WO2022196384A1 - 基板処理方法および基板処理装置 - Google Patents

基板処理方法および基板処理装置 Download PDF

Info

Publication number
WO2022196384A1
WO2022196384A1 PCT/JP2022/009292 JP2022009292W WO2022196384A1 WO 2022196384 A1 WO2022196384 A1 WO 2022196384A1 JP 2022009292 W JP2022009292 W JP 2022009292W WO 2022196384 A1 WO2022196384 A1 WO 2022196384A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
etching
processing
film
etchant
Prior art date
Application number
PCT/JP2022/009292
Other languages
English (en)
French (fr)
Inventor
興司 香川
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2022196384A1 publication Critical patent/WO2022196384A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials

Definitions

  • the disclosed embodiments relate to a substrate processing method and a substrate processing apparatus.
  • Patent Document 1 a technique for etching both a W (tungsten) film and a TiN (titanium nitride) film formed on a substrate such as a semiconductor wafer (hereinafter also referred to as a wafer) is known (see Patent Document 1). .
  • the present disclosure provides a technique for evenly etching a Mo (molybdenum) film and a TiN film formed on a substrate.
  • a substrate processing method includes a preparation process, a first etching process, and a second etching process.
  • the preparation step prepares a substrate having a device structure on the surface thereof, which includes multilayer films each having a Mo film formed on the surface of a TiN film.
  • the substrate is etched with a first etchant containing phosphoric acid, acetic acid, and nitric acid.
  • the substrate is etched with a second etchant containing sulfuric acid and water.
  • the Mo film and the TiN film formed on the substrate can be evenly etched.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment.
  • FIG. 2 is an explanatory diagram of substrate processing according to the embodiment.
  • FIG. 3 is an explanatory diagram of substrate processing according to the embodiment.
  • FIG. 4 is a graph showing changes in the etching amount at each position of the Mo film when the water concentration of the first etchant is changed.
  • FIG. 5 is an explanatory diagram of substrate processing according to the embodiment.
  • FIG. 6 is a graph showing changes in the etching amounts of the TiN film and the Mo film when the processing time of the second etchant is changed.
  • FIG. 7 is a graph showing changes in the etching amounts of the TiN film and the Mo film when the processing time of the second etchant is changed.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment.
  • FIG. 2 is an explanatory diagram of substrate processing according to the embodiment.
  • FIG. 3 is an explanatory
  • FIG. 8 is a schematic cross-sectional view of a processing bath for drying processing according to the embodiment.
  • FIG. 9 is a diagram illustrating the configuration of a gas supply unit according to the embodiment;
  • FIG. 10 is a flow chart showing the procedure of the drying process according to the embodiment.
  • FIG. 11 is a schematic diagram showing an example of a specific configuration of a drying unit according to Modification 1 of the embodiment.
  • FIG. 12 is a schematic diagram showing a drying process according to Modification 1 of the embodiment.
  • FIG. 13 is a schematic diagram showing an example of a specific configuration of a drying unit according to Modification 2 of the embodiment.
  • FIG. 14 is a flow chart showing a procedure of substrate processing executed by the substrate processing system according to the embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of a substrate processing system 1 according to an embodiment.
  • the substrate processing system 1 is an example of a substrate processing apparatus.
  • the X-axis, Y-axis and Z-axis are defined to be orthogonal to each other, and the positive direction of the Z-axis is defined as the vertically upward direction.
  • a substrate processing system 1 includes a carrier loading/unloading unit 2, a lot formation unit 3, a lot placement unit 4, a lot transport unit 5, a lot processing unit 6, a control a part 7;
  • the carrier loading/unloading section 2 includes a carrier stage 20 , a carrier transport mechanism 21 , carrier stocks 22 and 23 , and a carrier table 24 .
  • the carrier stage 20 carries a plurality of carriers 9 transported from the outside.
  • the carrier 9 is a container that accommodates a plurality of (for example, 25) wafers W arranged vertically in a horizontal posture.
  • the carrier transport mechanism 21 transports the carrier 9 among the carrier stage 20 , carrier stocks 22 and 23 and carrier table 24 .
  • a plurality of wafers W to be processed are unloaded to the lot processing section 6 by the substrate transport mechanism 30, which will be described later.
  • a plurality of processed wafers W are carried from the lot processing section 6 to the carrier 9 mounted on the carrier mounting table 24 by the substrate transfer mechanism 30 .
  • the lot formation unit 3 has a substrate transport mechanism 30 and forms lots.
  • a lot consists of a plurality of (for example, 50) wafers W that are processed simultaneously by combining wafers W accommodated in one or more carriers 9 .
  • a plurality of wafers W forming one lot are arranged at regular intervals with their plate surfaces facing each other.
  • the substrate transport mechanism 30 transports a plurality of wafers W between the carrier 9 mounted on the carrier mounting table 24 and the lot mounting section 4 .
  • the lot placing unit 4 has a lot transport table 40 and temporarily places (stands by) the lot transported between the lot forming unit 3 and the lot processing unit 6 by the lot transporting unit 5 .
  • the lot conveying table 40 has a lot mounting table 41 on which the lot formed by the lot forming section 3 before being processed is mounted, and a lot mounting table 42 on which the lot processed by the lot processing section 6 is mounted. .
  • a plurality of wafers W for one lot are mounted on the lot mounting table 41 and the lot mounting table 42 side by side in an upright posture.
  • the lot transport unit 5 has a lot transport mechanism 50 and transports lots between the lot placement unit 4 and the lot processing unit 6 and inside the lot processing unit 6 .
  • the lot transport mechanism 50 has a rail 51 , a moving body 52 and a substrate holder 53 .
  • the rails 51 are arranged along the X-axis direction across the lot placement section 4 and the lot processing section 6 .
  • the moving body 52 is configured to be movable along the rails 51 while holding a plurality of wafers W. As shown in FIG.
  • the substrate holder 53 is provided on the moving body 52 and holds a plurality of wafers W arranged in front and back in an upright posture.
  • the lot processing unit 6 collectively performs etching processing, cleaning processing, drying processing, etc. on a plurality of wafers W for one lot.
  • an etching processing device 60 an etching processing device 60 , an etching processing device 70 , a cleaning processing device 80 , and a drying processing device 90 are arranged side by side along the rail 51 .
  • the etching processing apparatus 60 collectively performs the first etching processing on a plurality of wafers W for one lot.
  • the etching processing apparatus 70 collectively performs the second etching processing on a plurality of wafers W for one lot.
  • the cleaning processing device 80 cleans the substrate holder 53 .
  • the drying processing device 90 collectively performs drying processing on a plurality of wafers W for one lot.
  • the numbers of the etching processing devices 60, the etching processing devices 70, the cleaning processing devices 80, and the drying processing devices 90 are not limited to the example in FIG.
  • the etching processing apparatus 60 includes a processing bath 61 for first etching processing, a processing bath 62 for rinsing processing, and substrate lifting mechanisms 63 and 64 .
  • the processing bath 61 is an example of a first processing bath.
  • the processing tank 61 can accommodate one lot of wafers W arranged in an upright posture, and stores a processing liquid for the first etching process (hereinafter also referred to as "first etching liquid").
  • the first etchant of the present disclosure includes, for example, phosphoric acid (H 3 PO 4 ) as a catalyst, acetic acid (CH 3 COOH) as a moisture regulator, and nitric acid (HNO 3 ) as an oxidant.
  • phosphoric acid H 3 PO 4
  • acetic acid CH 3 COOH
  • nitric acid HNO 3
  • Such a first etchant is, for example, a mixture of phosphoric acid, acetic acid and nitric acid.
  • the processing tank 62 stores a processing liquid for rinsing (DIW (deionized water), etc.).
  • DIW deionized water
  • the substrate lifting mechanisms 63 and 64 hold a plurality of wafers W forming a lot side by side in an upright posture.
  • the etching processing apparatus 60 holds the lot conveyed by the lot conveying unit 5 by the substrate lifting mechanism 63 and immerses it in the first etchant in the processing tank 61 to perform the first etching processing. Details of the first etching process will be described later.
  • the lot subjected to the first etching process in the processing bath 61 is transferred to the processing bath 62 by the lot transfer unit 5 .
  • the etching processing apparatus 60 holds the transported lot in the substrate lifting mechanism 64 and immerses it in the rinse liquid in the processing tank 62 to perform the rinse processing.
  • the lot that has been rinsed in the processing bath 62 is transferred to the processing bath 71 of the etching apparatus 70 by the lot transfer unit 5 .
  • the etching processing apparatus 70 includes a processing bath 71 for second etching processing, a processing bath 72 for rinsing processing, and substrate lifting mechanisms 73 and 74 .
  • the processing bath 71 is an example of a second processing bath.
  • the processing bath 71 can accommodate one lot of wafers W arranged in an upright posture, and stores a processing liquid for a second etching process (hereinafter also referred to as "second etching liquid").
  • the second etchant of the present disclosure contains, for example, sulfuric acid and water.
  • a second etchant is, for example, a mixture of concentrated sulfuric acid (eg, concentration 96 (wt %)) and water.
  • a processing liquid (such as DIW) for rinsing is stored in the processing bath 72 .
  • the substrate lifting mechanisms 73 and 74 hold a plurality of wafers W forming a lot side by side in an upright posture.
  • the etching processing apparatus 70 holds the lot conveyed by the lot conveying unit 5 by the substrate lifting mechanism 73 and immerses it in the second etching solution in the processing tank 71 to perform the second etching processing. Details of the second etching process will be described later.
  • the lot subjected to the second etching process in the processing bath 71 is transferred to the processing bath 72 by the lot transfer unit 5 .
  • the etching processing apparatus 70 holds the transported lot in the substrate lifting mechanism 74 and immerses it in the rinse liquid in the processing bath 72 to perform the rinse processing.
  • the lot rinsed in the processing bath 72 is transported to the processing bath 91 of the drying processing device 90 by the lot transport unit 5 .
  • the drying processing apparatus 90 has a processing bath 91 and a substrate lifting mechanism 92 .
  • a processing gas for drying is supplied to the processing bath 91 .
  • the substrate lifting mechanism 92 holds a plurality of wafers W for one lot side by side in the front-rear direction in an upright posture.
  • the drying processing device 90 holds the lot transported by the lot transporting unit 5 with the substrate lifting mechanism 92 and performs drying processing using the processing gas for drying processing supplied into the processing bath 91 .
  • the lot that has been dried in the processing tank 91 is transported to the lot placement section 4 by the lot transport section 5 .
  • the cleaning processing device 80 supplies a processing liquid for cleaning to the substrate holder 53 of the lot transport mechanism 50 and further supplies a dry gas to clean the substrate holder 53 .
  • the control unit 7 controls the operation of each unit of the substrate processing system 1 (carrier loading/unloading unit 2, lot forming unit 3, lot placement unit 4, lot transport unit 5, lot processing unit 6, etc.).
  • the control section 7 controls the operation of each section of the substrate processing system 1 based on signals from switches, various sensors, and the like.
  • the control unit 7 includes a microcomputer having a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), input/output ports, and various circuits.
  • the control unit 7 controls the operation of the substrate processing system 1 by reading and executing a program stored in a storage unit (not shown).
  • the control unit 7 has a computer-readable storage medium 8.
  • the storage medium 8 stores the above programs for controlling various processes executed in the substrate processing system 1 .
  • the program may have been stored in the computer-readable storage medium 8 and installed in the storage medium 8 of the control unit 7 from another storage medium.
  • Examples of computer-readable storage media 8 include hard disks (HD), flexible disks (FD), compact disks (CD), magnet optical disks (MO), memory cards, and the like.
  • FIG. 2 is an explanatory diagram of substrate processing according to the embodiment.
  • a plurality of SiO 2 (silicon oxide) films 11 are arranged on a polysilicon film 10 at intervals.
  • a plurality of Al 2 O 3 (aluminum oxide) films 12 are formed on the surfaces of the plurality of SiO 2 films 11, respectively.
  • a plurality of TiN films 13 are formed on the surfaces of the plurality of Al 2 O 3 films 12, respectively.
  • a Mo film 14 is formed so as to cover the surfaces of the plurality of TiN films 13 .
  • the surface structure of the wafer W is not limited to the example shown in FIG. Further, the wafer W is formed with a groove 15 into which the first etchant is infiltrated to etch the laminated Mo film 14 .
  • the Mo film 14 is selectively etched by a first etching process using a first etchant. As a result, the end face of the TiN film 13 facing the trench 15 is exposed as shown in FIG.
  • FIG. 3 is an explanatory diagram of substrate processing according to the embodiment.
  • the groove 15 has a higher aspect ratio, and as the thickness of each layer in the laminated film becomes thinner (miniaturized), the variation in the etching amount in the lamination direction of the Mo film 14 (the depth direction of the groove 15) becomes larger. Specifically, the bottom closer to the bottom of the groove 15 is less likely to be etched than the top closer to the opening of the groove 15 .
  • FIG. 4 is a graph showing changes in the amount of etching at each position (top, middle, bottom) of the Mo film 14 when the moisture concentration of the first etchant is changed.
  • the circled plot shows the result of the Mo film 14 (top) located near the opening of the groove 15 among the plurality of laminated Mo films 14 .
  • the plot indicated by squares shows the result of the Mo film 14 (bottom) positioned near the bottom of the groove 15 among the plurality of laminated Mo films 14 .
  • the plot indicated by triangles shows the result of the Mo film 14 (middle) located in the central part in the lamination direction among the plurality of laminated Mo films 14 .
  • the difference between the top etching amount and the bottom etching amount decreased as the moisture concentration of the first etchant decreased. From this result, it can be seen that by reducing the water concentration of the first etchant, variations in the etching amount in the stacking direction of the Mo film 14 can be suppressed.
  • molybdenum oxide (MoO 3 ) is produced by reacting nitrate ions (NO 3 ⁇ ) with molybdenum.
  • molybdenum oxide MoO 3
  • H 3 PO 4 phosphoric acid
  • MoO 4 2 ⁇ molybdate ions
  • the etching of the Mo film 14 proceeds by reacting molybdenum oxide (MoO 3 ) with water (H 2 O). Therefore, the etching rate of the Mo film 14 increases as the water concentration in the first etching liquid increases, and conversely, the etching rate of the Mo film 14 decreases as the water concentration decreases.
  • MoO 3 molybdenum oxide
  • water H 2 O
  • the molybdenum concentration in the first etchant increases. This increase in molybdenum concentration is particularly conspicuous within the groove 15 .
  • the first etchant in the groove 15 replaces the first etchant present outside the groove 15 .
  • the moisture concentration in the first etchant is high, that is, when the etching rate of the Mo film 14 is high, the first etchant cannot be replaced in time, and the inside of the groove 15, particularly near the bottom of the groove 15, has a low molybdenum concentration. There is a risk that the high first etchant will remain.
  • a concentration gradient of molybdenum in the first etchant is generated in the depth direction of the groove 15 , and the etching amount of the Mo film 14 positioned near the bottom of the groove 15 is increased by the Mo film positioned near the opening of the groove 15 .
  • the amount of etching is smaller than that of No. 14.
  • the etching amount of the Mo film 14 varies in the stacking direction.
  • the Mo film 14 is etched using the first etchant having a low water concentration.
  • the first etching liquid according to the embodiment is a chemical liquid containing an oxidizing agent, a catalyst, and a water content adjusting agent.
  • the oxidizing agent in addition to the nitric acid (HNO 3 ) described above, for example, sulfuric acid (H 2 SO 4 ), hydrogen peroxide solution (H 2 O 2 ), etc. can be used. Also, the oxidizing agent may contain two or three of sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ) and hydrogen peroxide (H 2 O 2 ).
  • the oxidant may be an SPM liquid containing sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ).
  • the oxidant may be selected from at least one of sulfuric acid (H2SO4), nitric acid ( HNO3 ) and hydrogen peroxide ( H2O2).
  • glycols such as ethylene glycol, propylene glycol and diethylene glycol can be used.
  • the moisture adjusting agent is preferably a substance that does not substantially contain moisture.
  • an organic acid or an organic solvent can be used as such a moisture adjusting agent.
  • Organic acids can be selected from, for example, at least one of acetic acid, methanesulfonic acid, paratoluenesulfonic acid, phthalic acid, succinic acid, maleic acid, malonic acid, oxalic acid, propionic acid and orthoperiodic acid.
  • the organic solvent can be selected from, for example, at least one of glycols such as ethylene glycol, propylene glycol and diethylene glycol, propylene carbonate and IPA (isopropyl alcohol).
  • glycols such as ethylene glycol, propylene glycol and diethylene glycol, propylene carbonate and IPA (isopropyl alcohol).
  • the first etching solution according to the embodiment contains the oxidizing agent, the catalyst and the water content such that the weight ratio of the moisture adjusting agent to the entire first etching solution is higher than the total ratio of the oxidizing agent and the catalyst.
  • a modifier is added.
  • the water concentration of the first etchant is preferably less than 5 (wt%).
  • a lid that can be opened and closed is attached to the opening of the processing bath 61 in which the first etchant is stored.
  • a body may be placed.
  • the first etching process can be stably performed by arranging the openable and closable cover in the opening of the processing bath 61 .
  • the pulling speed should be slowed down as much as possible.
  • the plurality of wafers W are unloaded from the processing bath 62 , it is possible to prevent the DIW adhering to the plurality of wafers W from entering the processing bath 61 . Therefore, according to the embodiment, the first etching process can be stably performed.
  • the temperature of the first etchant in the first etching process is preferably 40 (° C.) or less.
  • Molybdenum corresponds to a base metal, has a high ionization tendency, and is relatively easily oxidized. Therefore, when the heated first etchant is used, the etching rate of the Mo film 14 becomes too fast, and there is a possibility that the variation in the etching amount in the stacking direction of the Mo film 14 becomes large.
  • the embodiment by performing the first etching process using the first etchant having a temperature of 40 (° C.) or less, it is possible to reduce the variation in the etching amount in the stacking direction of the Mo film 14 .
  • the second etching processing is performed. Specifically, the TiN film 13 is selectively etched by the second etchant stored in the processing tank 71 .
  • FIG. 5 is an explanatory diagram of substrate processing according to the embodiment.
  • the TiN film 13 can be selectively etched by increasing the selection ratio of the TiN film 13 to the Mo film 14 . Therefore, in the second etching process according to the embodiment, a mixed solution of sulfuric acid and water is used as the second etching solution.
  • the second etchant is The TiN film 13 can be selectively etched. That is, in the embodiment, of the TiN film 13 and the Mo film 14 exposed on the surface of the wafer W, the TiN film 13 can be etched with high selectivity by the second etching process.
  • the Mo film 14 is selectively etched in the first etching process, and the TiN film 13 is selectively etched in the second etching process.
  • the TiN film 13 and the Mo film 14 formed on the wafer W can be individually etched with high accuracy. Therefore, according to the embodiment, the TiN film 13 and the Mo film 14 formed on the wafer W can be uniformly etched.
  • the etching process may be performed with a second etchant in which water is added to sulfuric acid.
  • a second etchant in which water is added to sulfuric acid.
  • More H 2 + is supplied into the second etchant by the reactions of formulas (8) and (9).
  • the reaction of the above chemical reaction formula (7) is accelerated, so that the second etchant can further selectively etch the TiN film 13 .
  • the TiN film 13 can be etched with high accuracy with respect to the Mo film 14, the TiN film 13 and the Mo film 14 formed on the wafer W can be etched even more uniformly.
  • FIG. 6 and 7 are graphs showing changes in etching amounts of the TiN film 13 and the Mo film 14 when the processing time of the second etchant is changed.
  • FIG. 6 shows the experimental results when the sulfuric acid concentration of the second etching liquid is 96 (wt %) and the temperature is 120 (° C.), and FIG. %) and the temperature is 140 (° C.).
  • the selection ratio of the TiN film 13 to the Mo film 14 can be calculated.
  • the selectivity of the TiN film 13 to the Mo film 14 is about 20.6, and in the example of FIG. 7, the selectivity of the TiN film 13 to the Mo film 14 is about 82.1.
  • the sulfuric acid concentration of the second etchant in the second etching process should be 50 (wt %) to 96 (wt %).
  • the TiN film 13 can be etched more accurately than the Mo film 14, the TiN film 13 and the Mo film 14 formed on the wafer W can be etched more uniformly.
  • the temperature of the second etchant in the second etching process may be 80 (° C.) to 160 (° C.).
  • the TiN film 13 can be etched with higher selectivity with respect to the Mo film 14 .
  • the TiN film 13 can be etched more accurately than the Mo film 14, the TiN film 13 and the Mo film 14 formed on the wafer W can be etched more uniformly.
  • the selectivity ratio of the TiN film 13 to the Mo film 14 is preferably 10 or more in the second etching process.
  • the first etching treatment and the second etching treatment may be performed in separate treatment baths 61 and 71, respectively.
  • the total processing time can be shortened compared to the case where the first etching treatment and the second etching treatment are performed in the same treatment bath while replacing the etchant. Therefore, according to the embodiment, the wafer W can be efficiently processed.
  • FIG. 8 is a schematic cross-sectional view of a processing tank 91 for drying processing according to the embodiment.
  • the processing bath 91 includes a liquid processing bath 200, a drying processing bath 300, and a gas supply unit 400.
  • the liquid processing tank 200 includes a storage tank 201 , an overflow tank 202 and a sealing tank 203 .
  • the liquid processing bath 200 can accommodate a plurality of wafers W arranged in a vertical posture (upright state).
  • a plurality of wafers W for one lot are immersed in the processing liquid stored therein, thereby performing liquid processing for collectively processing a plurality of wafers W for one lot.
  • DIW is used as the processing liquid.
  • a plurality of wafers W for one lot are rinsed using DIW.
  • the storage tank 201 is provided with a liquid discharger 204 for supplying the processing liquid and a drainage mechanism 205 for discharging the processing liquid.
  • the liquid discharger 204 includes a plurality of (here, two) nozzles 210 , a supply path 211 , a processing liquid supply source 212 , a cooling section 213 , a valve 214 , and a flow regulator 215 .
  • Two nozzles 210 are provided at the inner bottom of the reservoir 201 .
  • a supply path 211 connects the two nozzles 210 and the treatment liquid supply source 212 .
  • a processing liquid supply source 212 supplies processing liquid to the two nozzles 210 .
  • the cooling unit 213 is, for example, a chiller or the like, and cools the processing liquid supplied from the processing liquid supply source 212 .
  • the temperature of the processing liquid supplied from the processing liquid supply source 212 is room temperature, and the cooling unit 213 cools the processing liquid supplied from the processing liquid supply source 212 to room temperature or lower (for example, 20 degrees or lower). Cooling.
  • the valve 214 opens and closes the supply path 211 .
  • the flow rate regulator 215 adjusts the flow rate of the processing liquid flowing through the supply path 211 .
  • the drainage mechanism 205 includes a drainage port 251 , a drainage path 252 and a valve 253 .
  • a drain port 251 is provided at the center of the inner bottom of the storage tank 201 .
  • the drainage path 252 is connected to the drainage port 251 .
  • a valve 253 is provided in the middle of the drainage path 252 and opens and closes the drainage path 252 .
  • the overflow tank 202 is formed on the outer periphery of the upper end of the storage tank 201 and stores the processing liquid overflowing from the storage tank 201 .
  • the seal tank 203 is formed on the outer periphery of the upper end of the overflow tank 202 and stores liquid such as water. By immersing a seal wall 333 , which will be described later, in the liquid stored in the seal tank 203 , it is possible to isolate the inside and the outside of the liquid treatment tank 200 .
  • the drying treatment tank 300 is arranged above the liquid treatment tank 200 and has an internal space communicating with the storage tank 201 .
  • the drying processing bath 300 includes a body portion 301 , a lid portion 302 and a shielding portion 303 .
  • the body part 301 is open at the top and bottom.
  • a plurality of (here, two) exhaust ports 311 are provided in the body portion 301 .
  • Two exhaust ports 311 are provided on the sides of the plurality of wafers W. As shown in FIG.
  • the two exhaust ports 311 are connected via an exhaust path 312 to an exhaust mechanism (not shown) such as a vacuum pump. is discharged to
  • the lid portion 302 is arranged above the main body portion 301 and closes the upper opening of the main body portion 301 .
  • the lid portion 302 is configured to be able to move up and down by a moving mechanism (not shown). can be done.
  • the shielding part 303 is arranged below the main body part 301 .
  • the shielding part 303 includes a shielding door 331 and a housing 332 .
  • the shielding door 331 is configured to be movable in the horizontal direction (here, the X-axis direction) inside the housing 332 by a moving mechanism (not shown), and closes or opens the lower opening of the main body 301 .
  • the housing 332 is interposed between the liquid processing tank 200 and the main body 301, and accommodates the shielding door 331 inside.
  • An opening that communicates with the lower opening of the main body 301 is formed in the upper portion of the housing 332 , and an opening that communicates with the upper region of the storage tank 201 is formed in the lower portion of the housing 332 .
  • a seal wall 333 protruding downward is provided at the bottom of the housing 332 .
  • the seal wall 333 is immersed in the liquid stored in the seal tank 203 . Thereby, the inside and the outside of the liquid processing bath 200 can be isolated.
  • the gas supply unit 400 includes a first ejection unit 401 and a second ejection unit 402 arranged in multiple stages inside the drying processing tank 300 .
  • the first ejection part 401 and the second ejection part 402 are arranged on the side of the movement path of the plurality of wafers W by the moving mechanism 923 described later, and the drying liquid is discharged toward the plurality of wafers W raised by the moving mechanism 923 . is discharged as dry steam.
  • This drying liquid is a liquid for drying the wafer W, and in the present disclosure, an organic solvent is used as the drying liquid.
  • IPA shall be used as the drying liquid. That is, in the present disclosure, IPA vapor (hereinafter referred to as “IPA vapor”) is discharged toward a plurality of wafers W as dry vapor.
  • the organic solvent is not limited to IPA.
  • the drying liquid may be any liquid that can dry the wafer W, and is not limited to an organic solvent.
  • the drying liquid may be a volatile liquid other than the organic solvent.
  • FIG. 9 is a diagram showing the configuration of the gas supply unit 400 according to the embodiment.
  • the first ejection part 401 and the second ejection part 402 are elongated nozzles extending along the direction in which the wafers W are arranged (Y-axis direction).
  • a plurality of ejection ports 410 are provided in the first ejection section 401 and the second ejection section 402 along the longitudinal direction.
  • the discharge port 410 in addition to a simple opening, a spray nozzle tip that sprays IPA vapor in the form of mist may be used.
  • the first ejection section 401 and the second ejection section 402 may have slit-shaped ejection openings extending in the longitudinal direction instead of the plurality of ejection openings 410 .
  • the first discharge part 401 is connected to the first supply system 420 .
  • the first supply system 420 includes an IPA supply source 421 , a nitrogen gas supply source 422 , valves 423 and 424 , a heating section 425 and a flow regulator 426 .
  • the IPA supply source 421 supplies IPA in a liquid state
  • the nitrogen gas supply source 422 supplies nitrogen gas, which is an inert gas.
  • the IPA supply source 421 is connected to the heating unit 425 through the valve 423, and the nitrogen gas supply source 422 is connected to the heating unit 425 through the valve 424.
  • the heating unit 425 When both the valves 423 and 424 are opened, the heating unit 425 is supplied with a mixed fluid of IPA supplied from the IPA supply source 421 and nitrogen gas supplied from the nitrogen gas supply source 422 .
  • the heating unit 425 generates IPA vapor by heating the mixed fluid.
  • a two-fluid nozzle (not shown) is provided after the valve 423 , and a mixed fluid of mist-like IPA and nitrogen gas is supplied to the heating unit 425 .
  • the heating unit 425 when only the valve 424 is opened, nitrogen gas is supplied to the heating unit 425 from the nitrogen gas supply source 422 .
  • the heating unit 425 generates hot nitrogen gas by heating the nitrogen gas.
  • the heating section 425 is connected to the first discharge section 401 and supplies IPA vapor or hot nitrogen gas to the first discharge section 401 .
  • the flow rate regulator 426 adjusts the flow rate of gas supplied to the heating section 425 .
  • the flow regulator 426 includes a flow meter, a constant flow valve, an electropneumatic regulator, etc., and adjusts the pressure of the gas (nitrogen gas) supplied to the electropneumatic regulator to supply the heating unit 425 with The flow rate of the gas supplied can be adjusted.
  • the second discharge part 402 is connected to the second supply system 430 .
  • the second supply system 430 includes an IPA supply source 431 , a nitrogen gas supply source 432 , valves 433 and 434 , a heating section 435 and a flow regulator 436 .
  • the IPA supply source 431 supplies liquid IPA
  • the nitrogen gas supply source 432 supplies nitrogen gas, which is an inert gas.
  • the IPA supply source 431 is connected to the heating section 435 via the valve 433 , and the nitrogen gas supply source 432 is connected to the heating section 435 via the valve 434 .
  • heating unit 435 heats a mixed fluid of IPA supplied from IPA supply source 431 and nitrogen gas supplied from nitrogen gas supply source 432 to produce IPA vapor. to generate Also, when only the valve 434 is opened, the heating unit 435 generates hot nitrogen gas by heating the nitrogen gas supplied from the nitrogen gas supply source 432 .
  • the heating section 435 is connected to the second discharge section 402 and supplies IPA vapor or hot nitrogen gas to the second discharge section 402 .
  • the flow rate regulator 436 adjusts the flow rate of gas supplied to the heating section 435 .
  • the flow regulator 436 includes a flow meter, a constant flow valve, an electropneumatic regulator, etc., and adjusts the pressure of the gas (nitrogen gas) supplied to the electropneumatic regulator to supply the heating unit 435 with The flow rate of the gas supplied can be adjusted.
  • the gas supply section 400 includes, for example, two first ejection sections 401 and two second ejection sections 402 .
  • the two first ejection parts 401 are provided on both left and right sides of the drying processing tank 300 located on the sides of the plurality of wafers W, respectively. The same is true for the two second ejection parts 402 .
  • the first discharge part 401 is arranged near the liquid surface of the processing liquid stored in the storage tank 201 . Specifically, it is arranged at a position lower than the height position of the upper ends of the plurality of wafers W when the upper halves of the plurality of wafers W have finished being exposed from the liquid surface of the processing liquid.
  • the first ejection part 401 is provided in the shielding part 303 of the drying treatment tank 300 closer to the storage tank 201 .
  • the first discharge part 401 is provided, for example, at the edge of an opening that is formed in the lower part of the housing 332 of the shielding part 303 and communicates with the upper region of the storage tank 201 .
  • the two first ejection units 401 horizontally eject IPA vapor or hot nitrogen gas toward a plurality of wafers W. Also, the two second ejection units 402 eject IPA vapor or hot nitrogen gas toward the plurality of wafers W obliquely upward.
  • the substrate elevating mechanism 92 includes a holder 921, a shaft 922 that supports the holder 921, and a moving mechanism 923 that raises and lowers the shaft 922.
  • the holder 921 holds a plurality of wafers W for one lot in a vertical posture and in a state in which they are arranged in the horizontal direction (here, the Y-axis direction) at regular intervals.
  • the shaft 922 extends vertically and supports the holder 921 at the bottom.
  • the shaft 922 is slidably inserted through an opening (not shown) provided in the upper portion of the lid portion 302 .
  • the moving mechanism 923 includes, for example, a motor, a ball screw, a cylinder, etc., and moves the shaft 922 along the vertical direction. As the moving mechanism 923 moves the shaft 922 up and down, the holder 921 supported by the shaft 922 moves up and down. Thereby, the plurality of wafers W held by the holder 921 can be moved between the storage tank 201 and the drying processing tank 300 .
  • FIG. 10 is a flow chart showing the procedure of the drying process according to the embodiment.
  • control unit 7 first performs a loading process of loading a plurality of wafers W for one lot into the storage tank 201 (step S1). Specifically, the control unit 7 causes the lot transfer unit 5 to carry the plurality of wafers W rinsed in the processing bath 72 into the processing bath 91 of the drying processing device 90 .
  • control section 7 transfers the plurality of wafers W from the lot transfer section 5 to the holder 921 of the substrate lifting mechanism 92 .
  • controller 7 controls the moving mechanism 923 and the like to lower the lid 302 and the shaft 922 .
  • the top opening of the body portion 301 of the drying processing tank 300 is closed by the lid portion 302, and the drying processing tank 300 is sealed.
  • control unit 7 operates the moving mechanism 923 to lower the plurality of wafers W that have been loaded, thereby immersing them in the DIW stored in the storage tank 201 .
  • control unit 7 performs pre-heating (step S2). Specifically, the control unit 7 controls the first supply system 420 and the second supply system 430 to discharge the hot nitrogen gas from the first discharge part 401 and the second discharge part 402 into the drying treatment tank 300. do.
  • control unit 7 can preheat the drying treatment tank 300 to a temperature suitable for the drying treatment, and can discharge oxygen in the drying treatment tank 300 from the exhaust port 311 .
  • control unit 7 performs a pre-lifting process (step S3). Switch from hot nitrogen gas to IPA vapor. As a result, the IPA vapor is discharged from the first discharge part 401 to form an IPA liquid film on the liquid surface of the DIW stored in the storage tank 201 .
  • the IPA existing on the DIW liquid surface can adhere to the surface of the wafer W in the process of pulling up the wafer W from the DIW in the subsequent pulling process. can be done. As a result, the amount of DIW remaining on the surface of the wafer W can be reduced, so that the replacement efficiency of DIW with IPA can be improved.
  • control unit 7 carries out a lifting process (step S4).
  • the control section 7 controls the moving mechanism 923 to raise the shaft 922 .
  • a plurality of wafers W start to be exposed from the DIW liquid surface.
  • the first discharge part 401 is arranged near the liquid surface of the DIW stored in the storage tank 201 . Therefore, the first discharge part 401 can supply the IPA vapor to the plurality of wafers W immediately after the plurality of wafers W are exposed from the DIW liquid surface.
  • the IPA vapor can be more reliably supplied to the plurality of wafers W immediately after being exposed from the DIW liquid surface. As the IPA vapor contacts the surfaces of the plurality of wafers W, the DIW adhering to the surfaces of the plurality of wafers W is replaced with IPA.
  • the plurality of wafers W are exposed from the DIW liquid surface in order from the top as they are lifted by the moving mechanism 923 . Therefore, the IPA vapor discharged from the first discharge part 401 is sequentially supplied to the plurality of wafers W from above. Then, when the plurality of wafers W are entirely exposed from the liquid surface of the DIW, the IPA vapor discharged from the first discharge part 401 is supplied to the entirety of the plurality of wafers W, that is, DIW and IPA has been replaced.
  • control unit 7 performs post-lifting processing (step S5).
  • the control unit 7 controls the shielding part 303 to move the shielding door 331, thereby arranging the shielding door 331 at a position that closes the lower opening of the main body part 301 of the drying treatment tank 300. .
  • the drying processing tank 300 is closed by the lid portion 302 and the shielding door 331 .
  • the control unit 7 controls the second supply system 430 to discharge the hot nitrogen gas from the second discharge unit 402 .
  • volatilization of the IPA remaining on the surfaces of the wafers W is promoted, and the wafers W are dried.
  • control unit 7 controls the drain mechanism 205 to open the valve 253 to drain DIW from the storage tank 201 . At this time, the control unit 7 controls the first supply system 420 to discharge the hot nitrogen gas from the first discharge unit 401 .
  • control unit 7 unloads the plurality of wafers W from the drying processing device 90 (step S6), and ends the series of drying processing.
  • the pattern of the multilayer film formed on the wafer W with a high aspect ratio is the same as that of the DIW when dried. It is possible to suppress falling down by surface tension. Therefore, according to the embodiment, the yield of wafers W can be improved.
  • FIG. 11 is a schematic diagram showing an example of a specific configuration of the drying processing unit 500 according to Modification 1 of the embodiment.
  • the drying processing unit 500 includes a chamber 510, a substrate processing section 520, a liquid supply section 530, and a recovery cup 550.
  • the chamber 510 accommodates a substrate processing section 520 , a liquid supply section 530 and a recovery cup 550 .
  • An FFU (Fan Filter Unit) 511 is arranged on the ceiling of the chamber 510 . FFU 511 creates a downflow within chamber 510 .
  • the substrate processing section 520 includes a holding section 521, a support section 523, and a driving section 524, and performs liquid processing on the placed wafer W.
  • the holding part 521 holds the wafer W horizontally.
  • the column portion 523 is a member extending in the vertical direction, the base end portion of which is rotatably supported by the driving portion 524, and the tip portion of which supports the holding portion 521 horizontally.
  • the drive section 524 rotates the support section 523 around the vertical axis.
  • the substrate processing section 520 rotates the supporting section 523 by rotating the supporting section 523 using the driving section 524, thereby rotating the holding section 521 supported by the supporting section 523, thereby rotating the wafer W held by the holding section 521. .
  • a holding member 522 that holds the wafer W from the side surface is arranged on the upper surface of the holding part 521 provided in the substrate processing part 520 .
  • the wafer W is horizontally held by the holding member 522 while being slightly separated from the upper surface of the holding portion 521 .
  • the wafer W is held by the holding portion 521 with the surface on which substrate processing is performed directed upward.
  • the liquid supply unit 530 supplies the processing fluid to the wafer W.
  • the liquid supply unit 530 includes nozzles 531 to 533, an arm 534 that horizontally supports the nozzles 531 to 533, and a turning and lifting mechanism 535 that turns and lifts the arm 534. As shown in FIG.
  • Nozzle 531 is connected to DIW source 538 via valve 536 and flow regulator 537 .
  • Nozzle 532 is connected to IPA source 541 via valve 539 and flow regulator 540 .
  • Nozzle 533 is connected to repellent agent supply 544 via valve 542 and flow regulator 543 .
  • DIW supplied from a DIW supply source 538 is discharged from the nozzle 531 .
  • IPA supplied from an IPA supply source 541 is discharged from the nozzle 532 .
  • a water repellent agent L ⁇ b>1 supplied from a water repellent agent supply source 544 is discharged from the nozzle 533 .
  • the water repellent agent L1 is, for example, a water repellent agent for making the surface of the wafer W water repellent diluted with thinner to a predetermined concentration.
  • a silylating agent or a silane coupling agent
  • TMSDMA trimethylsilyldimethylamine
  • DMSDMA dimethylsilyldimethylamine
  • TMSDEA trimethylsilyldiethylamine
  • HMDS hexamethylzinlazane
  • ether solvents organic solvents belonging to ketones, and the like can be used.
  • PGMEA propylene glycol monomethyl ether acetate
  • cyclohexanone cyclohexanone
  • HFE hydrofluoroether
  • the collection cup 550 is arranged to surround the holding portion 521 and collects the processing liquid scattered from the wafer W due to the rotation of the holding portion 521 .
  • a drainage port 551 is arranged at the bottom of the recovery cup 550 , and the processing liquid collected by the recovery cup 550 is discharged from the drainage port 551 to the outside of the drying processing unit 500 .
  • an exhaust port 552 for discharging the gas supplied from the FFU 511 to the outside of the drying processing unit 500 is arranged at the bottom of the collection cup 550 .
  • FIG. 12 is a schematic diagram showing a drying process according to modification 1 of the embodiment.
  • the control unit 7 uses a substrate transfer device (not shown) to take out one wafer W from the lot, and removes the wafer W from the drying process unit 500 (see FIG. 1). 11). Then, the control unit 7 controls the substrate processing unit 520 (see FIG. 11) and the like to hold the loaded wafer W by the holding unit 521 (see FIG. 11).
  • control unit 7 moves the nozzle 531 of the liquid supply unit 530 (see FIG. 11) above the center of the wafer W. As shown in FIG. After that, the controller 7 supplies DIW to the surface of the wafer W by opening the valve 536 for a given time.
  • control unit 7 moves the nozzle 532 of the liquid supply unit 530 above the center of the wafer W as shown in (b) of FIG. 12 .
  • controller 7 supplies IPA to the surface of the wafer W by opening the valve 539 for a given time.
  • FIG. 12B the surface of the wafer W is replaced from the DIW paddle with the IPA paddle.
  • control unit 7 moves the nozzle 533 of the liquid supply unit 530 to the upper center of the wafer W, as shown in (c) of FIG.
  • controller 7 supplies the water repellent agent L1 to the surface of the wafer W by opening the valve 542 for a given time.
  • the puddle of IPA is replaced with the puddle of the water repellent agent L1 on the surface of the wafer W, and the surface of the wafer W is rendered water repellent.
  • control unit 7 moves the nozzle 532 of the liquid supply unit 530 to the upper center of the wafer W, as shown in (d) of FIG.
  • controller 7 supplies IPA to the surface of the wafer W by opening the valve 539 for a given time.
  • the surface of the wafer W is replaced with a puddle of IPA from the puddle of water repellent agent L1, as shown in FIG. 12(d).
  • the control unit 7 increases the rotation speed of the wafer W on which the IPA paddle is formed, and shakes off the IPA paddle from the surface of the wafer W. Thereby, the drying process of the wafer W is finished.
  • Modification 1 it is possible to prevent the multilayer film pattern formed on the wafer W with a high aspect ratio from collapsing due to the surface tension of the DIW during drying. Therefore, according to Modification 1, the yield of wafers W can be improved.
  • Modification 2 is different from Modification 1 described above in that a drying processing unit 600 for drying the wafer W is provided in addition to the drying processing unit 500 in the substrate processing system 1 .
  • FIG. 13 is a schematic diagram showing an example of a specific configuration of a drying processing unit 600 according to modification 2 of the embodiment.
  • the drying processing unit 600 has a main body 601, a holding plate 602, and a lid member 603.
  • An opening 604 for loading and unloading the wafer W is formed in the housing-like main body 601 .
  • the holding plate 602 horizontally holds the wafer W to be processed.
  • the lid member 603 supports the holding plate 602 and seals the opening 604 when the wafer W is loaded into the main body 601 .
  • the main body 601 is a container in which a processing space capable of accommodating one wafer W is formed.
  • the supply ports 605 , 606 and the discharge port 607 are respectively connected to the supply channel and the discharge channel for circulating the supercritical fluid to the drying processing unit 600 .
  • the supply port 605 is connected to the side surface opposite to the opening 604 in the housing-like main body 601 . Also, the supply port 606 is connected to the bottom surface of the main body 601 . Further, an exhaust port 607 is connected to the lower side of opening 604 . Although two supply ports 605 and 606 and one discharge port 607 are illustrated in FIG. 13, the number of supply ports 605 and 606 and the number of discharge ports 607 are not particularly limited.
  • fluid supply headers 608 and 609 and a fluid discharge header 610 are provided inside the main body 601 .
  • the fluid supply headers 608 and 609 have a plurality of supply ports arranged in the longitudinal direction of the fluid supply headers 608 and 609, and the fluid discharge header 610 has a plurality of discharge ports in the longitudinal direction of the fluid discharge header 610. are formed side by side.
  • the fluid supply header 608 is connected to the supply port 605 and provided adjacent to the side surface opposite to the opening 604 inside the housing-shaped main body 601 . Also, a plurality of supply ports formed side by side in the fluid supply header 608 face the opening 604 side.
  • the fluid supply header 609 is connected to the supply port 606 and provided at the center of the bottom surface inside the housing-shaped main body 601 .
  • a plurality of supply ports formed side by side in the fluid supply header 609 face upward.
  • the fluid discharge header 610 is connected to the discharge port 607 and provided adjacent to the side surface of the opening 604 and below the opening 604 inside the housing-like main body 601 . Also, a plurality of outlets formed side by side in the fluid outlet header 610 face upward.
  • Fluid supply headers 608 and 609 supply supercritical fluid into main body 601 .
  • the fluid discharge header 610 guides and discharges the supercritical fluid inside the body 601 to the outside of the body 601 .
  • the supercritical fluid discharged to the outside of the main body 601 through the fluid discharge header 610 includes the IPA liquid dissolved from the surface of the wafer W into the supercritical fluid in a supercritical state.
  • the controller 7 forms a DIW paddle on the surface of the wafer W in the drying process unit 500 (see FIG. 11), and then the DIW paddle is formed. is replaced by a paddle of IPA.
  • control section 7 transfers the wafer W on which the paddle of IPA is formed from the drying processing unit 500 to the drying processing unit 600 using a substrate transfer device (not shown) as it is. Then, the control unit 7 controls the drying processing unit 600 to perform the supercritical drying processing on the wafer W on which the puddle of IPA is formed.
  • the dry processing unit 600 brings the wafer W on which the puddle of IPA is formed into contact with a supercritical processing fluid (eg, CO 2 ). Then, the IPA liquid between the patterns formed on the wafer W is gradually dissolved in the supercritical fluid by coming into contact with the supercritical fluid which is in a high pressure state (for example, 16 MPa), and gradually replaced by supercritical fluids. Finally, the space between the patterns is filled only with the supercritical fluid.
  • a supercritical processing fluid eg, CO 2
  • the pressure inside the main body 601 is reduced from the high pressure state to the atmospheric pressure, so that the processing fluid CO 2 changes from the supercritical state to the gaseous state, and the pattern is occupied by gas only.
  • the IPA liquid between the patterns is removed, and the drying process of the wafer W is completed.
  • the substrate processing apparatus (substrate processing system 1 ) includes a first processing bath (processing bath 61 ), a second processing bath (processing bath 71 ), and a control unit 7 .
  • the first processing tank (processing tank 61) stores a first etchant containing phosphoric acid, acetic acid, and nitric acid.
  • the second processing tank (processing tank 71) stores a second etchant containing sulfuric acid and water.
  • a control unit 7 controls each unit. Further, the control unit 7 stores a substrate (wafer W) having a device structure on its surface including a multilayer film in which the Mo film 14 is formed on the surface of the TiN film 13 in the first processing tank (processing tank 61). immersed in the first etchant. Then, the control unit 7 immerses the substrate (wafer W) processed in the first processing bath (processing bath 61) in the second etching liquid stored in the second processing bath (processing bath 71).
  • FIG. 14 is a flow chart showing the procedure of substrate processing executed by the substrate processing system 1 according to the embodiment.
  • step S101 preparation processing is performed (step S101).
  • a plurality of wafers W each having a device structure on its surface including a multilayer film in which the Mo film 14 is formed on the surface of the TiN film 13 are prepared.
  • control unit 7 loads a plurality of wafers W for one lot into the etching processing apparatus 60, and performs a first etching process on the plurality of wafers W in the etching processing apparatus 60 (step S102).
  • control unit 7 immerses the plurality of wafers W in the first etchant stored in the processing tank 61 of the etching processing device 60 .
  • the Mo film 14 is selectively etched from among the device structures formed on the surface of the wafer W. As shown in FIG.
  • control unit 7 transfers a plurality of wafers W for one lot from the processing tank 61 to the processing tank 62, and performs a rinse process on the plurality of wafers W in the processing tank 62 (step S103). Thereby, the first etchant is washed away from the surface of the wafer W. As shown in FIG.
  • control unit 7 transfers a plurality of wafers W for one lot from the etching processing device 60 to the etching processing device 70, and performs the second etching process on the plurality of wafers W in the etching processing device 70 (step S104).
  • control unit 7 immerses the plurality of wafers W in the second etchant stored in the processing tank 71 of the etching processing device 70 .
  • the TiN film 13 is selectively etched from among the device structures formed on the surface of the wafer W.
  • control unit 7 transfers a plurality of wafers W for one lot from the processing tank 71 to the processing tank 72, and performs a rinse process on the plurality of wafers W in the processing tank 72 (step S105). Thereby, the second etchant is washed away from the surface of the wafer W. As shown in FIG.
  • control unit 7 transports a plurality of wafers W for one lot from the etching processing device 70 to the drying processing device 90, and performs a drying process on the plurality of wafers W in the drying processing device 90 (step S106). ). This completes a series of substrate processing.
  • such a drying process may be performed, for example, by making the surface of the wafer W water-repellent with the water-repellent agent L1, replacing it with a puddle of IPA, and then performing the shake-off process.
  • the rinsed surface of the wafer W may be replaced with a puddle of IPA, and the surface of the wafer W may be dried using a supercritical processing fluid.
  • the substrate processing method includes a preparation process (step S101), a first etching process (step S102), and a second etching process (step S104).
  • a preparation step (step S101) a substrate (wafer W) having a device structure on its surface including a multilayer film in which a Mo film 14 is formed on the surface of a TiN film 13 is prepared.
  • the substrate (wafer W) is etched with a first etchant containing phosphoric acid, acetic acid, and nitric acid.
  • the substrate (wafer W) is etched with a second etchant containing sulfuric acid and water after the first etching process (step S102).
  • a second etchant containing sulfuric acid and water containing sulfuric acid and water after the first etching process (step S102).
  • the temperature of the first etchant is 40 (° C.) or less in the first etching step (step S102). As a result, variations in the etching amount in the stacking direction of the Mo film 14 can be reduced.
  • the moisture concentration of the first etching liquid is less than 5 (wt%) in the first etching step (step S102).
  • variations in the etching amount in the stacking direction of the Mo film 14 can be reduced.
  • the temperature of the second etchant is 80 (° C.) to 160 (° C.) in the second etching step (step S104).
  • the TiN film 13 and the Mo film 14 formed on the wafer W can be etched more uniformly.
  • the sulfuric acid concentration of the second etchant is 50 (wt %) to 96 (wt %).
  • the selectivity ratio of the TiN film 13 to the Mo film 14 is 10 or more in the second etching step (step S104). Thereby, the TiN film 13 and the Mo film 14 formed on the wafer W can be etched more uniformly.
  • the first etching process (step S102) and the second etching process (step S104) are performed in different processing baths 61 and 71, respectively. Thereby, the wafer W can be efficiently processed.
  • the substrate processing method further includes a rinsing process (step S105) and a drying process (step S106).
  • the rinse step (step S105) after the second etching step (step S104), the second etching liquid is washed away from the substrate (wafer W) with a rinse liquid.
  • the drying step (step S106) dries the substrate (wafer W) after the rinsing step (step S105).
  • the surface of the substrate (wafer W) wet with the rinse liquid is replaced with the vapor of the organic solvent (IPA) and then dried.
  • IPA organic solvent
  • the substrate processing method further includes a rinsing process (step S105) and a drying process (step S106).
  • the rinse step (step S105) after the second etching step (step S104), the second etching liquid is washed away from the substrate (wafer W) with a rinse liquid.
  • the drying step (step S106) dries the substrate (wafer W) after the rinsing step (step S105).
  • the surface of the substrate (wafer W) is dried using a processing fluid in a supercritical state.
  • the substrate processing method further includes a rinsing process (step S105) and a drying process (step S106).
  • the rinse step (step S105) after the second etching step (step S104), the second etching liquid is washed away from the substrate (wafer W) with a rinse liquid.
  • the drying step (step S106) dries the substrate (wafer W) after the rinsing step (step S105).
  • the drying step (step S106) includes a first replacement step, a water-repellent process, a second replacement step, and a shake-off step.
  • the surface of the substrate (wafer W) wetted with the rinsing liquid (DIW) is replaced with the organic solvent (IPA).
  • IPA organic solvent
  • the second replacement step replaces the surface of the substrate (wafer W) with an organic solvent (IPA) after the water repellent step.
  • the shake-off step shakes off the organic solvent (IPA) located on the surface of the substrate (wafer W) after the second replacement step.
  • the present disclosure is not limited to the above embodiments, and various modifications are possible without departing from the gist thereof.
  • an example of performing the first etching process and the second etching process in a batch process was shown, but the present disclosure is not limited to such an example, and at least one of the first etching process and the second etching process may be performed in single wafer processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Weting (AREA)

Abstract

本開示の一態様による基板処理方法は、準備工程と、第1エッチング工程と、第2エッチング工程と、を含む。準備工程は、TiN膜(13)の表面にMo膜(14)が形成された多層膜を多段に含むデバイス構造を表面に有する基板を準備する。第1エッチング工程は、準備工程の後に、リン酸と酢酸と硝酸とを含む第1エッチング液で基板のエッチング処理を行う。第2エッチング工程は、第1エッチング工程の後に、硫酸と水とを含む第2エッチング液で基板のエッチング処理を行う。

Description

基板処理方法および基板処理装置
 開示の実施形態は、基板処理方法および基板処理装置に関する。
 従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板上に形成されるW(タングステン)膜およびTiN(窒化チタン)膜を両方ともエッチングする技術が知られている(特許文献1参照)。
特開2003-234307号公報
 本開示は、基板上に形成されるMo(モリブデン)膜およびTiN膜を均等にエッチングする技術を提供する。
 本開示の一態様による基板処理方法は、準備工程と、第1エッチング工程と、第2エッチング工程と、を含む。準備工程は、TiN膜の表面にMo膜が形成された多層膜を多段に含むデバイス構造を表面に有する基板を準備する。第1エッチング工程は、前記準備工程の後に、リン酸と酢酸と硝酸とを含む第1エッチング液で前記基板のエッチング処理を行う。第2エッチング工程は、前記第1エッチング工程の後に、硫酸と水とを含む第2エッチング液で前記基板のエッチング処理を行う。
 本開示によれば、基板上に形成されるMo膜およびTiN膜を均等にエッチングすることができる。
図1は、実施形態に係る基板処理システムの概略構成を示す模式図である。 図2は、実施形態に係る基板処理の説明図である。 図3は、実施形態に係る基板処理の説明図である。 図4は、第1エッチング液の水分濃度を変化させた場合の、Mo膜の各位置におけるエッチング量の変化を示すグラフである。 図5は、実施形態に係る基板処理の説明図である。 図6は、第2エッチング液の処理時間を変化させた場合における、TiN膜およびMo膜のエッチング量の変化を示すグラフである。 図7は、第2エッチング液の処理時間を変化させた場合における、TiN膜およびMo膜のエッチング量の変化を示すグラフである。 図8は、実施形態に係る乾燥処理用の処理槽の模式的な断面図である。 図9は、実施形態に係る気体供給部の構成を示す図である。 図10は、実施形態に係る乾燥処理の手順を示すフローチャートである。 図11は、実施形態の変形例1に係る乾燥処理ユニットの具体的な構成の一例を示す模式図である。 図12は、実施形態の変形例1に係る乾燥処理を示す模式図である。 図13は、実施形態の変形例2に係る乾燥処理ユニットの具体的な構成の一例を示す模式図である。 図14は、実施形態に係る基板処理システムが実行する基板処理の手順を示すフローチャートである。
 以下、添付図面を参照して、本願の開示する基板処理方法および基板処理装置の実施形態を詳細に説明する。なお、以下に示す実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
 従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板上に形成されるW(タングステン)膜およびTiN(窒化チタン)膜を両方ともエッチングする技術が知られている。
 一方で、基板上に形成される多層膜がMo(モリブデン)膜およびTiN膜を含んでいる場合、かかるMo膜およびTiN膜を均等にエッチングする技術については、これまでほとんど知見がなかった。
 そこで、上述の問題点を克服し、基板上に形成されるMo膜およびTiN膜を均等にエッチングすることができる技術の実現が期待されている。
<基板処理システムの概要>
 最初に、図1を参照しながら、実施形態に係る基板処理システム1の概略構成について説明する。図1は、実施形態に係る基板処理システム1の概略構成を示す図である。なお、基板処理システム1は、基板処理装置の一例である。以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。
 図1に示すように、実施形態に係る基板処理システム1は、キャリア搬入出部2と、ロット形成部3と、ロット載置部4と、ロット搬送部5と、ロット処理部6と、制御部7とを備える。
 キャリア搬入出部2は、キャリアステージ20と、キャリア搬送機構21と、キャリアストック22、23と、キャリア載置台24とを備える。
 キャリアステージ20は、外部から搬送された複数のキャリア9を載置する。キャリア9は、複数(たとえば、25枚)のウェハWを水平姿勢で上下に並べて収容する容器である。キャリア搬送機構21は、キャリアステージ20、キャリアストック22、23およびキャリア載置台24間でキャリア9の搬送を行う。
 キャリア載置台24に載置されたキャリア9からは、処理される前の複数のウェハWが後述する基板搬送機構30によりロット処理部6に搬出される。また、キャリア載置台24に載置されたキャリア9には、処理された複数のウェハWが基板搬送機構30によりロット処理部6から搬入される。
 ロット形成部3は、基板搬送機構30を有し、ロットを形成する。ロットは、1または複数のキャリア9に収容されたウェハWを組合せて同時に処理される複数(たとえば、50枚)のウェハWで構成される。1つのロットを形成する複数のウェハWは、互いの板面を対向させた状態で一定の間隔をあけて配列される。
 基板搬送機構30は、キャリア載置台24に載置されたキャリア9とロット載置部4との間で複数のウェハWを搬送する。
 ロット載置部4は、ロット搬送台40を有し、ロット搬送部5によってロット形成部3とロット処理部6との間で搬送されるロットを一時的に載置(待機)する。ロット搬送台40は、ロット形成部3で形成された処理される前のロットを載置するロット載置台41と、ロット処理部6で処理されたロットを載置するロット載置台42とを有する。ロット載置台41およびロット載置台42には、1ロット分の複数のウェハWが起立姿勢で前後に並んで載置される。
 ロット搬送部5は、ロット搬送機構50を有し、ロット載置部4とロット処理部6との間やロット処理部6の内部でロットの搬送を行う。ロット搬送機構50は、レール51と、移動体52と、基板保持体53とを有する。
 レール51は、ロット載置部4およびロット処理部6に渡って、X軸方向に沿って配置される。移動体52は、複数のウェハWを保持しながらレール51に沿って移動可能に構成される。基板保持体53は、移動体52に設けられ、起立姿勢で前後に並んだ複数のウェハWを保持する。
 ロット処理部6は、1ロット分の複数のウェハWに対し、エッチング処理や洗浄処理、乾燥処理などを一括で行う。ロット処理部6には、エッチング処理装置60と、エッチング処理装置70と、洗浄処理装置80と、乾燥処理装置90とが、レール51に沿って並んで設けられる。
 エッチング処理装置60は、1ロット分の複数のウェハWに対して第1エッチング処理を一括で行う。エッチング処理装置70は、1ロット分の複数のウェハWに対して第2エッチング処理を一括で行う。
 洗浄処理装置80は、基板保持体53の洗浄処理を行う。乾燥処理装置90は、1ロット分の複数のウェハWに対して乾燥処理を一括で行う。なお、エッチング処理装置60、エッチング処理装置70、洗浄処理装置80および乾燥処理装置90の台数は、図1の例に限られない。
 エッチング処理装置60は、第1エッチング処理用の処理槽61と、リンス処理用の処理槽62と、基板昇降機構63、64とを備える。処理槽61は、第1処理槽の一例である。
 処理槽61は、起立姿勢で配列された1ロット分のウェハWを収容可能であり、第1エッチング処理用の処理液(以下、「第1エッチング液」とも呼称する。)が貯留される。
 本開示の第1エッチング液は、たとえば、触媒であるリン酸(HPO)と、水分調整剤である酢酸(CHCOOH)と、酸化剤である硝酸(HNO)とを含む。かかる第1エッチング液は、たとえば、リン酸、酢酸および硝酸の混合液である。
 処理槽62には、リンス処理用の処理液(DIW(脱イオン水)など)が貯留される。基板昇降機構63、64には、ロットを形成する複数のウェハWが起立姿勢で前後に並んで保持される。
 エッチング処理装置60は、ロット搬送部5で搬送されたロットを基板昇降機構63で保持し、処理槽61の第1エッチング液に浸漬させて第1エッチング処理を行う。かかる第1エッチング処理の詳細については後述する。処理槽61において第1エッチング処理されたロットは、ロット搬送部5によって処理槽62に搬送される。
 そして、エッチング処理装置60は、搬送されたロットを基板昇降機構64にて保持し、処理槽62のリンス液に浸漬させることによってリンス処理を行う。処理槽62においてリンス処理されたロットは、ロット搬送部5でエッチング処理装置70の処理槽71に搬送される。
 エッチング処理装置70は、第2エッチング処理用の処理槽71と、リンス処理用の処理槽72と、基板昇降機構73、74とを備える。処理槽71は、第2処理槽の一例である。
 処理槽71は、起立姿勢で配列された1ロット分のウェハWを収容可能であり、第2エッチング処理用の処理液(以下、「第2エッチング液」とも呼称する。)が貯留される。
 本開示の第2エッチング液は、たとえば、硫酸と水とを含む。かかる第2エッチング液は、たとえば、濃硫酸(たとえば、濃度96(wt%))および水の混合液である。
 処理槽72には、リンス処理用の処理液(DIWなど)が貯留される。基板昇降機構73、74には、ロットを形成する複数のウェハWが起立姿勢で前後に並んで保持される。
 エッチング処理装置70は、ロット搬送部5で搬送されたロットを基板昇降機構73で保持し、処理槽71の第2エッチング液に浸漬させて第2エッチング処理を行う。かかる第2エッチング処理の詳細については後述する。処理槽71において第2エッチング処理されたロットは、ロット搬送部5によって処理槽72に搬送される。
 そして、エッチング処理装置70は、搬送されたロットを基板昇降機構74にて保持し、処理槽72のリンス液に浸漬させることによってリンス処理を行う。処理槽72においてリンス処理されたロットは、ロット搬送部5で乾燥処理装置90の処理槽91に搬送される。
 乾燥処理装置90は、処理槽91と、基板昇降機構92とを有する。処理槽91には、乾燥処理用の処理ガスが供給される。基板昇降機構92には、1ロット分の複数のウェハWが起立姿勢で前後に並んで保持される。
 乾燥処理装置90は、ロット搬送部5で搬送されたロットを基板昇降機構92で保持し、処理槽91内に供給される乾燥処理用の処理ガスを用いて乾燥処理を行う。処理槽91で乾燥処理されたロットは、ロット搬送部5でロット載置部4に搬送される。
 実施形態に係る基板処理システム1では、かかる乾燥処理において、有機溶媒の蒸気を用いることにより、複数のウェハWの表面に形成されたパターンの倒壊を抑制することとしている。この点の詳細については後述する。
 洗浄処理装置80は、ロット搬送機構50の基板保持体53に洗浄用の処理液を供給し、さらに乾燥ガスを供給することで、基板保持体53の洗浄処理を行う。
 制御部7は、基板処理システム1の各部(キャリア搬入出部2、ロット形成部3、ロット載置部4、ロット搬送部5、ロット処理部6など)の動作を制御する。制御部7は、スイッチや各種センサなどからの信号に基づいて、基板処理システム1の各部の動作を制御する。
 制御部7は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入出力ポートなどを有するマイクロコンピュータや各種の回路を含む。そして、制御部7は、図示しない記憶部に記憶されたプログラムを読み出して実行することによって基板処理システム1の動作を制御する。
 制御部7は、コンピュータで読み取り可能な記憶媒体8を有する。記憶媒体8には、基板処理システム1において実行される各種の処理を制御する上記プログラムが格納される。プログラムは、コンピュータによって読み取り可能な記憶媒体8に記憶されていたものであって、他の記憶媒体から制御部7の記憶媒体8にインストールされたものであってもよい。
 コンピュータによって読み取り可能な記憶媒体8としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。
<基板処理の詳細>
[第1エッチング処理]
 つづいて、実施形態に係る基板処理の詳細について、図2~図10を参照しながら説明する。実施形態に係る基板処理では、まず、図2に示すような表面構造を有するウェハWが準備される。図2は、実施形態に係る基板処理の説明図である。
 図2に示すように、ウェハWの表面には、ポリシリコン膜10上に、複数のSiO(酸化シリコン)膜11が互いに間隔を空けて配置される。また、かかる複数のSiO膜11の表面には、複数のAl(酸化アルミニウム)膜12がそれぞれ形成される。
 また、複数のAl膜12の表面には、複数のTiN膜13がそれぞれ形成される。そして、複数のTiN膜13の表面を覆うように、Mo膜14が形成される。
 なお、ウェハWの表面構造は、図2の例に限られず、少なくともTiN膜13およびMo膜14を含む積層膜であればよい。また、ウェハWには、第1エッチング液が浸入し、積層されたMo膜14をエッチングするための溝15が形成されている。
 実施形態に係る基板処理は、まず、第1エッチング液を用いた第1エッチング処理によって、Mo膜14を選択的にエッチングする。これにより、図3に示すように、溝15に面するTiN膜13の端面が露出する。
 そして、Mo膜14をさらにエッチングすることにより、図3に示すように、TiN膜13の端部の上下面が露出する。図3は、実施形態に係る基板処理の説明図である。
 ここで、溝15が高アスペクト比化するほど、また、積層膜における各層の厚みが薄くなる(微細化する)ほど、Mo膜14の積層方向(溝15の深さ方向)におけるエッチング量のばらつきは大きくなる。具体的には、溝15の開口部により近いトップと比べて溝15の底部により近いボトムの方がエッチングされ難くなる。
 これに対し、本願発明者は、第1エッチング液における水分濃度を少なくすることで、Mo膜14の積層方向におけるエッチング量のばらつきが抑えられることを見出した。図4は、第1エッチング液の水分濃度を変化させた場合の、Mo膜14の各位置(トップ、ミドル、ボトム)におけるエッチング量の変化を示すグラフである。
 図4に示すグラフにおいて、丸で示されたプロットは、積層された複数のMo膜14のうち溝15の開口部付近に位置するMo膜14(トップ)の結果を示している。また、四角形で示されたプロットは、積層された複数のMo膜14のうち溝15の底部付近に位置するMo膜14(ボトム)の結果を示している。また、三角形で示されたプロットは、積層された複数のMo膜14のうち、積層方向の中央部に位置するMo膜14(ミドル)の結果を示している。
 図4に示すように、トップのエッチング量とボトムのエッチング量との差は、第1エッチング液の水分濃度が少なくなるほど小さくなる結果となった。この結果から、第1エッチング液の水分濃度を減らすことで、Mo膜14の積層方向におけるエッチング量のばらつきが抑えられることがわかる。
 この実験結果は、たとえば以下のように考察される。すなわち、Mo膜14のエッチングのメカニズムは、次のように進行する。まず、以下の化学反応式(1)に示すように、第1エッチング液中の硝酸(HNO)が電離することによって、水素イオン(H)および硝酸イオン(NO )が生じる。
 HNO→H+NO  ・・・(1)
 そして、以下の化学反応式(2)に示すように、硝酸イオン(NO )がモリブデンと反応することによって、酸化モリブデン(MoO)が生じる。
 Mo+3NO →MoO+3NO  ・・・(2)
 そして、以下の化学反応式(3)に示すように、第1エッチング液中のリン酸(HPO)が触媒として機能することによって、酸化モリブデン(MoO)をイオン化させる。これにより、モリブデン酸イオン(MoO 2-)が生じる。換言すると、Mo膜14が溶解する(エッチングされる)。
 MoO+HPO+HO→MoO 2-+HPO+2H ・・・(3)
 また、以下の化学反応式(4)に示すように、モリブデン酸イオン(MoO 2-)の一部は、水素イオン(H)と反応する。これによっても、Mo膜14は溶解する(エッチングされる)。
 MoO42-+H→HMoO4- ・・・(4)
 このように、Mo膜14のエッチングは、酸化モリブデン(MoO)が水(HO)と反応することによって進行する。したがって、第1エッチング液中の水分濃度が多くなるほどMo膜14のエッチング速度は速くなり、反対に、水分濃度が少なくなるほどMo膜14のエッチング速度は遅くなる。
 Mo膜14のエッチングが進行すると、第1エッチング液中のモリブデン濃度が上昇する。このモリブデン濃度の上昇は、特に、溝15内において顕著である。
 溝15内の第1エッチング液は、溝15の外部に存在する第1エッチング液と置換される。しかしながら、第1エッチング液中の水分濃度が多い場合即ちMo膜14のエッチング速度が速い場合、第1エッチング液の置換が間に合わず、溝15の内部、特に溝15の底部付近において、モリブデン濃度の高い第1エッチング液が残留してしまうおそれがある。
 これにより、溝15の深さ方向において第1エッチング液中のモリブデンの濃度勾配が生じ、溝15の底部付近に位置するMo膜14のエッチング量が、溝15の開口部付近に位置するMo膜14のエッチング量と比べて少なくなる。この結果、Mo膜14のエッチング量の積層方向におけるばらつきが生じることとなる。
 一方、第1エッチング液の水分量を少なくすると、Mo膜14のエッチング速度は低下する。これにより、溝15内におけるモリブデン濃度の上昇が緩やかになるため、溝15内の第1エッチング液の置換が間に合うようになる。この結果、Mo膜14のエッチング量の積層方向におけるばらつきは、第1エッチング液の水分量が多い場合と比較して少なくなると考えられる。
 そこで、図4の結果を踏まえ、実施形態に係る基板処理では、水分濃度が少ない第1エッチング液を用いてMo膜14のエッチングを行うこととした。
 実施形態に係る第1エッチング液は、酸化剤と、触媒と、水分調整剤とを含む薬液である。
 酸化剤としては、上述した硝酸(HNO)の他、たとえば、硫酸(HSO)、過酸化水素水(H)などを用いることができる。また、酸化剤は、硫酸(HSO)、硝酸(HNO)および過酸化水素水(H)のうち2つまたは3つを含んでいてもよい。
 たとえば、酸化剤は、硫酸(HSO)および過酸化水素水(H)を含むSPM液であってもよい。このように、酸化剤は、硫酸(HSO)、硝酸(HNO)および過酸化水素水(H)のうちの少なくとも1つから選択され得る。
 触媒は、上述したリン酸(HPO)の他、たとえば、エチレングリコール、プロピレングリコールおよびジエチレングリコールなどのグリコール類を用いることができる。
 水分調整剤は、実質的に水分を含まない物質であることが好ましい。このような水分調整剤としては、たとえば、有機酸や有機溶媒を用いることができる。有機酸は、たとえば、酢酸、メタンスルホン酸、パラトルエンスルホン酸、フタル酸、コハク酸、マレイン酸、マロン酸、シュウ酸、プロピオン酸およびオルト過ヨウ素酸の少なくとも1つから選択され得る。
 また、有機溶媒は、たとえば、エチレングリコール、プロピレングリコールおよびジエチレングリコールなどのグリコール類、炭酸プロピレンおよびIPA(イソプロピルアルコール)の少なくとも1つから選択され得る。
 そして、実施形態に係る第1エッチング液は、重量比において、第1エッチング液全体に対する水分調整剤の割合が、酸化剤および触媒の合計の割合よりも多くなるように、酸化剤、触媒および水分調整剤が配合される。
 具体的には、図4に示す実験結果から明らかなように、第1エッチング液の水分濃度を5(wt%)未満にすることにより、Mo膜14の積層方向におけるエッチング量のばらつきを低減することができる。
 すなわち、実施形態において、第1エッチング液の水分濃度は5(wt%)未満であることが好ましい。第1エッチング液全体に対する水分調整剤の割合を酸化剤および触媒の合計の割合よりも多くすることで、第1エッチング液の水分濃度を5(wt%)未満とすることが可能である。
 なお、実施形態に係る基板処理システム1では、第1エッチング液の水分濃度を5(wt%)未満に保つため、かかる第1エッチング液が貯留される処理槽61の開口部に開閉可能な蓋体が配置されてもよい。
 これにより、複数のウェハWが隣接する処理槽62から搬出される際などに、複数のウェハWに付着するDIWが処理槽61に入り込んでしまうことを抑制することができる。したがって、実施形態によれば、処理槽61の開口部に開閉可能な蓋体が配置されることにより、第1エッチング処理を安定して実施することができる。
 また、実施形態では、複数のウェハWがリンス処理用の処理槽62から引き上げられる際に、引き上げ速度を可能な限り遅くするとよい。これにより、複数のウェハWが処理槽62から搬出される際に、複数のウェハWに付着するDIWが処理槽61に入り込んでしまうことを抑制することができる。したがって、実施形態によれば、第1エッチング処理を安定して実施することができる。
 また、実施形態では、第1エッチング処理における第1エッチング液の温度が、40(℃)以下であるとよい。モリブデンは卑金属に該当し、イオン化傾向が高く比較的酸化されやすい。このため、加熱された第1エッチング液を用いた場合、Mo膜14のエッチング速度が速くなり過ぎて、Mo膜14の積層方向におけるエッチング量のばらつきが大きくなる恐れがある。
 そこで、実施形態では、温度が40(℃)以下の第1エッチング液を用いて第1エッチング処理を行うことにより、Mo膜14の積層方向におけるエッチング量のばらつきを低減することができる。
[第2エッチング処理]
 実施形態に係る基板処理では、ここまで説明した第1エッチング処理、および処理槽62(図1参照)でのリンス処理につづいて、第2エッチング処理が行われる。具体的には、処理槽71に貯留される第2エッチング液によって、TiN膜13を選択的にエッチングする。
 これにより、図5に示すように、溝15に面するAl膜12の端面が露出する。そして、TiN膜13をさらにエッチングすることにより、図5に示すように、Al膜12の端部の上下面が露出する。図5は、実施形態に係る基板処理の説明図である。
 ここで、第2エッチング処理では、Mo膜14に対するTiN膜13の選択比を高くすることにより、TiN膜13を選択的にエッチングすることができる。そこで、実施形態に係る第2エッチング処理では、第2エッチング液として硫酸と水との混合液を用いる。
 これにより、第2エッチング液内で以下の化学反応式(5)、(6)の反応が発生する。
 2HSO→HSO +HSO  ・・・(5)
 HSO →H+HSO     ・・・(6)
 そして、上記の反応で発生したHが、ウェハWの表面上に形成される膜に含まれるMo膜14およびTiN膜13のうち、TiN膜13と選択的に以下の化学反応式(7)のように反応する。
 TiN+4H→Ti3++NH  ・・・(7)
 ここで、化学反応式(7)の反応で発生するTi3+は第2エッチング液に溶解することから、上記の化学反応式(5)~(7)の反応に基づいて、第2エッチング液はTiN膜13を選択的にエッチングすることができる。すなわち、実施形態では、第2エッチング処理によって、ウェハWの表面で露出するTiN膜13およびMo膜14のうち、TiN膜13を高い選択性でエッチングすることができる。
 ここまで説明したように、実施形態に係る基板処理では、第1エッチング処理でMo膜14を選択的にエッチング処理するとともに、第2エッチング処理でTiN膜13を選択的にエッチング処理する。
 これにより、実施形態では、ウェハW上に形成されるTiN膜13およびMo膜14をそれぞれ個別に精度よくエッチング処理することができる。したがって、実施形態によれば、ウェハW上に形成されるTiN膜13およびMo膜14を均等にエッチングすることができる。
 また、実施形態では、硫酸に水を添加した第2エッチング液でエッチング処理を行うとよい。これにより、第2エッチング液内で上記の化学反応式(5)、(6)のほか、以下の化学反応式(8)、(9)の反応が発生する。
 HO+HSO→H+HSO  ・・・(8)
 H→H+HO         ・・・(9)
 かかる式(8)、(9)の反応により、第2エッチング液内により多くのHが供給される。これにより、実施形態では、上記の化学反応式(7)の反応が促進されることから、第2エッチング液はTiN膜13をさらに選択的にエッチングすることができる。
 したがって、実施形態によれば、Mo膜14に対してTiN膜13を精度よくエッチング処理できることから、ウェハW上に形成されるTiN膜13およびMo膜14をよさらに均等にエッチングすることができる。
 図6および図7は、第2エッチング液の処理時間を変化させた場合における、TiN膜13およびMo膜14のエッチング量の変化を示すグラフである。なお、図6は、第2エッチング液の硫酸濃度が96(wt%)、温度が120(℃)である場合の実験結果であり、図7は、第2エッチング液の硫酸濃度が90(wt%)、温度が140(℃)である場合の実験結果である。
 これらのグラフにおいて、TiN膜13およびMo膜14におけるプロットの傾きを比較することにより、Mo膜14に対するTiN膜13の選択比を算出することができる。たとえば、図6の例では、Mo膜14に対するTiN膜13の選択比が約20.6であり、図7の例では、Mo膜14に対するTiN膜13の選択比が約82.1である。
 このように、実施形態では、第2エッチング処理における第2エッチング液の硫酸濃度が、50(wt%)~96(wt%)であるとよい。これにより、図6および図7に示すように、Mo膜14に対してTiN膜13をさらに高い選択性でエッチングすることができる。
 なぜなら、第2エッチング液の硫酸濃度をかかる範囲に設定することにより、第2エッチング液内において、上記の化学反応式(5)~(9)の反応をバランスよく発生させることができるからである。
 したがって、実施形態によれば、Mo膜14に対してTiN膜13をさらに精度よくエッチング処理できることから、ウェハW上に形成されるTiN膜13およびMo膜14をさらに均等にエッチングすることができる。
 また、実施形態では、第2エッチング処理における第2エッチング液の温度が、80(℃)~160(℃)であるとよい。これにより、図6および図7に示すように、Mo膜14に対してTiN膜13をさらに高い選択性でエッチングすることができる。
 したがって、実施形態によれば、Mo膜14に対してTiN膜13をさらに精度よくエッチング処理できることから、ウェハW上に形成されるTiN膜13およびMo膜14をさらに均等にエッチングすることができる。
 また、実施形態では、第2エッチング処理において、Mo膜14に対するTiN膜13の選択比が10以上であるとよい。このように、Mo膜14に対してTiN膜13を高い選択性でエッチングすることにより、Mo膜14に対してTiN膜13を精度よくエッチング処理することができる。したがって、実施形態によれば、ウェハW上に形成されるTiN膜13およびMo膜14をさらに均等にエッチングすることができる。
 また、実施形態では、第1エッチング処理および第2エッチング処理が、それぞれ別の処理槽61、71で実施されるとよい。これにより、同じ処理槽でエッチング液を入れ換えながら第1エッチング処理および第2エッチング処理を行う場合と比べて、全体の処理時間を短縮することができる。したがって、実施形態によれば、ウェハWを効率よく処理することができる。
[乾燥処理]
 実施形態に係る基板処理では、ここまで説明した第2エッチング処理、および処理槽72(図1参照)でのリンス処理につづいて、乾燥処理が行われる。図8は、実施形態に係る乾燥処理用の処理槽91の模式的な断面図である。
 図8に示すように、処理槽91は、液処理槽200と、乾燥処理槽300と、気体供給部400とを備える。液処理槽200は、貯留槽201と、オーバーフロー槽202と、シール槽203とを備える。液処理槽200は、垂直姿勢(縦向きの状態)で並べられた複数のウェハWを収容可能である。
 かかる液処理槽200では、内部に貯留された処理液に1ロット分の複数のウェハWを浸漬させることにより、1ロット分の複数のウェハWを一括で処理する液処理が行われる。ここでは、処理液としてDIWが用いられるものとする。具体的には、液処理槽200では、1ロット分の複数のウェハWに対し、DIWを用いたリンス処理が行われる。
 貯留槽201には、処理液の供給を行う液吐出部204と、処理液の排出を行う排液機構205とが設けられる。
 液吐出部204は、複数(ここでは、2つ)のノズル210と、供給路211と、処理液供給源212と、冷却部213と、バルブ214と、流量調整器215とを備える。2つのノズル210は、貯留槽201の内側底部に設けられる。供給路211は、2つのノズル210と処理液供給源212とを接続する。処理液供給源212は、2つのノズル210に対して処理液を供給する。
 冷却部213は、たとえばチラー等であり、処理液供給源212から供給される処理液を冷却する。たとえば、処理液供給源212から供給される処理液の温度は、室温であり、冷却部213は、処理液供給源212から供給される処理液を室温以下の温度(たとえば、20度以下)に冷却する。
 バルブ214は、供給路211を開閉する。流量調整器215は、供給路211を流れる処理液の流量を調整する。
 排液機構205は、排液口251と、排液路252と、バルブ253とを備える。排液口251は、貯留槽201の内側底部中央に設けられる。排液路252は、排液口251に接続される。バルブ253は、排液路252の中途部に設けられ、排液路252を開閉する。
 オーバーフロー槽202は、貯留槽201の上端外周部に形成され、貯留槽201からオーバーフローした処理液を貯留する。シール槽203は、オーバーフロー槽202の上端外周部に形成され、たとえば水等の液体を貯留する。シール槽203に貯留された液体に後述するシール壁333を浸漬させることにより、液処理槽200の内部と外部とを遮断することができる。
 乾燥処理槽300は、液処理槽200よりも上方に配置され、貯留槽201と連通する内部空間を有する。乾燥処理槽300は、本体部301と、蓋部302と、遮蔽部303とを備える。
 本体部301は、上方および下方が開口している。本体部301には、複数(ここでは、2つ)の排気口311が設けられる。2つの排気口311は、複数のウェハWの側方に設けられる。2つの排気口311は、排気路312を介して真空ポンプ等の図示しない排気機構に接続されており、乾燥処理槽300内の雰囲気は、排気機構によって排気口311および排気路312を介して外部へ排出される。
 蓋部302は、本体部301の上方に配置され、本体部301の上部開口を閉塞する。蓋部302は、図示しない移動機構によって昇降可能に構成されており、蓋部302を上昇させることにより、複数のウェハWを乾燥処理槽300に搬入したり乾燥処理槽300から搬出したりすることができる。
 遮蔽部303は、本体部301の下方に配置される。遮蔽部303は、遮蔽扉331と、筐体332とを備える。遮蔽扉331は、図示しない移動機構によって筐体332の内部を水平方向(ここでは、X軸方向)に移動可能に構成されており、本体部301の下部開口を閉塞または開放する。
 筐体332は、液処理槽200と本体部301との間に介在し、内部に遮蔽扉331を収容する。筐体332の上部には、本体部301の下部開口と連通する開口が形成され、筐体332の下部には、貯留槽201の上方領域と連通する開口が形成される。
 筐体332の下部には、下方に向かって突出するシール壁333が設けられている。シール壁333は、シール槽203に貯留された液体に浸漬される。これにより、液処理槽200の内部と外部とを遮断することができる。
 気体供給部400は、乾燥処理槽300の内部に多段に配置された第1吐出部401および第2吐出部402を備える。第1吐出部401および第2吐出部402は、後述する移動機構923による複数のウェハWの移動経路における側方に配置されており、移動機構923によって上昇する複数のウェハWに向けて乾燥液を蒸気化させた乾燥蒸気を吐出する。
 この乾燥液とは、ウェハWを乾燥させるための液体であり、本開示では、乾燥液として有機溶剤が用いられる。具体的には、本開示では、乾燥液としてIPAが用いられるものとする。すなわち、本開示では、乾燥蒸気としてIPAの蒸気(以下、「IPA蒸気」と記載する)を複数のウェハWに向けて吐出する。
 なお、有機溶剤は、IPAに限定されない。また、乾燥液は、ウェハWを乾燥させることができる液体であればよく、有機溶剤に限定されない。たとえば、乾燥液は、有機溶剤以外の揮発性を有する液体であってもよい。
 図9は、実施形態に係る気体供給部400の構成を示す図である。図9に示すように、第1吐出部401および第2吐出部402は、複数のウェハWの並び方向(Y軸方向)に沿って延在する長尺形状を有するノズルである。第1吐出部401および第2吐出部402には、長手方向に沿って複数の吐出口410が設けられる。
 吐出口410としては、単純な開口の他、IPA蒸気をミスト状に噴霧させるスプレー用ノズルチップが用いられてもよい。また、第1吐出部401および第2吐出部402は、複数の吐出口410に代えて、長手方向に延在するスリット状の吐出口を有していてもよい。
 第1吐出部401は、第1供給系統420に接続される。第1供給系統420は、IPA供給源421と、窒素ガス供給源422と、バルブ423、424と、加熱部425と、流量調整器426とを備える。IPA供給源421は、液体状態のIPAを供給し、窒素ガス供給源422は、不活性ガスである窒素ガスを供給する。
 IPA供給源421は、バルブ423を介して加熱部425に接続され、窒素ガス供給源422は、バルブ424を介して加熱部425に接続される。
 バルブ423、424の両方が開かれた場合、加熱部425には、IPA供給源421から供給されるIPAと、窒素ガス供給源422から供給される窒素ガスとの混合流体が供給される。加熱部425は、かかる混合流体を加熱することによって、IPA蒸気を生成する。なお、バルブ423の後段には図示しない二流体ノズルが設けられており、加熱部425には、ミスト状のIPAと窒素ガスとの混合流体が供給される。
 一方、バルブ424のみが開かれた場合、加熱部425には、窒素ガス供給源422から窒素ガスが供給される。この場合、加熱部425は、窒素ガスを加熱することによって、ホット窒素ガスを生成する。加熱部425は、第1吐出部401に接続され、IPA蒸気またはホット窒素ガスを第1吐出部401に供給する。
 流量調整器426は、加熱部425に供給される気体の流量を調整する。たとえば、流量調整器426は、流量計、定流量弁、電空レギュレータ等を含んで構成され、電空レギュレータに供給する気体(窒素ガス)などの圧力を調整することにより、加熱部425に供給される気体の流量を調整することができる。
 第2吐出部402は、第2供給系統430に接続される。第2供給系統430は、IPA供給源431と、窒素ガス供給源432と、バルブ433、434と、加熱部435と、流量調整器436とを備える。IPA供給源431は、液体状態のIPAを供給し、窒素ガス供給源432は、不活性ガスである窒素ガスを供給する。
 IPA供給源431は、バルブ433を介して加熱部435に接続され、窒素ガス供給源432は、バルブ434を介して加熱部435に接続される。
 バルブ433、434の両方が開かれた場合、加熱部435は、IPA供給源431から供給されるIPAと、窒素ガス供給源432から供給される窒素ガスとの混合流体を加熱することによってIPA蒸気を生成する。また、バルブ434のみが開かれた場合、加熱部435は、窒素ガス供給源432から供給される窒素ガスを加熱することによってホット窒素ガスを生成する。
 加熱部435は、第2吐出部402に接続され、IPA蒸気またはホット窒素ガスを第2吐出部402に供給する。
 流量調整器436は、加熱部435に供給される気体の流量を調整する。たとえば、流量調整器436は、流量計、定流量弁、電空レギュレータ等を含んで構成され、電空レギュレータに供給する気体(窒素ガス)などの圧力を調整することにより、加熱部435に供給される気体の流量を調整することができる。
 図8に示すように、気体供給部400は、第1吐出部401および第2吐出部402をたとえば2つずつ備える。2つの第1吐出部401は、複数のウェハWの側方に位置する乾燥処理槽300の左右両側面にそれぞれ設けられる。2つの第2吐出部402についても同様である。
 第1吐出部401は、貯留槽201に貯留される処理液の液面の近傍に配置される。具体的には、複数のウェハWの上半分が処理液の液面から露出し終えた際の複数のウェハWの上端の高さ位置よりも低い位置に配置される。
 たとえば、第2吐出部402が乾燥処理槽300の本体部301に設けられるのに対し、第1吐出部401は、貯留槽201により近い乾燥処理槽300の遮蔽部303に設けられる。具体的には、第1吐出部401は、たとえば、遮蔽部303の筐体332の下部に形成された、貯留槽201の上方領域と連通する開口の縁部に設けられる。
 2つの第1吐出部401は、複数のウェハWに向けてIPA蒸気またはホット窒素ガスを水平に吐出する。また、2つの第2吐出部402は、複数のウェハWに向けてIPA蒸気またはホット窒素ガスを斜め上方に吐出する。
 基板昇降機構92は、保持体921と、保持体921を支持するシャフト922と、シャフト922を昇降させる移動機構923とを備える。保持体921は、1ロット分の複数のウェハWを垂直姿勢で且つ水平方向(ここでは、Y軸方向)に一定の間隔で並べられた状態で保持する。
 シャフト922は、鉛直方向に沿って延在し、下部において保持体921を支持する。シャフト922は、蓋部302の上部に設けられた図示しない開口に対して摺動可能に挿通される。
 移動機構923は、たとえばモータ、ボールネジ、シリンダ等を備えており、シャフト922を鉛直方向に沿って移動させる。移動機構923がシャフト922を昇降させることにより、シャフト922に支持された保持体921が昇降する。これにより、保持体921に保持された複数のウェハWは、貯留槽201と乾燥処理槽300との間で移動することができる。
 次に、実施形態に係る乾燥処理の具体的な手順について、図10を参照しながら説明する。図10は、実施形態に係る乾燥処理の手順を示すフローチャートである。
 図10に示すように、制御部7は、最初に、1ロット分の複数のウェハWロットを貯留槽201へ搬入する搬入処理を実施する(ステップS1)。具体的には、制御部7は、処理槽72においてリンス処理された複数のウェハWを、ロット搬送部5で乾燥処理装置90の処理槽91に搬入する。
 そして、制御部7は、複数のウェハWをロット搬送部5から基板昇降機構92の保持体921へ受け渡す。その後、制御部7は、移動機構923などを制御して蓋部302およびシャフト922を下降させる。これにより、乾燥処理槽300の本体部301の上部開口が蓋部302によって塞がれて、乾燥処理槽300が密閉状態となる。
 さらに、制御部7は、移動機構923を動作させて、搬入された複数のウェハWを下降させることにより、貯留槽201に貯留されるDIWに浸漬させる。
 次に、制御部7は、事前加熱処理を実施する(ステップS2)。具体的には、制御部7は、第1供給系統420および第2供給系統430を制御することにより、第1吐出部401および第2吐出部402から乾燥処理槽300内にホット窒素ガスを吐出する。
 これにより、制御部7は、乾燥処理槽300を乾燥処理に適した温度にあらかじめ加熱することができるとともに、乾燥処理槽300内の酸素を排気口311から排出することができる。
 次に、制御部7は、引き上げ前処理を実施する(ステップS3)、具体的には、制御部7は、第1供給系統420を制御することにより、第1吐出部401から吐出させる気体をホット窒素ガスからIPA蒸気に切り替える。これにより、第1吐出部401からIPA蒸気が吐出されることで、貯留槽201に貯留されたDIWの液面にIPAの液膜が形成される。
 このように、DIWの液面にIPAの液膜を形成することで、その後の引き上げ処理においてDIWからウェハWを引き上げる過程で、DIWの液面に存在するIPAをウェハWの表面に付着させることができる。これにより、ウェハWの表面に残存するDIWの量を減らすことができるため、DIWからIPAへの置換効率を高めることができる。
 次に、制御部7は、引き上げ処理を実施する(ステップS4)。かかる引き上げ処理において、制御部7は、移動機構923を制御してシャフト922を上昇させる。これにより、複数のウェハWがDIWの液面から露出し始める。
 また、上述したように、第1吐出部401は、貯留槽201に貯留されるDIWの液面の近傍に配置される。このため、第1吐出部401は、複数のウェハWがDIWの液面から露出した直後から複数のウェハWに対してIPA蒸気を供給することができる。
 さらに、引き上げ前処理においてすでにIPA蒸気の吐出が開始されているため、DIWの液面から露出した直後の複数のウェハWに対してより確実にIPA蒸気を供給することができる。複数のウェハWの表面にIPA蒸気が接触することで、複数のウェハWの表面に付着していたDIWがIPAに置換される。
 複数のウェハWは、移動機構923による上昇に伴い、上部から順にDIWの液面から露出していく。このため、複数のウェハWには、第1吐出部401から吐出されるIPA蒸気が上部から順に供給される。そして、複数のウェハWの全体がDIWの液面から露出した際には、第1吐出部401から吐出されるIPA蒸気が複数のウェハWの全体に供給された状態、すなわち、DIWとIPAとの置換が完了した状態となっている。
 次に、制御部7は、引き上げ後処理を実施する(ステップS5)。かかる引き上げ後処理において、制御部7は、遮蔽部303を制御して、遮蔽扉331を移動させることにより、乾燥処理槽300の本体部301の下部開口を閉塞する位置に遮蔽扉331を配置させる。
 これにより、乾燥処理槽300が蓋部302および遮蔽扉331によって密閉された状態となる。また、制御部7は、第2供給系統430を制御して、第2吐出部402からホット窒素ガスを吐出する。これにより、複数のウェハWの表面に残存するIPAの揮発が促進されて複数のウェハWが乾燥する。
 また、引き上げ後処理において、制御部7は、排液機構205を制御してバルブ253を開くことにより、DIWを貯留槽201から排出する。このとき、制御部7は、第1供給系統420を制御して、第1吐出部401からホット窒素ガスを吐出させる。
 最後に、制御部7は、複数のウェハWを乾燥処理装置90から搬出し(ステップS6)、一連の乾燥処理を終了する。
 実施形態では、ここまで説明したように、ウェハWの表面をIPA蒸気で置換しながらウェハWを乾燥させることにより、高いアスペクト比でウェハWに形成される多層膜のパターンが、乾燥時にDIWの表面張力によって倒れることを抑制することができる。したがって、実施形態によれば、ウェハWの歩留まりを向上させることができる。
<変形例1>
 つづいては、実施形態に係る基板処理の各種変形例について、図11~図13を参照しながら説明する。図11は、実施形態の変形例1に係る乾燥処理ユニット500の具体的な構成の一例を示す模式図である。
 なお、この変形例1では、ウェハWの乾燥処理を、乾燥処理装置90によるバッチ処理で行うのではなく、基板処理システム1の内部に別途設けられる乾燥処理ユニット500による枚葉処理で行う。
 図11に示すように、乾燥処理ユニット500は、チャンバ510と、基板処理部520と、液供給部530と、回収カップ550とを備える。
 チャンバ510は、基板処理部520と、液供給部530と、回収カップ550とを収容する。チャンバ510の天井部には、FFU(Fan Filter Unit)511が配置される。FFU511は、チャンバ510内にダウンフローを形成する。
 基板処理部520は、保持部521と、支柱部523と、駆動部524とを備え、載置されたウェハWに液処理を施す。保持部521は、ウェハWを水平に保持する。支柱部523は、鉛直方向に延在する部材であり、基端部が駆動部524によって回転可能に支持され、先端部において保持部521を水平に支持する。駆動部524は、支柱部523を鉛直軸まわりに回転させる。
 かかる基板処理部520は、駆動部524を用いて支柱部523を回転させることによって支柱部523に支持された保持部521を回転させ、これにより、保持部521に保持されたウェハWを回転させる。
 基板処理部520が備える保持部521の上面には、ウェハWを側面から保持する保持部材522が配置される。ウェハWは、かかる保持部材522によって保持部521の上面からわずかに離間した状態で水平保持される。なお、ウェハWは、基板処理が行われる表面を上方に向けた状態で保持部521に保持される。
 液供給部530は、ウェハWに対して処理流体を供給する。液供給部530は、ノズル531~533と、かかるノズル531~533を水平に支持するアーム534と、アーム534を旋回および昇降させる旋回昇降機構535とを備える。
 ノズル531は、バルブ536と流量調整器537とを介してDIW供給源538に接続される。ノズル532は、バルブ539と流量調整器540とを介してIPA供給源541に接続される。ノズル533は、バルブ542および流量調整器543を介して撥水化剤供給源544に接続される。
 ノズル531からは、DIW供給源538より供給されるDIWが吐出される。ノズル532からは、IPA供給源541より供給されるIPAが吐出される。ノズル533からは、撥水化剤供給源544より供給される撥水化剤L1が吐出される。
 ここで、撥水化剤L1とは、たとえば、ウェハWの表面を撥水化するための撥水化剤をシンナーで所定の濃度に希釈したものである。原料の撥水化剤としては、たとえば、シリル化剤(またはシランカップリング剤)を用いることができる。
 具体的には、例えば、TMSDMA(トリメチルシリルジメチルアミン)、DMSDMA(ジメチルシリルジメチルアミン)、TMSDEA(トリメチルシリルジエチルアミン)、HMDS(ヘキサメチルジンラザン)等を原料の撥水化剤として用いることができる。
 また、シンナーとしては、エーテル類溶媒や、ケトンに属する有機溶媒などを用いることができる。具体的には、たとえば、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、シクロヘキサノン、HFE(ハイドロフルオロエーテル)などをシンナーとして用いることができる。
 回収カップ550は、保持部521を取り囲むように配置され、保持部521の回転によってウェハWから飛散する処理液を捕集する。回収カップ550の底部には、排液口551が配置されており、回収カップ550によって捕集された処理液は、かかる排液口551から乾燥処理ユニット500の外部へ排出される。また、回収カップ550の底部には、FFU511から供給される気体を乾燥処理ユニット500の外部へ排出する排気口552が配置される。
 図12は、実施形態の変形例1に係る乾燥処理を示す模式図である。変形例1の乾燥処理では、まず、制御部7(図1参照)が、図示しない基板搬送装置を用いて、ロットの中からウェハWを1枚取り出し、かかるウェハWを乾燥処理ユニット500(図11参照)に搬入する。そして、制御部7は、基板処理部520(図11参照)などを制御して、搬入されたウェハWを保持部521(図11参照)で保持する。
 次に、図12の(a)に示すように、制御部7が、液供給部530(図11参照)のノズル531をウェハWの中央上方に移動させる。その後、制御部7は、バルブ536を所与の時間開放することにより、ウェハWの表面に対してDIWを供給する。
 これにより、直前の残渣除去処理で供給されたDHFがウェハWの表面から除去され、図12の(a)に示すように、ウェハWの表面にDIWのパドルが形成される。
 次に、図12の(b)に示すように、制御部7は、液供給部530のノズル532をウェハWの中央上方に移動させる。その後、制御部7は、バルブ539を所与の時間開放することにより、ウェハWの表面に対してIPAを供給する。これにより、図12の(b)に示すように、ウェハWの表面がDIWのパドルからIPAのパドルに置換される。
 次に、図12の(c)に示すように、制御部7は、液供給部530のノズル533をウェハWの中央上方に移動させる。その後、制御部7は、バルブ542を所与の時間開放することにより、ウェハWの表面に対して撥水化剤L1を供給する。これにより、図12の(c)に示すように、ウェハWの表面がIPAのパドルから撥水化剤L1のパドルに置換され、ウェハWの表面が撥水化される。
 次に、図12の(d)に示すように、制御部7は、液供給部530のノズル532をウェハWの中央上方に移動させる。その後、制御部7は、バルブ539を所与の時間開放することにより、ウェハWの表面に対してIPAを供給する。これにより、図12の(d)に示すように、ウェハWの表面が撥水化剤L1のパドルからIPAのパドルに置換される。
 そして、変形例1では、制御部7が、IPAのパドルが形成されたウェハWの回転数を上昇させて、かかるIPAのパドルをウェハWの表面から振り切る。これにより、ウェハWの乾燥処理が終了する。
 このように、変形例1では、残渣除去処理の後、リンス処理を施したウェハWの表面が濡れたままの状態で、かかるウェハWの表面を撥水化剤L1で撥水化してからIPAのパドルに置換し、その後に振切処理を実施する。
 これにより、変形例1では、高いアスペクト比でウェハWに形成される多層膜のパターンが、乾燥時にDIWの表面張力によって倒れることを抑制することができる。したがって、変形例1によれば、ウェハWの歩留まりを向上させることができる。
<変形例2>
 この変形例2では、基板処理システム1内に乾燥処理ユニット500に加えて、ウェハWに乾燥処理を施す乾燥処理ユニット600が設けられる点が上述の変形例1と異なる。図13は、実施形態の変形例2に係る乾燥処理ユニット600の具体的な構成の一例を示す模式図である。
 図13に示すように、乾燥処理ユニット600は、本体601と、保持板602と、蓋部材603とを有する。筐体状の本体601には、ウェハWを搬入出するための開口部604が形成される。保持板602は、処理対象のウェハWを水平方向に保持する。蓋部材603は、かかる保持板602を支持するとともに、ウェハWを本体601内に搬入した際に、開口部604を密閉する。
 本体601は、一枚のウェハWを収容可能な処理空間が内部に形成された容器であり、その壁部には、供給ポート605、606と排出ポート607とが設けられる。供給ポート605、606および排出ポート607は、それぞれ、乾燥処理ユニット600に超臨界流体を流通させるための供給流路および排出流路に接続される。
 供給ポート605は、筐体状の本体601において、開口部604とは反対側の側面に接続される。また、供給ポート606は、本体601の底面に接続される。さらに、排出ポート607は、開口部604の下方側に接続される。なお、図13には2つの供給ポート605、606と1つの排出ポート607が図示されているが、供給ポート605、606や排出ポート607の数は特に限定されない。
 また、本体601の内部には、流体供給ヘッダー608、609と、流体排出ヘッダー610とが設けられる。そして、流体供給ヘッダー608、609には複数の供給口がかかる流体供給ヘッダー608、609の長手方向に並んで形成され、流体排出ヘッダー610には複数の排出口がかかる流体排出ヘッダー610の長手方向に並んで形成される。
 流体供給ヘッダー608は、供給ポート605に接続され、筐体状の本体601内部において、開口部604とは反対側の側面に隣接して設けられる。また、流体供給ヘッダー608に並んで形成される複数の供給口は、開口部604側を向いている。
 流体供給ヘッダー609は、供給ポート606に接続され、筐体状の本体601内部における底面の中央部に設けられる。また、流体供給ヘッダー609に並んで形成される複数の供給口は、上方を向いている。
 流体排出ヘッダー610は、排出ポート607に接続され、筐体状の本体601内部において、開口部604側の側面に隣接するとともに、開口部604より下方に設けられる。また、流体排出ヘッダー610に並んで形成される複数の排出口は、上方を向いている。
 流体供給ヘッダー608、609は、超臨界流体を本体601内に供給する。また、流体排出ヘッダー610は、本体601内の超臨界流体を本体601の外部に導いて排出する。なお、流体排出ヘッダー610を介して本体601の外部に排出される超臨界流体には、ウェハWの表面から超臨界状態の超臨界流体に溶け込んだIPA液体が含まれる。
 変形例2に係る乾燥処理は、まず、制御部7(図1参照)が、乾燥処理ユニット500(図11参照)において、ウェハWの表面にDIWのパドルを形成し、さらに、かかるDIWのパドルをIPAのパドルに置換させる。
 次に、制御部7は、IPAのパドルが形成されたウェハWを、そのままの状態で図示しない基板搬送装置を用いて乾燥処理ユニット500から乾燥処理ユニット600に搬送する。そして、制御部7は、乾燥処理ユニット600を制御して、IPAのパドルが形成されたウェハWに対して超臨界乾燥処理を行う。
 具体的には、乾燥処理ユニット600は、IPAのパドルが形成されたウェハWを超臨界状態の処理流体(たとえば、CO)と接触させる。すると、ウェハW上に形成されているパターンの間のIPA液体は、高圧状態(たとえば、16MPa)である超臨界流体と接触することで、徐々に超臨界流体に溶解し、パターンの間は徐々に超臨界流体と置き換わる。そして、最終的には、超臨界流体のみによってパターンの間が満たされる。
 さらに、パターンの間からIPA液体が除去された後に、本体601内部の圧力が高圧状態から大気圧まで減圧されることによって、処理流体であるCOは超臨界状態から気体状態に変化し、パターンの間は気体のみによって占められる。このようにしてパターンの間のIPA液体は除去され、ウェハWの乾燥処理が完了する。
 このように、変形例2では、第1エッチング処理および第2エッチング処理の後、リンス処理を施したウェハWの表面をIPAのパドルに置換し、さらに超臨界状態の処理流体を用いてウェハWの表面を乾燥させる。
 これにより、変形例2では、高いアスペクト比でウェハWに形成される多層膜のパターンが、乾燥時にDIWの表面張力によって倒れることを抑制することができる。したがって、変形例2によれば、ウェハWの歩留まりを向上させることができる。
 実施形態に係る基板処理装置(基板処理システム1)は、第1処理槽(処理槽61)と、第2処理槽(処理槽71)と、制御部7とを備える。第1処理槽(処理槽61)は、リン酸と酢酸と硝酸とを含む第1エッチング液を貯留する。第2処理槽(処理槽71)は、硫酸と水とを含む第2エッチング液を貯留する。制御部7は、各部を制御する。また、制御部7は、TiN膜13の表面にMo膜14が形成された多層膜を多段に含むデバイス構造を表面に有する基板(ウェハW)を、第1処理槽(処理槽61)に貯留される第1エッチング液に浸漬する。そして、制御部7は、第1処理槽(処理槽61)で処理された基板(ウェハW)を、第2処理槽(処理槽71)に貯留される第2エッチング液に浸漬する。
<基板処理の手順>
 つづいて、実施形態に係る基板処理の手順について、図14を参照しながら説明する。図14は、実施形態に係る基板処理システム1が実行する基板処理の手順を示すフローチャートである。
 実施形態に係る基板処理では、まず、準備処理が行われる(ステップS101)。かかる準備処理では、図2に示したように、TiN膜13の表面にMo膜14が形成された多層膜を多段に含むデバイス構造を表面に有するウェハWが複数準備される。
 次に、制御部7は、1ロット分の複数のウェハWをエッチング処理装置60に搬入し、かかるエッチング処理装置60において複数のウェハWに対して第1エッチング処理を施す(ステップS102)。
 具体的には、制御部7は、エッチング処理装置60の処理槽61に貯留される第1エッチング液に複数のウェハWを浸漬する。これにより、ウェハWの表面に形成されるデバイス構造の中から、Mo膜14が選択的にエッチングされる。
 次に、制御部7は、1ロット分の複数のウェハWを処理槽61から処理槽62に搬送し、かかる処理槽62において複数のウェハWに対してリンス処理を施す(ステップS103)。これにより、ウェハWの表面から第1エッチング液が洗い流される。
 次に、制御部7は、1ロット分の複数のウェハWをエッチング処理装置60からエッチング処理装置70に搬送し、かかるエッチング処理装置70において複数のウェハWに対して第2エッチング処理を施す(ステップS104)。
 具体的には、制御部7は、エッチング処理装置70の処理槽71に貯留される第2エッチング液に複数のウェハWを浸漬する。これにより、ウェハWの表面に形成されるデバイス構造の中から、TiN膜13が選択的にエッチングされる。
 次に、制御部7は、1ロット分の複数のウェハWを処理槽71から処理槽72に搬送し、かかる処理槽72において複数のウェハWに対してリンス処理を施す(ステップS105)。これにより、ウェハWの表面から第2エッチング液が洗い流される。
 次に、制御部7は、1ロット分の複数のウェハWをエッチング処理装置70から乾燥処理装置90に搬送し、かかる乾燥処理装置90において複数のウェハWに対して乾燥処理を施す(ステップS106)。これにより、一連の基板処理が完了する。
 なお、かかる乾燥処理は、たとえば、ウェハWの表面を撥水化剤L1で撥水化してからIPAのパドルに置換し、その後に振切処理を実施してもよい。また、乾燥処理は、たとえば、リンス処理を施したウェハWの表面をIPAのパドルに置換し、さらに超臨界状態の処理流体を用いてウェハWの表面を乾燥させてもよい。
 実施形態に係る基板処理方法は、準備工程(ステップS101)と、第1エッチング工程(ステップS102)と、第2エッチング工程(ステップS104)と、を含む。準備工程(ステップS101)は、TiN膜13の表面にMo膜14が形成された多層膜を多段に含むデバイス構造を表面に有する基板(ウェハW)を準備する。第1エッチング工程(ステップS102)は、準備工程(ステップS101)の後に、リン酸と酢酸と硝酸とを含む第1エッチング液で基板(ウェハW)のエッチング処理を行う。第2エッチング工程(ステップS104)は、第1エッチング工程(ステップS102)の後に、硫酸と水とを含む第2エッチング液で基板(ウェハW)のエッチング処理を行う。これにより、ウェハW上に形成されるMo膜14およびTiN膜13を均等にエッチングすることができる。
 また、実施形態に係る基板処理方法において、第1エッチング工程(ステップS102)において、第1エッチング液の温度は40(℃)以下である。これにより、Mo膜14の積層方向におけるエッチング量のばらつきを低減することができる。
 また、実施形態に係る基板処理方法において、第1エッチング工程(ステップS102)において、第1エッチング液の水分濃度は5(wt%)未満である。これにより、Mo膜14の積層方向におけるエッチング量のばらつきを低減することができる。
 また、実施形態に係る基板処理方法において、第2エッチング工程(ステップS104)において、第2エッチング液の温度は80(℃)~160(℃)である。これにより、ウェハW上に形成されるTiN膜13およびMo膜14をさらに均等にエッチングすることができる。
 また、実施形態に係る基板処理方法において、第2エッチング工程(ステップS104)において、第2エッチング液の硫酸濃度は50(wt%)~96(wt%)である。これにより、ウェハW上に形成されるTiN膜13およびMo膜14をさらに均等にエッチングすることができる。
 また、実施形態に係る基板処理方法において、第2エッチング工程(ステップS104)において、Mo膜14に対するTiN膜13の選択比は10以上である。これにより、ウェハW上に形成されるTiN膜13およびMo膜14をさらに均等にエッチングすることができる。
 また、実施形態に係る基板処理方法において、第1エッチング工程(ステップS102)および第2エッチング工程(ステップS104)は、それぞれ別の処理槽61、71で実施される。これにより、ウェハWを効率よく処理することができる。
 また、実施形態に係る基板処理方法は、リンス工程(ステップS105)と、乾燥工程(ステップS106)と、をさらに含む。リンス工程(ステップS105)は、第2エッチング工程(ステップS104)の後に、リンス液で基板(ウェハW)から第2エッチング液を洗い流す。乾燥工程(ステップS106)は、リンス工程(ステップS105)の後に、基板(ウェハW)を乾燥させる。また、乾燥工程(ステップS106)は、リンス液で濡れた基板(ウェハW)の表面を有機溶剤(IPA)の蒸気で置換した後に乾燥させる。これにより、高いアスペクト比でウェハWに形成される多層膜のパターンが、乾燥時にDIWの表面張力によって倒れることを抑制することができる。
 また、実施形態に係る基板処理方法は、リンス工程(ステップS105)と、乾燥工程(ステップS106)と、をさらに含む。リンス工程(ステップS105)は、第2エッチング工程(ステップS104)の後に、リンス液で基板(ウェハW)から第2エッチング液を洗い流す。乾燥工程(ステップS106)は、リンス工程(ステップS105)の後に、基板(ウェハW)を乾燥させる。また、乾燥工程(ステップS106)は、基板(ウェハW)の表面を超臨界状態の処理流体を用いて乾燥させる。これにより、高いアスペクト比でウェハWに形成される多層膜のパターンが、乾燥時にDIWの表面張力によって倒れることを抑制することができる。
 また、実施形態に係る基板処理方法は、リンス工程(ステップS105)と、乾燥工程(ステップS106)と、をさらに含む。リンス工程(ステップS105)は、第2エッチング工程(ステップS104)の後に、リンス液で基板(ウェハW)から第2エッチング液を洗い流す。乾燥工程(ステップS106)は、リンス工程(ステップS105)の後に、基板(ウェハW)を乾燥させる。また、乾燥工程(ステップS106)は、第1置換工程と、撥水化工程と、第2置換工程と、振切工程と、を含む。第1置換工程は、リンス液(DIW)で濡れた基板(ウェハW)の表面を有機溶媒(IPA)で置換する。撥水化工程は、第1置換工程の後に、基板(ウェハW)の表面に撥水化剤L1を供給する。第2置換工程は、撥水化工程の後に、基板(ウェハW)の表面を有機溶媒(IPA)で置換する。振切工程は、第2置換工程の後に、基板(ウェハW)の表面に位置する有機溶媒(IPA)を振り切る。これにより、高いアスペクト比でウェハWに形成される多層膜のパターンが、乾燥時にDIWの表面張力によって倒れることを抑制することができる。
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、上記の実施形態では、第1エッチング処理および第2エッチング処理をバッチ処理で実施する例について示したが、本開示はかかる例に限られず、第1エッチング処理および第2エッチング処理の少なくとも一方が枚葉処理で実施されてもよい。
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 W   ウェハ(基板の一例)
 1   基板処理システム(基板処理装置の一例)
 7   制御部
 13  TiN膜
 14  Mo膜
 61  処理槽(第1処理槽の一例)
 71  処理槽(第2処理槽の一例)

Claims (11)

  1.  TiN膜の表面にMo膜が形成された多層膜を多段に含むデバイス構造を表面に有する基板を準備する準備工程と、
     前記準備工程の後に、リン酸と酢酸と硝酸とを含む第1エッチング液で前記基板のエッチング処理を行う第1エッチング工程と、
     前記第1エッチング工程の後に、硫酸と水とを含む第2エッチング液で前記基板のエッチング処理を行う第2エッチング工程と、
     を含む基板処理方法。
  2.  前記第1エッチング工程において、前記第1エッチング液の温度は40(℃)以下である
     請求項1に記載の基板処理方法。
  3.  前記第1エッチング工程において、前記第1エッチング液の水分濃度は5(wt%)未満である
     請求項1または2に記載の基板処理方法。
  4.  前記第2エッチング工程において、前記第2エッチング液の温度は80(℃)~160(℃)である
     請求項1~3のいずれか一つに記載の基板処理方法。
  5.  前記第2エッチング工程において、前記第2エッチング液の硫酸濃度は50(wt%)~96(wt%)である
     請求項1~4のいずれか一つに記載の基板処理方法。
  6.  前記第2エッチング工程において、前記Mo膜に対する前記TiN膜の選択比は10以上である
     請求項1~5のいずれか一つに記載の基板処理方法。
  7.  前記第1エッチング工程および前記第2エッチング工程は、それぞれ別の処理槽で実施される
     請求項1~6のいずれか一つに記載の基板処理方法。
  8.  前記第2エッチング工程の後に、リンス液で前記基板から前記第2エッチング液を洗い流すリンス工程と、
     前記リンス工程の後に、前記基板を乾燥させる乾燥工程と、
     をさらに含み、
     前記乾燥工程は、前記リンス液で濡れた前記基板の表面を有機溶剤の蒸気で置換した後に乾燥させる
     請求項1~7のいずれか一つに記載の基板処理方法。
  9.  前記第2エッチング工程の後に、リンス液で前記基板から前記第2エッチング液を洗い流すリンス工程と、
     前記リンス工程の後に、前記基板を乾燥させる乾燥工程と、
     をさらに含み、
     前記乾燥工程は、前記基板の表面を超臨界状態の処理流体を用いて乾燥させる
     請求項1~7のいずれか一つに記載の基板処理方法。
  10.  前記第2エッチング工程の後に、リンス液で前記基板から前記第2エッチング液を洗い流すリンス工程と、
     前記リンス工程の後に、前記基板を乾燥させる乾燥工程と、
     をさらに含み、
     前記乾燥工程は、
     リンス液で濡れた前記基板の表面を有機溶媒で置換する第1置換工程と、
     前記第1置換工程の後に、前記基板の表面に撥水化剤を供給する撥水化工程と、
     前記撥水化工程の後に、前記基板の表面を有機溶媒で置換する第2置換工程と、
     前記第2置換工程の後に、前記基板の表面に位置する有機溶媒を振り切る振切工程と、を含む
     請求項1~7のいずれか一つに記載の基板処理方法。
  11.  リン酸と酢酸と硝酸とを含む第1エッチング液を貯留する第1処理槽と、
     硫酸と水とを含む第2エッチング液を貯留する第2処理槽と、
     各部を制御する制御部と、
     を備え、
     前記制御部は、
     TiN膜の表面にMo膜が形成された多層膜を多段に含むデバイス構造を表面に有する基板を、前記第1処理槽に貯留される前記第1エッチング液に浸漬し、
     前記第1処理槽で処理された前記基板を、前記第2処理槽に貯留される前記第2エッチング液に浸漬する
     基板処理装置。
PCT/JP2022/009292 2021-03-18 2022-03-04 基板処理方法および基板処理装置 WO2022196384A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021044659 2021-03-18
JP2021-044659 2021-03-18

Publications (1)

Publication Number Publication Date
WO2022196384A1 true WO2022196384A1 (ja) 2022-09-22

Family

ID=83320309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009292 WO2022196384A1 (ja) 2021-03-18 2022-03-04 基板処理方法および基板処理装置

Country Status (1)

Country Link
WO (1) WO2022196384A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085000A1 (ja) * 2022-10-20 2024-04-25 東京エレクトロン株式会社 流体供給システム、基板処理装置及び基板処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222237A (ja) * 2011-04-12 2012-11-12 Tokyo Electron Ltd 液処理方法及び液処理装置
JP2016119359A (ja) * 2014-12-19 2016-06-30 栗田工業株式会社 半導体基板の洗浄方法
JP2020126974A (ja) * 2019-02-06 2020-08-20 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP2020145412A (ja) * 2019-03-01 2020-09-10 東京エレクトロン株式会社 基板処理方法、基板処理装置および記憶媒体
JP2020145357A (ja) * 2019-03-07 2020-09-10 東京エレクトロン株式会社 基板処理装置、基板処理方法および記憶媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222237A (ja) * 2011-04-12 2012-11-12 Tokyo Electron Ltd 液処理方法及び液処理装置
JP2016119359A (ja) * 2014-12-19 2016-06-30 栗田工業株式会社 半導体基板の洗浄方法
JP2020126974A (ja) * 2019-02-06 2020-08-20 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP2020145412A (ja) * 2019-03-01 2020-09-10 東京エレクトロン株式会社 基板処理方法、基板処理装置および記憶媒体
JP2020145357A (ja) * 2019-03-07 2020-09-10 東京エレクトロン株式会社 基板処理装置、基板処理方法および記憶媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085000A1 (ja) * 2022-10-20 2024-04-25 東京エレクトロン株式会社 流体供給システム、基板処理装置及び基板処理方法

Similar Documents

Publication Publication Date Title
KR101377194B1 (ko) 기판 처리 장치
WO2016084596A1 (ja) 基板処理方法、基板処理装置および記憶媒体
JP3993496B2 (ja) 基板の処理方法および塗布処理装置
CN108242392B (zh) 基板及其处理方法、装置、系统及控制装置、制造方法
US7107999B2 (en) Substrate processing apparatus for removing organic matter by removal liquid
JP7345401B2 (ja) 基板処理方法および基板処理装置
WO2022196384A1 (ja) 基板処理方法および基板処理装置
JP2022057798A (ja) 基板処理システム、および基板搬送方法
TW202217950A (zh) 基板處理方法及基板處理裝置
JP6956924B2 (ja) 基板処理装置および基板処理方法
JP2002050600A (ja) 基板処理方法及び基板処理装置
CN114068302A (zh) 基板处理方法及基板处理装置
TWI776077B (zh) 基板處理方法及基板處理裝置
US20220208545A1 (en) Substrate treatment apparatus and substrate treatment method
TW201931463A (zh) 基板處理方法及基板處理裝置
JP7142461B2 (ja) 基板処理方法、基板処理装置および基板処理システム
JP2018164067A (ja) 基板処理方法、基板処理装置、基板処理システム、基板処理システムの制御装置、半導体基板の製造方法および半導体基板
JP2022063227A (ja) 基板処理方法および基板処理装置
US12020943B2 (en) Substrate processing method and substrate processing apparatus
JP7489885B2 (ja) 基板処理装置、基板処理方法及び薬液
JP2019201075A (ja) 基板処理装置および基板処理方法
US20220359233A1 (en) Substrate processing apparatus and substrate processing method
KR102429211B1 (ko) 기판 처리 방법 및 기판 처리 장치
JP2021158174A (ja) 基板処理方法および基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP