WO2022183516A1 - 一种金属复合板正弦辊型波纹轧辊缝的设定方法 - Google Patents
一种金属复合板正弦辊型波纹轧辊缝的设定方法 Download PDFInfo
- Publication number
- WO2022183516A1 WO2022183516A1 PCT/CN2021/079847 CN2021079847W WO2022183516A1 WO 2022183516 A1 WO2022183516 A1 WO 2022183516A1 CN 2021079847 W CN2021079847 W CN 2021079847W WO 2022183516 A1 WO2022183516 A1 WO 2022183516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roll
- rolling
- metal
- slab
- deform
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000002905 metal composite material Substances 0.000 title claims abstract description 15
- 238000005096 rolling process Methods 0.000 claims abstract description 123
- 229910052751 metal Inorganic materials 0.000 claims abstract description 102
- 239000002184 metal Substances 0.000 claims abstract description 102
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 239000002131 composite material Substances 0.000 claims description 14
- 230000009467 reduction Effects 0.000 claims description 12
- 239000003870 refractory metal Substances 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 14
- 239000010949 copper Substances 0.000 description 14
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000010963 304 stainless steel Substances 0.000 description 3
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- -1 magnesium/aluminum Chemical class 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/58—Roll-force control; Roll-gap control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Definitions
- the invention belongs to the technical field of rolling, and particularly relates to a method for setting a sinusoidal roll-shaped corrugated roll gap of a metal composite plate.
- Metal composite panels give full play to the advantages of each component material, improve the comprehensive performance of a single material, and greatly improve the strength, corrosion resistance and electrical conductivity of the material, and are widely used in automotive, aerospace, medicine, marine and other industries .
- the processing methods of metal clad plates mainly include casting and rolling method, explosive cladding method, diffusion welding method and rolling cladding method.
- the rolling cladding method has the advantages of high production efficiency and easy realization of industrialized mass production.
- the traditional flat roll composite rolling technology still has problems that are difficult to solve, such as low interface connection strength, poor shape, and large residual stress.
- a new corrugated roll rolling composite technology has been proposed (patent authorization announcement number CN103736728B, CN105478476B).
- the corrugated roll corresponds to the hard-to-deform metal
- the flat roll corresponds to the easily deformed metal, which can effectively solve the above problems and improve the combination of metal composite plates. strength, to obtain metal composite panels with excellent performance.
- the adjustment of the roll gap of the rolling mill before sheet rolling has an important influence on the thickness accuracy and shape quality, and the rolling force is the core of the mathematical model of automatic rolling control, which directly affects the formulation of the rolling schedule and the roll gap adjustment.
- the rolling force of corrugated rolling is mainly obtained by finite element method, but the calculation time of the finite element method is long, and each calculation can only display the results of a specific process. There is a problem with the adjustment.
- the present invention provides a method for setting the sine roll-shaped corrugated roll gap of a metal clad plate.
- Step 1 Determine the inlet thicknesses h 1i and h 2i , the outlet thicknesses h 1f and h 2f , the width b and the rolling temperature T temp of the hard-to-deform metal slab and the easy-to-deform metal slab respectively according to the process specification data of a certain pass;
- Step 4 Using the minimization of the total power functional in the rolling deformation zone, calculate the rolling force F at any time t during the sinusoidal roll corrugation rolling process of the metal clad plate, as follows:
- Step 4.1 According to the characteristics of the sinusoidal corrugated roll, establish and describe the contact surface between the corrugated roll and the hard-to-deform metal slab, the contact surface of the flat roll and the easy-to-deform metal slab, and the contact surface of the hard-to-deform metal and the easy-to-deform metal slab are respectively r 1 ⁇ , r 2 ⁇ , r 3 ⁇ ;
- Step 4.3 According to the rolling temperature T temp of the hard-to-deform metal slab and the easily-deformable metal slab, the type of actual rolling material and the rolling schedule, the deformation resistance of the slab is obtained:
- Step 4.4 Calculate the total power functional of slab corrugation rolling at any time t according to the velocity field, strain velocity field, and slab deformation resistance;
- Step 5 According to the rolling force F, calculate the roll gap S of the corrugated rolls at any time t, and set the roll gap of the rolling mill to S according to the actual rolling procedure to carry out normal production.
- step 3 calculate a time T required to complete the waveform rolling, as follows:
- step 4.1 According to the characteristics of the sinusoidal corrugated roller, establish and describe the contact surface between the corrugated roller and the hard-deformable metal slab, the contact surface between the flat roller and the easy-deformable metal slab, and the contact between the hard-to-deform metal and the easy-deformable metal slab.
- the surface equations are r 1 ⁇ , r 2 ⁇ , and r 3 ⁇ respectively , as follows:
- the cylindrical coordinate system is established with the center O of the middle position of the roll body of the sinusoidal corrugated roll as the origin, and (r, ⁇ , z) is the coordinate of any point in the coordinate system, then the contact surface r 1 ⁇ between the corrugated roll and the hard-to-deform metal slab is :
- l is the horizontal projection length of the contact arc between the roll and the slab during rolling
- the undetermined parameter A 2 is a constant that changes with the rolling process parameters.
- the rolling process parameters include the metal type, the thickness of the composite slab entrance, the reduction volume and inlet velocity as well as roll speed and roll radius.
- step 4.2 according to the properties of the flow function and considering the characteristics of the roll shape of the sine corrugated roll, the velocity field and strain velocity field of the corrugated deformation zone of the composite slab are established, as follows:
- v 1r , v 1 ⁇ , v 1z are the velocity components in the diameter, circumference and width directions of the hard-to-deform metal slab, respectively;
- the undetermined parameter ⁇ 1 is a constant that varies with the rolling process parameters including the metal type, the entry thickness of the clad slab, the reduction and entry speed, and the roll speed and roll radius; are the partial derivatives of ⁇ 1 with respect to ⁇ and r, respectively;
- step 4.4 calculates the total power functional J * of the slab corrugation rolling at any time t according to the velocity field, the strain velocity field, and the slab deformation resistance, as follows:
- step 4.5 calculates the minimum value of the total power functional at any time t According to the relationship between the total power functional and the rolling force: Calculate the rolling force F at any time t, and ⁇ is the arm coefficient.
- M is the rolling mill stiffness
- the present invention has the following advantages:
- the invention predicts the rolling force in the rolling process of the corrugated roller, and the real-time predicted rolling force is closer to the actual value; It solves the problem of real-time rolling force prediction under different production conditions; the invention is safe, reliable, accurate in calculation, can calculate the rolling force in the continuous rolling process online and in real time, and can be applied to copper/aluminum, The setting of rolling force in the process of corrugated rolling of various metals such as magnesium/aluminum, titanium/stainless steel and titanium/aluminum, and then adjust the roll gap of the rolling mill in rolling production, improve the accuracy of product thickness control.
- Fig. 1 is a schematic diagram of a metal clad plate sinusoidal roll corrugation deformation zone in an embodiment of the present invention
- Fig. 2 is the flow chart of the rolling force calculation method of the sinusoidal roll corrugation rolling of metal clad plates in the embodiment of the present invention
- Step 4 Using the minimization of the total power functional in the rolling deformation zone, calculate the rolling force F at any time t during the sinusoidal roll corrugation rolling process of the metal clad plate, as follows:
- Step 4.1 According to the characteristics of the sinusoidal corrugated roller, establish the equations describing the contact surface between the corrugated roller and the copper plate, the contact surface between the flat roller and the aluminum plate, and the contact surface between the hard-to-deform metal and the aluminum plate, respectively r 1 ⁇ , r 2 ⁇ , r 3 ⁇ ;
- a cylindrical coordinate system is established with the center O of the middle position of the roll body of the sinusoidal corrugated roll as the origin, and (r, ⁇ , z) is the coordinate of any point in the coordinate system, then the contact surface r 1 ⁇ between the corrugated roll and the copper plate is:
- l is the horizontal projection length of the contact arc between the roll and the slab during rolling
- the undetermined parameter A 2 is a constant that changes with the rolling process parameters.
- the rolling process parameters include the metal type, the thickness of the composite slab entrance, the reduction volume and inlet velocity as well as roll speed and roll radius;
- Step 4.2 According to the properties of the flow function, considering the characteristics of the sinusoidal corrugated roll, establish the velocity field and strain velocity field of the corrugated deformation zone of the composite slab;
- strain velocity components in the diameter, circumference and width directions of the copper plate are the strain velocity components in the diameter, circumference and width directions of the copper plate, respectively; is the velocity component of shear strain in the circumferential direction of the copper plate on the circumference and width section; is the shear strain velocity component on the diameter and width section of the copper plate, pointing to the width direction; is the velocity component of the shear strain on the circumference and width of the copper plate, pointing in the width direction and are the partial derivatives of v 1r , v 1 ⁇ , and v 1z with respect to r, respectively; and are the partial derivatives of v 1r , v 1 ⁇ , and v 1z with respect to ⁇ ; and are the partial derivatives of v 1r , v 1 ⁇ , and v 1z with respect to z, respectively;
- v 2r , v 2 ⁇ , v 2z are the velocity components in the diameter, circumference and width directions of the aluminum plate, respectively; is the flow function of the aluminum plate, and the undetermined parameter ⁇ 2 is a constant that varies with the rolling process parameters, including the metal type, the thickness of the entrance of the composite slab, the reduction and the entrance speed, and the speed of the roll and the radius of the roll; are the partial derivatives of ⁇ 2 with respect to ⁇ and r, respectively;
- Step 4.4 According to the velocity field, strain velocity field, and slab deformation resistance, calculate the total power functional J * of slab corrugation rolling at any time t, as follows:
- M is the contact point between the refractory metal and the corrugated roll
- NO is the angle between NO and the central line OO 2 of the roll
- N is the contact point of the easily deformable metal and the flat roll.
- Step 5 Calculate the roll gap S of the corrugated rolls at any time t according to the rolling force F, and set the roll gap of the rolling mill to S according to the actual rolling procedure to carry out normal production;
- Figure 3 shows the predicted value of the rolling force with time for the sinusoidal roll corrugation of the copper-aluminum clad plate.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
Abstract
本发明提供一种金属复合板正弦辊型波纹轧辊缝的设定方法,包括:按照某道次工艺规程数据分别确定难变形金属板坯和易变形金属板坯的入口厚度、出口厚度、宽度以及轧制温度;检测轧辊转速,金属复合板坯入口速度,获取波纹轧辊名义半径和平辊半径,波纹辊与难变形金属板坯、平辊与易变形金属板坯之间的摩擦因数;确定正弦辊型波纹辊振幅、轧辊上完整正弦波纹个数,并计算一个完整波形轧制所需的时间;利用轧制变形区总功率泛函最小化,计算金属复合板正弦辊型波纹轧过程中任一时刻的轧制力;根据轧制力F,计算任一时刻t的波纹辊辊缝S,根据实际轧制规程,将轧机辊缝设定成S,进行正常生产。
Description
本发明属于轧制技术领域,特别涉及一种金属复合板正弦辊型波纹轧辊缝的设定方法。
金属复合板充分发挥各组元材料的优势,改善了单一材料的综合性能,极大提高了材料的强度、抗腐蚀性和导电性等,被广泛应用在汽车、航空航天、医药、海洋等行业。目前金属复合板的加工方式主要有铸轧法、爆炸复合法、扩散焊接法及轧制复合法等,其中轧制复合法具有生产效率高、易于实现工业化批量生产等优点。
传统平辊复合轧制技术目前仍存在结合界面连接强度低、板形差、残余应力大等难以解决的问题。近年来提出了一种新的波纹辊轧制复合技术(专利授权公告号CN103736728B、CN105478476B),波纹辊对应难变形金属,平辊对应易变形金属,可以有效解决以上难题,提高金属复合板的结合强度,获得性能优异的金属复合板。
板材轧制之前轧机辊缝的调整对板厚精度和板形质量有着重要的影响,而轧制力是轧制自动化控制数学模型的核心,直接影响轧制规程制定和辊缝调整。目前波纹轧轧制力主要采用有限元获得,但有限元法计算时间长,每次计算只能是对一个具体工艺的结果进行显示,计算速度慢,后处理繁琐,导致现有技术中辊缝调整存在问题。
发明内容
本发明针对上述问题提供了一种金属复合板正弦辊型波纹轧辊缝的设定方 法。
为达到上述目的本发明采用了以下技术方案:
一种金属复合板正弦辊型波纹轧辊缝的设定方法,包括以下步骤:
步骤1:按照某道次工艺规程数据分别确定难变形金属板坯和易变形金属板坯的入口厚度h
1i和h
2i、出口厚度h
1f和h
2f、宽度b以及轧制温度T
temp;
步骤2:检测轧辊转速ω,金属复合板坯入口速度v
0,获取轧辊半径R
0,波纹辊与难变形金属板坯、平辊与易变形金属板坯之间的摩擦因数分别为m
1和m
2;
步骤3:确定正弦辊型波纹辊参数:正弦波纹辊型的振幅A
1,轧辊上完整正弦波纹个数B,计算一个完整波形轧制所需的时间T;
步骤4:利用轧制变形区总功率泛函最小化,计算金属复合板正弦辊型波纹轧过程中任一时刻t的轧制力F,具体如下:
步骤4.1:根据正弦波纹辊辊型特点,建立描述波纹辊与难变形金属板坯接触面、平辊与易变形金属板坯接触面、难变形金属与易变形金属板坯接触面方程分别为r
1θ、r
2θ、r
3θ;
步骤4.2:根据流函数的性质,考虑正弦波纹辊辊型特点,建立复合板坯波纹轧变形区的速度场和应变速度场;
步骤4.3:根据难变形金属板坯和易变形金属板坯轧制温度T
temp、实际轧制材料类型及轧制规程,得到板坯的变形抗力:
步骤4.4:根据速度场、应变速度场、板坯变形抗力,计算板坯波纹轧任一时刻t的总功率泛函;
步骤4.5:计算任一时刻t时总功率泛函的最小值,根据总功率泛函与轧制力之间的关系,计算任一时刻t的轧制力F;
步骤5:根据轧制力F,计算任一时刻t的波纹辊辊缝S,根据实际轧制规程,将轧机辊缝设定成S,进行正常生产。
进一步,所述步骤3:计算一个完成波形轧制所需的时间T,具体如下:
再进一步,所述步骤4.1:根据正弦波纹辊辊型特点,建立描述波纹辊与难变形金属板坯接触面、平辊与易变形金属板坯接触面、难变形金属与易变形金属板坯接触面方程分别为r
1θ、r
2θ、r
3θ,具体如下:
以正弦波纹型轧辊辊身中间位置的圆心O为原点建立柱坐标系,(r,θ,z)为该坐标系中任意一点的坐标,则波纹辊与难变形金属板坯接触面r
1θ为:
r
1θ=R
0+A
1 sin[B(θ+ωt)]
平辊与易变形金属板坯接触面方程r
2θ为:
难变形金属与易变形金属板坯接触面方程r
3θ为:
其中,l为轧制时轧辊与板坯接触弧水平投影长度,待定参数A
2是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径。
更进一步,所述步骤4.2根据流函数的性质,考虑正弦波纹辊辊型特点,建立复合板坯波纹轧变形区的速度场和应变速度场,具体如下:
难变形金属轧制变形区的速度场为:
v
1z=0
其中,v
1r、v
1θ、v
1z分别为难变形金属板坯的直径、圆周和宽度方向的速度分量;
为难变形金属板坯的流函数,待定参数β
1是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径;
分别为φ
1关于θ、r的偏导数;
难变形金属轧制变形区的应变速度场为:
其中,
分别为难变形金属板坯的直径、圆周和宽度方向的应变速度分量;
为难变形金属板坯圆周和宽度截面上,指向圆周方向的切应变速度分量;
为难变形金属板坯直径和宽度截面上,指向宽度方向的切应变速度分量;
为难变形金属板坯圆周和宽度截面上,指向宽度方向的切应变速度分量;
和
分别为v
1r、v
1θ、v
1z关于r的偏导数;
与
分别为v
1r、v
1θ、v
1z关于θ的偏导数;
与
分别为v
1r、v
1θ、v
1z关于z的偏导数;
易变形金属轧制变形区的速度场为:
v
2z=0
其中,v
2r、v
2θ、v
2z分别为易变形金属板坯的直径、圆周和宽度方向的速度分量;
为易变形金属板坯的流函数,待定参数β
2是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径;
分别为φ
2关于θ、r的偏导数;
易变形金属轧制变形区的应变速度场为:
其中,
分别为易变形金属板坯的直径、圆周和宽度方向的应变速度分量;
为易变形金属板坯圆周和宽度截面上,指向圆周方向的切应变速度分量;
为易变形金属板坯直径和宽度截面上,指向宽度方向的切应变速度分量;
为易变形金属板坯圆周和宽度截面上,指向宽度方向的切应变速度分量;
和
分别为v
2r、v
2θ、v
2z关于r的偏导数;
与
分别为v
2r、v
2θ、 v
2z关于θ的偏导数;
与
分别为v
2r、v
2θ、v
2z关于z的偏导数。
更进一步,所述步骤4.4根据速度场、应变速度场、板坯变形抗力,计算板坯波纹轧任一时刻t的总功率泛函J
*,具体如下:
更进一步,所述步骤5中,波纹辊辊缝S计算公式如下:
M为轧机刚度。
与现有技术相比本发明具有以下优点:
本发明对波纹辊轧制过程中的轧制力进行预测,得到实时预测的轧制力更 接近实际值;本发明在综合考虑轧制过程中各个工艺参数的基础上,精确预测波纹轧过程中的轧制力,解决了在不同生产条件下实时轧制力的预测问题;本发明安全可靠,计算准确,能够在线实时计算得到连续轧制过程中的轧制力,可以应用于铜/铝、镁/铝、钛/不锈钢以及钛/铝等多种不同金属波纹轧复合过程中轧制力的设定,进而调整轧制生产中轧机的辊缝,提高了产品厚度控制的精度。
图1为本发明实施例中金属复合板正弦辊型波纹轧变形区示意图;
图2为本发明实施例中金属复合板正弦辊型波纹轧的轧制力计算方法的流程图;
图3为本发明实施例中金属复合板正弦辊型波纹轧的轧制力随时间变化的预测值。
为了进一步阐述本发明的技术方案,下面通过实施例对本发明进行进一步说明。
本实施例中,以铜板和铝板在正弦辊型波纹辊的轧制过程为例,轧制变形区示意图如图1所示。
实施本发明的一种金属复合板正弦辊型波纹轧辊缝的设定方法,如图2所示,包括以下步骤:
步骤1:按照工艺规程分别确定铜板和铝板的入口厚度h
1i=2mm和h
2i=8mm,出口厚度h
1f=1mm和h
2f=3.8mm,宽度均为b=200mm,轧制温度为室温;
步骤2:检测上下轧辊转速ω=1.3rad/s,金属复合板坯入口速度v
0=0.2m/s,获取轧辊半径R
0=160mm,波纹辊与铜板、平辊与铝板之间的摩擦因数分别为 m
1=0.28和m
2=0.38;
步骤4:利用轧制变形区总功率泛函最小化,计算金属复合板正弦辊型波纹轧过程中任一时刻t的轧制力F,具体如下:
步骤4.1:根据正弦波纹辊辊型特点,建立描述波纹辊与铜板接触面、平辊与铝板接触面、难变形金属与铝板接触面方程分别为r
1θ、r
2θ、r
3θ;
以正弦波纹型轧辊辊身中间位置的圆心O为原点建立柱坐标系,(r,θ,z)为该坐标系中任意一点的坐标,则波纹辊与铜板接触面r
1θ为:
r
1θ=R
0+A
1 sin[B(θ+ωt)]
平辊与铝板接触面方程r
2θ为:
难变形金属与铝板接触面方程r
3θ为:
其中,l为轧制时轧辊与板坯接触弧水平投影长度,待定参数A
2是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径;
步骤4.2:根据流函数的性质,考虑正弦波纹辊辊型特点,建立复合板坯波纹轧变形区的速度场和应变速度场;
难变形金属轧制变形区的速度场为:
v
1z=0
其中,v
1r、v
1θ、v
1z分别为铜板的直径、圆周和宽度方向的速度分量;
为铜板的流函数,待定参数β
1是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径;
分别为φ
1关于θ、r的偏导数;
难变形金属轧制变形区的应变速度场为:
其中,
分别为铜板的直径、圆周和宽度方向的应变速度分量;
为铜板圆周和宽度截面上,指向圆周方向的切应变速度分量;
为铜板直径和宽度截面上,指向宽度方向的切应变速度分量;
为铜板圆周和宽度截面上,指向宽度方向的切应变速度分量
和
分别为v
1r、v
1θ、v
1z关于r的偏导数;
与
分别为v
1r、v
1θ、v
1z关于θ的偏导数;
与
分别为v
1r、v
1θ、v
1z关于z的偏导数;
易变形金属轧制变形区的速度场为:
v
2z=0
其中,v
2r、v
2θ、v
2z分别为铝板的直径、圆周和宽度方向的速度分量;
为铝板的流函数,待定参数β
2是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径;
分别为φ
2关于θ、r的偏导数;
易变形金属轧制变形区的应变速度场为:
其中,
分别为铝板的直径、圆周和宽度方向的应变速度分量;
为铝板圆周和宽度截面上,指向圆周方向的切应变速度分量;
为铝板直径和宽度截面上,指向宽度方向的切应变速度分量;
为铝板圆周和宽度截面上,指向宽度方向的切应变速度分量;
和
分别为v
2r、v
2θ、v
2z关于r的偏导数;
与
分别为v
2r、v
2θ、v
2z关于θ的偏导数;
与
分别为v
2r、v
2θ、v
2z关于z的偏导数;
步骤4.4:根据速度场、应变速度场、板坯变形抗力,计算板坯波纹轧任一时刻t的总功率泛函J
*,具体如下:
步骤5:根据轧制力F,计算任一时刻t的波纹辊辊缝S,根据实际轧制规程,将轧机辊缝设定成S,进行正常生产;
波纹辊辊缝S计算公式如下:
M为轧机刚度。
图3给出了铜铝复合板正弦辊型波纹轧的轧制力随时间变化的预测值。
本发明中轧辊半径=波纹轧辊名义半径=平辊半径。
此外,当采用热轧方法生产复合板时,仅需要在所述步骤4.3中根据板坯轧制温度T
temp、轧制材料类型及轧制规程计算板坯的变形抗力。如轧制Q235钢/304不锈钢复合板,根据轧制规程,得到Q235钢的变形抗力:
得到Q235钢的变形抗力:
以上显示和描述了本发明的主要特征和优点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经 适当组合,形成本领域技术人员可以理解的其他实施方式。
Claims (7)
- 一种金属复合板正弦辊型波纹轧辊缝的设定方法,其特征在于:包括以下步骤:步骤1:按照某道次工艺规程数据分别确定难变形金属板坯和易变形金属板坯的入口厚度h 1i和h 2i、出口厚度h 1f和h 2f、宽度b以及轧制温度T temp;步骤2:检测轧辊转速ω,金属复合板坯入口速度v 0,获取轧辊半径R 0,波纹辊与难变形金属板坯、平辊与易变形金属板坯之间的摩擦因数分别为m 1和m 2;步骤3:确定正弦辊型波纹辊参数:正弦波纹辊型的振幅A 1,轧辊上完整正弦波纹个数B,计算一个完整波形轧制所需的时间T;步骤4:利用轧制变形区总功率泛函最小化,计算金属复合板正弦辊型波纹轧过程中任一时刻t的轧制力F,具体如下:步骤4.1:根据正弦波纹辊辊型特点,建立描述波纹辊与难变形金属板坯接触面、平辊与易变形金属板坯接触面、难变形金属与易变形金属板坯接触面方程分别为r 1θ、r 2θ、r 3θ;步骤4.2:根据流函数的性质,考虑正弦波纹辊辊型特点,建立复合板坯波纹轧变形区的速度场和应变速度场;步骤4.3:根据难变形金属板坯和易变形金属板坯轧制温度T temp、实际轧制材料类型及轧制规程,得到板坯的变形抗力:步骤4.4:根据速度场、应变速度场、板坯变形抗力,计算板坯波纹轧任一时刻t的总功率泛函;步骤4.5:计算任一时刻t时总功率泛函的最小值,根据总功率泛函与轧制力之间的关系,计算任一时刻t的轧制力F;步骤5:根据轧制力F,计算任一时刻t的波纹辊辊缝S,根据实际轧制规程, 将轧机辊缝设定成S,进行正常生产。
- 根据权利要求1所述的一种金属复合板正弦辊型波纹轧辊缝的设定方法,其特征在于:所述步骤4.1:根据正弦波纹辊辊型特点,建立描述波纹辊与难变形金属板坯接触面、平辊与易变形金属板坯接触面、难变形金属与易变形金属板坯接触面方程分别为r 1θ、r 2θ、r 3θ,具体如下:以正弦波纹型轧辊辊身中间位置的圆心O为原点建立柱坐标系,(r,θ,z)为该坐标系中任意一点的坐标,则波纹辊与难变形金属板坯接触面r 1θ为:r 1θ=R 0+A 1sin[B(θ+ωt)]平辊与易变形金属板坯接触面方程r 2θ为:难变形金属与易变形金属板坯接触面方程r 3θ为:其中,l为轧制时轧辊与板坯接触弧水平投影长度,待定参数A 2是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径。
- 根据权利要求1所述的一种金属复合板正弦辊型波纹轧辊缝的设定方法,其特征在于:所述步骤4.2根据流函数的性质,考虑正弦波纹辊辊型特点,建立 复合板坯波纹轧变形区的速度场和应变速度场,具体如下:难变形金属轧制变形区的速度场为:v 1z=0其中,v 1r、v 1θ、v 1z分别为难变形金属板坯的直径、圆周和宽度方向的速度分量; 为难变形金属板坯的流函数,待定参数β 1是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径; 分别为φ 1关于θ、r的偏导数;难变形金属轧制变形区的应变速度场为:其中, 分别为难变形金属板坯的直径、圆周和宽度方向的应变速度分量; 为难变形金属板坯圆周和宽度截面上,指向圆周方向的切应变速度分量; 为难变形金属板坯直径和宽度截面上,指向宽度方向的切应变速度分量; 为难变形金属板坯圆周和宽度截面上,指向宽度方向的切应变速度分量; 和 分别为v 1r、v 1θ、v 1z关于r的偏导数; 与 分别为v 1r、v 1θ、v 1z关于θ的偏导数; 与 分别为v 1r、v 1θ、v 1z关于z的偏导数;易变形金属轧制变形区的速度场为:v 2z=0其中,v 2r、v 2θ、v 2z分别为易变形金属板坯的直径、圆周和宽度方向的速度分量; 为易变形金属板坯的流函数,待定参数β 2是一个随轧制工艺参数变化的常数,所述轧制工艺参数包括金属类型、复合板坯入口厚度、压下量和入口速度以及轧辊速度和轧辊半径; 分别为φ 2关于θ、r的偏导数;易变形金属轧制变形区的应变速度场为:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/683,338 US12023720B2 (en) | 2021-03-01 | 2022-02-28 | Method for setting roll gap of sinusoidal corrugated rolling for metal composite plate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110227234.XA CN113020287B (zh) | 2021-03-01 | 2021-03-01 | 一种金属复合板正弦辊型波纹轧辊缝的设定方法 |
CN202110227234.X | 2021-03-01 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/683,338 Continuation US12023720B2 (en) | 2021-03-01 | 2022-02-28 | Method for setting roll gap of sinusoidal corrugated rolling for metal composite plate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022183516A1 true WO2022183516A1 (zh) | 2022-09-09 |
Family
ID=76465258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/079847 WO2022183516A1 (zh) | 2021-03-01 | 2021-03-10 | 一种金属复合板正弦辊型波纹轧辊缝的设定方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113020287B (zh) |
WO (1) | WO2022183516A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116000106A (zh) * | 2023-03-27 | 2023-04-25 | 东北大学 | 一种冷连轧升降速阶段的轧制力设定方法 |
CN116078831A (zh) * | 2023-03-22 | 2023-05-09 | 太原理工大学 | 一种板带冷轧动态减薄生产过程中轧制力的计算方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114433625B (zh) * | 2022-02-18 | 2024-04-30 | 太原理工大学 | 一种双层金属复合板波-平铸轧装置及方法 |
CN116393529B (zh) * | 2023-06-07 | 2023-08-18 | 太原理工大学 | 金属层合板热轧过程中轧制力确定方法、装置及电子设备 |
CN118023303B (zh) * | 2024-04-15 | 2024-06-21 | 太原理工大学 | 一种薄带轧制生产过程中的辊缝设定方法、装置及设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001212608A (ja) * | 2000-02-03 | 2001-08-07 | Sumitomo Metal Ind Ltd | 熱間連続圧延機における板厚制御方法 |
CN101927267A (zh) * | 2009-06-22 | 2010-12-29 | 宝山钢铁股份有限公司 | 一种精轧带钢辊缝的控制方法及装置 |
CN110252806A (zh) * | 2019-05-13 | 2019-09-20 | 太原理工大学 | 一种提高双金属复合板结合强度的轧制方法 |
CN110614275A (zh) * | 2019-11-12 | 2019-12-27 | 太原理工大学 | 一种强变形轧制双金属复合板的方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS532414B2 (zh) * | 1973-09-28 | 1978-01-27 | ||
CN101201871B (zh) * | 2007-12-18 | 2010-06-09 | 东北大学 | 一种预测热轧过程轧制力的刚塑性有限元方法 |
CN101825454A (zh) * | 2010-05-13 | 2010-09-08 | 天津大学 | 基于双向测量的温度误差补偿方法 |
CN103736728B (zh) * | 2014-01-22 | 2015-07-15 | 太原科技大学 | 一种轧制金属复合板带的方法 |
JP6506678B2 (ja) * | 2015-11-02 | 2019-04-24 | 株式会社神戸製鋼所 | 自動車構造部材用アルミニウム合金板およびその製造方法 |
CN105583238B (zh) * | 2016-01-25 | 2017-06-16 | 东北大学 | 一种热轧带钢宽度预测方法 |
CN109158430B (zh) * | 2018-07-16 | 2019-11-01 | 太原理工大学 | 一种波纹辊轧机液压伺服系统位置补偿控制方法 |
CN109794512B (zh) * | 2019-01-11 | 2021-04-20 | 太原理工大学 | 一种叠片式结构的层合板轧制用波纹轧辊 |
-
2021
- 2021-03-01 CN CN202110227234.XA patent/CN113020287B/zh active Active
- 2021-03-10 WO PCT/CN2021/079847 patent/WO2022183516A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001212608A (ja) * | 2000-02-03 | 2001-08-07 | Sumitomo Metal Ind Ltd | 熱間連続圧延機における板厚制御方法 |
CN101927267A (zh) * | 2009-06-22 | 2010-12-29 | 宝山钢铁股份有限公司 | 一种精轧带钢辊缝的控制方法及装置 |
CN110252806A (zh) * | 2019-05-13 | 2019-09-20 | 太原理工大学 | 一种提高双金属复合板结合强度的轧制方法 |
CN110614275A (zh) * | 2019-11-12 | 2019-12-27 | 太原理工大学 | 一种强变形轧制双金属复合板的方法 |
Non-Patent Citations (1)
Title |
---|
LIU, YUANMING: "Research on Control Mathematical Models of Force and Shape in Plate and Strip Rolling Based on Energy Approach", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, ENGINEERING SCIENCES I, 1 September 2017 (2017-09-01), pages 1 - 167, XP055964368, [retrieved on 20220923] * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116078831A (zh) * | 2023-03-22 | 2023-05-09 | 太原理工大学 | 一种板带冷轧动态减薄生产过程中轧制力的计算方法 |
CN116078831B (zh) * | 2023-03-22 | 2023-06-06 | 太原理工大学 | 一种板带冷轧动态减薄生产过程中轧制力的计算方法 |
CN116000106A (zh) * | 2023-03-27 | 2023-04-25 | 东北大学 | 一种冷连轧升降速阶段的轧制力设定方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113020287A (zh) | 2021-06-25 |
CN113020287B (zh) | 2023-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022183516A1 (zh) | 一种金属复合板正弦辊型波纹轧辊缝的设定方法 | |
US12023720B2 (en) | Method for setting roll gap of sinusoidal corrugated rolling for metal composite plate | |
CN116078831B (zh) | 一种板带冷轧动态减薄生产过程中轧制力的计算方法 | |
CN116197254A (zh) | 一种带钢冷连轧过程轧制力预测方法 | |
KR20190128182A (ko) | 클래드 강관 제조 방법 | |
CN116140382A (zh) | 一种热轧精轧板带材生产过程中轧制力的预测方法 | |
CN115990624A (zh) | 一种差厚板增厚制备过程中轧制力的预测方法 | |
CN106583609A (zh) | 一种弱刚度环件轧制过程中抱辊力的控制方法及系统 | |
Zhang et al. | Research on roll force for variable gauge rolling | |
Liu et al. | Prediction and analysis of the force and shape parameters in variable gauge rolling | |
CN104985007B (zh) | 一种铜铝三明治轧制复合带头缺陷长度的预测方法 | |
Wei et al. | A new analytical model to predict the profile and stress distribution of tube in three-roll continuous retained mandrel rolling | |
Ma et al. | A new model for thermo-mechanical coupled analysis of hot rolling | |
JPH105837A (ja) | 冷間タンデム圧延方法および冷間タンデム圧延設備 | |
Jiang et al. | Modeling and analysis of deformation characteristics for the two-layered metal clad plate produced by asymmetric rolling | |
Wei et al. | Development of Cold‐Rolling Edge‐Drop Control Technology for Electrical Steel: A Review | |
CN114602980B (zh) | 一种中厚板在同径异速轧制后心部等效应变的测量方法 | |
Sun et al. | Experimental investigation on cross wedge rolling of composite 42CrMo/Q235 laminated shaft | |
CN110193523B (zh) | 一种二次冷轧过程轧辊表面油膜厚度预测方法 | |
CN104438354B (zh) | 一种克服板材粗轧过程中产生侧弯的方法 | |
CN117037973A (zh) | 一种求解双层金属同步和异步轧制复合板层厚的方法 | |
CN111036686A (zh) | 一种冷轧机支撑辊偏心的预估补偿方法 | |
Lekhov et al. | Production of three-layer steel bimetallic strips in the unit of continuous casting and deformation. Report 2 | |
CN118321354A (zh) | 一种对于热轧厚度减薄过程中轧制力的预测方法及装置 | |
JP4687629B2 (ja) | 金属の連続鋳造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21928597 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21928597 Country of ref document: EP Kind code of ref document: A1 |