WO2022188012A1 - 硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用 - Google Patents

硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用 Download PDF

Info

Publication number
WO2022188012A1
WO2022188012A1 PCT/CN2021/079614 CN2021079614W WO2022188012A1 WO 2022188012 A1 WO2022188012 A1 WO 2022188012A1 CN 2021079614 W CN2021079614 W CN 2021079614W WO 2022188012 A1 WO2022188012 A1 WO 2022188012A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
cyclopropenone
rare earth
indol
Prior art date
Application number
PCT/CN2021/079614
Other languages
English (en)
French (fr)
Inventor
姚志刚
陈启发
徐凡
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to PCT/CN2021/079614 priority Critical patent/WO2022188012A1/zh
Publication of WO2022188012A1 publication Critical patent/WO2022188012A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/052Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered

Definitions

  • the invention belongs to the technical field of preparation of fused heterocycles, and in particular relates to the application of a silicon amino rare earth compound in catalyzing the reaction of an isatin compound and a cyclopropenone compound.
  • Pyrano[2,3- b ]indol-2-one skeleton contains pyran and indole, which is one of the most important structural units in medicinal chemistry.
  • pyrano[2,3- b ] methods of indol-2-one skeletons such as: .
  • the purpose of the present invention is to provide the application of the silylamino rare earth compound in catalyzing the reaction of isatin compound and cyclopropenone compound.
  • silylamino rare earth compound in catalyzing the reaction of isatin compound and cyclopropenone compound.
  • silylamino rare earth compound Through the reaction of isatin compound, phosphite and cyclopropenone catalyzed by silylamino rare earth compound, a synthetic pyrano[2, Methods for 3- b ]Indol-2-one Compounds.
  • the technical scheme adopted in the present invention is: the application of the silicon amino rare earth compound in catalyzing the reaction of the isatin compound and the cyclopropenone compound.
  • a method for preparing a pyrano[2,3- b ]indol-2-one compound comprising the following steps: in the presence of phosphite, using isatin compound and cyclopropenone as reactants, using silicon amino rare earth as reactants
  • the compound is a catalyst
  • the pyrano[2,3- b ]-indol-2-one compound is prepared by reacting in an organic solvent.
  • the chemical structural formula of the silicon amino rare earth compound is as follows: .
  • Ln is a positive trivalent rare earth metal ion; the general formula of the chemical structure of the isatin compound is as follows: .
  • R 1 is selected from one of allyl, benzyl, ethyl, and methyl;
  • Ar is selected from one of phenyl, 4-methylphenyl, and 4-fluorophenyl.
  • the chemical formula of the catalyst of the present invention is: [(Me 3 Si) 2 N] 3 Ln( m -Cl)Li(THF) 3 , in which (Me 3 Si) 2 N represents trimethylsilylamino, and Ln represents positive trivalent Rare earth metal ions, selected from one of lanthanum, neodymium, samarium, erbium or ytterbium, preferably lanthanum (La), under the same conditions, relative to the other four metals, the reaction catalyzed by pyrano[2, 3- b ]-indol-2-one compound is produced in high yield; m - represents bridge bond; THF represents tetrahydrofuran.
  • the phosphite is diethyl phosphite; the anhydrous and anoxic conditions are preferably in an inert atmosphere.
  • the reaction is carried out in an organic solvent, and the organic solvent is 1,4-dioxane, ethylene glycol dimethyl ether, tetrahydrofuran, 1,2-dichloroethane, chlorobenzene, toluene, n-hexane.
  • the organic solvent is 1,4-dioxane, ethylene glycol dimethyl ether, tetrahydrofuran, 1,2-dichloroethane, chlorobenzene, toluene, n-hexane.
  • a kind of; preferably toluene Under the same conditions, the yield in toluene is significantly higher than that of other solvents, and a remarkable technical effect has been achieved.
  • the reaction temperature is room temperature to 120° C., preferably 50 to 110° C.; the reaction time is 1 to 6 hours, preferably 1 to 1.5 hours.
  • the consumption of the catalyst is 15-20% of the molar amount of cyclopropenone; the consumption of the catalyst of the present invention enables the reaction to be carried out efficiently, while avoiding increasing the reaction cost and simplifying the post-processing of the reaction system.
  • the dosage of the diethyl phosphite is 1 to 1.5 times the mole number of cyclopropenone; the preferred dosage of the phosphite is 1.2 times the mole amount of the cyclopropenone; diethyl phosphite of the present invention
  • the amount of ester is beneficial to the completion of the reaction, avoids waste caused by the inability of the diethyl phosphite to react completely, and is also conducive to post-processing.
  • the consumption of the isatin compound is 1 to 1.5 times the mole number of cyclopropenone; preferably the consumption of the isatin compound is 1.2 times the mole weight of the cyclopropenone; the consumption of the isatin compound of the present invention is beneficial to The improvement of the reaction yield avoids waste and is also conducive to post-processing.
  • the reaction process includes, under anhydrous and oxygen-free conditions, mixing phosphite, isatin compound and silicon amino rare earth compound, then adding cyclopropenone and organic solvent, then one-pot reaction, then terminating the reaction, and carrying out the reaction. Extraction, drying the extract with a drying agent, filtering, removing the solvent under reduced pressure, and finally obtaining the pyrano[2,3- b ]indol-2-one compound by flash column chromatography.
  • water is used to terminate the reaction
  • the extraction agent is ethyl acetate
  • the drying agent is anhydrous sodium sulfate
  • the eluent is an ethyl acetate/petroleum ether system (volume ratio is 1:10).
  • the present invention has the following advantages compared with the prior art.
  • the present invention uses silicon amino rare earth compound [(Me 3 Si) 2 N] 3 Ln( m -Cl)Li(THF) 3 as a catalyst to catalyze the reaction of isatin compound, phosphite and cyclopropenone to prepare pyran for the first time
  • the [2,3- b ]indol-2-one compound has simple and easy-to-obtain raw materials, and the yield of the target product is high, up to 94%.
  • the synthetic route disclosed in the present invention adopts a one-pot reaction method, and the catalyst, isatin compound, phosphite and cyclopropenone are added to the solvent for one-pot reaction, the reaction is simple and efficient, the reaction time is short (1.5 hours), and the product yields.
  • the yield is high, and the defects of complicated reaction steps and low yield in the prior art are overcome.
  • the method disclosed in the present invention does not use precious metal catalysts, does not use metered strong bases, has low reaction costs, and is also conducive to protecting the environment; at the same time, the catalyst used in the present invention has a simple synthesis method, high yield, and the entire preparation of pyrano[2 ,3- b ]indol-2-one compound with controllable process.
  • the invention takes isatin compound, phosphite and cyclopropenone as reactants and silicon amino rare earth compound as catalyst under anhydrous and oxygen-free conditions to prepare pyrano[2,3- b ] by reaction in organic solvent
  • the indol-2-one compound does not need other reagents and steps.
  • the product of the present invention is obtained by the reaction, and the purified product is obtained through conventional purification, and the steps are simple.
  • the raw materials of the present invention are all existing products, and the specific operation methods and testing methods are conventional methods in the field, and are all carried out under conventional conditions unless otherwise specified.
  • the present invention will be further described below in conjunction with the examples.
  • Example 1 Synthesis of catalyst [(Me 3 Si) 2 N] 3 La( m -Cl)Li(THF) 3 : at -10 °C, n -BuLi in hexane solution (60 mmol, 2.52 M) It was added dropwise to a 100 mL Schlenk reaction flask containing (Me 3 Si) 2 NH (60 mmol) and reacted at room temperature for 30 minutes. The above reaction solution was added to a suspension of anhydrous LaCl 3 (20 mmol) in THF (30 mL) and stirred at room temperature overnight.
  • the solvent was removed under reduced pressure, and the obtained solid powder was extracted with hot toluene to remove LiCl, concentrated, and placed at 0 °C to precipitate a large number of crystals, which were the desired lanthanum silamide compound, with a yield of 85%.
  • Example 3 Preparation of [(Me 3 Si) 2 N] 3 La( m -Cl)Li(THF) 3 catalyzed by N -ethylisatin, diethyl phosphite and 2,3-diphenylcyclopropenone Pyrano[2,3- b ]indol-2-one compound: weigh [(Me 3 Si) 2 N] 3 into the reaction flask which has been treated with dehydration and deoxygenation under argon protection.
  • Example 3 The catalyst in Example 3 was replaced with LiN(SiMe 3 ) 2 (8.0 mg, 0.048 mmol), the rest remained unchanged, and the yield was 44%.
  • Example 3 The catalyst of Example 3 was replaced with NaN(SiMe 3 ) 2 (26.4 mg, 0.144 mmol), the rest remained unchanged, and the yield was 14%.
  • Example 4 The catalyst of Example 3 was replaced with [(Me 3 Si) 2 N] 3 Nd( m -Cl)Li(THF) 3 (42.4 mg, 0.048 mmol), the rest remained unchanged, and the yield was 79% .
  • Example 3 The catalyst in Example 3 was replaced with [(Me 3 Si) 2 N] 3 Sm( m -Cl)Li(THF) 3 (42.7 mg, 0.048 mmol), the rest remained unchanged, and the yield was 73%.
  • Example 3 The catalyst in Example 3 was replaced with [(Me 3 Si) 2 N] 3 Er( m -Cl)Li(THF) 3 (43.5 mg, 0.048 mmol), the rest remained unchanged, and the yield was 79%.
  • Example 5 The temperature of Example 3 was changed from 50°C to room temperature, the rest remained unchanged, and the yield was 72%.
  • Example 3 The temperature of Example 3 was changed from 50°C to 80°C, the rest remained unchanged, and the yield was 82%.
  • Example 3 The temperature of Example 3 was changed from 50°C to 110°C, the rest remained unchanged, and the yield was 90%.
  • Example 3 The temperature of Example 3 was changed from 50°C to 110°C, and the amount of catalyst was changed to [(Me 3 Si) 2 N] 3 La( m -Cl)Li(THF) 3 (31.6 mg, 0.036 mmol), and the rest remained unchanged, The yield was 85%.
  • Example 3 The temperature of Example 3 was changed from 50°C to 110°C, the amount of toluene was replaced by 0.5 mL, and the rest remained unchanged, and the yield was 61%.
  • Example 6 The stirring at 50° C. for 1.5 hours in Example 3 was replaced by stirring at 110° C. for 1 hour, and the rest remained unchanged, and the yield was 84%.
  • Example 3 stirring at 50° C. for 1.5 hours was replaced by stirring at 110° C. for 3 hours, and the rest remained unchanged, and the yield was 86%.
  • Example 3 stirring at 50° C. for 1.5 hours was replaced by stirring at 50° C. for 6 hours, and the rest remained unchanged, and the yield was 80%.
  • Example 7 Preparation of [(Me 3 Si) 2 N] 3 La( m -Cl)Li(THF) 3 catalyzed by N -ethylisatin, diethyl phosphite and 2,3-diphenylcyclopropenone Pyrano[2,3- b ]indol-2-one compound: weigh [(Me 3 Si) 2 N] 3 into the reaction flask which has been treated with dehydration and deoxygenation under argon protection.
  • La( m -Cl)Li(THF) 3 (42.2 mg, 0.048 mmol), diethyl phosphite (31 ⁇ L, 0.24 mmol), N -ethylisatin (42 mg, 0.24 mmol), mixed with conventional stirring for 30 minutes, then added toluene (1.0 mL) and 2,3-diphenylcyclopropenone (50 mg, 0.24 mmol), stirred at 110 °C for 1.5 hours, added water to terminate the reaction, and extracted three times with ethyl acetate.
  • Example 8 Preparation of [(Me 3 Si) 2 N] 3 La( m -Cl)Li(THF) 3 catalyzed by N -ethylisatin, diethyl phosphite and 2,3-diphenylcyclopropenone Pyrano[2,3- b ]indol-2-one compound: weigh [(Me 3 Si) 2 N] 3 into the reaction flask which has been treated with dehydration and deoxygenation under argon protection.
  • Example 9 Preparation of [(Me 3 Si) 2 N] 3 La( m -Cl)Li(THF) 3 catalyzed by N -ethylisatin, diethyl phosphite and 2,3-diphenylcyclopropenone Pyrano[2,3- b ]indol-2-one compound: weigh [(Me 3 Si) 2 N] 3 into the reaction flask which has been treated with dehydration and deoxygenation under argon protection.
  • Example ten [(Me 3 Si) 2 N] 3 La( m -Cl)Li(THF) 3 catalyzed N -isatin compound, diethyl phosphite and 2,3-diarylcyclopropenone to prepare pyridine Pyrano[2,3- b ]indol-2-one compound: weigh [(Me 3 Si) 2 N] 3 La into the reaction flask which has been treated with dehydration and deoxygenation under argon protection.
  • Example eleven [(Me 3 Si) 2 N] 3 La( m -Cl)Li(THF) 3 catalyzed preparation of N -isatin compound, diethyl phosphite and 2,3-diarylcyclopropenone Pyrano[2,3- b ]indol-2-one compound: weigh [(Me 3 Si) 2 N] 3 into the reaction flask which has been treated with dehydration and deoxygenation under argon protection.
  • La( m -Cl)Li(THF) 3 (42.2 mg, 0.048 mmol), diethyl phosphite (37 ⁇ L, 0.29 mmol), N -allylisatin (54.2 mg, 0.29 mmol), mixed with conventional stirring After 30 minutes, toluene (1.0 mL) and 2,3-diphenylcyclopropenone (50 mg, 0.24 mmol) were added, and the mixture was stirred at 110 °C for 1.5 hours. The reaction was terminated by adding water, and extracted with ethyl acetate for three times.
  • Example 12 [(Me 3 Si) 2 N] 3 La( m -Cl)Li(THF) 3 catalyzed preparation of N -isatin compound, diethyl phosphite and 2,3-diarylcyclopropenone Pyrano[2,3- b ]indol-2-one compound: weigh [(Me 3 Si) 2 N] 3 into the reaction flask which has been treated with dehydration and deoxygenation under argon protection.
  • Example thirteen [(Me 3 Si) 2 N] 3 La( m -Cl)Li(THF) 3 catalyzed preparation of N -isatin compound, diethyl phosphite and 2,3-diarylcyclopropenone Pyrano[2,3- b ]indol-2-one compound: weigh [(Me 3 Si) 2 N] 3 into the reaction flask which has been treated with dehydration and deoxygenation under argon protection.
  • Example fourteen [(Me 3 Si) 2 N] 3 La( m -Cl)Li(THF) 3 catalyzed preparation of N -isatin compound, diethyl phosphite and 2,3-diarylcyclopropenone Pyrano[2,3- b ]indol-2-one compound: weigh [(Me 3 Si) 2 N] 3 into the reaction flask which has been treated with dehydration and deoxygenation under argon protection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

一种硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用,该硅氨基稀土化合物为[(Me 3Si) 2N] 3Ln(m-Cl)Li(THF) 3;在亚磷酸酯存在下,通过硅氨基稀土化合物催化靛红化合物和环丙烯酮的反应,实现一种原料来源简单、步骤简洁、反应条件温和、高活性、普适性好的合成吡喃并[2,3-b]吲哚-2-酮化合物的方法。

Description

硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用 技术领域
本发明属于稠杂环制备技术领域,具体涉及硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用。
背景技术
吡喃并[2,3- b]吲哚-2-酮骨架含吡喃和吲哚,是药物化学中最重要的结构单元之一,现有技术存在不同制备吡喃并[2,3- b]吲哚-2-酮骨架的方法,比如:
Figure 406152dest_path_image001
现有方法可以合成吡喃并[2,3- b]吲哚-2-酮化合物,但是均存在一些缺陷,例如:产率低、合成步骤繁琐、底物结构复杂、需使用贵金属催化剂,等等。吡喃并[2,3- b]吲哚-2-酮骨架是一类很重要的结构单元,广泛存在于天然产物和药物分子中,具有一定的生物活性。因此,研究吡喃并[2,3- b]吲哚-2-酮骨架的高效合成技术具有重要的理论和实际意义。
技术问题
本发明的目的是提供硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用。通过硅氨基稀土化合物催化的靛红化合物、亚磷酸酯和环丙烯酮的反应,实现一种原料来源简单、步骤简洁、反应条件温和、高活性、普适性好的合成吡喃并[2,3- b]吲哚-2-酮化合物的方法。
技术解决方案
为达到上述发明目的,本发明采用的技术方案是:硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用。
一种吡喃并[2,3- b]吲哚-2-酮化合物的制备方法,包括以下步骤:在亚磷酸酯存在下,以靛红化合物和环丙烯酮为反应物,以硅氨基稀土化合物为催化剂,在有机溶剂中反应制备吡喃并[2,3- b]-吲哚-2-酮化合物。
本发明中,所述硅氨基稀土化合物的化学结构式如下所示:
Figure 109666dest_path_image002
其中,Ln为正三价的稀土金属离子;所述靛红化合物的化学结构通式如下:
Figure 795862dest_path_image003
所述吡喃并[2,3- b]-吲哚-2-酮化合物的化学结构式如下所示:
Figure 409377dest_path_image004
所述环丙烯酮通式结构如下:
Figure 788406dest_path_image005
上述结构式中,R 1选自烯丙基、苄基、乙基、甲基中的一种;Ar选自苯基、4-甲基苯基、4-氟苯基中的一种。
本发明催化剂的化学式:[(Me 3Si) 2N] 3Ln( m-Cl)Li(THF) 3,式中,(Me 3Si) 2N表示三甲基硅氨基,Ln表示正三价的稀土金属离子,选自镧、钕、钐、铒或镱中的一种,优选为镧(La),在同样条件下,相对于其他四种金属,其催化的反应对于吡喃并[2,3- b]-吲哚-2-酮化合物生成产率较高; m-代表桥键;THF代表四氢呋喃。
本发明中,亚磷酸酯为亚磷酸二乙酯;所述在无水无氧条件优选为在惰性气氛中。
上述技术方案中,反应在有机溶剂中进行,有机溶剂为1,4-二氧六环、乙二醇二甲醚、四氢呋喃、1,2-二氯乙烷、氯苯、甲苯、正己烷中的一种;优选为甲苯。同一条件下,在甲苯中产率明显高于其他溶剂,取得了显著进步的技术效果。
上述技术方案中,所述反应温度为室温~120℃,优选50~110℃;所述反应时间为1~6小时,优选1~1.5小时。
上述技术方案中,所述催化剂的用量为环丙烯酮的摩尔量的15-20%;本发明催化剂的用量使反应高效进行,同时避免增加反应成本并可简化反应体系的后处理。
上述技术方案中,所述亚磷酸二乙酯的用量为环丙烯酮的摩尔数的1~1.5倍;优选的亚磷酸酯的用量为1.2倍环丙烯酮的摩尔量;本发明亚磷酸二乙酯的用量有利于反应的完全,同时避免导致亚磷酸二乙酯无法反应完全而造成浪费,也利于后处理。
上述技术方案中,所述靛红化合物的用量为环丙烯酮的摩尔数的1~1.5倍;优选靛红化合物的用量为1.2倍环丙烯酮的摩尔量;本发明靛红化合物的用量有利于反应收率的提高,避免导致浪费,也利于后处理。
上述技术方案中,反应过程包括在无水无氧条件下,将亚磷酸酯、靛红化合物、硅氨基稀土化合物混合后再加入环丙烯酮、有机溶剂,然后一锅反应,再终止反应,进行萃取,用干燥剂干燥萃取液,过滤,减压除去溶剂,最后经快速柱层析得到吡喃并[2,3- b]吲哚-2-酮化合物。优选的技术方案中终止反应采用水,萃取剂为乙酸乙酯,干燥剂为无水硫酸钠,洗脱剂为乙酸乙酯/石油醚体系(体积比为1∶10)。
上述技术方案可表示如下。
Figure 979216dest_path_image006
有益效果
由于上述技术方案的运用,本发明与现有技术相比具有下列优点。
1. 本发明首次使用硅氨基稀土化合物[(Me 3Si) 2N] 3Ln( m-Cl)Li(THF) 3作为催化剂催化靛红化合物、亚磷酸酯和环丙烯酮进行反应制备吡喃并[2,3- b]吲哚-2-酮化合物,原料简单易得,目标产物的收率高,最高达到94%。
2. 本发明公开的合成路线采用一锅化反应方法,将催化剂、靛红化合物、亚磷酸酯和环丙烯酮加入溶剂中一锅反应,反应简洁高效,反应时间短(1.5小时),产物产率高,克服了现有技术反应步骤繁琐、产率偏低的缺陷。
3. 本发明公开的方法不使用贵金属催化剂,不使用计量强碱,反应成本低,也有利于保护环境;同时本发明使用的催化剂合成方法简单,产率较高,整个制备吡喃并[2,3- b]吲哚-2-酮化合物的过程可控。
本发明的实施方式
本发明在无水无氧条件下,以靛红化合物、亚磷酸酯和环丙烯酮为反应物,以硅氨基稀土化合物为催化剂,在有机溶剂中反应制备吡喃并[2,3- b]吲哚-2-酮化合物,无需其他试剂与步骤,反应物料混合后,反应即得到本发明的产物,经过常规提纯,得到纯化产物,步骤简单。
本发明的原料都是现有产品,具体操作方法以及测试方法为本领域常规方法,如无特殊说明,都在常规条件下进行。下面结合实施例对本发明作进一步描述。
实施例一:催化剂[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3的合成:在-10℃下,将 n-BuLi的己烷溶液(60 mmol,2.52 M)滴加入到装有(Me 3Si) 2NH (60 mmol)的100 mL Schlenk 反应瓶中,在室温下反应30分钟。将上述反应液加入到无水LaCl 3(20 mmol)的 THF(30 mL)悬浊液中,室温下搅拌过夜。减压除去溶剂,得到的固体粉末用热甲苯萃取以除去LiCl,浓缩,0℃下放置,析出大量晶体,即为所需的硅氨基镧化合物,收率85%。
其他催化剂可参考实施例一的制备方法。
实施例
Figure 203524dest_path_image007
:[(Me 3Si) 2N] 3Yb( m-Cl)Li(THF) 3催化 N-乙基靛红、亚磷酸二乙酯和2,3-二苯基环丙烯酮制备吡喃并[2,3- b]吲哚-2-酮化合物:在经过脱水脱氧处理过的反应瓶中,在氩气保护下在反应瓶中称入[(Me 3Si) 2N] 3Yb( m-Cl)Li(THF) 3(43.8 mg, 0.048 mmol)、亚磷酸二乙酯(37 μL, 0.29 mmol)、 N-乙基靛红(50.7 mg, 0.29 mmol),常规搅拌混合30分钟,再加入溶剂(1.0 mL)、2,3-二苯基环丙烯酮(50 mg,0.24 mmol),在50℃下搅拌1.5小时,加水终止反应,乙酸乙酯萃取三次,萃取液用无水硫酸钠干燥,过滤,减压除去溶剂,最后经硅胶柱快速柱层析(洗脱剂: 乙酸乙酯:石油醚=1:10)得到黄色固体产物;所制得产物的理论分子式以及主要核磁测试数据如下,通过分析可知,实际合成产物与理论分析一致。
Figure 530600dest_path_image008
1H NMR (400 MHz, CDCl 3) δ: 7.36−7.31 (m, 4H), 7.25−7.21 (m, 3H), 7.19−7.10 (m, 5H), 7.00−6.96 (m, 1H), 6.78 (d, J = 8.0 Hz, 1H), 4.35 (q, J = 7.2 Hz, 2H), 1.50 (t, J = 7.2 Hz, 3H)。
上述溶剂为甲苯时,产率为78%。
上述溶剂为乙腈时,收率36%。
上述溶剂为正己烷时,收率57%。
实施例三:[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3催化 N-乙基靛红、亚磷酸二乙酯和2,3-二苯基环丙烯酮制备吡喃并[2,3- b]吲哚-2-酮化合物:在经过脱水脱氧处理过的反应瓶中,在氩气保护下在反应瓶中称入[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3(42.2 mg, 0.048 mmol)、亚磷酸二乙酯(37 μL, 0.29 mmol)、 N-乙基靛红(50.7 mg, 0.29 mmol),常规搅拌混合30分钟,再加入甲苯(1.0 mL)、2,3-二苯基环丙烯酮(50 mg,0.24 mmol),在50℃下搅拌1.5小时,加水终止反应,乙酸乙酯萃取三次,萃取液用无水硫酸钠干燥,过滤,减压除去溶剂,最后经硅胶柱快速柱层析(洗脱剂: 乙酸乙酯:石油醚=1:10)得到黄色固体产物,产率为82%。
对比例:将实施例三的催化剂更换为La[N(SiMe 3) 2] 3(29.7 mg, 0.048 mmol),其余不变,产率为43%。
将实施例三的催化剂更换为LiN(SiMe 3) 2(8.0 mg, 0.048 mmol),其余不变,产率为44%。
将实施例三的催化剂更换为NaN(SiMe 3) 2(26.4 mg, 0.144 mmol),其余不变,产率为14%。
实施例四:将实施例三的催化剂更换为[(Me 3Si) 2N] 3Nd( m-Cl)Li(THF) 3(42.4 mg, 0.048 mmol),其余不变,产率为79%。
将实施例三的催化剂更换为[(Me 3Si) 2N] 3Sm( m-Cl)Li(THF) 3(42.7 mg, 0.048 mmol),其余不变,产率为73%。
将实施例三的催化剂更换为[(Me 3Si) 2N] 3Er( m-Cl)Li(THF) 3(43.5 mg, 0.048 mmol),其余不变,产率为79%。
实施例五:将实施例三的温度50℃更换为室温,其余不变,产率为72%。
将实施例三的温度50℃更换为80℃,其余不变,产率为82%。
将实施例三的温度50℃更换为110℃,其余不变,产率为90%。
将实施例三的温度50℃更换为110℃,催化剂用量更换为[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3(31.6 mg, 0.036 mmol),其余不变,产率为85%。
将实施例三的温度50℃更换为110℃,甲苯用量更换为0.5 mL,其余不变,产率为61%。
实施例六:将实施例三在50℃下搅拌1.5小时更换为在110℃下搅拌1小时,其余不变,产率为84%。
将实施例三在50℃下搅拌1.5小时更换为在110℃下搅拌3小时,其余不变,产率为86%。
将实施例三在50℃下搅拌1.5小时更换为在50℃下搅拌6小时,其余不变,产率为80%。
实施例七:[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3催化 N-乙基靛红、亚磷酸二乙酯和2,3-二苯基环丙烯酮制备吡喃并[2,3- b]吲哚-2-酮化合物:在经过脱水脱氧处理过的反应瓶中,在氩气保护下在反应瓶中称入[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3(42.2 mg, 0.048 mmol)、亚磷酸二乙酯(31 μL, 0.24 mmol)、 N-乙基靛红(42 mg, 0.24 mmol),常规搅拌混合30分钟,再加入甲苯(1.0mL)、2,3-二苯基环丙烯酮(50 mg,0.24 mmol),在110℃下搅拌1.5小时,加水终止反应,乙酸乙酯萃取三次,萃取液用无水硫酸钠干燥,过滤,减压除去溶剂,最后经硅胶柱快速柱层析(洗脱剂: 乙酸乙酯:石油醚=1:10)得到黄色固体产物,产率为82%。
实施例八:[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3催化 N-乙基靛红、亚磷酸二乙酯和2,3-二苯基环丙烯酮制备吡喃并[2,3- b]吲哚-2-酮化合物:在经过脱水脱氧处理过的反应瓶中,在氩气保护下在反应瓶中称入[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3(42.2 mg, 0.048 mmol)、亚磷酸二乙酯(46 μL, 0.36 mmol)、 N-乙基靛红(63 mg, 0.36 mmol),常规搅拌混合30分钟,再加入甲苯(1.0 mL)、2,3-二苯基环丙烯酮(50 mg,0.24 mmol),在110℃下搅拌1.5小时,加水终止反应,乙酸乙酯萃取三次,萃取液用无水硫酸钠干燥,过滤,减压除去溶剂,最后经硅胶柱快速柱层析(洗脱剂: 乙酸乙酯:石油醚=1:10)得到黄色固体产物,产率为77%。
实施例九:[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3催化 N-乙基靛红、亚磷酸二乙酯和2,3-二苯基环丙烯酮制备吡喃并[2,3- b]吲哚-2-酮化合物:在经过脱水脱氧处理过的反应瓶中,在氩气保护下在反应瓶中称入[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3(42.2 mg, 0.048 mmol)、亚磷酸二乙酯(37 μL, 0.29 mmol)、 N-乙基靛红(42 mg, 0.24 mmol),常规搅拌混合30分钟,再加入甲苯(1.0 mL)、2,3-二苯基环丙烯酮(50 mg,0.24 mmol),在110℃下搅拌1.5小时,加水终止反应,乙酸乙酯萃取三次,萃取液用无水硫酸钠干燥,过滤,减压除去溶剂,最后经硅胶柱快速柱层析(洗脱剂: 乙酸乙酯:石油醚=1:10)得到黄色固体产物,产率为78%。
实施例十:[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3催化 N-靛红化合物、亚磷酸二乙酯和2,3-二芳基环丙烯酮制备吡喃并[2,3- b]吲哚-2-酮化合物:在经过脱水脱氧处理过的反应瓶中,在氩气保护下在反应瓶中称入[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3(42.2 mg, 0.048 mmol)、亚磷酸二乙酯(37 μL, 0.29 mmol)、 N-甲基靛红(46.6 mg, 0.29 mmol),常规搅拌混合30分钟,再加入甲苯(1.0 mL)、2,3-二苯基环丙烯酮(50 mg,0.24 mmol),在110℃下搅拌1.5小时,加水终止反应,乙酸乙酯萃取三次,萃取液用无水硫酸钠干燥,过滤,减压除去溶剂,最后经硅胶柱快速柱层析(洗脱剂: 乙酸乙酯:石油醚=1:10)得到黄色固体产物,产率为86%。
所制得产物的理论分子式以及主要核磁测试数据如下,通过分析可知,实际合成产物与理论分析一致。
Figure 205164dest_path_image009
1H NMR (400 MHz, CDCl 3) δ: 7.33−7.30 (m, 4H), 7.24−7.20 (m, 3H), 7.19−7.12 (m, 5H), 7.02−6.98 (m, J = 8.0 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 3.82 (s, 3H)。
实施例十一:[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3催化 N-靛红化合物、亚磷酸二乙酯和2,3-二芳基环丙烯酮制备吡喃并[2,3- b]吲哚-2-酮化合物:在经过脱水脱氧处理过的反应瓶中,在氩气保护下在反应瓶中称入[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3(42.2 mg, 0.048 mmol)、亚磷酸二乙酯(37 μL, 0.29 mmol)、 N-烯丙基靛红(54.2 mg, 0.29 mmol),常规搅拌混合30分钟,再加入甲苯(1.0 mL)、2,3-二苯基环丙烯酮(50 mg,0.24 mmol),在110℃下搅拌1.5小时,加水终止反应,乙酸乙酯萃取三次,萃取液用无水硫酸钠干燥,过滤,减压除去溶剂,最后经硅胶柱快速柱层析(洗脱剂: 乙酸乙酯:石油醚=1:10)得到黄色固体产物,产率为88%。
所制得产物的理论分子式以及主要核磁测试数据如下,通过分析可知,实际合成产物与理论分析一致。
Figure 883270dest_path_image010
1H NMR (400 MHz, CDCl 3) δ: 7.34−7.32 (m, 4H), 7.25−7.13 (m, 8H), 7.01−6.97 (m, 1H), 6.78 (d, J = 7.6 Hz, 1H), 6.05−5.96 (m, 1H), 5.30−5.20 (m, 2H), 4.91 (d, J = 5.2 Hz, 2H)。
实施例十二:[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3催化 N-靛红化合物、亚磷酸二乙酯和2,3-二芳基环丙烯酮制备吡喃并[2,3- b]吲哚-2-酮化合物:在经过脱水脱氧处理过的反应瓶中,在氩气保护下在反应瓶中称入[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3(42.2 mg, 0.048 mmol)、亚磷酸二乙酯(37 μL, 0.29 mmol)、 N-苄基靛红(68.7 mg, 0.29 mmol),常规搅拌混合30分钟,再加入甲苯(1.0 mL)、2,3-二苯基环丙烯酮(50 mg,0.24 mmol),在110℃下搅拌1.5小时,加水终止反应,乙酸乙酯萃取三次,萃取液用无水硫酸钠干燥,过滤,减压除去溶剂,最后经硅胶柱快速柱层析(洗脱剂: 乙酸乙酯:石油醚=1:10)得到黄色固体产物,产率为86%。
所制得产物的理论分子式以及主要核磁测试数据如下,通过分析可知,实际合成产物与理论分析一致。
Figure 911268dest_path_image011
1H NMR (400 MHz, CDCl 3) δ: 7.35−7.24 (m, 11H), 7.21−7.12 (m, 6H), 7.00−6.96 (m, 1H), 6.78 (d, J = 8.0 Hz, 1H), 5.50 (s, 2H)。
实施例十三:[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3催化 N-靛红化合物、亚磷酸二乙酯和2,3-二芳基环丙烯酮制备吡喃并[2,3- b]吲哚-2-酮化合物:在经过脱水脱氧处理过的反应瓶中,在氩气保护下在反应瓶中称入[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3(42.2 mg, 0.048 mmol)、亚磷酸二乙酯(37 μL, 0.29 mmol)、 N-乙基靛红(50.7 mg, 0.29 mmol),常规搅拌混合30分钟,再加入甲苯(1.0 mL)、2,3-二(4-甲基苯基)环丙烯酮(56.1 mg,0.24 mmol),在110℃下搅拌1.5小时,加水终止反应,乙酸乙酯萃取三次,萃取液用无水硫酸钠干燥,过滤,减压除去溶剂,最后经硅胶柱快速柱层析(洗脱剂: 乙酸乙酯:石油醚=1:10)得到黄色固体产物,产率为94%。
所制得产物的理论分子式以及主要核磁测试数据如下,通过分析可知,实际合成产物与理论分析一致。
Figure 358430dest_path_image012
1H NMR (400 MHz, CDCl 3) δ: 7.35 (d, J = 8.4 Hz, 1H), 7.25−7.21 (m, 1H), 7.16−7.11 (m, 4H), 7.05−6.98 (m, 5H), 6.84 (d, J = 8.0 Hz, 1H), 4.35 (q, J = 7.2 Hz, 2H), 2.37 (s, 3H), 2.26 (s, 3H), 1.50 (t, J = 7.2 Hz, 3H)。
实施例十四:[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3催化 N-靛红化合物、亚磷酸二乙酯和2,3-二芳基环丙烯酮制备吡喃并[2,3- b]吲哚-2-酮化合物:在经过脱水脱氧处理过的反应瓶中,在氩气保护下在反应瓶中称入[(Me 3Si) 2N] 3La( m-Cl)Li(THF) 3(42.2 mg, 0.048 mmol)、亚磷酸二乙酯(37 μL, 0.29 mmol)、 N-乙基靛红(50.7 mg, 0.29 mmol),常规搅拌混合30分钟,再加入甲苯(1.0 mL)、2,3-二(4-氟苯基)环丙烯酮(58.1 mg,0.24 mmol),在110℃下搅拌1.5小时,加水终止反应,乙酸乙酯萃取三次,萃取液用无水硫酸钠干燥,过滤,减压除去溶剂,最后经硅胶柱快速柱层析(洗脱剂: 乙酸乙酯:石油醚=1:10)得到黄色固体产物,产率为93%。
所制得产物的理论分子式以及主要核磁测试数据如下,通过分析可知,实际合成产物与理论分析一致。
Figure 813682dest_path_image013
1H NMR (400 MHz, CDCl 3) δ: 7.38 (d, J = 8.0 Hz, 1H), 7.28−7.19 (m, 3H), 7.12−7.01 (m, 5H), 6.92−6.87 (m, 1H), 6.82 (d, J = 8.0 Hz, 1H), 4.36 (q, J = 7.2 Hz, 2H), 1.52 (t, J = 7.2 Hz, 3H)。

Claims (10)

  1. 硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用;所述硅氨基稀土化合物的化学结构式如下所示:
    Figure 480520dest_path_image001
     
    其中,Ln为正三价的稀土金属离子;
    所述靛红化合物的化学结构通式如下:
    Figure 244076dest_path_image002
    其中,R 1选烯丙基、苄基、乙基、甲基中的一种;
    所述环丙烯酮的化学结构通式如下:
    Figure 281302dest_path_image003
    其中,Ar选自苯基、4-甲基苯基、4-氟苯基中的一种。
  2. 根据权利要求1所述的应用,其特征在于,所述反应在无水无氧条件下、亚磷酸酯存在下、有机溶剂中进行。
  3. 根据权利要求2所述的应用,其特征在于,所述有机溶剂为1,4-二氧六环、乙二醇二甲醚、四氢呋喃、1,2-二氯乙烷、氯苯、甲苯、正己烷中的一种;所述无水无氧条件为惰性气氛条件;所述亚磷酸酯为亚磷酸二乙酯。
  4. 根据权利要求1所述的应用,其特征在于:按照摩尔比计,靛红化合物的用量为环丙烯酮的1~1.2倍;硅氨基稀土化合物的用量为环丙烯酮的15%~20%。
  5. 根据权利要求1所述的应用,其特征在于:所述Ln为镧。
  6. 根据权利要求1所述的应用,其特征在于:所述反应的温度为室温~120℃;反应的时间为1~3小时。
  7. 根据权利要求1所述的应用,其特征在于:所述反应的产物为吡喃并[2,3- b]吲哚-2-酮化合物。
  8. 一种吡喃并[2,3- b]吲哚-2-酮化合物的制备方法,其特征在于,包括以下步骤:在亚磷酸酯存在下,以靛红化合物和环丙烯酮为反应物,以硅氨基稀土化合物为催化剂,在有机溶剂中反应制备吡喃并[2,3- b]-吲哚-2-酮化合物;所述硅氨基稀土化合物的化学结构式如下所示:
    Figure 372886dest_path_image004
    其中,Ln为正三价的稀土金属离子;
    所述靛红化合物的化学结构通式如下:
    Figure 520971dest_path_image005
    其中,R 1选烯丙基、苄基、乙基、甲基中的一种;
    所述环丙烯酮的化学结构通式如下:
    Figure 873455dest_path_image003
    其中,Ar选自苯基、4-甲基苯基、4-氟苯基中的一种。
  9. 根据权利要求8所述吡喃并[2,3- b]吲哚-2-酮化合物的制备方法,其特征在于,按照摩尔比计,亚磷酸酯的用量为环丙烯酮的1~1.2倍。
  10. 根据权利要求8所述吡喃并[2,3- b]吲哚-2-酮化合物的制备方法制备的吡喃并[2,3- b]吲哚-2-酮化合物,其特征在于,将亚磷酸酯、靛红化合物、硅氨基稀土化合物混合后再加入环丙烯酮、有机溶剂,然后反应制备吡喃并[2,3- b]-吲哚-2-酮化合物。
PCT/CN2021/079614 2021-03-08 2021-03-08 硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用 WO2022188012A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/079614 WO2022188012A1 (zh) 2021-03-08 2021-03-08 硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/079614 WO2022188012A1 (zh) 2021-03-08 2021-03-08 硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用

Publications (1)

Publication Number Publication Date
WO2022188012A1 true WO2022188012A1 (zh) 2022-09-15

Family

ID=83227317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079614 WO2022188012A1 (zh) 2021-03-08 2021-03-08 硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用

Country Status (1)

Country Link
WO (1) WO2022188012A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106432052A (zh) * 2016-09-21 2017-02-22 苏州大学 一种催化制备螺[环丙烷‑1,3′‑吲哚]化合物的方法
CN112958154A (zh) * 2021-03-07 2021-06-15 苏州大学 硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106432052A (zh) * 2016-09-21 2017-02-22 苏州大学 一种催化制备螺[环丙烷‑1,3′‑吲哚]化合物的方法
CN112958154A (zh) * 2021-03-07 2021-06-15 苏州大学 硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
N. L. NAM ; I. I. GRANDBERG: "Condensation of oxindole with acetoacetic ester and acetylacetone", CHEMISTRY OF HETEROCYCLIC COMPOUNDS, vol. 42, no. 8, 1 August 2006 (2006-08-01), NL , pages 1010 - 1011, XP019448295, ISSN: 1573-8353, DOI: 10.1007/s10593-006-0195-y *
WANG LU, ZHIGANG YAO, FAN XU, QI SHEN: "Lanthanide amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3-catalyzed phospho-aldol-brook rearrangement reaction of dialkyl phosphites with isatins", HETEROATOM CHEMISTRY, vol. 23, no. 5, 10 August 2012 (2012-08-10), pages 449 - 456, XP055964892, DOI: 10.1002/hc.21036 *
XU JUNYU, CAO JING, FANG CHAO, LU TAO, DU DING: "Organocatalytic C–C bond activation of cyclopropenones for ring-opening formal [3 + 2] cycloaddition with isatins", ORGANIC CHEMISTRY FRONTIERS, vol. 4, no. 4, 20 November 2017 (2017-11-20), pages 560 - 564, XP055964893, DOI: 10.1039/C6QO00734A *
ZHANG WEN-ZHEN, YANG MING-WANG, LU XIAO-BING: "Carboxylative cyclization of substituted propenyl ketones using CO 2 : transition-metal-free synthesis of α-pyrones", GREEN CHEMISTRY, vol. 18, no. 15, 1 January 2016 (2016-01-01), GB , pages 4181 - 4184, XP055965281, ISSN: 1463-9262, DOI: 10.1039/C6GC01346E *

Similar Documents

Publication Publication Date Title
CN106432052B (zh) 一种催化制备螺[环丙烷-1,3′-吲哚]化合物的方法
TW518329B (en) Process for preparing derivatives of the taxoid family
CN106423281B (zh) 稀土硅氨化物在催化制备螺[环丙烷-1,3′-吲哚]化合物中的应用
CN101817845B (zh) 一种催化制备α-羟基膦酸酯的方法
CN108864189A (zh) 亚磺酰胺类手性单膦配体及其制备方法和应用
CN111760593A (zh) 脱质子苯基桥连β-酮亚胺锂化合物在硼氢化反应中的应用
CN110028407B (zh) 一种制备螺[环丙烷-1,2’-茚]-1’,3’-二酮化合物的方法
CN103232400B (zh) 一种制备喹唑啉-2-硫酮的方法
CN112047868B (zh) 一种芳基硒氰酸酯类化合物的制备方法
CN112958154B (zh) 硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用
CN112961166B (zh) 一种催化制备吡喃并[2,3-b]吲哚-2-酮化合物的方法
WO2022188012A1 (zh) 硅氨基稀土化合物在催化靛红化合物和环丙烯酮化合物反应中的应用
CN109529930B (zh) 一种用于芳香胺硅基化反应的催化剂
CN115093369B (zh) 一种3,4-二氢异喹啉-1-酮类化合物的合成方法
CN106636241B (zh) 一种酶法制备艾沙度林中间体的方法
CN115772157A (zh) 一种2-烷氧基吲哚化合物的制备方法
CN111217847B (zh) 一种硫代硅烷配体及其制备方法和在芳基硼化催化反应中的应用
CN112939994B (zh) 一种低催化量下进行靛红化合物和环丙烯酮化合物反应的方法
WO2022188082A1 (zh) 一种低催化量下进行靛红化合物和环丙烯酮化合物反应的方法
CN111662147B (zh) 制备二炔及其类似物的方法
CN109912640B (zh) 一种2-吡咯烷酮类化合物的制备方法
CN110862421B (zh) 含氮杂环二茂铁衍生物的合成方法
WO2022188045A1 (zh) 一种催化制备吡喃并 [2,3-b] 吲哚 -2- 酮化合物的方法
CN111039767B (zh) 一种三唑卡宾催化制备氘代醛的方法
CN110368989A (zh) 一种钯配合物在脂肪胺甲酰化反应中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929494

Country of ref document: EP

Kind code of ref document: A1