-like carbon film.
  • the content of the Sp3 hybrid bond in the layer reduces the density of carbon atoms in a local area of the diamond-like carbon layer, increases the hardness of the diamond-like carbon layer and reduces the internal stress of the diamond-like carbon layer.
  • a substrate 100 is provided, and a diamond-like carbon film layer 110 is formed on the substrate 100 .
  • the material of the substrate 100 may be single crystal silicon, silicon-on-insulator (SOI), silicon-on-insulator (SSOI), silicon-germanium-on-insulator (S-SiGeOI), silicon-germanium-on-insulator (SiGeOI), and germanium-on-insulator (S-SiGeOI). GeOI).
  • the substrate 100 is single crystal silicon.
  • a metal precursor and a carbon precursor are used as reactants to form a diamond-like carbon film layer 110 , and the formed diamond-like carbon film layer 110 is doped with metal elements, and the metal elements 103 Including: carbon-philic metal elements such as titanium element, tungsten element or chromium element, the doped carbon-philic metal element will form a carbide hard phase with stable thermodynamic properties with carbon element, thereby enhancing the mechanical properties and resistance of the diamond-like carbon film layer 110.
  • the doped metal element has carbon-friendly properties, which is beneficial to improve the structural stability of the formed diamond-like carbon film layer 110 .
  • a carbon precursor and a dopant gas may be used as reactants to form the diamond-like carbon layer.
  • Metal elements exist in the form of nanocrystals in the diamond-like carbon film layer 110, or exist in the form of nanocrystals that form a face-centered cubic structure with carbon elements; the formed diamond-like carbon film layer 110 has stable thermodynamic properties, and has strong mechanical properties and resistance. Abrasiveness.
  • the metal element 103 accounts for 5% to 25% of the mass of the diamond-like carbon film layer 110, for example, it can be 10%, 15% or 20%; the content of the metal element 103 is kept within this range, which can improve the hardness and While maintaining physical properties such as wear resistance, the excellent properties of graphite are retained to the greatest extent.
  • the plasma chemical vapor deposition process 101 is used to form the diamond-like carbon film layer 110 , which is conducive to the rapid formation of the diamond-like carbon film layer 110 with uniform distribution of different elements.
  • a carbon-containing gas mixture may be disposed over a substrate, and then a carbon-containing electrode disposed in a processing chamber may be bombarded to generate a secondary electron beam in the carbon-containing gas mixture, which is then directed by the carbon-containing gas mixture on the surface of the substrate.
  • the elements of the gas mixture form a diamond-like film.
  • Fig. 2 is a schematic view of the microstructure of the region A in Fig. 1; the different elements in the diamond-like carbon layer 110 are uniformly arranged, and now the intercepted region A is an example to describe the elements in the diamond-like carbon layer 110 in detail.
  • the diamond-like carbon film layer 110 has carbon element 102 , metal element 103 and hydrogen element 104 ; hydrogen element 104 and carbon element 102 form a carbon-hydrogen chemical bond, and carbon-carbon is formed between different carbon elements 102 The chemical bond, the metal element 103 and the carbon element 102 form a carbon-metal element chemical bond.
  • photocatalytic treatment 105 is performed on the diamond-like carbon layer 110 to break at least part of the carbon-hydrogen chemical bonds and reduce the content of hydrogen element 104 (refer to FIG. 2 ) in the diamond-like carbon layer 110 .
  • the content of carbon-hydrogen chemical bonds in the diamond-like carbon film layer 110 accounts for less than 5% of all chemical bonds, and the proportion of carbon-hydrogen chemical bonds is relatively small, carbon-carbon chemical bonds and carbon-metal elements The proportion of chemical bonds is relatively high, which is beneficial to improve the hardness of the diamond-like carbon film layer 110 .
  • the photocatalytic treatment 105 breaks at least part of the carbon-hydrogen chemical bonds in the diamond-like carbon film layer 110, and the hydrogen element 104 escapes from the diamond-like carbon film layer 110 in the form of a gas, reducing the content of the hydrogen element 104 in the diamond-like carbon film layer 110;
  • the hydrogen element 104 in the diamond film layer 110 is reduced, so the proportion of the carbon element 102 in the diamond-like carbon film layer 110 increases, and the carbon element 102 with a higher proportion makes the atomic arrangement of the diamond-like carbon film layer 110 more regular, improving the The hardness of the diamond-like carbon layer 110 is improved, and the performance of the diamond-like carbon layer 110 is improved.
  • the process parameters of the photocatalytic treatment 105 include: the wavelength range of the light used is 200 nm to 400 nm, such as 250 nm, 300 nm or 350 nm; the process time is 3 minutes to 8 minutes, for example, it can be It is 4 minutes, 5 minutes or 6 minutes; the process temperature is 15 degrees Celsius to 60 degrees Celsius, for example, it can be 30 degrees Celsius, 40 degrees Celsius or 50 degrees Celsius.
  • the photocatalytic treatment 105 using the above process parameters provides sufficient energy for breaking the carbon-hydrogen chemical bond, and ensures that the energy is not too large to affect the structure of the diamond-like carbon layer 110 .
  • FIG. 4 is a schematic view of the microstructure of the region B in FIG. 3 .
  • the broken carbon bond forms a carbon-metal element chemical bond with the metal element 103
  • the carbon-metal element in the diamond-like carbon film layer 110 forms a carbon-metal chemical bond.
  • the increased number of chemical bonds of metal elements is beneficial to improve the physical properties such as hardness and wear resistance of the diamond-like carbon film layer 110 .
  • the photocatalytic treatment 105 may further include: performing an ion implantation treatment 106 on the diamond-like carbon film layer 110 , and the ion implantation treatment 106 reduces the content of Sp3 hybrid bonds in the diamond-like carbon film layer 110 , As a result, the density of carbon atoms in the local area of the diamond-like carbon film layer 110 is reduced.
  • Ion implantation treatment 106 is performed on the diamond-like carbon film 110 to reduce the content of Sp3 hybrid bonds in the diamond-like carbon film 110, so that the carbon atom density is reduced in a local area of the diamond-like carbon film 110;
  • the decrease in the density of carbon atoms in the region indicates that the average coordination number of atoms in the diamond-like carbon layer 110 decreases, and the coordination number refers to the number of coordination atoms around the central atom of the compound, thereby reducing the internal stress of the diamond-like carbon layer 110;
  • the content of Sp3 hybrid bonds in the diamond-like carbon layer 110 is reduced, which can improve the toughness of the diamond-like carbon layer 110 and effectively enhance the mechanical tribological adaptability of the diamond-like carbon layer 110 in vacuum and atmospheric environments.
  • the ion implantation process 106 is to implant the fifth group element 107 into the diamond-like carbon film layer 110 .
  • the injected group V element 107 is nitrogen, and the raw materials of nitrogen come from a wide range of sources, including ammonia, nitrogen oxide and nitrogen.
  • Group V elements such as phosphorus element or arsenic element may be implanted.
  • the energy provided by the ion implantation treatment 106 breaks the carbon-carbon chemical bond and the carbon-metal element chemical bond, so that at least part of the carbon element 102 is released from the chemical bond, and carbon radicals are generated, and the carbon radicals and the fifth group element 107 are formed. Sp2 hybrid bond.
  • Nitrogen is doped into the diamond-like carbon layer 110, and the nitrogen element can reduce the internal stress of the diamond-like carbon layer 110 through the grain dislocation slip strain, improve the toughness of the diamond-like carbon layer 110, and effectively strengthen the diamond-like carbon in vacuum and atmospheric environments.
  • the content of Sp2 hybrid bonds increases, while the content of Sp3 hybrid bonds decreases.
  • the average coordination number of each atom of Sp2 hybrid bonds is smaller, and the average coordination number of atoms in the entire diamond-like carbon film layer 110 becomes smaller, the internal stress of the diamond-like carbon layer 110 is reduced.
  • the process parameters of the ion implantation treatment 106 include: the implantation energy is 1 electron volt to 2 electron volt, for example, it can be 1.2 electron volt, 1.4 electron volt or 1.8 electron volt; the implantation dose of the ion source is 1011 ions per square centimeter ⁇ 1013 ions The number per square centimeter; the process time is 5 seconds to 200 seconds, for example, it can be 20 seconds, 100 seconds or 120 seconds.
  • the use of lower implantation energy and higher implantation dose can reduce the damage to the surface of the diamond-like carbon layer 110 during the ion implantation process 106 and improve the product yield.
  • part of the diamond-like carbon layer 110 is the first diamond-like carbon layer 112 containing the fifth group element 107, and the remaining diamond-like carbon layer 110 is the second diamond-like carbon layer 111.
  • the thickness of the diamond-like carbon layer 110 is 150 nanometers to 170 nanometers, such as 155 nanometers, 160 nanometers or 165 nanometers;
  • the thickness of the first diamond-like film layer 112 is 20 nanometers to 50 nanometers, such as 25 nanometers, 20 nanometers or 40 nanometers;
  • the second The thickness of the film layer 111 is 100 nanometers to 150 nanometers, for example, 110 nanometers, 120 nanometers or 130 nanometers.
  • FIG. 6 is a schematic view of the microstructure of the region C in FIG. 5 .
  • the crystal lattice of the diamond-like carbon film layer 110 is damaged, not only part of the carbon element 102 is separated from the chemical bond, forming carbon radicals, and part of The metal element 103 and the fifth group element 107 are also released from chemical bonds.
  • the ion implantation treatment of the diamond-like carbon layer may not be performed.
  • the ion implantation treatment 106 may further include: performing an annealing treatment 108 on the diamond-like carbon film layer 110 to repair the crystal lattice of the diamond-like carbon film layer 110 during the ion implantation treatment 106 . Damage, metal elements and group V elements also diffuse during the annealing process 108 and become part of the crystal lattice of the diamond-like film layer 110 .
  • the process parameters of the annealing treatment 108 include: the process temperature is 300 degrees Celsius to 500 degrees Celsius, such as 350 degrees Celsius, 400 degrees Celsius, or 450 degrees Celsius; the process time is 20 minutes to 30 minutes, such as 23 minutes, 25 minutes or 28 minutes.
  • FIG. 8 is a schematic view of the microstructure of the region D in FIG. 7; with reference to FIG. 8, in the annealing process 108 (refer to FIG. 7), the metal element 103 and the fifth group element 107 are diffused in the diamond-like carbon layer 110 and incorporated into the diamond-like carbon layer In the lattice repaired by the film layer 110, a diamond-like carbon film layer 110 with a lower average coordination number is formed.
  • photocatalytic treatment 105 is performed on the diamond-like carbon film layer 110 to remove part of the hydrogen element in the diamond-like carbon film layer 110, and the hardness of the diamond-like carbon film layer 110 is improved;
  • the layer 110 is subjected to ion implantation treatment 106 to reduce the content of Sp3 hybrid bonds in the diamond-like carbon film layer 110, so that the carbon atom density is reduced in a local area of the diamond-like carbon film layer 110, and the internal stress of the diamond-like carbon film layer 110 is reduced.
  • the diamond-like carbon layer 110 is used in a semiconductor patterning process, the diamond-like carbon layer 110 with lower internal stress has a good pattern transfer effect, and can effectively avoid the warpage of the wafer.
  • the second embodiment of the present disclosure provides a film layer that can be formed according to the method of forming the film layer of the first embodiment.
  • the film layer provided by the second embodiment of the present disclosure will be described in detail below with reference to the accompanying drawings.
  • the film layer provided in this embodiment includes: a diamond-like carbon film layer 110 that has undergone photocatalytic treatment.
  • the diamond-like carbon film layer 110 contains carbon element, metal element and hydrogen element; hydrogen element and carbon element form a carbon-hydrogen chemical bond, carbon-carbon chemical bond is formed between different carbon elements, and metal element and carbon element form carbon- Metal element chemical bond.
  • the content of hydrogen element in the diamond-like carbon film layer 110 is less, and the content of the carbon-hydrogen chemical bonds in the diamond-like carbon film layer 110 accounts for less than 5% of all chemical bonds; the hydrogen element 104 in the diamond-like carbon film layer 110 is less, so carbon
  • the proportion of elements in the diamond-like carbon layer 110 is relatively high, and the carbon element with a higher proportion leads to a more regular arrangement of atoms in the diamond-like carbon layer 110, which improves the hardness of the diamond-like carbon layer 110. Performance is improved.
  • the metal elements include carbon-philic metal elements such as titanium element, tungsten element or chromium element.
  • the doped carbon-philic metal element will form a carbide hard phase with stable thermodynamic properties with carbon element, thereby enhancing the diamond-like carbon film.
  • the mechanical properties and wear resistance of the layer 110; and the doped metal element has carbon-friendly properties, which is beneficial to improve the structural stability of the formed diamond-like film layer 110.
  • Metal elements exist in the form of nanocrystals in the diamond-like carbon film layer 110, or exist in the form of nanocrystals that form a face-centered cubic structure with carbon elements; the formed diamond-like carbon film layer 110 has stable thermodynamic properties, and has strong mechanical properties and resistance. Abrasiveness.
  • the metal element accounts for 5% to 25% of the mass of the diamond-like carbon layer 110, for example, it can be 10%, 15% or 20%; the content of the metal element is kept within this range, which can improve the hardness and wear resistance of the diamond-like carbon layer 110. At the same time, the excellent properties of graphite are retained to the greatest extent.
  • part of the diamond-like carbon layer 110 is the first diamond-like carbon layer 112 containing elements of the fifth group, and the remaining diamond-like carbon layer 110 is the second diamond-like carbon layer 111 .
  • the fifth group element is nitrogen, and the raw materials of nitrogen are widely sourced, including ammonia, nitrogen oxide and nitrogen, etc. Nitrogen is cheap, and the waste gas generated after injection is harmless and easy to handle; Among them, a Group V element such as phosphorus element or arsenic element can be implanted.
  • the nitrogen element can reduce the internal stress of the diamond-like carbon film layer 110 through the grain dislocation slip strain, improve the toughness of the diamond-like carbon film layer 110, and effectively strengthen the vacuum and atmospheric environment.
  • the adaptability of the mechanical tribology of the diamond-like carbon film layer 110; the nitrogen element will inhibit the formation of Sp3 hybrid bonds, resulting in a decrease in the density of carbon atoms in the local area, and finally promote the transformation of Sp3 hybrid bonds to Sp2 hybrid bonds; the diamond-like carbon film layer 110
  • the content of Sp2 hybrid bonds in the interior increases, and the content of Sp3 hybrid bonds decreases.
  • the average coordination number of each atom of Sp2 hybrid bonds is smaller, and the average coordination number of atoms in the entire diamond-like carbon film layer 110 is smaller.
  • the thickness of the diamond-like carbon layer 110 is 150 nanometers to 170 nanometers, such as 155 nanometers, 160 nanometers or 165 nanometers;
  • the thickness of the first diamond-like film layer 112 is 20 nanometers to 50 nanometers, such as 25 nanometers, 20 nanometers or 40 nanometers;
  • the second The thickness of the film layer 111 is 100 nanometers to 150 nanometers, for example, 110 nanometers, 120 nanometers or 130 nanometers.
  • the embodiment of the present disclosure provides a film layer, the content of the carbon-hydrogen chemical bonds in the diamond-like carbon film layer 110 accounts for less than 5% of all chemical bonds, and the hydrogen element 104 in the diamond-like carbon film layer 110 is less, so the carbon element is in the The proportion of the diamond film layer 110 is relatively high, and the carbon element with a higher proportion leads to a more regular atomic arrangement of the diamond-like carbon layer 110, and the hardness of the diamond-like carbon layer 110 is relatively high;
  • the first diamond-like film layer 112 of the fifth group element because the diamond-like carbon film layer 110 has the fifth group element, so the diamond-like carbon film layer 110 has more Sp2 hybrid bonds, and in the local area of the diamond-like carbon film layer 110
  • the carbon atom density is low; the low carbon atom density in the local area of the diamond-like carbon film layer 110 indicates that the average coordination number of atoms in the diamond-like carbon film layer 110 is small, so that the internal stress of the formed diamond-like carbon film layer 110 is small;
  • Embodiments of the present disclosure provide a film layer and a method for forming the same, which are beneficial to improve the hardness of the diamond-like carbon layer and reduce the internal stress of the diamond-like carbon layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本公开实施例公布一种膜层及其形成方法,形成方法包括:提供基底;在基底上形成类金刚石膜层,类金刚石膜层内具有碳氢化学键;对类金刚石膜层进行光催化处理,以使至少部分碳氢化学键断开,减少类金刚石膜层中的氢元素含量。

Description

膜层及其形成方法
本公开基于申请号为202110304036.9,申请日为2021年03月22日,申请名称为“膜层及其形成方法”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及但不限于一种膜层及其形成方法。
背景技术
类金刚石膜层(Diamond Like Carbon,DLC)作为一种以Sp3杂化键和Sp2杂化键的形式结合生成的亚稳态材料,兼具了金刚石和石墨的优良特性,具有较高的硬度、高电阻率、良好的光学性能以及优秀的摩擦学特性,所以被广泛应用到半导体行业中。由于类金刚石膜层具有较高硬度,所以在半导体图形化工艺中,使用类金刚石膜层可以有效降低光刻胶的厚度,避免了因光刻胶过高而发生坍塌。
但是类金刚石膜层具有较高的内应力,内应力对图形的转移效果有严重的影响,并且容易造成晶圆的翘曲。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供一种膜层及其形成方法,以提高类金刚石膜层的硬度和降低类金刚石膜层内应力。
根据本公开实施例的第一方面,提供一种膜层的形成方法,包括:提供基底;在所述基底上形成类金刚石膜层,所述类金刚石膜层内具有碳氢化学键;对所述类金刚石膜层进行光催化处理,以使至少部分所述碳氢化学键断开,减少所述类金刚石膜层中的氢元素含量。
根据本公开实施例的第二方面,提供一种膜层,包括:经过光催化处理 的类金刚石膜层,且所述类金刚石膜层内具有的碳氢化学键的含量占所有化学键的比重小于5%;所述类金刚石膜层中掺杂有金属元素;部分所述类金刚石膜层为含有第五族元素的第一类金刚石膜层。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本公开的实施例,并且与描述一起用于解释本公开实施例的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本公开的一些实施例,而不是全部实施例。对于本领域技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。
图1、图3、图5和图7是本公开实施例提供的一种膜层的形成方法的各步骤对应的结构示意图;
图2、图4、图6和图8是本公开实施例提供的膜层的形成方法的各步骤对应的局部微观结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
由于类金刚石膜层中含有大量的氢元素,导致类金刚石膜层内原子排布不规律,不规律的原子排布导致类金刚石膜层的硬度不高;同时由于类金刚石膜层内含有大量的Sp3杂化键,所以类金刚石膜层的局部区域内碳原子密度比较高,类金刚石膜层内的大多数原子平均配位数较高,导致类金刚石膜层具有较高的内应力;在将类金刚石膜层使用到半导体图形化工艺中时,具有较高内应力的类金刚石膜层对图形的转移效果具有不良影响,并且容易导致晶圆的翘曲。
本公开实施例提供一种膜层及其形成方法,对类金刚石膜层进行光催化处理以去除类金刚石膜层内的部分氢元素,再对类金刚石膜层进行离子注入处理,降低类金刚石膜层内的Sp3杂化键的含量,使得在类金刚石膜层的局部区域内碳原子密度降低,提高类金刚石膜层的硬度并且降低类金刚石膜层的内应力。
参考图1,提供基底100,在基底100上形成类金刚石膜层110。
基底100的材料可以为单晶硅、绝缘体上硅(SOI)、绝缘体上层叠硅(SSOI)、绝缘体上层叠锗化硅(S-SiGeOI)、绝缘体上锗化硅(SiGeOI)以及绝缘体上锗(GeOI)。本实施例中,衬底100为单晶硅。
如图1和图2所示,本实施例中,采用金属前驱体和碳前驱体作为反应物,形成类金刚石膜层110,形成的类金刚石膜层110中掺杂有金属元素,金属元素103包括:钛元素、钨元素或铬元素等亲碳金属元素,掺杂的亲碳金属元素会与碳元素形成热力学性能稳定的碳化物硬质相,从而增强类金刚石膜层110的力学性能和耐磨性;而且掺杂的金属元素具有亲碳的特性,有利于提高形成的类金刚石膜层110的结构稳定性。
在其他实施例中,可以采用碳前驱体和掺杂气体作为反应物形成类金刚石膜层。
金属元素在类金刚石膜层110中以纳米晶形态存在,或者以与碳元素组成面心立方体结构的纳米晶形态存在;形成的类金刚石膜层110热力学性能稳定,具有较强的力学性能和耐磨性。
金属元素103占类金刚石膜层110质量的5%~25%,例如可以为10%、15%或20%;金属元素103的含量保持在此范围内,在提高类金刚石膜层110的硬度和耐磨性等物理性能的同时,最大限度的保留了石墨的优良性能。
本实施例中,采用等离子化学气相沉积工艺101形成类金刚石膜层110,有利于快速的形成不同元素分布均匀的类金刚石膜层110。
在其他实施例中,可以在基底上方设置含碳气体混合物,然后轰击设置在处理腔室中的含碳电极,以在含碳气体混合物中产生次级电子束,进而在基底的表面上由该气体混合物的元素形成类金刚石膜层。
图2为图1中区域A的微观结构示意图;类金刚石膜层110内的不同元素均匀排布,现截取区域A为示例对类金刚石膜层110内的元素进行详细说 明。
参考图2,本实施例中,类金刚石膜层110内具有碳元素102、金属元素103和氢元素104;氢元素104和碳元素102形成碳氢化学键,不同的碳元素102之间形成碳碳化学键,金属元素103和碳元素102形成碳-金属元素化学键。
参考图3,对类金刚石膜层110进行光催化处理105,以使至少部分碳氢化学键断开,减少类金刚石膜层110中的氢元素104(参考图2)含量。
在一个例子中,光催化处理105之后,类金刚石膜层110内具有的碳氢化学键的含量占所有化学键的比重小于5%,碳氢化学键所占比重较小,碳碳化学键和碳-金属元素化学键所占比重较高,有利于提高类金刚石膜层110的硬度。
光催化处理105使得类金刚石膜层110内的至少部分碳氢化学键断开,氢元素104以气体的形式逸出类金刚石膜层110,减少了类金刚石膜层110内的氢元素104含量;类金刚石膜层110内的氢元素104减少,所以碳元素102在类金刚石膜层110内所占比例升高,占比更高的碳元素102使得类金刚石膜层110的原子排布更规律,提高了类金刚石膜层110的硬度,类金刚石膜层110的性能得到提高。
在一个例子中,光催化处理105的工艺参数包括:采用的光的波长范围为200纳米~400纳米,例如可以为250纳米、300纳米或350纳米;工艺时长为3分钟~8分钟,例如可以为4分钟、5分钟或6分钟;工艺温度为15摄氏度~60摄氏度,例如可以为30摄氏度、40摄氏度或50摄氏度。采用上述工艺参数进行光催化处理105,为碳氢化学键断开提供了足够的能量,并且保证能量不会过大,以致于对类金刚石膜层110的结构产生影响。
图4为图3中区域B的微观结构示意图,参考图4,在碳氢化学键断开之后,断开的碳键与金属元素103形成碳-金属元素化学键,类金刚石膜层110内的碳-金属元素化学键数量增多,有利于提高类金刚石膜层110的硬度和耐磨性等物理性能。
参考图5和图6,在光催化处理105之后,还可以包括:对类金刚石膜层110进行离子注入处理106,离子注入处理106降低了类金刚石膜层110内的Sp3杂化键的含量,使得在类金刚石膜层110的局部区域内碳原子密度 降低。
对类金刚石膜层110进行离子注入处理106,降低类金刚石膜层110内的Sp3杂化键的含量,使得在类金刚石膜层110的局部区域内碳原子密度降低;类金刚石膜层110的局部区域内碳原子密度降低表明部分类金刚石膜层110内的原子平均配位数下降,配位数指化合物中心原子周围的配位原子的个数,从而降低了类金刚石膜层110的内应力;而且类金刚石膜层110内的Sp3杂化键的含量降低,可以提高类金刚石膜层110的韧性,有效强化真空和大气环境下类金刚石膜层110的机械摩擦学的适应性。
离子注入处理106为向类金刚石膜层110注入第五族元素107。本实施例中,注入的第五族元素107为氮元素,氮元素的原材料来源广泛,包括氨气、氧化氮和氮气等,氮元素价格便宜,注入之后产生的废气无害,容易处理;在其他实施例中,可以注入磷元素或砷元素等第五族元素。
本实施例中,离子注入处理106提供的能量,将碳碳化学键和碳-金属元素化学键打断,使至少部分碳元素102脱离化学键,生成碳自由基,碳自由基和第五族元素107形成Sp2杂化键。
向类金刚石膜层110掺杂氮元素,氮元素可以通过晶粒位错滑移应变降低类金刚石膜层110的内应力,提高类金刚石膜层110的韧性,有效强化真空和大气环境下类金刚石膜层110的机械摩擦学的适应性;氮元素会抑制Sp3杂化键的形成,导致局域内碳原子密度降低,最终促使Sp3杂化键向Sp2杂化键转变;类金刚石膜层110内的Sp2杂化键含量上升,Sp3杂化键含量下降,Sp2杂化键和Sp3杂化键相比,每个原子的平均配位数更小,整个类金刚石膜层110内原子的平均配位数变小,则类金刚石膜层110的内应力降低。
离子注入处理106的工艺参数包括:注入能量为1电子伏特~2电子伏特,例如可以为1.2电子伏特、1.4电子伏特或1.8电子伏特;离子源的注入剂量为1011离子数每平方厘米~1013离子数每平方厘米;工艺时长为5秒~200秒,例如可以为20秒、100秒或120秒。
本实施例中,采用较低的注入能量,较高的注入剂量,能够减少在离子注入处理106过程中对类金刚石膜层110表面的损伤,提高产品的良率。
进行离子注入处理106之后,部分类金刚石膜层110为含有第五族元素107的第一类金刚石膜层112,剩余的类金刚石膜层110作为第二类金刚石膜 层111。
在垂直于类金刚石膜层110上表面的方向上,类金刚石膜层110的厚度为150纳米~170纳米,例如可以为155纳米、160纳米或165纳米;在垂直于类金刚石膜层110上表面的方向上,第一类金刚石膜层112的厚度为20纳米~50纳米,例如可以为25纳米、20纳米或40纳米;在垂直于类金刚石膜层110上表面的方向上,第二类金刚石膜层111的厚度为100纳米~150纳米,例如可以为110纳米、120纳米或130纳米。
图6为图5中区域C的微观结构示意图,参考图6,在离子注入处理106后,类金刚石膜层110的晶格受到损伤,不仅部分碳元素102脱离了化学键,形成碳自由基,部分金属元素103和第五族元素107也脱离了化学键。
在其他实施例中,也可以不对类金刚石膜层进行离子注入处理。
参考图7,在进行离子注入处理106(参考图5)之后,还可以包括:对类金刚石膜层110进行退火处理108,以修复在离子注入处理106过程中类金刚石膜层110受到的晶格损伤,金属元素和第五族元素在退火处理108的过程中也会扩散,并成为类金刚石膜层110晶格的一部分。
本实施例中,退火处理108的工艺参数包括:工艺温度为300摄氏度~500摄氏度,例如可以为350摄氏度、400摄氏度或450摄氏度;工艺时长为20分钟~30分钟,例如可以为23分钟、25分钟或28分钟。
图8为图7中区域D的微观结构示意图;参考图8,在退火处理108(参考图7)中,金属元素103和第五族元素107在类金刚石膜层110中扩散,融入到类金刚石膜层110修复的晶格中,形成较低平均配位数的类金刚石膜层110。
本公开实施例提供的膜层的形成方法,对类金刚石膜层110进行光催化处理105以去除类金刚石膜层110内的部分氢元素,提高类金刚石膜层110的硬度;再对类金刚石膜层110进行离子注入处理106,降低类金刚石膜层110内的Sp3杂化键的含量,使得在类金刚石膜层110的局部区域内碳原子密度降低,降低类金刚石膜层110的内应力,在将类金刚石膜层110使用到半导体图形化工艺中时,具有较低内应力的类金刚石膜层110具有良好的图形转移效果,并且可以有效避免晶圆的翘曲。
本公开第二实施例提供一种膜层,该膜层可以根据第一实施例膜层的形 成方法形成。以下将结合附图对本公开第二实施例提供的膜层进行详细说明。
参考图7,本实施例提供的膜层,包括:经过光催化处理的类金刚石膜层110。
本实施例中,类金刚石膜层110内具有碳元素、金属元素和氢元素;氢元素和碳元素形成碳氢化学键,不同的碳元素之间形成碳碳化学键,金属元素和碳元素形成碳-金属元素化学键。
在类金刚石膜层110内氢元素含量较少,类金刚石膜层110内具有的碳氢化学键的含量占所有化学键的比重小于5%;类金刚石膜层110内的氢元素104较少,所以碳元素在类金刚石膜层110内所占比例较高,占比更高的碳元素导致类金刚石膜层110的原子排布更规律,提高了类金刚石膜层110的硬度,类金刚石膜层110的性能得到提高。
本实施例中,金属元素包括:钛元素、钨元素或铬元素等亲碳金属元素,掺杂的亲碳金属元素会与碳元素形成热力学性能稳定的碳化物硬质相,从而增强类金刚石膜层110的力学性能和耐磨性;而且掺杂的金属元素具有亲碳的特性,有利于提高形成的类金刚石膜层110的结构稳定性。
金属元素在类金刚石膜层110中以纳米晶形态存在,或者以与碳元素组成面心立方体结构的纳米晶形态存在;形成的类金刚石膜层110热力学性能稳定,具有较强的力学性能和耐磨性。
金属元素占类金刚石膜层110质量的5%~25%,例如可以为10%、15%或20%;金属元素的含量保持在此范围内,在提高类金刚石膜层110的硬度和耐磨性等物理性能的同时,最大限度的保留了石墨的优良性能。
本实施例中,部分类金刚石膜层110为含有第五族元素的第一类金刚石膜层112,剩余的类金刚石膜层110作为第二类金刚石膜层111。
本实施例中,第五族元素为氮元素,氮元素的原材料来源广泛,包括氨气、氧化氮和氮气等,氮元素价格便宜,注入之后产生的废气无害,容易处理;在其他实施例中,可以注入磷元素或砷元素等第五族元素。
由于类金刚石膜层110内掺杂有氮元素,氮元素可以通过晶粒位错滑移应变降低类金刚石膜层110的内应力,提高类金刚石膜层110的韧性,有效强化真空和大气环境下类金刚石膜层110的机械摩擦学的适应性;氮元素会抑制Sp3杂化键的形成,导致局域内碳原子密度降低,最终促使Sp3杂化键 向Sp2杂化键转变;类金刚石膜层110内的Sp2杂化键含量上升,Sp3杂化键含量下降,Sp2杂化键和Sp3杂化键相比,每个原子的平均配位数更小,整个类金刚石膜层110内原子的平均配位数变小,则类金刚石膜层110的内应力降低。
在垂直于类金刚石膜层110上表面的方向上,类金刚石膜层110的厚度为150纳米~170纳米,例如可以为155纳米、160纳米或165纳米;在垂直于类金刚石膜层110上表面的方向上,第一类金刚石膜层112的厚度为20纳米~50纳米,例如可以为25纳米、20纳米或40纳米;在垂直于类金刚石膜层110上表面的方向上,第二类金刚石膜层111的厚度为100纳米~150纳米,例如可以为110纳米、120纳米或130纳米。
本公开实施例提供一种膜层,类金刚石膜层110内具有的碳氢化学键的含量占所有化学键的比重小于5%,类金刚石膜层110内的氢元素104较少,所以碳元素在类金刚石膜层110内所占比例较高,占比更高的碳元素导致类金刚石膜层110的原子排布更规律,类金刚石膜层110的硬度较高;部分类金刚石膜层110为含有第五族元素的第一类金刚石膜层112,由于类金刚石膜层110内具有第五族元素,所以类金刚石膜层110内具有较多的Sp2杂化键,类金刚石膜层110的局部区域内碳原子密度较低;类金刚石膜层110的局部区域内碳原子密度较低表示类金刚石膜层110内的原子平均配位数较小,从而形成的类金刚石膜层110的内应力较小;而且具有较小内应力的类金刚石膜层110具有较高的韧性,在真空和大气环境下具有较好的机械摩擦学的适应性。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“实施例”、“示例性的实施例”、“一些实施方式”、“示意性实施方式”、“示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。
在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或 多个实施方式或示例中以合适的方式结合。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
可以理解的是,本公开所使用的术语“第一”、“第二”等可在本公开中用于描述各种结构,但这些结构不受这些术语的限制。这些术语仅用于将第一个结构与另一个结构区分。
在一个或多个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的多个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的结构。在下文中描述了本公开的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本公开。但正如本领域技术人员能够理解的那样,可以不按照这些特定的细节来实现本公开。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开实施例提供一种膜层及其形成方法,有利于提高类金刚石膜层的硬度并且降低类金刚石膜层的内应力。

Claims (17)

  1. 一种膜层的形成方法,包括:
    提供基底;
    在所述基底上形成类金刚石膜层,所述类金刚石膜层内具有碳氢化学键;
    对所述类金刚石膜层进行光催化处理,以使至少部分所述碳氢化学键断开,减少所述类金刚石膜层中的氢元素含量。
  2. 根据权利要求1所述的膜层的形成方法,其中,在所述基底上形成所述类金刚石膜层,包括:
    采用金属前驱体和碳前驱体在所述基底上形成所述类金刚石膜层,以使得所述类金刚石膜层中掺杂有金属元素;
    在所述碳氢化学键断开之后,断开的碳键与所述金属元素形成碳-金属元素化学键。
  3. 根据权利要求1所述的膜层的形成方法,其中,所述光催化处理的工艺参数包括:采用的光的波长范围为200纳米~400纳米;工艺时长为3分钟~8分钟;工艺温度为15摄氏度~60摄氏度。
  4. 根据权利要求2所述的膜层的形成方法,其中,
    采用等离子化学气相沉积工艺形成所述类金刚石膜层;
    所述金属元素在所述类金刚石膜层中以纳米晶形态存在,或者以与碳元素组成面心立方体结构的纳米晶形态存在。
  5. 根据权利要求4所述的膜层的形成方法,其中,所述金属元素占所述类金刚石膜层质量的5%~25%。
  6. 根据权利要求4所述的膜层的形成方法,其中,所述金属元素包括:钛元素、钨元素或铬元素。
  7. 根据权利要求1或4所述的膜层的形成方法,在所述光催化处理之后,还包括:
    对所述类金刚石膜层进行离子注入处理,降低所述类金刚石膜层内的Sp3杂化键的含量,使得在所述类金刚石膜层的局部区域内碳原子密度降低。
  8. 根据权利要求7所述的膜层的形成方法,其中,所述离子注入处理还适于,使至少部分碳元素脱离化学键,生成碳自由基。
  9. 根据权利要求8所述的膜层的形成方法,其中,所述离子注入处理注入第五族元素,所述碳自由基和所述第五族元素形成Sp2杂化键。
  10. 根据权利要求9所述的膜层的形成方法,其中,在进行所述离子注入处理之后,部分所述类金刚石膜层为含有所述第五族元素的第一类金刚石膜层。
  11. 根据权利要求10所述的膜层的形成方法,其中,在垂直于所述类金刚石膜层上表面的方向上,所述第一类金刚石膜层的厚度为20纳米~50纳米。
  12. 根据权利要求11所述的膜层的形成方法,其中,在垂直于所述类金刚石膜层上表面的方向上,所述类金刚石膜层的厚度为150纳米~170纳米。
  13. 根据权利要求7所述的膜层的形成方法,其中,所述离子注入处理的工艺参数包括:注入能量为1电子伏特~2电子伏特;离子源的注入剂量为1011离子数每平方厘米~1013离子数每平方厘米;工艺时长为5秒~200秒。
  14. 根据权利要求7所述的膜层的形成方法,在进行所述离子注入处理之后,还包括:对所述类金刚石膜层进行退火处理。
  15. 根据权利要求14所述的膜层的形成方法,其中,所述退火处理的工艺参数包括:工艺温度为300摄氏度~500摄氏度,工艺时长为20分钟~30分钟。
  16. 一种膜层,包括:
    经过光催化处理的类金刚石膜层,且所述类金刚石膜层内具有的碳氢化学键的含量占所有化学键的比重小于5%;所述类金刚石膜层中掺杂有金属元素;部分所述类金刚石膜层为含有第五族元素的第一类金刚石膜层。
  17. 根据权利要求16所述的膜层,其中,在垂直于所述类金刚石膜层上表面的方向上,所述类金刚石膜层的厚度为150纳米~170纳米,其中,所述第一类金刚石膜层的厚度为20纳米~50纳米。
PCT/CN2021/128070 2021-03-22 2021-11-02 膜层及其形成方法 WO2022199030A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/150,258 US20230142204A1 (en) 2021-03-22 2023-01-05 Film and forming method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110304036.9A CN113066714B (zh) 2021-03-22 2021-03-22 膜层及其形成方法
CN202110304036.9 2021-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/150,258 Continuation US20230142204A1 (en) 2021-03-22 2023-01-05 Film and forming method thereof

Publications (1)

Publication Number Publication Date
WO2022199030A1 true WO2022199030A1 (zh) 2022-09-29

Family

ID=76563448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128070 WO2022199030A1 (zh) 2021-03-22 2021-11-02 膜层及其形成方法

Country Status (3)

Country Link
US (1) US20230142204A1 (zh)
CN (1) CN113066714B (zh)
WO (1) WO2022199030A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066714B (zh) * 2021-03-22 2022-11-22 长鑫存储技术有限公司 膜层及其形成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1257681A1 (en) * 2000-02-08 2002-11-20 Epion Corporation Diamond-like carbon film with enhanced adhesion
JP2012107344A (ja) * 2012-03-07 2012-06-07 Nagasaki Univ ダイヤモンド様薄膜、その製造方法及び製造装置
CN107641788A (zh) * 2016-07-22 2018-01-30 北京华石联合能源科技发展有限公司 一种抗结焦的类金刚石膜的制备方法
CN108411258A (zh) * 2018-05-29 2018-08-17 大连维钛克科技股份有限公司 一种超厚无氢类金刚石薄膜及其制备方法
CN112490118A (zh) * 2019-09-12 2021-03-12 长鑫存储技术有限公司 半导体器件、硬掩膜结构及硬掩膜结构的制造方法
CN113066714A (zh) * 2021-03-22 2021-07-02 长鑫存储技术有限公司 膜层及其形成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050224807A1 (en) * 2004-03-25 2005-10-13 Ravi Kramadhati V Low dielectric constant carbon films
US20060151433A1 (en) * 2005-01-10 2006-07-13 Chi-Lung Chang Method for removing and recoating of diamond-like carbon films and its products thereof
JP5731592B2 (ja) * 2013-07-31 2015-06-10 トーカロ株式会社 光触媒作用を有するdlc膜被覆部材及びその製造方法
CN108149193A (zh) * 2017-12-26 2018-06-12 信利光电股份有限公司 一种类金刚石碳基薄膜及其制备方法
CN110965022B (zh) * 2018-09-28 2021-12-24 长鑫存储技术有限公司 半导体结构的形成方法
CN111729508B (zh) * 2020-06-23 2022-09-09 苍龙集团有限公司 一种混合式诱导流喷淋除臭装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1257681A1 (en) * 2000-02-08 2002-11-20 Epion Corporation Diamond-like carbon film with enhanced adhesion
JP2012107344A (ja) * 2012-03-07 2012-06-07 Nagasaki Univ ダイヤモンド様薄膜、その製造方法及び製造装置
CN107641788A (zh) * 2016-07-22 2018-01-30 北京华石联合能源科技发展有限公司 一种抗结焦的类金刚石膜的制备方法
CN108411258A (zh) * 2018-05-29 2018-08-17 大连维钛克科技股份有限公司 一种超厚无氢类金刚石薄膜及其制备方法
CN112490118A (zh) * 2019-09-12 2021-03-12 长鑫存储技术有限公司 半导体器件、硬掩膜结构及硬掩膜结构的制造方法
CN113066714A (zh) * 2021-03-22 2021-07-02 长鑫存储技术有限公司 膜层及其形成方法

Also Published As

Publication number Publication date
CN113066714A (zh) 2021-07-02
US20230142204A1 (en) 2023-05-11
CN113066714B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
TW201932635A (zh) 高蝕刻選擇性的非晶碳膜
US20040060899A1 (en) Apparatuses and methods for treating a silicon film
Lee et al. Pressure effect on diamond nucleation in a hot-filament CVD system
US9748149B2 (en) Method of manufacturing a silicon carbide semiconductor device including forming a protective film with a 2-layer structure comprised of silicon and carbon
WO2010110123A1 (ja) 基板処理方法および結晶性炭化ケイ素(SiC)基板の製造方法
JP5480298B2 (ja) キャビティ層の形成方法
WO2011016392A1 (ja) 炭化珪素半導体装置の製造方法
KR20050085074A (ko) 탄소 나노튜브의 형성 방법
US9111775B2 (en) Silicon structure and manufacturing methods thereof and of capacitor including silicon structure
WO2016133089A1 (ja) エピタキシャル炭化珪素単結晶ウエハの製造方法及びエピタキシャル炭化珪素単結晶ウエハ
WO2022199030A1 (zh) 膜层及其形成方法
JP5438992B2 (ja) 炭化珪素半導体装置の製造方法
JP6374354B2 (ja) SiC結晶の製造方法
JP2011159978A (ja) エピタキシャル堆積層を有するシリコンから構成される半導体ウェハの製造方法
EP0209648B1 (en) Wafer base for silicon carbide semiconductor device
KR20050085073A (ko) 탄소 나노튜브의 형성 방법
JP2020033208A (ja) トレイ、半導体基板の製造方法、半導体装置の製造方法および半導体製造装置
JP4755421B2 (ja) ウェハ用二層lto背面シール
JP5673107B2 (ja) 炭化珪素半導体デバイスの作製方法
JP2634183B2 (ja) ダイヤモンド結晶の形成方法
JP4790211B2 (ja) Soi基板と半導体基板及びその製造方法
JP2021046336A (ja) 黒鉛製支持基板の表面処理方法、炭化珪素多結晶膜の成膜方法および炭化珪素多結晶基板の製造方法
WO2008035468A1 (fr) FILM DE NANODIAMANT MINCE AYANT UNE CONDUCTIVITÉ DU TYPE n ET PROCÉDÉ DE FABRICATION DE CELUI-CI
JP6472016B2 (ja) 炭化珪素半導体装置の製造方法
TW202212609A (zh) 低應力含硼層之沉積

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932638

Country of ref document: EP

Kind code of ref document: A1