JP2020126974A - 基板処理装置及び基板処理方法 - Google Patents

基板処理装置及び基板処理方法 Download PDF

Info

Publication number
JP2020126974A
JP2020126974A JP2019019920A JP2019019920A JP2020126974A JP 2020126974 A JP2020126974 A JP 2020126974A JP 2019019920 A JP2019019920 A JP 2019019920A JP 2019019920 A JP2019019920 A JP 2019019920A JP 2020126974 A JP2020126974 A JP 2020126974A
Authority
JP
Japan
Prior art keywords
processing
fluid
supercritical
pump
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019019920A
Other languages
English (en)
Other versions
JP7197396B2 (ja
Inventor
源太郎 五師
Gentaro Goshi
源太郎 五師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2019019920A priority Critical patent/JP7197396B2/ja
Priority to TW109102979A priority patent/TWI840497B/zh
Priority to KR1020200012620A priority patent/KR20200096872A/ko
Priority to US16/782,419 priority patent/US11446588B2/en
Priority to CN202010081888.1A priority patent/CN111540694B/zh
Publication of JP2020126974A publication Critical patent/JP2020126974A/ja
Application granted granted Critical
Publication of JP7197396B2 publication Critical patent/JP7197396B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1007Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material
    • B05C11/1013Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material responsive to flow or pressure of liquid or other fluent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0403Solvent extraction of solutions which are liquid with a supercritical fluid
    • B01D11/0411Solvent extraction of solutions which are liquid with a supercritical fluid the supercritical fluid acting as solvent for the solvent and as anti-solvent for the solute, e.g. formation of particles from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0484Controlling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

【課題】超臨界状態の処理流体を用いた乾燥時に、ウエハ上でパターンが倒壊することを抑制する。【解決手段】基板処理装置は、処理流体を送り出すポンプを有する超臨界流体製造装置と、超臨界流体製造装置からの超臨界状態の処理流体を用いて、基板に対して超臨界流体処理を行う処理容器と、少なくとも超臨界流体製造装置を制御する制御部と、を備えている。制御部は、処理容器内を処理流体を用いて昇圧させる際、昇圧を行う目標時間と、昇圧に必要な処理流体の量と、処理流体の密度とに基づいて、処理容器に処理流体を供給する第1供給速度を決定する。超臨界流体製造装置は、第1供給速度に基づいて、処理容器に処理流体を供給する。【選択図】図3

Description

本開示は、基板処理装置及び基板処理方法に関する。
半導体ウエハ(以下、ウエハという)などの基板の表面に集積回路の積層構造を形成する半導体装置の製造工程においては、薬液洗浄あるいはウエットエッチング等の液処理が行われる。こうした液処理にてウエハの表面に付着した液体などを除去する際に、近年では、超臨界状態の処理流体を用いた乾燥方法が用いられつつある(例えば特許文献1を参照)。
特開2014−101241号公報
本開示は、超臨界状態の処理流体を用いた乾燥時に、ウエハ上でパターンが倒壊することを抑制することが可能な、基板処理装置及び基板処理方法を提供する。
一実施形態による基板処理装置は、処理流体を送り出すポンプを有する超臨界流体製造装置と、前記超臨界流体製造装置からの超臨界状態の処理流体を用いて、基板に対して超臨界流体処理を行う処理容器と、少なくとも前記超臨界流体製造装置を制御する制御部と、を備え、前記制御部は、前記処理容器内を前記処理流体を用いて昇圧させる際、前記昇圧を行う目標時間と、前記昇圧に必要な前記処理流体の量と、前記処理流体の密度とに基づいて、前記処理容器に前記処理流体を供給する第1供給速度を決定し、前記超臨界流体製造装置は、前記第1供給速度に基づいて、前記処理容器に前記処理流体を供給する。
本開示によれば、超臨界状態の処理流体を用いた乾燥時に、ウエハ上でパターンが倒壊することを抑制することができる。
基板処理システムの全体構成を示す横断平面図である。 超臨界処理装置の処理容器の一例を示す外観斜視図である。 超臨界処理装置のシステム全体の構成例を示す図である。 超臨界処理装置のポンプの概略を示す断面図である。 IPAの乾燥メカニズムを説明する図である。 乾燥処理中の処理容器内の圧力の変動を示すグラフである。 ポンプの性能表を示すグラフである。
以下、図面を参照して一実施形態について説明する。なお、本件明細書に添付する図面に示されている構成には、図示と理解のしやすさの便宜上、サイズ及び縮尺等が実物のサイズ及び縮尺等から変更されている部分が含まれうる。
[基板処理システムの構成]
図1は、基板処理システム1の全体構成を示す横断平面図である。
基板処理システム1は、複数の洗浄装置2(図1に示す例では2台の洗浄装置2)と、複数の超臨界処理装置3(図1に示す例では2台の超臨界処理装置3)と、を備えている。洗浄装置2は、ウエハWに洗浄液を供給して洗浄処理を行うものである。超臨界処理装置3は、洗浄処理後のウエハWに残留している乾燥防止用の液体(本実施形態ではIPA:イソプロピルアルコール)を、超臨界状態の処理流体(本実施形態ではCO:二酸化炭素)と接触させて除去するものである。
この基板処理システム1では、載置部11にFOUP100が載置され、このFOUP100に格納されたウエハWが、搬入出部12及び受け渡し部13を介して洗浄処理部14及び超臨界処理部15に受け渡される。洗浄処理部14及び超臨界処理部15において、ウエハWは、まず洗浄処理部14に設けられた洗浄装置2に搬入されて洗浄処理を受け、その後、超臨界処理部15に設けられた超臨界処理装置3に搬入されてウエハW上からIPAを除去する乾燥処理を受ける。図1中、符号「121」はFOUP100と受け渡し部13との間でウエハWを搬送する第1の搬送機構を示す。符号「131」は搬入出部12と洗浄処理部14及び超臨界処理部15との間で搬送されるウエハWが一時的に載置されるバッファとしての役割を果たす受け渡し棚を示す。
受け渡し部13の開口部にはウエハ搬送路162が接続されており、ウエハ搬送路162に沿って洗浄処理部14及び超臨界処理部15が設けられている。洗浄処理部14には、当該ウエハ搬送路162を挟んで洗浄装置2が1台ずつ配置されており、合計2台の洗浄装置2が設置されている。一方、超臨界処理部15には、ウエハWからIPAを除去する乾燥処理を行う基板処理装置として機能する超臨界処理装置3が、ウエハ搬送路162を挟んで1台ずつ配置されており、合計2台の超臨界処理装置3が設置されている。ウエハ搬送路162には第2の搬送機構161が配置されており、第2の搬送機構161は、ウエハ搬送路162内を移動可能に設けられている。受け渡し棚131に載置されたウエハWは第2の搬送機構161によって受け取られ、第2の搬送機構161は、ウエハWを洗浄装置2及び超臨界処理装置3に搬入する。なお、洗浄装置2及び超臨界処理装置3の数及び配置態様は特に限定されず、単位時間当たりのウエハWの処理枚数及び各洗浄装置2及び各超臨界処理装置3の処理時間等に応じて、適切な数の洗浄装置2及び超臨界処理装置3が適切な態様で配置される。
洗浄装置2は、例えばスピン洗浄によってウエハWを1枚ずつ洗浄する枚葉式の装置として構成される。この場合、ウエハWを水平に保持した状態で鉛直軸線周りに回転させながら、洗浄用の薬液や薬液を洗い流すためのリンス液をウエハWの処理面に対して適切なタイミングで供給することで、ウエハWの洗浄処理を行うことができる。洗浄装置2で用いられる薬液及びリンス液は特に限定されない。例えば、アルカリ性の薬液であるSC1液(すなわちアンモニアと過酸化水素水の混合液)をウエハWに供給し、ウエハWからパーティクルや有機性の汚染物質を除去することができる。その後、リンス液である脱イオン水(DIW:DeIonized Water)をウエハWに供給し、SC1液をウエハWから洗い流すことができる。さらに、酸性の薬液である希フッ酸水溶液(DHF:Diluted HydroFluoric acid)をウエハWに供給して自然酸化膜を除去し、その後、DIWをウエハWに供給して希フッ酸水溶液をウエハWから洗い流すこともできる。
そして洗浄装置2は、DIWによるリンス処理を終えたら、ウエハWを回転させながら、乾燥防止用の液体としてIPAをウエハWに供給し、ウエハWの処理面に残存するDIWをIPAと置換する。その後、ウエハWの回転を緩やかに停止する。このとき、ウエハWには十分量のIPAが供給され、半導体のパターンが形成されたウエハWの表面はIPAが液盛りされた状態となり、ウエハWの表面にはIPAの液膜が形成される。ウエハWは、IPAが液盛りされた状態を維持しつつ、第2の搬送機構161によって洗浄装置2から搬出される。
このようにしてウエハWの表面に付与されたIPAは、ウエハWの乾燥を防ぐ役割を果たす。洗浄装置2は、比較的大きな厚みを有するIPA膜がウエハWの表面に形成されるように、十分な量のIPAをウエハWに付与する。これにより、特に、洗浄装置2から超臨界処理装置3へのウエハWの搬送中におけるIPAの蒸発によってウエハWに所謂パターン倒れが生じてしまうことを防ぐことができる。
洗浄装置2から搬出されたウエハWは、第2の搬送機構161によって、IPAが液盛りされた状態で超臨界処理装置3の処理容器内に搬入され、超臨界処理装置3においてIPAの乾燥処理が行われる。
制御部4は、図3に示す超臨界流体製造装置70を含む基板処理システム1の全体を制御する。制御部4は、例えばコンピュータであり、演算部18と記憶部19とを備える。記憶部19には、基板処理システム1において実行される各種の処理を制御するプログラムが格納される。演算部18は、記憶部19に記憶されたプログラムを読み出して実行することによって基板処理システム1の動作を制御する。プログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御部4の記憶部19にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。なお、基板処理システム1の全体を制御する制御部と、超臨界流体製造装置70を制御する制御部とが別体に構成されていても良い。
[超臨界処理装置]
以下、超臨界処理装置3で行われる超臨界流体を用いた乾燥処理の詳細について説明する。まず、超臨界処理装置3においてウエハWが搬入される処理容器の構成例を説明し、その後、超臨界処理装置3のシステム全体の構成例を説明する。
図2は、超臨界処理装置3の処理容器301の一例を示す外観斜視図である。
処理容器301は、超臨界流体製造装置70からの超臨界状態の処理流体(超臨界流体)を用いて、ウエハWに対して超臨界流体処理を行うものである。処理容器301は、筐体状の容器本体311と、処理対象のウエハWを横向きに保持する保持板316と、保持板316を支持する蓋部材315とを備えている。容器本体311には、ウエハWの搬入出用の開口部312が形成されている。蓋部材315は、ウエハWを容器本体311内に搬入したとき開口部312を密閉する。
容器本体311は、例えば直径300mmのウエハWを収容可能な処理空間が内部に形成された容器である。容器本体311の内部の一端側に流体供給ヘッダー(第1流体供給部)317が設けられ、他端側に流体排出ヘッダー(流体排出部)318が設けられている。図示例では、流体供給ヘッダー317は、多数の開口(第1流体供給口)が設けられたブロック体からなり、流体排出ヘッダー318は多数の開口(流体排出口)が設けられた管からなる。流体供給ヘッダー317の第1流体供給口は、保持板316により保持されたウエハWの上面よりやや高い位置にあることが好ましい。
流体供給ヘッダー317及び流体排出ヘッダー318の構成は図示例に限定されず、例えば、流体排出ヘッダー318をブロック体から形成してもよく、流体供給ヘッダー317を管から形成してもよい。
保持板316を下方から見ると、保持板316は、ウエハWの下面のほぼ全域を覆っている。保持板316は、蓋部材315側の端部に開口316aを有している。保持板316の上方の空間にある処理流体は、開口316aを通って、流体排出ヘッダー318に導かれる。
流体供給ヘッダー317は、実質的に水平方向へ向けて処理流体を容器本体311(処理容器301)内に供給する。ここでいう水平方向とは、重力が作用する鉛直方向と垂直な方向であって、通常は、保持板316に保持されたウエハWの平坦な表面が延在する方向と平行な方向である。
流体排出ヘッダー318を介して、処理容器301内の流体が処理容器301の外部に排出される。流体排出ヘッダー318を介して排出される流体には、流体供給ヘッダー317を介して処理容器301内に供給された処理流体の他に、ウエハWの表面に付着していて処理流体に溶け込んだIPAも含まれる。
容器本体311の底部には、処理流体を処理容器301の内部に供給する流体供給ノズル(第2流体供給部)341が設けられている。図示例では、流体供給ノズル341は、容器本体311の底壁に穿たれた開口からなる。流体供給ノズル341は、ウエハWの中心部の下方(例えば、真下)に位置し、ウエハWの中心部(例えば、垂直方向上方)に向けて、処理流体を処理容器301内に供給する。
処理容器301は、さらに、不図示の押圧機構を備える。この押圧機構は、処理空間内に供給された超臨界状態の処理流体によってもたらされる内圧に抗して、容器本体311に向けて蓋部材315を押し付け、処理空間を密閉する役割を果たす。また、処理空間内に供給された処理流体が超臨界状態の温度を保てるように、容器本体311の天井壁及び底壁に、断熱材、テープヒータなど(図示せず)を設けることが好ましい。
[超臨界処理装置のシステム全体の構成]
図3は、超臨界処理装置3のシステム全体の構成例を示す図である。
図3に示すように、超臨界処理装置3は、本実施形態による超臨界流体製造装置70と、超臨界流体製造装置70からの超臨界流体を用いて、ウエハWに対して超臨界流体処理を行う処理容器301とを備えている。処理容器301については、既に説明したとおりである(図2参照)。
超臨界流体製造装置70は、処理容器301よりも上流側に設けられている。超臨界処理装置3において処理流体(超臨界流体)を流通させるための供給ラインには、超臨界流体製造装置70から処理流体が供給される。超臨界流体製造装置70と処理容器301との間には、上流側から下流側に向かって、フィルタ57及び開閉弁52a、52bが順次設けられる。なお、本明細書中、上流側及び下流側の用語は、供給ラインにおける処理流体の流れ方向を基準とする。
フィルタ57は、超臨界流体製造装置70から送られてくる処理流体に含まれる異物を取り除き、クリーンな処理流体を下流側に流すものである。開閉弁52a、52bは、超臨界流体製造装置70から処理容器301への処理流体の供給のオン及びオフを調整するバルブであり、開状態では下流側の供給ラインに処理流体を流し、閉状態では下流側の供給ラインに処理流体を流さない。開閉弁52a、52bが開状態にある場合、例えば16〜20MPa(メガパスカル)程度の高圧の処理流体が、超臨界流体製造装置70から開閉弁52a、52bを介して供給ラインに供給される。
開閉弁52a、52bから処理容器301に延在する第1供給ライン63は、上述の図2に示す供給ポート313に接続される。開閉弁52a、52bからの処理流体は、図2に示す供給ポート313を介して処理容器301の容器本体311内に供給される。
なお図3に示す超臨界処理装置3では、フィルタ57と開閉弁52a、52bとの間において、供給ラインが分岐している。すなわちフィルタ57と開閉弁52a、52bとの間の供給ラインからは、開閉弁52c、52d及びオリフィス55a、55bを介して処理容器301に接続する第2供給ライン64が分岐して延在する。また、フィルタ57と開閉弁52a、52bとの間の供給ラインからは、開閉弁52eを介して外部に接続する供給ラインが分岐して延在する。
開閉弁52c、52d及びオリフィス55a、55bを介して処理容器301に接続する第2供給ライン64は、上述の図2に示す流体供給ノズル341に接続される。第2供給ライン64は、例えば後述する昇圧工程において処理容器301へ処理流体を供給するために用いられても良い。また、オリフィス55a、55bは、処理容器301に対する処理流体の流量及び圧力を変更するものである。処理容器301への処理流体の供給開始当初等のように、比較的多量の処理流体を処理容器301に供給する際に開閉弁52c、52dが開状態に調整され、オリフィス55a、55bによって圧力が調整された処理流体を処理容器301に供給することができる。
開閉弁52eを介して外部に接続する供給ラインは、供給ラインから処理流体を排出するための流路である。例えば超臨界処理装置3の電源オフ時において、供給ライン内に残存する処理流体を外部に排出する際には、開閉弁52eが開状態に調整され、供給ラインが外部に連通される。
また、オリフィス55bの下流側の第2供給ライン64からは、開閉弁52fを介してパージ装置62に接続する供給ラインが設けられている。パージ装置62に接続する供給ラインは、窒素等の不活性ガスを処理容器301に供給するための流路であり、超臨界流体製造装置70から処理容器301に対する処理流体の供給が停止している間に活用される。例えば処理容器301を不活性ガスで満たして清浄な状態を保つ場合には、開閉弁52fが開状態に調整され、パージ装置62から供給ラインに送られた不活性ガスは開閉弁52fを介して処理容器301に供給される。
処理容器301よりも下流側には、開閉弁52g〜52jと背圧弁59とが設けられている。開閉弁52g〜52jは、処理容器301からの処理流体の排出のオン及びオフを調整するバルブである。処理容器301から処理流体を排出する場合には開閉弁52g〜52jは開状態に調整され、処理容器301から処理流体を排出しない場合には開閉弁52g〜52jは閉状態に調整される。背圧弁59は、一次側圧力(これは処理容器301内の圧力に等しい)が設定圧力を越えたときに開弁して、二次側に流体を流すことにより一次側圧力を設定圧力に維持するように構成されている。背圧弁59の設定圧力は制御部4により随時変更することが可能である。なお処理容器301と開閉弁52g〜52jとの間に延在する供給ライン(排出側供給ライン65)は、図2に示す排出ポート314に接続されている。処理容器301の容器本体311内の流体は、図2に示す流体排出ヘッダー318及び排出ポート314を介して、開閉弁52g〜52jに向かって送られる。
[超臨界流体製造装置の構成]
次に、超臨界流体製造装置70の構成について説明する。
図3に示すように、超臨界流体製造装置70は、ガス供給ライン71aと、冷却器72と、貯留タンク73と、ポンプ74と、バッファタンク80と、加熱装置75と、超臨界流体供給ライン71cと、を備えている。ガス供給ライン71a、冷却器72、貯留タンク73、ポンプ74、バッファタンク80、加熱装置75、及び超臨界流体供給ライン71cは、筐体79の内部に配置されている。
ガス供給ライン71aは、超臨界流体製造装置70の外部から送られたガス状の処理流体(本実施形態ではCO:二酸化炭素、処理ガスともいう)を冷却器72側へ供給するものである。また超臨界流体製造装置70の外部にはガス供給タンク90が設けられており、ガス供給ライン71aは、このガス供給タンク90に接続されている。ガス供給タンク90は、処理ガスを貯留及び供給するものである。そしてガス供給ライン71aには、ガス供給タンク90から処理ガスが供給される。なお、ガス供給ライン71aにおいて、処理ガスの圧力は、例えば4MPa〜6MPa、処理ガスの温度は、例えば−10℃〜75℃とされている。
ガス供給タンク90と冷却器72との間のガス供給ライン71aには、上流側から下流側に向かって、開閉弁82a、フィルタ87a〜87d、開閉弁82b及びチェックバルブ88が順次設けられている。
開閉弁82aは、ガス供給タンク90からの処理ガスの供給のオン及びオフを制御するバルブであり、開状態では下流側のガス供給ライン71aに処理ガスを流し、閉状態では下流側のガス供給ライン71aに処理ガスを流さない。開閉弁82aが開状態にある場合、処理ガスがガス供給タンク90から開閉弁82aを介してガス供給ライン71aに供給される。
フィルタ87a〜87dは、それぞれガス供給ライン71a内を流れる処理ガスに含まれる水分等を吸着して取り除き、水分等が除去された処理ガスを下流側に流すものである。この場合、ガス供給ライン71aには、複数(4つ)のフィルタ87a〜87dが並列に配置されている。これにより、ガス供給ライン71aにおける処理ガスの圧力損失を抑制するとともに、フィルタ87a〜87dのメンテナンスが行いやすいようになっている。
開閉弁82bは、ガス供給ライン71a内を流れる処理ガスの供給のオン及びオフを制御するバルブである。またチェックバルブ88は、冷却器72から上流側(フィルタ87a〜87d側)へ処理流体(処理ガス又は処理液体)が逆流しないようにする逆止弁としての役割を果たす。
なお図3においては、フィルタ87a〜87dと開閉弁82aとの間において、ガス供給ライン71aが分岐している。すなわちフィルタ87a〜87dと開閉弁82aとの間のガス供給ライン71aからは、バイパス処理ガスライン71dとベントライン71eとが分岐して延在する。バイパス処理ガスライン71dは、フィルタ87a〜87dを介在させることなく、開閉弁82aからの処理ガスをチェックバルブ88へ送り込むものである。ベントライン71eは、ガス供給ライン71aを外部に接続するものである。
バイパス処理ガスライン71dには、開閉弁82cが設けられている。この開閉弁82cは、バイパス処理ガスライン71d内を流れる処理ガスの供給のオン及びオフを制御するバルブである。ベントライン71eは、ガス供給ライン71aからのガスを外部に排出するためのラインである。ベントライン71eには、開閉弁82dが設けられている。この開閉弁82dは、ベントライン71e内を流れる処理ガスを外部へ排出するか否かを制御するバルブである。例えば超臨界流体製造装置70の電源オフ時において、開閉弁82aとチェックバルブ88との間のガス供給ライン71a内に残存する処理ガスを外部に排出する際には、開閉弁82dが開状態に調整される。これにより開閉弁82aとチェックバルブ88との間のガス供給ラインが外部に連通される。
ガス供給ライン71aは、冷却器72の入口側に接続されている。冷却器72は、ガス供給ライン71aからの処理ガスを冷却することにより、処理ガスを液化して液体状の処理流体(処理液体ともいう)を生成するものである。冷却器72には、図示しない外部のチラーから冷却水が供給され、この冷却水によって処理ガスが冷却されるようになっている。冷却器72によって処理ガスが冷却されて、処理液体を生成することにより、ポンプ74を用いて処理流体(処理液体)をバッファタンク80側に送り込むことが可能となる。なお、冷却器72の出口側において、処理液体の圧力は、例えば4MPa〜6MPaとされ、処理液体の温度は、例えば0℃〜5℃とされる。
冷却器72の出口側には、液体供給ライン71bが接続されている。この液体供給ライン71bは、冷却器72からの処理液体をバッファタンク80側へ供給するものである。液体供給ライン71bは、冷却器72から、貯留タンク73及びポンプ74を順次介してバッファタンク80まで延びている。
冷却器72とポンプ74との間の液体供給ライン71bには、貯留タンク73と、開閉弁82eと、ポンプ入口側圧力計95と、ポンプ入口側温度計96とがそれぞれ設けられている。貯留タンク73は、冷却器72で冷却されて液化した処理液体を一時的に貯留するものである。貯留タンク73には、例えば上述したチラーから冷却水が供給され、貯留タンク73内の処理液体が冷却される。この場合、貯留タンク73内の処理液体は、例えば0℃〜5℃に維持されている。このように、冷却器72とポンプ74との間に貯留タンク73を設けたことにより、冷却器72で液化されて生成した処理液体を、安定的にポンプ74に送り込むことができる。
開閉弁82eは、貯留タンク73から送られた処理液体の供給のオン及びオフを制御するバルブである。開閉弁82eは、開状態では下流側の液体供給ライン71bに処理液体を流す。このとき、貯留タンク73からの処理液体は、液体供給ライン71bを介してポンプ74に供給される。一方、開閉弁82eは、閉状態では下流側の液体供給ライン71bに処理液体を流さないようになっている。
ポンプ入口側圧力計95は、ポンプ74の入口側の液体供給ライン71bに設けられており、ポンプ74の入口における処理流体の圧力を測定する。ポンプ入口側温度計96は、ポンプ74の入口側の液体供給ライン71bに設けられており、ポンプ74の入口における処理流体の温度を測定する。
ポンプ74の入口側は、貯留タンク73を介して冷却器72に接続されている。このポンプ74は、冷却器72からの処理液体の圧力を高めて出口側に送り出す役割を果たす。ポンプ74の出口側において、処理液体の圧力は、処理液体を超臨界流体に変化させるのに必要な臨界圧力を上回っており、例えば7.4MPa〜23MPaまで高められる。また、ポンプ74の出口側において、処理液体の温度は、例えば15℃〜30℃となる。
ポンプ74は、例えばダイヤフラムポンプであり、処理液体を繰り返し吸い込んで送り出すようになっている。ポンプ74から単位時間当たりに送り出される処理液体の容積は、制御部4によって制御可能となっている。
図4(a)(b)は、ポンプ74を示す概略断面図である。図4(a)(b)中、下方がポンプ74の入口側(吸込側)を示し、上方がポンプ74の出口側(吐出側)を示している。図4(a)(b)に示すように、ポンプ74は、ポンプヘッド74aと、ポンプヘッド74a内に配置された吸込側逆止弁74b及び吐出側逆止弁74cと、ポンプヘッド74aに取り付けられたダイヤフラム74dとを有している。ダイヤフラム74dには、ダイヤフラム74dを駆動するピストン(油圧式または直動式)74eが連結されている。ピストン74eには、ピストン74eのストローク長Lを制御するピストン制御機構74fが設けられ、ピストン制御機構74fは、サーボモータ74gによって駆動される。さらにピストン74eには、ピストン74eのストローク位置を監視するストローク位置監視機構74hが設けられている。制御部4は、ストローク位置監視機構74hによってピストン74eのストローク位置を監視するとともに、サーボモータ74gを制御することにより、ピストン制御機構74fを介してピストン74eのストローク長Lを制御することができる。
ポンプ74の吸引時には、図4(a)に示すようにピストン74eが縮退し、ダイヤフラム74dがピストン74e側に引き込まれることにより、ポンプヘッド74aの入口側から処理液体が吸引される。ポンプ74の吐出時には、図4(b)に示すようにピストン74eが伸長し、ダイヤフラム74dがピストン74eによって押し込まれることにより、ポンプヘッド74aの出口側から処理液体が吐出される。
図3を参照すると、ポンプ74の出口側には、バッファタンク80が接続されている。このバッファタンク80は、ポンプ74から送り出され、ポンプ74と加熱装置75との間の供給ライン(液体供給ライン71b、超臨界流体供給ライン71c)を流れる処理流体(処理液体又は超臨界流体)の圧力変動又は脈動を吸収するものである。このバッファタンク80には、液体供給ライン71bからの処理液体が流入する。バッファタンク80に流入した処理液体は、バッファタンク80の内部で加熱される。これにより、処理液体の温度が超臨界流体に変化するのに必要な臨界温度を上回り、超臨界状態の処理流体(超臨界流体ともいう)となってバッファタンク80から流出する。
バッファタンク80の出口側において、超臨界流体の圧力は、例えば7.4MPa〜23MPaとなっている。また、バッファタンク80の出口側において、超臨界流体の温度は、例えば30℃〜40℃まで高められる。
バッファタンク80の出口側には、超臨界流体供給ライン71cが接続されている。この超臨界流体供給ライン71cは、バッファタンク80からの超臨界流体を、加熱装置75を介して超臨界流体製造装置70の外部(処理容器301側)へ送り出すものである。超臨界流体供給ライン71cは、バッファタンク80から、加熱装置75を介して超臨界流体製造装置70の外部まで延びている。
バッファタンク80の出口側には、加熱装置75が接続されている。この加熱装置75は、バッファタンク80からの超臨界流体を加熱するものである。加熱装置75において超臨界流体が加熱されることにより、超臨界流体は、処理容器301における超臨界乾燥処理に適した温度まで加熱される。具体的には、加熱装置75の出口側において、超臨界流体の温度は、例えば40℃〜100℃まで高められる。また、加熱装置75の出口側において、超臨界流体の圧力は、例えば7.4MPa〜23MPaとなっている。
加熱装置75の下流側の超臨界流体供給ライン71cには、上流側から下流側に向かって、フィルタ89a、89b及び開閉弁82fが順次設けられている。さらに開閉弁82fの下流側には、超臨界流体製造装置70の出口における超臨界流体の圧力を監視する出口側圧力計97が設けられている。
フィルタ89a、89bは、それぞれ超臨界流体供給ライン71c内を流れる超臨界流体に含まれるパーティクル等を取り除き、パーティクル等が除去された超臨界流体を下流側に流すものである。この場合、超臨界流体供給ライン71cには、複数(2つ)のフィルタ89a、89bが並列に配置されている。これにより、超臨界流体供給ライン71cにおける超臨界流体の圧力損失を抑制するとともに、フィルタ89a、89bのメンテナンスを行いやすいようになっている。
開閉弁82fは、超臨界流体供給ライン71c内を流れる超臨界流体の供給のオン及びオフを制御するバルブである。この場合、開閉弁82fは、超臨界流体製造装置70から処理容器301へ超臨界流体を送り出すか否かの制御を行う。すなわち、開閉弁82fが開となった状態では、超臨界流体製造装置70から処理容器301に超臨界流体が供給される。一方、開閉弁82fが閉となった状態では、超臨界流体製造装置70から処理容器301に超臨界流体が供給されない。
また、加熱装置75の下流側と冷却器72の上流側とは、ポンプ74の下流側からポンプ74の上流側へ処理流体を戻す循環ライン71fによって接続されている。より具体的には、循環ライン71fは、フィルタ89a、89bと開閉弁82fとの間に位置する下流側分岐部91bと、チェックバルブ88と冷却器72との間に位置する上流側分岐部91aとを接続している。
循環ライン71fには、開閉弁82gと調圧弁76とが設けられている。開閉弁82gは、循環ライン71f内を、下流側分岐部91bから上流側分岐部91aへ向けて流れる処理流体(超臨界流体)の通過のオン及びオフを制御するバルブである。すなわち、開閉弁82gが開となった状態では、下流側分岐部91bから調圧弁76に向けて超臨界流体が流れる。一方、開閉弁82fが閉となった状態では、下流側分岐部91bから調圧弁76に超臨界流体が流れない。なお、通常、超臨界流体製造装置70によって超臨界流体を製造している間、開閉弁82gは開(オン)状態に維持されている。したがって、通常、超臨界流体供給ライン71cと調圧弁76とは、互いに連通した状態に保たれる。
調圧弁76は、内部を流れる処理流体(超臨界流体)の圧力を一定に維持する役割を果たす。調圧弁76は、その内部を流れる処理流体の圧力が予め設定された圧力閾値を超えた場合に、その入口側(下流側分岐部91b側)からその出口側(上流側分岐部91a側)へ向けて処理流体を流す。一方、調圧弁76は、その内部を流れる処理流体の圧力が上記圧力閾値を超えない場合に、処理流体を流さないようになっている。
なお、調圧弁76内を流れる処理流体の圧力が上記圧力閾値を超えた場合、調圧弁76の入口側(下流側分岐部91b側)から出口側(上流側分岐部91a側)へ向けて処理流体が流れる。調圧弁76を通過した処理流体は、圧力が低下し、気化することにより処理ガスに戻される。この処理ガスは、上流側分岐部91aを通過して再度冷却器72に流入する。調圧弁76の入口側から出口側へ向けて処理流体が一定程度流れた後、調圧弁76の入口側に接続された循環ライン71f内の圧力が低下する。その後、調圧弁76の内部の圧力が圧力閾値を下回ると、調圧弁76の内部における処理流体の流れが停止する。このように、調圧弁76の圧力閾値を適宜設定することにより、超臨界流体製造装置70から処理容器301へ送り込まれる超臨界流体の圧力の上限を設定することができる。具体的には、超臨界流体製造装置70から処理容器301へ送り込まれる超臨界流体の圧力が圧力閾値を超えた場合、超臨界流体の一部が、調圧弁76を介して上流側分岐部91aに向けて流出する。このことにより、循環ライン71fを流れる超臨界流体の圧力が圧力閾値まで低下する。このようにして、超臨界流体製造装置70から処理容器301へ送り込まれる超臨界流体の圧力が一定に保持される。
[超臨界流体の製造方法]
次に、超臨界流体製造装置70を用いて処理ガスから超臨界流体を製造する方法について、図3を参照して説明する。
はじめに、超臨界流体製造装置70の開閉弁82a、82b、82e、82f、82gを開状態(オン)とするとともに、開閉弁82c、82dを閉状態(オフ)とする。
次に、ガス状の処理流体(処理ガス)をガス供給タンク90から超臨界流体製造装置70に供給する。この処理ガスは、超臨界流体製造装置70のガス供給ライン71aを流れ、冷却器72に送られる。なお、この間、処理ガスはガス供給ライン71aに設けられた開閉弁82a、フィルタ87a〜87d、開閉弁82b及びチェックバルブ88を順次通過する。そして処理ガスは、フィルタ87a〜87dを通過することにより、含有する水分が除去される。
次に、冷却器72において、ガス供給ライン71aからの処理ガスを冷却し、これにより液体状の処理流体(処理液体)を生成する。この処理液体は、液体供給ライン71bを通過して冷却器72から貯留タンク73に送られ、貯留タンク73に一時的に貯蔵される。次いで、貯留タンク73からの処理液体は、ポンプ74を用いてバッファタンク80へ供給される。この間、処理液体は、液体供給ライン71bに設けられた開閉弁82eを通過し、ポンプ74により例えば7.4MPa〜23MPa程度の圧力に加圧される。
続いて、高圧の処理液体は、バッファタンク80に流入する。このバッファタンク80に流入した処理液体は、バッファタンク80の内部で加熱されることにより、超臨界状態の処理流体(超臨界流体)となってバッファタンク80から流出する。なお、バッファタンク80の出口側において、超臨界流体の圧力は、例えば7.4MPa〜23MPaとなり、超臨界流体の温度は、例えば30℃〜40℃となる。
上述したように、バッファタンク80内で処理液体と超臨界流体とが共存することにより、非圧縮性の処理液体と圧縮性の超臨界流体との界面が上下に変動する。このため、例えば開閉弁82fのオンオフを切り換えることにより、超臨界流体供給ライン71c中の超臨界流体の圧力が変化した場合であっても、上記界面が上下に移動することにより、この圧力変動を吸収することができる。また、バッファタンク80内で処理液体と超臨界流体との界面が上下に移動することにより、ポンプ74から送られた処理液体の脈動を吸収することができる。
続いて、バッファタンク80から流出した超臨界流体は、超臨界流体供給ライン71cを介して加熱装置75に達する。この加熱装置75において、超臨界流体は、処理容器301における超臨界乾燥処理に適した温度まで加熱され、例えば40℃〜100℃程度の温度となる。
次に、加熱装置75で加熱されたから超臨界流体は、超臨界流体供給ライン71cに設けられたフィルタ89a、89b及び開閉弁82fを順次通過し、超臨界流体製造装置70から処理容器301に流出する。この間、超臨界流体は、フィルタ89a、89bにおいてパーティクル等が取り除かれる。
一方、超臨界流体の一部は、超臨界流体供給ライン71cから下流側分岐部91bで分岐して、循環ライン71fに流入する。この循環ライン71fにおいて、超臨界流体は、開閉弁82gを介して調圧弁76に達する。そして調圧弁76は、内部を流れる超臨界流体の圧力が予め設定された圧力閾値を超えた場合に、その上流側分岐部91a側へ向けて超臨界流体を流す。このとき、調圧弁76を通過した超臨界流体は、圧力が低下し、気化することにより処理ガスに戻される。この処理ガスは、上流側分岐部91aを通過して再度冷却器72に流入する。一方、調圧弁76は、超臨界流体の圧力が上記圧力閾値を超えない場合には、超臨界流体を流さない。このようにして、超臨界流体製造装置70から処理容器301へ送り込まれる超臨界流体の圧力が一定に保たれる。
[超臨界乾燥処理]
次に、超臨界状態の処理流体(例えば二酸化炭素(CO))を用いたIPAの乾燥メカニズムについて、図5(a)−(d)を参照して簡単に説明する。
超臨界状態の処理流体Rが処理容器301内に導入された直後は、図5(a)に示すように、ウエハWのパターンPの凹部内にはIPAのみが存在する。
凹部内のIPAは、超臨界状態の処理流体Rと接触することで、徐々に処理流体Rに溶解し、図5(b)に示すように徐々に処理流体Rと置き換わってゆく。このとき、凹部内には、IPA及び処理流体Rの他に、IPAと処理流体Rとが混合した状態の混合流体Mが存在する。
凹部内でIPAから処理流体Rへの置換が進行するに従って、凹部内に存在するIPAが減少し、最終的には図5(c)に示すように、凹部内には超臨界状態の処理流体Rのみが存在するようになる。
凹部内からIPAが除去された後に、処理容器301内の圧力を大気圧まで下げることによって、図5(d)に示すように、処理流体Rは超臨界状態から気体状態に変化し、凹部内は気体のみによって占められる。このようにしてパターンPの凹部内のIPAが除去され、ウエハWの乾燥処理は完了する。
[乾燥方法]
次に、上記の超臨界処理装置3を用いて実行される乾燥方法(基板処理方法)について説明する。なお、以下に説明する乾燥方法は、制御部4の記憶部19に記憶された処理レシピ及び制御プログラムに基づいて、制御部4の制御の下で、自動的に実行される。
<収容工程>
洗浄装置2(図1参照)において洗浄処理が施されたウエハWが、その表面のパターンの凹部内がIPAに充填されかつその表面にIPAのパドル(液膜)が形成された状態で、第2の搬送機構161により洗浄装置2から搬出される。第2の搬送機構161は、処理容器301の保持板316(図2参照)の上にウエハを載置し、その後、ウエハを載置した保持板316が容器本体311内に進入し、蓋部材315が容器本体311と密封係合する。以上により、ウエハWを処理容器301に収容する収容工程が完了する。
次に、図6のタイムチャートに示した手順に従い、処理流体(CO)が処理容器301内に供給され、これによりウエハWの乾燥処理が行われる。図6に示す折れ線Aは、乾燥処理開始時点からの経過時間と処理容器301内の圧力との関係を示している。
<昇圧工程>
まず、処理容器301内を超臨界流体を用いて昇圧させる昇圧工程T1が行われる。昇圧工程T1においては、超臨界流体製造装置70から処理容器301内に処理流体としてのCO(二酸化炭素)が供給される。具体的には、開閉弁52c、52dが開状態とされ、開閉弁52a、52b、52e〜52jが閉状態とされる。また、オリフィス55a、55bが予め定められた開度に調整される。さらに、背圧弁59の設定圧力が、処理容器301内のCOが超臨界状態を維持できる圧力例えば17MPaに設定される。
昇圧工程T1において、制御部4は、ポンプ74が処理容器301にCOを供給する第1供給速度Qを決定し、ポンプ74は、第1供給速度Qで処理容器301にCOを供給する。この場合、第1供給速度Qは、処理容器301内の昇圧を行う目標時間tと、昇圧に必要なCOの量Wc1と、ポンプ74の入口におけるCOの密度ρp1とに基づいて決定される。
目標時間tは、処理容器301内の圧力を大気圧からウエハWの処理に必要な処理圧力Pc1(17MPa程度)まで上昇させる時間をいう。この目標時間tは、ウエハW毎に異なるものを用いても良く、例えば40秒〜70秒、好ましくは45秒〜60秒としても良い。目標時間tを40秒以上とすることにより、ウエハW上に存在するIPAを十分にCO(超臨界流体)に溶け込ませることができ、ウエハWへのパーティクルの発生を抑制することができる。また、目標時間tを70秒以下とすることにより、昇圧時間を短くし、処理容器301内が超臨界状態となる前にウエハW上に存在するIPAが揮発して乾燥することを抑え、パターンの倒壊を抑止することができる。なお、目標時間tは、対象となるウエハW毎に、制御部4に記憶されたプロセスレシピによって予め定められていても良い。
処理容器301内の昇圧に必要なCOの量Wc1は、ウエハWの処理圧力Pc1と、ウエハWの処理温度Tc1と、処理容器301の容積Vとに基づいて、制御部4が計算によって求めることができる。具体的には、制御部4は、ウエハWの処理圧力Pc1と処理温度Tc1とに基づいて、状態方程式から処理容器301内でのCO(超臨界流体)の密度ρc1を求める。このCOの密度ρp1を処理容器301の容積Vに乗ずることにより、処理容器301内の昇圧に必要なCOの量Wc1を求めることができる。
ウエハWの処理圧力Pc1は、処理容器301内でウエハWを乾燥処理する圧力であり、例えば17MPa程度である。ウエハWの処理温度Tc1は、処理容器301内でウエハWを乾燥処理する温度であり、例えば90℃程度である。なお、ウエハWの処理圧力Pc1は、対象となるウエハW毎に、制御部4に記憶されたプロセスレシピによって予め定められていても良い。また、ウエハWの処理温度Tc1は、処理容器301毎に予め定められていても良い。また、処理容器301の容積Vは、処理容器301に対して予め定められている。
ポンプ74の入口におけるCOの密度ρp1は、ポンプ74の入口におけるCOの圧力Pp1と、ポンプ74の入口におけるCOの温度Tp1とによって求められる。ポンプ74の入口におけるCOの圧力Pp1は、ポンプ入口側圧力計95によって測定された値を用いることができる。また、ポンプ74の入口におけるCOの温度Tp1は、ポンプ入口側温度計96によって測定された値を用いることができる。
第1供給速度Qは、ポンプ74からCOが流出する速度であり、ポンプ74から所定時間あたりに送り出されるCOの体積をいう。第1供給速度Qは、処理容器301内の昇圧に必要なCOの量Wc1を処理容器301内の昇圧を行う目標時間tで除した値(ポンプ供給速度Qp1)を、更にポンプ74の入口におけるCOの密度ρp1で除したものである。
超臨界流体製造装置70は、このようにして定められた第1供給速度Qに基づいて、処理容器301にCOを供給する。具体的には、制御部4は、第1供給速度Qに基づいて、ポンプ74のストローク長Ls1を調整する。すなわち制御部4は、ポンプ74のサーボモータ74g(図4(a)(b)参照)を制御することにより、ピストン制御機構74fを介してポンプ74のストローク長Ls1を制御する。第1供給速度Qとストローク長Ls1との関係は、例えば予めポンプ74毎に性能表(図7)として定められており、制御部4は、この性能表に基づいて、第1供給速度Qを実現するためのストローク長Ls1を設定しても良い。なお、通常、ストローク長Ls1は、昇圧工程T1を行う前(待機中)のポンプ74のストローク長よりも長く設定される。
次に、昇圧工程T1において、ポンプ74のストローク長を算出する一の具体例を示す(表1)。下記の条件において、ストローク長Ls1は12.5mmに設定される。
Figure 2020126974
ポンプ74は、第1供給速度Qを実現するためのストローク長Ls1とされた状態で、処理容器301にCOを供給する。このようにして、超臨界流体製造装置70から超臨界状態にある17MPa程度の圧力のCOが、ウエハWの中央部の真下にある第2供給ライン64から保持板316の下面に向けて吐出される。
流体供給ノズル341(図2参照)から吐出されたCOは、ウエハWの下面を覆う保持板316に衝突した後に、保持板316の下面に沿って放射状に広がる。その後、COは、保持板316の端縁と容器本体311の側壁との間の隙間及び保持板316の開口316aを通って、ウエハWの上面側の空間に流入する。このとき背圧弁59は設定圧力(17MPa)まで全閉に維持されるので、処理容器301からCOは流出しない。このため、処理容器301内の圧力は徐々に上昇してゆく。
この昇圧工程T1において、ポンプ74は、第1供給速度Qで処理容器301にCOを供給するので、処理容器301内の圧力は迅速に上昇し、処理圧力(17MPa程度)に達する。このように、処理容器301内での処理流体の昇圧時間を目標時間tまで短縮することにより、処理容器301内が超臨界状態となる前にウエハW上のIPAが揮発して乾燥することを抑え、パターンの倒壊を抑制することができる。
<保持工程>
昇圧工程T1により、処理容器301内の圧力が処理圧力(17MPa程度)まで上昇したら、処理容器301の上流側に位置する開閉弁52c、52dを閉じて、処理容器301内の圧力を維持する保持工程T2に移行する。この保持工程T2は、ウエハWのパターンPの凹部内にある混合流体中のIPA濃度及びCO濃度が予め定められた濃度(例えばIPA濃度が30%以下、CO濃度が70%以上)になるまで継続される。保持工程T2の時間は、実験により定めることができる。この保持工程T2において、他のバルブの開閉状態は、昇圧工程T1における開閉状態と同じである。
<流通工程>
保持工程T2の後、流通工程T3が行われる。流通工程T3は、処理容器301内で処理流体としてのCO(二酸化炭素)を流通させる工程である。流通工程T3は、降圧段階と昇圧段階とを交互に繰り返すことにより行うことができる。降圧段階は、処理容器301内からCO及びIPAの混合流体を排出して処理容器301内を降圧する段階である。昇圧段階は、超臨界流体製造装置70から処理容器301内にIPAを含まない新しいCOを供給して処理容器301内を昇圧する段階である。
流通工程T3は、例えば、開閉弁52a、52b、52h、52iを開状態として、開閉弁52c、52d、52g、52jを閉状態とし、背圧弁59の設定圧力の上昇及び下降を繰り返すことにより行われる。これに代えて、流通工程T3を、開閉弁52a、52bを開状態として、開閉弁52c、52d、52g、52jを閉状態とし、かつ背圧弁59の設定圧力を低い値に設定した状態で、開閉弁52h、52iの開閉を繰り返すことにより行ってもよい。
流通工程T3では、流体供給ヘッダー317(図2参照)を用いて処理容器301内にCOが供給される。流体供給ヘッダー317は、流体供給ノズル341よりも大流量でCOを供給することができる。流通工程T3では、処理容器301内の圧力は臨界圧力よりも十分に高い圧力に維持されているため、大流量のCOがウエハW表面に衝突したり、ウエハW表面近傍を流れても乾燥の問題は無い。このため、処理時間の短縮を重視して流体供給ヘッダー317が用いられる。
昇圧段階では、処理容器301内の圧力を上記処理圧力(17MPa)まで上昇させる。降圧段階では、処理容器301内の圧力を上記処理圧力から予め定められた圧力(臨界圧力よりも高い圧力)まで低下させる。降圧段階では、流体供給ヘッダー317を介して処理容器301内にCOが供給されるとともに流体排出ヘッダー318を介して処理容器301からCOが排気されることになる。このため、処理容器301内には、ウエハWの表面と略平行に流動するCOの層流が形成される。
流通工程を行うことにより、ウエハWのパターンの凹部内においてIPAからCOへの置換が促進させる。凹部内においてIPAからCOへの置換が進行してゆくに従って、混合流体の臨界圧力が低下してゆく。これにより、各降圧段階の終了時における処理容器301内の圧力を、混合流体中のCO濃度に対応する混合流体の臨界圧力よりも高いという条件を満たしながら、徐々に低くしてゆくことができる。
この流通工程T3において、制御部4は、ポンプ74が処理容器301にCOを供給する第2供給速度Qを決定し、ポンプ74は、第2供給速度Qで処理容器301にCOを供給する。この場合、第2供給速度Qは、処理容器301内でCOを流通させる流通時間tと、流通に必要なCOの量Wc2と、ポンプ74の入口におけるCOの密度ρp2とに基づいて決定される。
流通時間tは、処理容器301内で、上述した降圧段階と昇圧段階とを交互に繰り返すことにより、処理容器301内でCOを流通させる時間をいう。この流通時間tは、ウエハW毎に異なるものを用いても良く、例えば45秒〜150秒、好ましくは90秒〜180秒としても良い。なお、流通時間tは、対象となるウエハW毎に、制御部4に記憶されたプロセスレシピによって予め定められていても良い。
処理容器301内の流通に必要なCOの量Wc2は、ウエハWの処理圧力Pc2と、ウエハWの処理温度Tc2と、処理容器301の容積Vと、流通時に処理容器301内をCOで置換する置換回数Nに基づいて求めることができる。具体的には、制御部4は、ウエハWの処理圧力Pc2と処理温度Tc2とに基づいて、状態方程式から処理容器301内でのCO(超臨界流体)の密度ρc2を求める。このCOの密度ρp2と処理容器301の容積Vと置換回数Nとを乗ずることにより、処理容器301内の流通に必要なCOの量Wc2を求めることができる。なお、置換回数Nは、流通工程T3中に処理容器301内をCOで置換する回数であり、すなわち処理容器301の容積分のCOを全て置換する作業を1回として、この置換する作業の回数を示すものである。置換回数Nは、例えば、ウエハW上に形成されたIPAのパドルの量及びウエハWのパターンのアスペクト比等により決定することができる。
ウエハWの処理圧力Pc2は、処理容器301内でウエハWを乾燥処理する圧力であり、例えば16MPa程度である。ウエハWの処理温度Tc2は、処理容器301内でウエハWを乾燥処理する温度であり、例えば90℃〜100℃程度である。なお、ウエハWの処理圧力Pc2は、対象となるウエハW毎に、制御部4に記憶されたプロセスレシピによって予め定められている。ウエハWの処理温度Tc2は、処理容器301毎に予め定められている。
ポンプ74の入口におけるCOの密度ρp2は、ポンプ74の入口におけるCOの圧力Pp2及び温度Tp2によって求められる。このポンプ74の入口におけるCOの圧力Pp2及び温度Tp2は、昇圧工程T1の場合と同様に、それぞれポンプ入口側圧力計95及びポンプ入口側温度計96によって測定される。
第2供給速度Qは、ポンプ74からCOが流出する速度であり、ポンプ74から所定時間あたりに送り出されるCOの体積をいう。第2供給速度Qは、処理容器301内の流通に必要なCOの量Wc2を流通時間tで除した値(ポンプ供給速度Qp2)を、更にポンプ74の入口におけるCOの密度ρp2で除したものである。
超臨界流体製造装置70は、このようにして定められた第2供給速度Qに基づいて、処理容器301にCOを供給する。具体的には、制御部4は、昇圧工程T1の場合と同様に、第2供給速度Qに基づいて、ポンプ74のストローク長Ls2を調整しても良い。制御部4は、昇圧工程T1の場合と同様に、性能表(図7)に基づいて第2供給速度Qを実現するためのストローク長Ls2を設定する。
次に、流通工程T3において、ポンプ74のストローク長を算出する具体例を示す(表2)。下記の条件において、ストローク長Ls2は10.0mmに設定される。
Figure 2020126974
ポンプ74は、第2供給速度Qを実現するためのストローク長Ls2とされた状態で、処理容器301にCOを供給する。このようにして、超臨界流体製造装置70から超臨界状態にある16MPa程度の圧力のCOが、流体供給ヘッダー317からウエハWに向けて吐出され、ウエハWのパターンの凹部内においてIPAからCOへの置換が行われる。なお、通常、ストローク長Ls2は、昇圧工程T1におけるポンプ74のストローク長Ls1よりも短く設定される。したがって、第1供給速度Qは第2供給速度Qよりも速い(大きい)。しかしながら、これに限られるものではない。例えば流通工程T3におけるストローク長Ls2を、昇圧工程T1におけるストローク長Ls1よりも長くし、第2供給速度Qを第1供給速度Qよりも速くしても良い。この場合、流通時間tを短縮することができる。
<排出工程>
流通工程T3により、パターンの凹部内においてIPAからCOへの置換が完了したら、排出工程T4が行われる。排出工程T4は、処理容器301からCOを排出することにより、処理容器301内の圧力を少なくともCOの臨界圧力よりも低くする工程である。排出工程T4は、開閉弁52a、52b、52c、52d、52eを閉状態とし、背圧弁59の設定圧力を常圧とし、開閉弁52g、52h、52i、52jを開状態とし、開閉弁52fを閉状態とすることにより行うことができる。排出工程T4により処理容器301内の圧力がCOの臨界圧力より低くなると、超臨界状態のCOは気化し、パターンの凹部内から離脱する。これにより、1枚のウエハWに対する乾燥処理が終了する。
ところで、この排出工程T4において処理容器301内のCOを排出する際、超臨界流体製造装置70におけるCOの流量及び圧力が大きすぎると、循環ライン71f(図3参照)の圧力が急上昇するおそれがある。すなわち開閉弁52a、52b、52c、52d、52eを閉状態としたとき、循環ライン71f内のCOの圧力が急激に上昇し、調圧弁76での調圧が間に合わなくおそれがある。
これに対して本実施形態においては、排出工程T4において、超臨界流体製造装置70の出口におけるCOの圧力に基づいて、ポンプ74がCOを送り出す第3供給速度Qを決定する。そしてポンプ74は、第3供給速度Qに基づいてCOを送り出す。この第3供給速度Qは、第2供給速度Qよりも小さい値とすることが好ましい。具体的には、制御部4は、出口側圧力計97の圧力を監視し、単位時間あたりの圧力上昇率を算出する。制御部4は、この圧力上昇率に基づいて、ポンプ74がCOを送り出す供給速度を第3供給速度Qに低下させる。制御部4は、昇圧工程T1の場合と同様に、第3供給速度Qに基づいて、ポンプ74のストローク長Ls3を調整する。ポンプ74は、第3供給速度Qに基づいてCOを送り出す。これにより、循環ライン71f内の異常昇圧を防止することができる。
以上説明したように、本実施形態によれば、昇圧工程T1において、制御部4は、昇圧を行う目標時間tと、昇圧に必要な処理流体の量Wc1と、ポンプ74の入口における処理流体の密度ρp1とに基づいて、第1供給速度Qを決定する。超臨界流体製造装置70は、第1供給速度Qに基づいて、処理容器301に処理流体を供給する。これにより、昇圧のための目標時間tで処理容器301内を超臨界状態とすることができる。この結果、処理容器301内が超臨界状態となる前にウエハW上のIPAが乾燥することが抑えられ、ウエハW上のパターン倒壊を抑制することができる。
また、本実施形態によれば、制御部4は、第1供給速度Qに基づいて、ポンプ74のストローク長Ls1を調整する。これにより、ポンプ74の吐出流量を自在に調整することができる。このため、昇圧に必要な時間を短縮し、ウエハW上のパターン倒壊を抑制することができる。
また、本実施形態によれば、流通工程T3において、制御部4は、処理容器301内で処理流体を流通させる流通時間tと、流通に必要な処理流体の量Wc2と、ポンプ74の入口における処理流体の密度ρp2とに基づいて、第2供給速度Qを決定する。超臨界流体製造装置70は、第2供給速度Qに基づいて、処理容器301に処理流体を供給する。これにより、所定の第2供給速度Qで処理容器301内の処理流体を流通させることができるため、所定の流通時間t及びCOの消費量で、IPAをCOに置換させることができる。
また、本実施形態によれば、制御部4は、超臨界流体製造装置70の出口における処理流体の圧力に基づいて、ポンプ74が処理流体を送り出す第3供給速度Qを決定する。ポンプ74は、第3供給速度Qに基づいて、処理流体を送り出す。これにより、循環ライン71f内のCOの圧力が急激に上昇することを抑え、調圧弁76での調圧が間に合わなくことを防止することができる。
上記実施形態では、制御部4は、第1供給速度Q、第2供給速度Q及び第3供給速度Qに基づいて、それぞれポンプ74のストローク長Ls1、ストローク長Ls2及びストローク長Ls3をそれぞれ調整したが、これには限定されない。制御部4は、第1供給速度Q、第2供給速度Q及び第3供給速度Qに基づいて、それぞれポンプ74のストローク数を調整してもよい。この場合、ポンプ74として、ピストン74e(図4(a)(b)参照)のストローク数(単位時間あたりのピストン74eの移動回数)を調整可能なものを用いる。また、ポンプ74のストローク数とポンプ74が送り出す処理流体の量との関係を予め求めておく。制御部4は、第1供給速度Q、第2供給速度Q及び第3供給速度Qに基づいて、ポンプ74のストローク数を設定してもよい。
また、制御部4は、第1供給速度Q、第2供給速度Q及び第3供給速度Qに基づいて、それぞれ循環ライン71fにおける処理流体の流量を調整しても良い。この場合、制御部4は、調圧弁76を制御することにより、循環ライン71fにおける処理流体の流量を調整できるようになっている。また、調圧弁76の開度とポンプ74が送り出す処理流体の量との関係を予め求めておく。制御部4は、第1供給速度Q、第2供給速度Q及び第3供給速度Qに基づいて、調圧弁76の開度を調整し、循環ライン71fを流れる処理流体の流量を設定してもよい。
また、昇圧工程T1において、制御部4は、第1供給速度Qに基づいて、それぞれオリフィス55a、55bを流れる処理流体の流量を調整しても良い。この場合、制御部4は、オリフィス55a、55bを制御することにより、処理容器301に供給される処理流体の流量を調整できるようになっていても良い。また、オリフィス55a、55bの開度と処理容器301に供給される処理流体の量との関係を予め求めておく。制御部4は、第1供給速度Qに基づいて、オリフィス55a、55bの開度を調整し、処理容器301に供給される処理流体の流量を設定してもよい。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
例えば、乾燥処理に用いられる処理流体はCO以外の流体(例えばフッ素系の流体)であってもよく、基板に液盛りされた乾燥防止用の液体を超臨界状態で除去可能な任意の流体を処理流体として用いることができる。また乾燥防止用の液体もIPAには限定されず、乾燥防止用液体として使用可能な任意の液体を使用することができる。処理対象の基板は、上述した半導体ウエハWに限定されるものではなく、LCD用ガラス基板、セラミック基板等の他の基板であってもよい。
3 超臨界処理装置(基板処理装置)
4 制御部
70 超臨界流体製造装置
74 ポンプ
301 処理容器
W ウエハ(基板)

Claims (12)

  1. 処理流体を送り出すポンプを有する超臨界流体製造装置と、
    前記超臨界流体製造装置からの超臨界状態の処理流体を用いて、基板に対して超臨界流体処理を行う処理容器と、
    少なくとも前記超臨界流体製造装置を制御する制御部と、を備え、
    前記制御部は、前記処理容器内を前記処理流体を用いて昇圧させる際、前記昇圧を行う目標時間と、前記昇圧に必要な前記処理流体の量と、前記処理流体の密度とに基づいて、前記処理容器に前記処理流体を供給する第1供給速度を決定し、
    前記超臨界流体製造装置は、前記第1供給速度に基づいて、前記処理容器に前記処理流体を供給する基板処理装置。
  2. 前記制御部は、前記第1供給速度に基づいて、前記ポンプのストローク長を調整する請求項1に記載の基板処理装置。
  3. 前記制御部は、前記第1供給速度に基づいて、前記ポンプのストローク数を調整する請求項1に記載の基板処理装置。
  4. 前記超臨界流体製造装置は、前記ポンプの下流側から前記ポンプの上流側へ前記処理流体を戻す循環ラインを有し、
    前記制御部は、前記第1供給速度に基づいて、前記循環ラインにおける前記処理流体の流量を調整する請求項1に記載の基板処理装置。
  5. 前記超臨界流体製造装置と前記処理容器との間に、前記処理容器に対する前記処理流体の流量を変更するオリフィスが設けられ、
    前記制御部は、前記第1供給速度に基づいて、前記オリフィスを調整する請求項1に記載の基板処理装置。
  6. 前記制御部は、前記昇圧を行う目標時間と、前記昇圧に必要な前記処理流体の量と、前記ポンプの入口における前記処理流体の密度とに基づいて、前記第1供給速度を決定する請求項1乃至5のいずれか一項に記載の基板処理装置。
  7. 前記制御部は、前記処理容器内で前記処理流体を流通させる際、前記処理容器内で前記処理流体を流通させる時間と、前記流通に必要な前記処理流体の量と、前記ポンプの入口における前記処理流体の密度とに基づいて、前記処理容器に前記処理流体を供給する第2供給速度を決定し、
    前記超臨界流体製造装置は、前記第2供給速度に基づいて、前記処理容器に前記処理流体を供給する請求項1乃至6のいずれか一項に記載の基板処理装置。
  8. 前記第1供給速度は、前記第2供給速度よりも大きい請求項7に記載の基板処理装置。
  9. 前記制御部は、前記処理容器内の前記処理流体を排出する際、前記超臨界流体製造装置の出口における前記処理流体の圧力に基づいて、前記ポンプが前記処理流体を送り出す第3供給速度を決定し、
    前記ポンプは、前記第3供給速度に基づいて、前記処理流体を送り出す請求項1乃至8のいずれか一項に記載の基板処理装置。
  10. 基板を処理容器に収容する収容工程と、
    処理流体を送り出すポンプを有する超臨界流体製造装置からの処理流体を用いて前記処理容器内を昇圧させる昇圧工程と、
    前記処理容器内において前記処理流体が超臨界状態を維持する圧力を維持しつつ、前記超臨界流体製造装置から前記処理容器に前記処理流体を供給するとともに前記処理容器から前記処理流体を排出する流通工程と、
    前記処理容器から前記処理流体を排出することにより、前記処理容器内の圧力を少なくとも前記処理流体の臨界圧力よりも低くする排出工程と、を備え、
    前記昇圧工程において、
    前記昇圧を行う目標時間と、前記昇圧に必要な前記処理流体の量と、前記処理流体の密度とに基づいて、前記処理容器に前記処理流体を供給する第1供給速度が決定され、
    前記超臨界流体製造装置は、前記第1供給速度に基づいて、前記処理容器に前記処理流体を供給する基板処理方法。
  11. 前記流通工程において、
    前記処理容器内で前記処理流体を流通させる時間と、前記流通に必要な前記処理流体の量と、前記ポンプの入口における前記処理流体の密度とに基づいて、前記処理容器に前記処理流体を供給する第2供給速度が決定され、
    前記超臨界流体製造装置は、前記第2供給速度に基づいて、前記処理容器に前記処理流体を供給する請求項10に記載の基板処理方法。
  12. 前記排出工程において、
    前記超臨界流体製造装置の出口における前記処理流体の圧力に基づいて、前記ポンプが前記処理流体を送り出す第3供給速度が決定され、
    前記ポンプは、前記第3供給速度に基づいて、前記処理流体を送り出す請求項10又は11に記載の基板処理方法。
JP2019019920A 2019-02-06 2019-02-06 基板処理装置及び基板処理方法 Active JP7197396B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019019920A JP7197396B2 (ja) 2019-02-06 2019-02-06 基板処理装置及び基板処理方法
TW109102979A TWI840497B (zh) 2019-02-06 2020-01-31 基板處理裝置及基板處理方法
KR1020200012620A KR20200096872A (ko) 2019-02-06 2020-02-03 기판 처리 장치 및 기판 처리 방법
US16/782,419 US11446588B2 (en) 2019-02-06 2020-02-05 Substrate processing apparatus and substrate processing method
CN202010081888.1A CN111540694B (zh) 2019-02-06 2020-02-06 基板处理装置和基板处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019019920A JP7197396B2 (ja) 2019-02-06 2019-02-06 基板処理装置及び基板処理方法

Publications (2)

Publication Number Publication Date
JP2020126974A true JP2020126974A (ja) 2020-08-20
JP7197396B2 JP7197396B2 (ja) 2022-12-27

Family

ID=71838150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019019920A Active JP7197396B2 (ja) 2019-02-06 2019-02-06 基板処理装置及び基板処理方法

Country Status (4)

Country Link
US (1) US11446588B2 (ja)
JP (1) JP7197396B2 (ja)
KR (1) KR20200096872A (ja)
CN (1) CN111540694B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196384A1 (ja) * 2021-03-18 2022-09-22 東京エレクトロン株式会社 基板処理方法および基板処理装置
WO2023013435A1 (ja) * 2021-08-05 2023-02-09 東京エレクトロン株式会社 基板処理方法および基板処理装置
WO2023204048A1 (ja) * 2022-04-21 2023-10-26 東京エレクトロン株式会社 液供給システム、液処理装置および液供給方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7321052B2 (ja) * 2019-10-17 2023-08-04 東京エレクトロン株式会社 基板処理装置および装置洗浄方法
KR20220087623A (ko) 2020-12-17 2022-06-27 삼성전자주식회사 기판 처리 장치
CN115540527B (zh) * 2022-09-29 2024-02-27 浙江大学 超临界流体干燥系统及干燥方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115156A1 (ja) * 2012-02-02 2013-08-08 オルガノ株式会社 流体二酸化炭素の供給装置及び供給方法
JP2017157745A (ja) * 2016-03-03 2017-09-07 東京エレクトロン株式会社 基板処理装置、基板処理方法および記憶媒体
JP2018074103A (ja) * 2016-11-04 2018-05-10 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記録媒体
JP2018093110A (ja) * 2016-12-06 2018-06-14 東京エレクトロン株式会社 超臨界流体製造装置および基板処理装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864514A (ja) * 1994-08-23 1996-03-08 Dainippon Screen Mfg Co Ltd 基板処理方法及び装置
US7387868B2 (en) * 2002-03-04 2008-06-17 Tokyo Electron Limited Treatment of a dielectric layer using supercritical CO2
JP2005101074A (ja) * 2003-09-22 2005-04-14 Nippon Telegr & Teleph Corp <Ntt> 超臨界乾燥方法
US7186093B2 (en) * 2004-10-05 2007-03-06 Tokyo Electron Limited Method and apparatus for cooling motor bearings of a high pressure pump
US7250374B2 (en) * 2004-06-30 2007-07-31 Tokyo Electron Limited System and method for processing a substrate using supercritical carbon dioxide processing
US20060185693A1 (en) * 2005-02-23 2006-08-24 Richard Brown Cleaning step in supercritical processing
US7380984B2 (en) * 2005-03-28 2008-06-03 Tokyo Electron Limited Process flow thermocouple
US20060225772A1 (en) * 2005-03-29 2006-10-12 Jones William D Controlled pressure differential in a high-pressure processing chamber
US20060226117A1 (en) * 2005-03-29 2006-10-12 Bertram Ronald T Phase change based heating element system and method
US20060225769A1 (en) * 2005-03-30 2006-10-12 Gentaro Goshi Isothermal control of a process chamber
US20060219268A1 (en) * 2005-03-30 2006-10-05 Gunilla Jacobson Neutralization of systemic poisoning in wafer processing
KR100753493B1 (ko) * 2006-01-21 2007-08-31 서강대학교산학협력단 세정장치
JP5859888B2 (ja) * 2012-03-26 2016-02-16 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP2014101241A (ja) 2012-11-19 2014-06-05 Japan Organo Co Ltd 精製二酸化炭素の供給システムおよび方法
KR101681190B1 (ko) * 2015-05-15 2016-12-02 세메스 주식회사 기판 건조 장치 및 방법
KR102411946B1 (ko) * 2015-07-08 2022-06-22 삼성전자주식회사 초임계 유체를 이용한 기판 처리장치와 이를 포함하는 기판 처리 시스템 및 이를 이용한 기판처리 방법
JP6498573B2 (ja) * 2015-09-15 2019-04-10 東京エレクトロン株式会社 基板処理方法、基板処理装置および記憶媒体
US10566182B2 (en) * 2016-03-02 2020-02-18 Tokyo Electron Limited Substrate processing apparatus, substrate processing method, and storage medium
KR20180006716A (ko) * 2016-07-11 2018-01-19 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
KR102489730B1 (ko) * 2016-07-29 2023-01-18 삼성전자주식회사 초임계 유체 소스 공급 장치 및 이를 구비하는 초임계 기판 처리장치 및 방법
JP6759042B2 (ja) * 2016-10-04 2020-09-23 東京エレクトロン株式会社 基板処理方法、基板処理装置及び記録媒体
JP6876417B2 (ja) * 2016-12-02 2021-05-26 東京エレクトロン株式会社 基板処理装置の洗浄方法および基板処理装置の洗浄システム
JP6836939B2 (ja) * 2017-03-14 2021-03-03 東京エレクトロン株式会社 基板処理装置および基板処理方法
US10825698B2 (en) * 2017-06-15 2020-11-03 Samsung Electronics Co., Ltd. Substrate drying apparatus, facility of manufacturing semiconductor device, and method of drying substrate
KR20190002060A (ko) * 2017-06-29 2019-01-08 주식회사 케이씨텍 기판처리장치 및 기판처리방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115156A1 (ja) * 2012-02-02 2013-08-08 オルガノ株式会社 流体二酸化炭素の供給装置及び供給方法
JP2017157745A (ja) * 2016-03-03 2017-09-07 東京エレクトロン株式会社 基板処理装置、基板処理方法および記憶媒体
JP2018074103A (ja) * 2016-11-04 2018-05-10 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記録媒体
JP2018093110A (ja) * 2016-12-06 2018-06-14 東京エレクトロン株式会社 超臨界流体製造装置および基板処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196384A1 (ja) * 2021-03-18 2022-09-22 東京エレクトロン株式会社 基板処理方法および基板処理装置
WO2023013435A1 (ja) * 2021-08-05 2023-02-09 東京エレクトロン株式会社 基板処理方法および基板処理装置
WO2023204048A1 (ja) * 2022-04-21 2023-10-26 東京エレクトロン株式会社 液供給システム、液処理装置および液供給方法

Also Published As

Publication number Publication date
JP7197396B2 (ja) 2022-12-27
CN111540694A (zh) 2020-08-14
US20200246723A1 (en) 2020-08-06
US11446588B2 (en) 2022-09-20
CN111540694B (zh) 2024-06-07
TW202100249A (zh) 2021-01-01
KR20200096872A (ko) 2020-08-14

Similar Documents

Publication Publication Date Title
JP7197396B2 (ja) 基板処理装置及び基板処理方法
JP6740098B2 (ja) 基板処理装置、基板処理方法及び記憶媒体
US10796897B2 (en) Supercritical fluid producing apparatus and substrate processing apparatus
KR102433528B1 (ko) 기판 처리 장치, 기판 처리 방법 및 기록 매체
KR102480691B1 (ko) 기판 처리 장치, 기판 처리 방법 및 기억 매체
US10381246B2 (en) Substrate processing apparatus
KR102420740B1 (ko) 기판 처리 방법, 기판 처리 장치 및 기록 매체
KR102581314B1 (ko) 기판 처리 방법, 기억 매체 및 기판 처리 시스템
JP7109328B2 (ja) 基板処理システム
JP7493325B2 (ja) 基板処理装置
KR20110112195A (ko) 기판 처리 장치, 기판 처리 방법 및 기억 매체
US10619922B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
TWI840497B (zh) 基板處理裝置及基板處理方法
KR102678991B1 (ko) 기판 처리 장치, 기판 처리 방법 및 기억 매체
JP7285992B2 (ja) 処理流体供給方法
JP2023096175A (ja) 処理流体供給装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221215

R150 Certificate of patent or registration of utility model

Ref document number: 7197396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150