WO2022183516A1 - 一种金属复合板正弦辊型波纹轧辊缝的设定方法 - Google Patents

一种金属复合板正弦辊型波纹轧辊缝的设定方法 Download PDF

Info

Publication number
WO2022183516A1
WO2022183516A1 PCT/CN2021/079847 CN2021079847W WO2022183516A1 WO 2022183516 A1 WO2022183516 A1 WO 2022183516A1 CN 2021079847 W CN2021079847 W CN 2021079847W WO 2022183516 A1 WO2022183516 A1 WO 2022183516A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
rolling
metal
slab
deform
Prior art date
Application number
PCT/CN2021/079847
Other languages
English (en)
French (fr)
Inventor
刘元铭
王涛
郝平菊
王振华
和东平
任忠凯
韩建超
黄庆学
Original Assignee
太原理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太原理工大学 filed Critical 太原理工大学
Priority to US17/683,338 priority Critical patent/US12023720B2/en
Publication of WO2022183516A1 publication Critical patent/WO2022183516A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention belongs to the technical field of rolling, and particularly relates to a method for setting a sinusoidal roll-shaped corrugated roll gap of a metal composite plate.
  • Metal composite panels give full play to the advantages of each component material, improve the comprehensive performance of a single material, and greatly improve the strength, corrosion resistance and electrical conductivity of the material, and are widely used in automotive, aerospace, medicine, marine and other industries .
  • the processing methods of metal clad plates mainly include casting and rolling method, explosive cladding method, diffusion welding method and rolling cladding method.
  • the rolling cladding method has the advantages of high production efficiency and easy realization of industrialized mass production.
  • the traditional flat roll composite rolling technology still has problems that are difficult to solve, such as low interface connection strength, poor shape, and large residual stress.
  • a new corrugated roll rolling composite technology has been proposed (patent authorization announcement number CN103736728B, CN105478476B).
  • the corrugated roll corresponds to the hard-to-deform metal
  • the flat roll corresponds to the easily deformed metal, which can effectively solve the above problems and improve the combination of metal composite plates. strength, to obtain metal composite panels with excellent performance.
  • the adjustment of the roll gap of the rolling mill before sheet rolling has an important influence on the thickness accuracy and shape quality, and the rolling force is the core of the mathematical model of automatic rolling control, which directly affects the formulation of the rolling schedule and the roll gap adjustment.
  • the rolling force of corrugated rolling is mainly obtained by finite element method, but the calculation time of the finite element method is long, and each calculation can only display the results of a specific process. There is a problem with the adjustment.
  • the present invention provides a method for setting the sine roll-shaped corrugated roll gap of a metal clad plate.
  • Step 1 Determine the inlet thicknesses h 1i and h 2i , the outlet thicknesses h 1f and h 2f , the width b and the rolling temperature T temp of the hard-to-deform metal slab and the easy-to-deform metal slab respectively according to the process specification data of a certain pass;
  • Step 4 Using the minimization of the total power functional in the rolling deformation zone, calculate the rolling force F at any time t during the sinusoidal roll corrugation rolling process of the metal clad plate, as follows:
  • Step 4.1 According to the characteristics of the sinusoidal corrugated roll, establish and describe the contact surface between the corrugated roll and the hard-to-deform metal slab, the contact surface of the flat roll and the easy-to-deform metal slab, and the contact surface of the hard-to-deform metal and the easy-to-deform metal slab are respectively r 1 ⁇ , r 2 ⁇ , r 3 ⁇ ;
  • Step 4.3 According to the rolling temperature T temp of the hard-to-deform metal slab and the easily-deformable metal slab, the type of actual rolling material and the rolling schedule, the deformation resistance of the slab is obtained:
  • Step 4.4 Calculate the total power functional of slab corrugation rolling at any time t according to the velocity field, strain velocity field, and slab deformation resistance;
  • Step 5 According to the rolling force F, calculate the roll gap S of the corrugated rolls at any time t, and set the roll gap of the rolling mill to S according to the actual rolling procedure to carry out normal production.
  • step 3 calculate a time T required to complete the waveform rolling, as follows:
  • step 4.1 According to the characteristics of the sinusoidal corrugated roller, establish and describe the contact surface between the corrugated roller and the hard-deformable metal slab, the contact surface between the flat roller and the easy-deformable metal slab, and the contact between the hard-to-deform metal and the easy-deformable metal slab.
  • the surface equations are r 1 ⁇ , r 2 ⁇ , and r 3 ⁇ respectively , as follows:
  • the cylindrical coordinate system is established with the center O of the middle position of the roll body of the sinusoidal corrugated roll as the origin, and (r, ⁇ , z) is the coordinate of any point in the coordinate system, then the contact surface r 1 ⁇ between the corrugated roll and the hard-to-deform metal slab is :
  • l is the horizontal projection length of the contact arc between the roll and the slab during rolling
  • the undetermined parameter A 2 is a constant that changes with the rolling process parameters.
  • the rolling process parameters include the metal type, the thickness of the composite slab entrance, the reduction volume and inlet velocity as well as roll speed and roll radius.
  • step 4.2 according to the properties of the flow function and considering the characteristics of the roll shape of the sine corrugated roll, the velocity field and strain velocity field of the corrugated deformation zone of the composite slab are established, as follows:
  • v 1r , v 1 ⁇ , v 1z are the velocity components in the diameter, circumference and width directions of the hard-to-deform metal slab, respectively;
  • the undetermined parameter ⁇ 1 is a constant that varies with the rolling process parameters including the metal type, the entry thickness of the clad slab, the reduction and entry speed, and the roll speed and roll radius; are the partial derivatives of ⁇ 1 with respect to ⁇ and r, respectively;
  • step 4.4 calculates the total power functional J * of the slab corrugation rolling at any time t according to the velocity field, the strain velocity field, and the slab deformation resistance, as follows:
  • step 4.5 calculates the minimum value of the total power functional at any time t According to the relationship between the total power functional and the rolling force: Calculate the rolling force F at any time t, and ⁇ is the arm coefficient.
  • M is the rolling mill stiffness
  • the present invention has the following advantages:
  • the invention predicts the rolling force in the rolling process of the corrugated roller, and the real-time predicted rolling force is closer to the actual value; It solves the problem of real-time rolling force prediction under different production conditions; the invention is safe, reliable, accurate in calculation, can calculate the rolling force in the continuous rolling process online and in real time, and can be applied to copper/aluminum, The setting of rolling force in the process of corrugated rolling of various metals such as magnesium/aluminum, titanium/stainless steel and titanium/aluminum, and then adjust the roll gap of the rolling mill in rolling production, improve the accuracy of product thickness control.
  • Fig. 1 is a schematic diagram of a metal clad plate sinusoidal roll corrugation deformation zone in an embodiment of the present invention
  • Fig. 2 is the flow chart of the rolling force calculation method of the sinusoidal roll corrugation rolling of metal clad plates in the embodiment of the present invention
  • Step 4 Using the minimization of the total power functional in the rolling deformation zone, calculate the rolling force F at any time t during the sinusoidal roll corrugation rolling process of the metal clad plate, as follows:
  • Step 4.1 According to the characteristics of the sinusoidal corrugated roller, establish the equations describing the contact surface between the corrugated roller and the copper plate, the contact surface between the flat roller and the aluminum plate, and the contact surface between the hard-to-deform metal and the aluminum plate, respectively r 1 ⁇ , r 2 ⁇ , r 3 ⁇ ;
  • a cylindrical coordinate system is established with the center O of the middle position of the roll body of the sinusoidal corrugated roll as the origin, and (r, ⁇ , z) is the coordinate of any point in the coordinate system, then the contact surface r 1 ⁇ between the corrugated roll and the copper plate is:
  • l is the horizontal projection length of the contact arc between the roll and the slab during rolling
  • the undetermined parameter A 2 is a constant that changes with the rolling process parameters.
  • the rolling process parameters include the metal type, the thickness of the composite slab entrance, the reduction volume and inlet velocity as well as roll speed and roll radius;
  • Step 4.2 According to the properties of the flow function, considering the characteristics of the sinusoidal corrugated roll, establish the velocity field and strain velocity field of the corrugated deformation zone of the composite slab;
  • strain velocity components in the diameter, circumference and width directions of the copper plate are the strain velocity components in the diameter, circumference and width directions of the copper plate, respectively; is the velocity component of shear strain in the circumferential direction of the copper plate on the circumference and width section; is the shear strain velocity component on the diameter and width section of the copper plate, pointing to the width direction; is the velocity component of the shear strain on the circumference and width of the copper plate, pointing in the width direction and are the partial derivatives of v 1r , v 1 ⁇ , and v 1z with respect to r, respectively; and are the partial derivatives of v 1r , v 1 ⁇ , and v 1z with respect to ⁇ ; and are the partial derivatives of v 1r , v 1 ⁇ , and v 1z with respect to z, respectively;
  • v 2r , v 2 ⁇ , v 2z are the velocity components in the diameter, circumference and width directions of the aluminum plate, respectively; is the flow function of the aluminum plate, and the undetermined parameter ⁇ 2 is a constant that varies with the rolling process parameters, including the metal type, the thickness of the entrance of the composite slab, the reduction and the entrance speed, and the speed of the roll and the radius of the roll; are the partial derivatives of ⁇ 2 with respect to ⁇ and r, respectively;
  • Step 4.4 According to the velocity field, strain velocity field, and slab deformation resistance, calculate the total power functional J * of slab corrugation rolling at any time t, as follows:
  • M is the contact point between the refractory metal and the corrugated roll
  • NO is the angle between NO and the central line OO 2 of the roll
  • N is the contact point of the easily deformable metal and the flat roll.
  • Step 5 Calculate the roll gap S of the corrugated rolls at any time t according to the rolling force F, and set the roll gap of the rolling mill to S according to the actual rolling procedure to carry out normal production;
  • Figure 3 shows the predicted value of the rolling force with time for the sinusoidal roll corrugation of the copper-aluminum clad plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

本发明提供一种金属复合板正弦辊型波纹轧辊缝的设定方法,包括:按照某道次工艺规程数据分别确定难变形金属板坯和易变形金属板坯的入口厚度、出口厚度、宽度以及轧制温度;检测轧辊转速,金属复合板坯入口速度,获取波纹轧辊名义半径和平辊半径,波纹辊与难变形金属板坯、平辊与易变形金属板坯之间的摩擦因数;确定正弦辊型波纹辊振幅、轧辊上完整正弦波纹个数,并计算一个完整波形轧制所需的时间;利用轧制变形区总功率泛函最小化,计算金属复合板正弦辊型波纹轧过程中任一时刻的轧制力;根据轧制力F,计算任一时刻t的波纹辊辊缝S,根据实际轧制规程,将轧机辊缝设定成S,进行正常生产。

Description

一种金属复合板正弦辊型波纹轧辊缝的设定方法 技术领域
本发明属于轧制技术领域,特别涉及一种金属复合板正弦辊型波纹轧辊缝的设定方法。
背景技术
金属复合板充分发挥各组元材料的优势,改善了单一材料的综合性能,极大提高了材料的强度、抗腐蚀性和导电性等,被广泛应用在汽车、航空航天、医药、海洋等行业。目前金属复合板的加工方式主要有铸轧法、爆炸复合法、扩散焊接法及轧制复合法等,其中轧制复合法具有生产效率高、易于实现工业化批量生产等优点。
传统平辊复合轧制技术目前仍存在结合界面连接强度低、板形差、残余应力大等难以解决的问题。近年来提出了一种新的波纹辊轧制复合技术(专利授权公告号CN103736728B、CN105478476B),波纹辊对应难变形金属,平辊对应易变形金属,可以有效解决以上难题,提高金属复合板的结合强度,获得性能优异的金属复合板。
板材轧制之前轧机辊缝的调整对板厚精度和板形质量有着重要的影响,而轧制力是轧制自动化控制数学模型的核心,直接影响轧制规程制定和辊缝调整。目前波纹轧轧制力主要采用有限元获得,但有限元法计算时间长,每次计算只能是对一个具体工艺的结果进行显示,计算速度慢,后处理繁琐,导致现有技术中辊缝调整存在问题。
发明内容
本发明针对上述问题提供了一种金属复合板正弦辊型波纹轧辊缝的设定方 法。
为达到上述目的本发明采用了以下技术方案:
一种金属复合板正弦辊型波纹轧辊缝的设定方法,包括以下步骤:
步骤1:按照某道次工艺规程数据分别确定难变形金属板坯和易变形金属板坯的入口厚度h 1i和h 2i、出口厚度h 1f和h 2f、宽度b以及轧制温度T temp
步骤2:检测轧辊转速ω,金属复合板坯入口速度v 0,获取轧辊半径R 0,波纹辊与难变形金属板坯、平辊与易变形金属板坯之间的摩擦因数分别为m 1和m 2
步骤3:确定正弦辊型波纹辊参数:正弦波纹辊型的振幅A 1,轧辊上完整正弦波纹个数B,计算一个完整波形轧制所需的时间T;
步骤4:利用轧制变形区总功率泛函最小化,计算金属复合板正弦辊型波纹轧过程中任一时刻t的轧制力F,具体如下:
步骤4.1:根据正弦波纹辊辊型特点,建立描述波纹辊与难变形金属板坯接触面、平辊与易变形金属板坯接触面、难变形金属与易变形金属板坯接触面方程分别为r 、r 、r
步骤4.2:根据流函数的性质,考虑正弦波纹辊辊型特点,建立复合板坯波纹轧变形区的速度场和应变速度场;
步骤4.3:根据难变形金属板坯和易变形金属板坯轧制温度T temp、实际轧制材料类型及轧制规程,得到板坯的变形抗力:
步骤4.4:根据速度场、应变速度场、板坯变形抗力,计算板坯波纹轧任一时刻t的总功率泛函;
步骤4.5:计算任一时刻t时总功率泛函的最小值,根据总功率泛函与轧制力之间的关系,计算任一时刻t的轧制力F;
步骤5:根据轧制力F,计算任一时刻t的波纹辊辊缝S,根据实际轧制规程,将轧机辊缝设定成S,进行正常生产。
进一步,所述步骤3:计算一个完成波形轧制所需的时间T,具体如下:
Figure PCTCN2021079847-appb-000001
再进一步,所述步骤4.1:根据正弦波纹辊辊型特点,建立描述波纹辊与难变形金属板坯接触面、平辊与易变形金属板坯接触面、难变形金属与易变形金属板坯接触面方程分别为r 、r 、r ,具体如下:
以正弦波纹型轧辊辊身中间位置的圆心O为原点建立柱坐标系,(r,θ,z)为该坐标系中任意一点的坐标,则波纹辊与难变形金属板坯接触面r 为:
r =R 0+A 1 sin[B(θ+ωt)]
平辊与易变形金属板坯接触面方程r 为:
Figure PCTCN2021079847-appb-000002
难变形金属与易变形金属板坯接触面方程r 为:
Figure PCTCN2021079847-appb-000003
其中,l为轧制时轧辊与板坯接触弧水平投影长度,待定参数A 2是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径。
更进一步,所述步骤4.2根据流函数的性质,考虑正弦波纹辊辊型特点,建立复合板坯波纹轧变形区的速度场和应变速度场,具体如下:
难变形金属轧制变形区的速度场为:
Figure PCTCN2021079847-appb-000004
Figure PCTCN2021079847-appb-000005
v 1z=0
其中,v 1r、v 、v 1z分别为难变形金属板坯的直径、圆周和宽度方向的速度分量;
Figure PCTCN2021079847-appb-000006
为难变形金属板坯的流函数,待定参数β 1是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径;
Figure PCTCN2021079847-appb-000007
分别为φ 1关于θ、r的偏导数;
难变形金属轧制变形区的应变速度场为:
Figure PCTCN2021079847-appb-000008
Figure PCTCN2021079847-appb-000009
Figure PCTCN2021079847-appb-000010
Figure PCTCN2021079847-appb-000011
Figure PCTCN2021079847-appb-000012
Figure PCTCN2021079847-appb-000013
其中,
Figure PCTCN2021079847-appb-000014
分别为难变形金属板坯的直径、圆周和宽度方向的应变速度分量;
Figure PCTCN2021079847-appb-000015
为难变形金属板坯圆周和宽度截面上,指向圆周方向的切应变速度分量;
Figure PCTCN2021079847-appb-000016
为难变形金属板坯直径和宽度截面上,指向宽度方向的切应变速度分量;
Figure PCTCN2021079847-appb-000017
为难变形金属板坯圆周和宽度截面上,指向宽度方向的切应变速度分量;
Figure PCTCN2021079847-appb-000018
Figure PCTCN2021079847-appb-000019
分别为v 1r、v 、v 1z关于r的偏导数;
Figure PCTCN2021079847-appb-000020
Figure PCTCN2021079847-appb-000021
分别为v 1r、v 、v 1z关于θ的偏导数;
Figure PCTCN2021079847-appb-000022
Figure PCTCN2021079847-appb-000023
分别为v 1r、v 、v 1z关于z的偏导数;
易变形金属轧制变形区的速度场为:
Figure PCTCN2021079847-appb-000024
Figure PCTCN2021079847-appb-000025
v 2z=0
其中,v 2r、v 、v 2z分别为易变形金属板坯的直径、圆周和宽度方向的速度分量;
Figure PCTCN2021079847-appb-000026
为易变形金属板坯的流函数,待定参数β 2是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径;
Figure PCTCN2021079847-appb-000027
分别为φ 2关于θ、r的偏导数;
易变形金属轧制变形区的应变速度场为:
Figure PCTCN2021079847-appb-000028
Figure PCTCN2021079847-appb-000029
Figure PCTCN2021079847-appb-000030
Figure PCTCN2021079847-appb-000031
Figure PCTCN2021079847-appb-000032
Figure PCTCN2021079847-appb-000033
其中,
Figure PCTCN2021079847-appb-000034
分别为易变形金属板坯的直径、圆周和宽度方向的应变速度分量;
Figure PCTCN2021079847-appb-000035
为易变形金属板坯圆周和宽度截面上,指向圆周方向的切应变速度分量;
Figure PCTCN2021079847-appb-000036
为易变形金属板坯直径和宽度截面上,指向宽度方向的切应变速度分量;
Figure PCTCN2021079847-appb-000037
为易变形金属板坯圆周和宽度截面上,指向宽度方向的切应变速度分量;
Figure PCTCN2021079847-appb-000038
Figure PCTCN2021079847-appb-000039
分别为v 2r、v 、v 2z关于r的偏导数;
Figure PCTCN2021079847-appb-000040
Figure PCTCN2021079847-appb-000041
分别为v 2r、v 、 v 2z关于θ的偏导数;
Figure PCTCN2021079847-appb-000042
Figure PCTCN2021079847-appb-000043
分别为v 2r、v 、v 2z关于z的偏导数。
更进一步,所述步骤4.4根据速度场、应变速度场、板坯变形抗力,计算板坯波纹轧任一时刻t的总功率泛函J *,具体如下:
Figure PCTCN2021079847-appb-000044
σ s1、σ s2为难变形金属与易变形金属板坯的变形抗力,
Figure PCTCN2021079847-appb-000045
为MO与轧辊连心线OO 2的夹角,M为难变形金属和波纹辊的接触点,
Figure PCTCN2021079847-appb-000046
为NO与轧辊连心线OO 2的夹角,N为易变形金属和平辊的接触点。
更进一步,所述步骤4.5计算任一时刻t时总功率泛函的最小值
Figure PCTCN2021079847-appb-000047
根据总功率泛函与轧制力之间的关系:
Figure PCTCN2021079847-appb-000048
计算任一时刻t的轧制力F,χ为力臂系数。
更进一步,所述步骤5中,波纹辊辊缝S计算公式如下:
Figure PCTCN2021079847-appb-000049
M为轧机刚度。
与现有技术相比本发明具有以下优点:
本发明对波纹辊轧制过程中的轧制力进行预测,得到实时预测的轧制力更 接近实际值;本发明在综合考虑轧制过程中各个工艺参数的基础上,精确预测波纹轧过程中的轧制力,解决了在不同生产条件下实时轧制力的预测问题;本发明安全可靠,计算准确,能够在线实时计算得到连续轧制过程中的轧制力,可以应用于铜/铝、镁/铝、钛/不锈钢以及钛/铝等多种不同金属波纹轧复合过程中轧制力的设定,进而调整轧制生产中轧机的辊缝,提高了产品厚度控制的精度。
附图说明
图1为本发明实施例中金属复合板正弦辊型波纹轧变形区示意图;
图2为本发明实施例中金属复合板正弦辊型波纹轧的轧制力计算方法的流程图;
图3为本发明实施例中金属复合板正弦辊型波纹轧的轧制力随时间变化的预测值。
具体实施方式
为了进一步阐述本发明的技术方案,下面通过实施例对本发明进行进一步说明。
本实施例中,以铜板和铝板在正弦辊型波纹辊的轧制过程为例,轧制变形区示意图如图1所示。
实施本发明的一种金属复合板正弦辊型波纹轧辊缝的设定方法,如图2所示,包括以下步骤:
步骤1:按照工艺规程分别确定铜板和铝板的入口厚度h 1i=2mm和h 2i=8mm,出口厚度h 1f=1mm和h 2f=3.8mm,宽度均为b=200mm,轧制温度为室温;
步骤2:检测上下轧辊转速ω=1.3rad/s,金属复合板坯入口速度v 0=0.2m/s,获取轧辊半径R 0=160mm,波纹辊与铜板、平辊与铝板之间的摩擦因数分别为 m 1=0.28和m 2=0.38;
步骤3:确定正弦辊型波纹辊参数:正弦波纹辊型的振幅A 1=0.8mm,轧辊上完整正弦波纹个数B=75,计算一个完整波形轧制所需的时间
Figure PCTCN2021079847-appb-000050
步骤4:利用轧制变形区总功率泛函最小化,计算金属复合板正弦辊型波纹轧过程中任一时刻t的轧制力F,具体如下:
步骤4.1:根据正弦波纹辊辊型特点,建立描述波纹辊与铜板接触面、平辊与铝板接触面、难变形金属与铝板接触面方程分别为r 、r 、r
以正弦波纹型轧辊辊身中间位置的圆心O为原点建立柱坐标系,(r,θ,z)为该坐标系中任意一点的坐标,则波纹辊与铜板接触面r 为:
r =R 0+A 1 sin[B(θ+ωt)]
平辊与铝板接触面方程r 为:
Figure PCTCN2021079847-appb-000051
难变形金属与铝板接触面方程r 为:
Figure PCTCN2021079847-appb-000052
其中,l为轧制时轧辊与板坯接触弧水平投影长度,待定参数A 2是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径;
步骤4.2:根据流函数的性质,考虑正弦波纹辊辊型特点,建立复合板坯波纹轧变形区的速度场和应变速度场;
难变形金属轧制变形区的速度场为:
Figure PCTCN2021079847-appb-000053
Figure PCTCN2021079847-appb-000054
v 1z=0
其中,v 1r、v 、v 1z分别为铜板的直径、圆周和宽度方向的速度分量;
Figure PCTCN2021079847-appb-000055
为铜板的流函数,待定参数β 1是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径;
Figure PCTCN2021079847-appb-000056
分别为φ 1关于θ、r的偏导数;
难变形金属轧制变形区的应变速度场为:
Figure PCTCN2021079847-appb-000057
Figure PCTCN2021079847-appb-000058
Figure PCTCN2021079847-appb-000059
Figure PCTCN2021079847-appb-000060
Figure PCTCN2021079847-appb-000061
Figure PCTCN2021079847-appb-000062
其中,
Figure PCTCN2021079847-appb-000063
分别为铜板的直径、圆周和宽度方向的应变速度分量;
Figure PCTCN2021079847-appb-000064
为铜板圆周和宽度截面上,指向圆周方向的切应变速度分量;
Figure PCTCN2021079847-appb-000065
为铜板直径和宽度截面上,指向宽度方向的切应变速度分量;
Figure PCTCN2021079847-appb-000066
为铜板圆周和宽度截面上,指向宽度方向的切应变速度分量
Figure PCTCN2021079847-appb-000067
Figure PCTCN2021079847-appb-000068
分别为v 1r、v 、v 1z关于r的偏导数;
Figure PCTCN2021079847-appb-000069
Figure PCTCN2021079847-appb-000070
分别为v 1r、v 、v 1z关于θ的偏导数;
Figure PCTCN2021079847-appb-000071
Figure PCTCN2021079847-appb-000072
分别为v 1r、v 、v 1z关于z的偏导数;
易变形金属轧制变形区的速度场为:
Figure PCTCN2021079847-appb-000073
Figure PCTCN2021079847-appb-000074
v 2z=0
其中,v 2r、v 、v 2z分别为铝板的直径、圆周和宽度方向的速度分量;
Figure PCTCN2021079847-appb-000075
为铝板的流函数,待定参数β 2是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径;
Figure PCTCN2021079847-appb-000076
分别为φ 2关于θ、r的偏导数;
易变形金属轧制变形区的应变速度场为:
Figure PCTCN2021079847-appb-000077
Figure PCTCN2021079847-appb-000078
Figure PCTCN2021079847-appb-000079
Figure PCTCN2021079847-appb-000080
Figure PCTCN2021079847-appb-000081
Figure PCTCN2021079847-appb-000082
其中,
Figure PCTCN2021079847-appb-000083
分别为铝板的直径、圆周和宽度方向的应变速度分量;
Figure PCTCN2021079847-appb-000084
为铝板圆周和宽度截面上,指向圆周方向的切应变速度分量;
Figure PCTCN2021079847-appb-000085
为铝板直径和宽度截面上,指向宽度方向的切应变速度分量;
Figure PCTCN2021079847-appb-000086
为铝板圆周和宽度截面上,指向宽度方向的切应变速度分量;
Figure PCTCN2021079847-appb-000087
Figure PCTCN2021079847-appb-000088
分别为v 2r、v 、v 2z关于r的偏导数;
Figure PCTCN2021079847-appb-000089
Figure PCTCN2021079847-appb-000090
分别为v 2r、v 、v 2z关于θ的偏导数;
Figure PCTCN2021079847-appb-000091
Figure PCTCN2021079847-appb-000092
分别为v 2r、v 、v 2z关于z的偏导数;
步骤4.3:根据轧制规程,得到铜板的变形抗力:
Figure PCTCN2021079847-appb-000093
得到铝板的变形抗力:
Figure PCTCN2021079847-appb-000094
其中,
Figure PCTCN2021079847-appb-000095
分别为铜板和铝板的压下量;
步骤4.4:根据速度场、应变速度场、板坯变形抗力,计算板坯波纹轧任一时刻t的总功率泛函J *,具体如下:
Figure PCTCN2021079847-appb-000096
Figure PCTCN2021079847-appb-000097
为MO与轧辊连心线OO 2的夹角,M为难变形金属和波纹辊的接触点,
Figure PCTCN2021079847-appb-000098
为NO与轧辊连心线OO 2的夹角,N为易变形金属和平辊的接触点。
步骤4.5:计算任一时刻t时总功率泛函的最小值
Figure PCTCN2021079847-appb-000099
根据总功率泛函与轧制力之间的关系:
Figure PCTCN2021079847-appb-000100
计算任一时刻t的轧制力F;
步骤5:根据轧制力F,计算任一时刻t的波纹辊辊缝S,根据实际轧制规程,将轧机辊缝设定成S,进行正常生产;
波纹辊辊缝S计算公式如下:
Figure PCTCN2021079847-appb-000101
M为轧机刚度。
图3给出了铜铝复合板正弦辊型波纹轧的轧制力随时间变化的预测值。
本发明中轧辊半径=波纹轧辊名义半径=平辊半径。
此外,当采用热轧方法生产复合板时,仅需要在所述步骤4.3中根据板坯轧制温度T temp、轧制材料类型及轧制规程计算板坯的变形抗力。如轧制Q235钢/304不锈钢复合板,根据轧制规程,得到Q235钢的变形抗力:
Figure PCTCN2021079847-appb-000102
得到Q235钢的变形抗力:
Figure PCTCN2021079847-appb-000103
ε Q235为Q235钢的压下率;
Figure PCTCN2021079847-appb-000104
为Q235钢的应变速率;ε 304304不锈钢的压下率;
Figure PCTCN2021079847-appb-000105
304不锈钢的应变速率。
以上显示和描述了本发明的主要特征和优点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经 适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (7)

  1. 一种金属复合板正弦辊型波纹轧辊缝的设定方法,其特征在于:包括以下步骤:
    步骤1:按照某道次工艺规程数据分别确定难变形金属板坯和易变形金属板坯的入口厚度h 1i和h 2i、出口厚度h 1f和h 2f、宽度b以及轧制温度T temp
    步骤2:检测轧辊转速ω,金属复合板坯入口速度v 0,获取轧辊半径R 0,波纹辊与难变形金属板坯、平辊与易变形金属板坯之间的摩擦因数分别为m 1和m 2
    步骤3:确定正弦辊型波纹辊参数:正弦波纹辊型的振幅A 1,轧辊上完整正弦波纹个数B,计算一个完整波形轧制所需的时间T;
    步骤4:利用轧制变形区总功率泛函最小化,计算金属复合板正弦辊型波纹轧过程中任一时刻t的轧制力F,具体如下:
    步骤4.1:根据正弦波纹辊辊型特点,建立描述波纹辊与难变形金属板坯接触面、平辊与易变形金属板坯接触面、难变形金属与易变形金属板坯接触面方程分别为r 、r 、r
    步骤4.2:根据流函数的性质,考虑正弦波纹辊辊型特点,建立复合板坯波纹轧变形区的速度场和应变速度场;
    步骤4.3:根据难变形金属板坯和易变形金属板坯轧制温度T temp、实际轧制材料类型及轧制规程,得到板坯的变形抗力:
    步骤4.4:根据速度场、应变速度场、板坯变形抗力,计算板坯波纹轧任一时刻t的总功率泛函;
    步骤4.5:计算任一时刻t时总功率泛函的最小值,根据总功率泛函与轧制力之间的关系,计算任一时刻t的轧制力F;
    步骤5:根据轧制力F,计算任一时刻t的波纹辊辊缝S,根据实际轧制规程, 将轧机辊缝设定成S,进行正常生产。
  2. 根据权利要求1所述的一种金属复合板正弦辊型波纹轧辊缝的设定方法,其特征在于:所述步骤3:计算一个完成波形轧制所需的时间T,具体如下:
    Figure PCTCN2021079847-appb-100001
  3. 根据权利要求1所述的一种金属复合板正弦辊型波纹轧辊缝的设定方法,其特征在于:所述步骤4.1:根据正弦波纹辊辊型特点,建立描述波纹辊与难变形金属板坯接触面、平辊与易变形金属板坯接触面、难变形金属与易变形金属板坯接触面方程分别为r 、r 、r ,具体如下:
    以正弦波纹型轧辊辊身中间位置的圆心O为原点建立柱坐标系,(r,θ,z)为该坐标系中任意一点的坐标,则波纹辊与难变形金属板坯接触面r 为:
    r =R 0+A 1sin[B(θ+ωt)]
    平辊与易变形金属板坯接触面方程r 为:
    Figure PCTCN2021079847-appb-100002
    难变形金属与易变形金属板坯接触面方程r 为:
    Figure PCTCN2021079847-appb-100003
    其中,l为轧制时轧辊与板坯接触弧水平投影长度,待定参数A 2是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径。
  4. 根据权利要求1所述的一种金属复合板正弦辊型波纹轧辊缝的设定方法,其特征在于:所述步骤4.2根据流函数的性质,考虑正弦波纹辊辊型特点,建立 复合板坯波纹轧变形区的速度场和应变速度场,具体如下:
    难变形金属轧制变形区的速度场为:
    Figure PCTCN2021079847-appb-100004
    Figure PCTCN2021079847-appb-100005
    v 1z=0
    其中,v 1r、v 、v 1z分别为难变形金属板坯的直径、圆周和宽度方向的速度分量;
    Figure PCTCN2021079847-appb-100006
    为难变形金属板坯的流函数,待定参数β 1是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径;
    Figure PCTCN2021079847-appb-100007
    分别为φ 1关于θ、r的偏导数;
    难变形金属轧制变形区的应变速度场为:
    Figure PCTCN2021079847-appb-100008
    Figure PCTCN2021079847-appb-100009
    Figure PCTCN2021079847-appb-100010
    Figure PCTCN2021079847-appb-100011
    Figure PCTCN2021079847-appb-100012
    Figure PCTCN2021079847-appb-100013
    其中,
    Figure PCTCN2021079847-appb-100014
    分别为难变形金属板坯的直径、圆周和宽度方向的应变速度分量;
    Figure PCTCN2021079847-appb-100015
    为难变形金属板坯圆周和宽度截面上,指向圆周方向的切应变速度分量;
    Figure PCTCN2021079847-appb-100016
    为难变形金属板坯直径和宽度截面上,指向宽度方向的切应变速度分量;
    Figure PCTCN2021079847-appb-100017
    为难变形金属板坯圆周和宽度截面上,指向宽度方向的切应变速度分量;
    Figure PCTCN2021079847-appb-100018
    Figure PCTCN2021079847-appb-100019
    分别为v 1r、v 、v 1z关于r的偏导数;
    Figure PCTCN2021079847-appb-100020
    Figure PCTCN2021079847-appb-100021
    分别为v 1r、v 、v 1z关于θ的偏导数;
    Figure PCTCN2021079847-appb-100022
    Figure PCTCN2021079847-appb-100023
    分别为v 1r、v 、v 1z关于z的偏导数;
    易变形金属轧制变形区的速度场为:
    Figure PCTCN2021079847-appb-100024
    Figure PCTCN2021079847-appb-100025
    v 2z=0
    其中,v 2r、v 、v 2z分别为易变形金属板坯的直径、圆周和宽度方向的速度分量;
    Figure PCTCN2021079847-appb-100026
    为易变形金属板坯的流函数,待定参数β 2是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径;
    Figure PCTCN2021079847-appb-100027
    分别为φ 2关于θ、r的偏导数;
    易变形金属轧制变形区的应变速度场为:
    Figure PCTCN2021079847-appb-100028
    Figure PCTCN2021079847-appb-100029
    Figure PCTCN2021079847-appb-100030
    Figure PCTCN2021079847-appb-100031
    Figure PCTCN2021079847-appb-100032
    Figure PCTCN2021079847-appb-100033
    其中,
    Figure PCTCN2021079847-appb-100034
    分别为易变形金属板坯的直径、圆周和宽度方向的应变速度分量;
    Figure PCTCN2021079847-appb-100035
    为易变形金属板坯圆周和宽度截面上,指向圆周方向的切应变速度分量;
    Figure PCTCN2021079847-appb-100036
    为易变形金属板坯直径和宽度截面上,指向宽度方向的切应变速度分量;
    Figure PCTCN2021079847-appb-100037
    为易变形金属板坯圆周和宽度截面上,指向宽度方向的切应变速度分量;
    Figure PCTCN2021079847-appb-100038
    Figure PCTCN2021079847-appb-100039
    分别为v 2r、v 、v 2z关于r的偏导数;
    Figure PCTCN2021079847-appb-100040
    Figure PCTCN2021079847-appb-100041
    分别为v 2r、v 、v 2z关于θ的偏导数;
    Figure PCTCN2021079847-appb-100042
    Figure PCTCN2021079847-appb-100043
    分别为v 2r、v 、v 2z关于z的偏导数。
  5. 根据权利要求1所述的一种金属复合板正弦辊型波纹轧辊缝的设定方法,其特征在于:所述步骤4.4根据速度场、应变速度场、板坯变形抗力,计算板坯波纹轧任一时刻t的总功率泛函J *,具体如下:
    Figure PCTCN2021079847-appb-100044
    σ s1、σ s2为难变形金属与易变形金属板坯的变形抗力,
    Figure PCTCN2021079847-appb-100045
    为MO与轧辊连心线OO 2的夹角,M为难变形金属和波纹辊的接触点,
    Figure PCTCN2021079847-appb-100046
    为NO与轧辊连心线OO 2的夹角,N为易变形金属和平辊的接触点。
  6. 根据权利要求1所述的一种金属复合板正弦辊型波纹轧辊缝的设定方法,其特征在于:所述步骤4.5计算任一时刻t时总功率泛函的最小值
    Figure PCTCN2021079847-appb-100047
    根据总功率泛函与轧制力之间的关系:
    Figure PCTCN2021079847-appb-100048
    计算任一时刻t的轧制力F,χ为力臂系数。
  7. 根据权利要求1所述的一种金属复合板正弦辊型波纹轧辊缝的设定方法, 其特征在于:所述步骤5中,波纹辊辊缝S计算公式如下:
    Figure PCTCN2021079847-appb-100049
    M为轧机刚度。
PCT/CN2021/079847 2021-03-01 2021-03-10 一种金属复合板正弦辊型波纹轧辊缝的设定方法 WO2022183516A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/683,338 US12023720B2 (en) 2021-03-01 2022-02-28 Method for setting roll gap of sinusoidal corrugated rolling for metal composite plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110227234.XA CN113020287B (zh) 2021-03-01 2021-03-01 一种金属复合板正弦辊型波纹轧辊缝的设定方法
CN202110227234.X 2021-03-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/683,338 Continuation US12023720B2 (en) 2021-03-01 2022-02-28 Method for setting roll gap of sinusoidal corrugated rolling for metal composite plate

Publications (1)

Publication Number Publication Date
WO2022183516A1 true WO2022183516A1 (zh) 2022-09-09

Family

ID=76465258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079847 WO2022183516A1 (zh) 2021-03-01 2021-03-10 一种金属复合板正弦辊型波纹轧辊缝的设定方法

Country Status (2)

Country Link
CN (1) CN113020287B (zh)
WO (1) WO2022183516A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116000106A (zh) * 2023-03-27 2023-04-25 东北大学 一种冷连轧升降速阶段的轧制力设定方法
CN116078831A (zh) * 2023-03-22 2023-05-09 太原理工大学 一种板带冷轧动态减薄生产过程中轧制力的计算方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433625B (zh) * 2022-02-18 2024-04-30 太原理工大学 一种双层金属复合板波-平铸轧装置及方法
CN116393529B (zh) * 2023-06-07 2023-08-18 太原理工大学 金属层合板热轧过程中轧制力确定方法、装置及电子设备
CN118023303B (zh) * 2024-04-15 2024-06-21 太原理工大学 一种薄带轧制生产过程中的辊缝设定方法、装置及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001212608A (ja) * 2000-02-03 2001-08-07 Sumitomo Metal Ind Ltd 熱間連続圧延機における板厚制御方法
CN101927267A (zh) * 2009-06-22 2010-12-29 宝山钢铁股份有限公司 一种精轧带钢辊缝的控制方法及装置
CN110252806A (zh) * 2019-05-13 2019-09-20 太原理工大学 一种提高双金属复合板结合强度的轧制方法
CN110614275A (zh) * 2019-11-12 2019-12-27 太原理工大学 一种强变形轧制双金属复合板的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532414B2 (zh) * 1973-09-28 1978-01-27
CN101201871B (zh) * 2007-12-18 2010-06-09 东北大学 一种预测热轧过程轧制力的刚塑性有限元方法
CN101825454A (zh) * 2010-05-13 2010-09-08 天津大学 基于双向测量的温度误差补偿方法
CN103736728B (zh) * 2014-01-22 2015-07-15 太原科技大学 一种轧制金属复合板带的方法
JP6506678B2 (ja) * 2015-11-02 2019-04-24 株式会社神戸製鋼所 自動車構造部材用アルミニウム合金板およびその製造方法
CN105583238B (zh) * 2016-01-25 2017-06-16 东北大学 一种热轧带钢宽度预测方法
CN109158430B (zh) * 2018-07-16 2019-11-01 太原理工大学 一种波纹辊轧机液压伺服系统位置补偿控制方法
CN109794512B (zh) * 2019-01-11 2021-04-20 太原理工大学 一种叠片式结构的层合板轧制用波纹轧辊

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001212608A (ja) * 2000-02-03 2001-08-07 Sumitomo Metal Ind Ltd 熱間連続圧延機における板厚制御方法
CN101927267A (zh) * 2009-06-22 2010-12-29 宝山钢铁股份有限公司 一种精轧带钢辊缝的控制方法及装置
CN110252806A (zh) * 2019-05-13 2019-09-20 太原理工大学 一种提高双金属复合板结合强度的轧制方法
CN110614275A (zh) * 2019-11-12 2019-12-27 太原理工大学 一种强变形轧制双金属复合板的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, YUANMING: "Research on Control Mathematical Models of Force and Shape in Plate and Strip Rolling Based on Energy Approach", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, ENGINEERING SCIENCES I, 1 September 2017 (2017-09-01), pages 1 - 167, XP055964368, [retrieved on 20220923] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116078831A (zh) * 2023-03-22 2023-05-09 太原理工大学 一种板带冷轧动态减薄生产过程中轧制力的计算方法
CN116078831B (zh) * 2023-03-22 2023-06-06 太原理工大学 一种板带冷轧动态减薄生产过程中轧制力的计算方法
CN116000106A (zh) * 2023-03-27 2023-04-25 东北大学 一种冷连轧升降速阶段的轧制力设定方法

Also Published As

Publication number Publication date
CN113020287A (zh) 2021-06-25
CN113020287B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
WO2022183516A1 (zh) 一种金属复合板正弦辊型波纹轧辊缝的设定方法
US12023720B2 (en) Method for setting roll gap of sinusoidal corrugated rolling for metal composite plate
CN116078831B (zh) 一种板带冷轧动态减薄生产过程中轧制力的计算方法
CN116197254A (zh) 一种带钢冷连轧过程轧制力预测方法
KR20190128182A (ko) 클래드 강관 제조 방법
CN116140382A (zh) 一种热轧精轧板带材生产过程中轧制力的预测方法
CN115990624A (zh) 一种差厚板增厚制备过程中轧制力的预测方法
CN106583609A (zh) 一种弱刚度环件轧制过程中抱辊力的控制方法及系统
Zhang et al. Research on roll force for variable gauge rolling
Liu et al. Prediction and analysis of the force and shape parameters in variable gauge rolling
CN104985007B (zh) 一种铜铝三明治轧制复合带头缺陷长度的预测方法
Wei et al. A new analytical model to predict the profile and stress distribution of tube in three-roll continuous retained mandrel rolling
Ma et al. A new model for thermo-mechanical coupled analysis of hot rolling
JPH105837A (ja) 冷間タンデム圧延方法および冷間タンデム圧延設備
Jiang et al. Modeling and analysis of deformation characteristics for the two-layered metal clad plate produced by asymmetric rolling
Wei et al. Development of Cold‐Rolling Edge‐Drop Control Technology for Electrical Steel: A Review
CN114602980B (zh) 一种中厚板在同径异速轧制后心部等效应变的测量方法
Sun et al. Experimental investigation on cross wedge rolling of composite 42CrMo/Q235 laminated shaft
CN110193523B (zh) 一种二次冷轧过程轧辊表面油膜厚度预测方法
CN104438354B (zh) 一种克服板材粗轧过程中产生侧弯的方法
CN117037973A (zh) 一种求解双层金属同步和异步轧制复合板层厚的方法
CN111036686A (zh) 一种冷轧机支撑辊偏心的预估补偿方法
Lekhov et al. Production of three-layer steel bimetallic strips in the unit of continuous casting and deformation. Report 2
CN118321354A (zh) 一种对于热轧厚度减薄过程中轧制力的预测方法及装置
JP4687629B2 (ja) 金属の連続鋳造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928597

Country of ref document: EP

Kind code of ref document: A1