WO2022181677A1 - 紫外線レーザ光発生装置 - Google Patents

紫外線レーザ光発生装置 Download PDF

Info

Publication number
WO2022181677A1
WO2022181677A1 PCT/JP2022/007567 JP2022007567W WO2022181677A1 WO 2022181677 A1 WO2022181677 A1 WO 2022181677A1 JP 2022007567 W JP2022007567 W JP 2022007567W WO 2022181677 A1 WO2022181677 A1 WO 2022181677A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
wavelength conversion
section
laser light
Prior art date
Application number
PCT/JP2022/007567
Other languages
English (en)
French (fr)
Inventor
信弘 梅村
共住 神村
秀春 堀越
Original Assignee
信弘 梅村
学校法人常翔学園
東ソ-・エスジ-エム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信弘 梅村, 学校法人常翔学園, 東ソ-・エスジ-エム株式会社 filed Critical 信弘 梅村
Priority to JP2023502476A priority Critical patent/JPWO2022181677A1/ja
Priority to US18/547,616 priority patent/US20240131209A1/en
Priority to CN202280016813.2A priority patent/CN116888528A/zh
Priority to EP22759712.7A priority patent/EP4300186A1/en
Priority to KR1020237032354A priority patent/KR20230145205A/ko
Publication of WO2022181677A1 publication Critical patent/WO2022181677A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3532Arrangements of plural nonlinear devices for generating multi-colour light beams, e.g. arrangements of SHG, SFG, OPO devices for generating RGB light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • A61L2/0047Ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3507Arrangements comprising two or more nonlinear optical devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/392Parametric amplification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation

Definitions

  • the present invention relates to an ultraviolet laser light generator.
  • it relates to a laser light generator with a wavelength of 399.08 nm and a laser light generator with a wavelength of 228.04 nm.
  • CROSS REFERENCE TO RELATED APPLICATIONS This application claims priority from Japanese Patent Application No. 2021-027497 filed on February 24, 2021, the entire description of which is specifically incorporated herein by reference as disclosure.
  • Laser light with a wavelength in the range of 200 to 280 nm is also called deep ultraviolet, and is used in various fields such as semiconductor exposure equipment, wafer inspection, and sterilization equipment.
  • Excimer lasers and semiconductor lasers are examples of light sources for deep ultraviolet laser light generators.
  • excimer lasers have the disadvantages of using toxic gas and requiring maintenance costs.
  • the semiconductor laser has a weak output and is difficult to develop.
  • deep ultraviolet laser beams of various wavelengths can be obtained by using a laser beam generator that uses a solid-state laser oscillator having an oscillation wavelength in the 1 ⁇ m band as a basic light source in combination with a wavelength conversion element using a nonlinear crystal or the like. (Patent Documents 1 and 2).
  • the laser light wavelength obtained by wavelength conversion by harmonic generation is limited to a wavelength that is an integral fraction of the wavelength of the basic light source.
  • wavelength conversion is performed by an optical parametric oscillator, but at that time either the output of either the signal light or the idler light is not used, so the efficiency of the entire system is said to be low. It had its shortcomings.
  • a plurality of laser oscillators may be used to obtain laser light with a desired wavelength (Patent Documents 3 and 4).
  • Patent Documents 3 and 4 since it is a two-laser system, there are concerns about cost and efficiency.
  • Patent Document 1 Japanese Patent Laid-Open Publication No. 09-292638
  • Patent Document 2 Japanese Patent Laid-Open Publication No. 11-258645
  • Patent Document 3 Japanese Patent Laid-Open Publication No. 2003-114454 The entire descriptions of 1-4 are specifically incorporated herein as disclosure.
  • a first object of the present invention is to provide a laser light generator of 228.04 nm, which is a deep ultraviolet ray that has never been provided before, using a single semiconductor laser oscillator. It is an object of the present invention to provide a 399.08 nm ultraviolet laser light generator that uses a single semiconductor laser oscillator and can be used as a light source for a 228.04 nm deep ultraviolet laser light generator that has never been provided before. .
  • the present invention is as follows.
  • an excitation light source unit that converts a laser beam with a wavelength of 1064.2 nm into a second harmonic to generate a laser beam with a wavelength of 532.1 nm; an optical parametric oscillator that generates signal light with a wavelength of 798.15 nm and idler light with a wavelength of 1596.3 nm using laser light with a wavelength of 532.1 nm generated by the excitation light source as excitation light; a first wavelength converter that sum-frequency-generates idler light with a wavelength of 1596.3 nm and light with a wavelength of 532.1 nm to generate light with a wavelength of 399.08 nm; a second wavelength conversion section for generating .08 nm light; The optical path of the laser light in the order of the excitation light source section, the optical parametric oscillation section, the first wavelength conversion section and the second wavelength conversion section, or in the order of the excitation light source section, the optical parametric oscillation section, the second wavelength conversion section
  • An ultraviolet laser light generator with a wavelength of 399.08 nm [2] The apparatus according to [1], wherein the 532.1 nm light that is sum-frequency-generated by the first wavelength conversion section is 532.1 nm light that has not been converted by the optical parametric oscillation section. [3] The device according to [1] or [2], which has an optical path of the laser beam in the order of the excitation light source section, the optical parametric oscillation section, the first wavelength conversion section, and the second wavelength conversion section. [4] [1] A laser light generator with a wavelength of 399.08 nm according to any one of [1] to 3; , an ultraviolet laser light generator with a wavelength of 228.04 nm.
  • ADVANTAGE OF THE INVENTION it is possible to provide a laser generator with excellent operability that can easily and efficiently generate laser light in the wavelength range of 228.04 nm, which is deep ultraviolet rays that may be used for sterilization.
  • a 399.08 nm ultraviolet laser beam generator that can be used as a light source for a 228.04 nm laser beam generator.
  • FIG. 1 shows a schematic illustration of a laser generator of the present invention.
  • FIG. 2 shows a schematic explanatory diagram of one embodiment of the laser generator of the present invention.
  • FIG. 3 shows one embodiment of the laser generator of the present invention.
  • FIG. 4 shows that the optical summation wavelength of the idler light ⁇ i of wavelength 1596.3 nm generated by the OPO and the excitation light of 532.1 nm is 399.08 nm, and the wavelength of 798.15 nm generated by the same OPO.
  • FIG. 10 is an explanatory diagram showing that 399.08 nm light, which is the second harmonic of the signal light ⁇ s, matches.
  • a first aspect of the laser light generator of the present invention is an ultraviolet laser light generator with a wavelength of 399.08 nm, which device comprises: an excitation light source unit that converts a laser beam with a wavelength of 1064.2 nm into a second harmonic to generate a laser beam with a wavelength of 532.1 nm; an optical parametric oscillator that generates signal light with a wavelength of 798.15 nm and idler light with a wavelength of 1596.3 nm using laser light with a wavelength of 532.1 nm generated by the excitation light source as excitation light; a first wavelength converter that sum-frequency-generates idler light with a wavelength of 1596.3 nm and light with a wavelength of 532.1 nm to generate light with a wavelength of 399.08 nm; including a second wavelength conversion section that generates 08 nm light; The optical path of the laser light in the order of the excitation light source section, the optical parametric oscillation section, the first wavelength conversion section and the second wavelength conversion section,
  • a second aspect of the laser light generating device of the present invention is an ultraviolet laser light generating device with a wavelength of 228.04 nm, and this device comprises the wavelength 399.08 nm laser light generating device of the first aspect of the present invention, and A third wavelength conversion unit sum-frequency-generates the 399.08 nm light and the 532.1 nm light to generate the 228.04 nm light.
  • Outline of the laser light generating device which has an optical path of the laser light in the order of the excitation light source section, the optical parametric oscillation section, the first wavelength conversion section, and the second wavelength conversion section.
  • An explanatory diagram is shown in FIG.
  • the laser light generating device of the first aspect of the present invention is a device including 10 to 40 in FIG. and 40 is a second wavelength converter.
  • the order of the first wavelength conversion section 30 and the second wavelength conversion section 40 may be reversed.
  • the laser light generator according to the second aspect of the present invention includes a third wavelength conversion section 50 in addition to 10 to 40 in FIG.
  • FIG. 2 is a schematic explanatory diagram of one embodiment of the laser light generating device of the present invention.
  • the excitation light source section includes SHG
  • the first wavelength conversion section 30 includes SFG
  • the second wavelength conversion section 40 includes SHG is included
  • the third wavelength converter 50 indicates that SFG is included.
  • FIG. 3 shows an explanatory diagram of one embodiment of the laser light generator of the present invention.
  • the excitation light source section 10 is a section that converts a laser beam with a wavelength of 1064.2 nm into a second harmonic to generate a laser beam with a wavelength of 532.1 nm.
  • An excitation light source that generates laser light with a wavelength of 1064.2 nm can be, for example, a Nd:YAG (Nd 3+ :Y 3 Al 5 O 12 ) laser.
  • the laser light with a wavelength of 1064.2 nm is pulsed laser light, and the time width of the pulse can be nanoseconds or picoseconds.
  • the excitation light source section 10 may include, for example, an excitation light source and a nonlinear optical crystal that converts this laser light into a 532.1 nm laser light that is a second harmonic (SHG).
  • the nonlinear optical crystal can be, for example, a KTP crystal, indicated as crystal 1 in FIG.
  • the crystal 1 can be, for example, BBO, LBO, MgO-added MgO:PPLT, or PPKTP, in addition to the KTP crystal.
  • PP in "PP+crystal name" is an abbreviation for "Periodically Poled".
  • a KTP crystal is used as the nonlinear optical crystal, as shown in FIG.
  • it is converted into a 532.1 nm laser beam, which is the second harmonic.
  • Phase matching in wavelength conversion is type II.
  • an LBO or BBO crystal is used for the crystal 1, after the polarization direction is set perpendicular to the paper surface through a ⁇ /2 plate, the light is passed through the crystal 1 to convert it into a 532.1 nm laser beam, which is the second harmonic. .
  • Type 2 phase matching means phase matching in which second harmonics are generated from incident light of different rays (i.e., different orthogonal polarizations), and incident light of the same ray (i.e., same polarization) is different from incident light. It is distinguished from Type 1 phase matching, which generates second harmonics of different polarizations. Furthermore, a phase match in which the incident light and the second harmonic all have the same extraordinary ray direction is referred to herein as Type 0.
  • a dichroic mirror (M1 in FIG. 3) can be provided between the excitation light source unit 10 and the OPO20.
  • the dichroic mirror M1 can reflect the 1064.2 nm light contained in the light from the excitation light source unit 10 and turn it into 532.1 nm laser light. Since the 1064.2 nm light is not used in subsequent processes, it is important to separate it from the 532.1 nm laser light to prevent unnecessary damage to optical elements and crystals when focusing lasers of other wavelengths in subsequent processes. It is possible to avoid applying a temperature load to the A 532.1 nm laser beam transmitted through the dichroic mirror M1 is incident on the OPO.
  • the OPO 20 is a part that generates a signal light with a wavelength of 798.15 nm and an idler light with a wavelength of 1596.3 nm by using a laser beam with a wavelength of 532.1 nm generated in the excitation light source as excitation light, and separates the generated signal light.
  • the OPO is composed of a nonlinear optical crystal and two mirrors.
  • the nonlinear optical crystal can be, for example, a BBO crystal or a BiBO crystal, or else either MgO:PPLT or PPKTP.
  • the crystal 2 is cut at a phase matching angle to generate a signal light ⁇ s with a wavelength of 798.15 nm and an idler light ⁇ i with a wavelength of 1596.3 nm.
  • MgO:PPLT and PPKTP are adjusted so as to have a polarization inversion period length capable of generating the above signal light and idler light wavelengths.
  • Two wavelengths emitted from this crystal are amplified by a resonator composed of two mirrors to obtain OPO oscillation.
  • the crystal 2 constituting the optical parametric oscillation unit 20 has a phase matching process of type 1. When the excitation light is horizontally polarized on the plane of the paper, the signal light and the idler light are polarized in the direction perpendicular to the plane of the paper. is doing.
  • the wavelength accuracy of the signal light of the optical parametric oscillator 20 is narrowed by the seed light from the semiconductor laser, and the crystal 2 is desirably controlled to approximately 0.1 nm or less by temperature tuning. As a result, the spectral width and variation of the violet light wavelength of 399.08 nm can be reduced to about 0.05 nm or less.
  • the first wavelength conversion unit 30 converts the idler light with a wavelength of 1596.3 nm generated from the OPO and the light with a wavelength of 532.1 nm generated by the excitation light source unit that has passed through the OPO into light with a wavelength of 399.08 nm through optical sum-frequency mixing. is the part that generates The 532.1 nm light that is sum-frequency generated by the first wavelength converter 30 is the 532.1 nm light that has not been converted by the OPO 20 .
  • a nonlinear optical crystal such as a BBO crystal, for example, can be used for the crystal 3 shown in FIG.
  • the second wavelength conversion section 40 is an SHG section for converting signal light with a wavelength of 798.15 nm to a wavelength of 399.08 nm.
  • a nonlinear optical crystal such as an LBO or BBO crystal can be used.
  • LBO or BBO it can be, for example, a nonlinear optical crystal such as MgO:PPLT.
  • MgO:PPLT MgO:PPLT is used as the crystal 2 of the optical parametric oscillator 20 .
  • the crystal 4 is adjusted to a poling period length that generates SHG with a wavelength of 798.15 nm.
  • the polarization direction of the 399.08 nm light is horizontal to the plane of the paper.
  • the order of the first wavelength conversion section 30 and the second wavelength conversion section 40 can be changed. That is, in the ultraviolet laser light generating device (first aspect) of the present invention having a wavelength of 399.08 nm, the excitation light source section 10, the optical parametric oscillation section 20, the first wavelength conversion section 30 and the second wavelength conversion section 40 are arranged in this order, Alternatively, the optical path of the laser light can be provided in the order of the excitation light source section 10, the optical parametric oscillation section 20, the second wavelength conversion section 40, and the first wavelength conversion section 30.
  • the order of the first wavelength conversion unit 30 and the second wavelength conversion unit 40 can be changed.
  • the third wavelength converter 50 converts the light with a wavelength of 532.1 nm generated by the excitation light source that has passed through the OPO 20, the first wavelength converter 30 and the second wavelength converter 40 into the first wavelength converter 30 and the second wavelength converter. This is a portion for generating light with a wavelength of 228.04 nm from the light with a wavelength of 399.08 nm generated in the portion 40 by optical sum frequency mixing.
  • the 532.1 nm light generated by the sum frequency in the third wavelength conversion section 50 is the 532.1 nm light that has not been converted by the OPO 20 and has passed through the first wavelength conversion section 30 and the second wavelength conversion section 40 .
  • a nonlinear optical crystal such as BBO or KBBF crystal can be used.
  • the separation unit 60 Behind the third wavelength conversion section 50 is a separation section 60 (not shown in FIGS. 1 and 2) for separating laser light of various wavelengths generated during the process of wavelength conversion and taking out 228.04 nm light. ) can be provided.
  • the separation unit 60 can be, for example, a prism (see FIG. 3). There is no particular limitation as long as the prism can remove laser light with a wavelength other than 228.04 nm generated in the process of wavelength conversion. instead, it can be, for example, a quartz prism, a MgF2 prism, or the like.
  • the separation unit 60 separates light with wavelengths other than 228.04 nm to obtain laser light with a wavelength of 228.04 nm.
  • FIG. 3 is a case where the optical parametric oscillator is of type 1 phase matching, but when the optical parametric oscillator is of type 0 phase matching, the crystals 3 and 4 are both MgO:PPLT Use
  • these examples are merely illustrations, and the present invention is not intended to be limited to these examples.
  • SFG has the following relationship when the incident light wavelength is ⁇ 1 , another incident light wavelength is ⁇ 2 , and the optical sum frequency wavelength is ⁇ 3 .
  • the OPO excited at 532.1 nm which is the second harmonic of the 1064.2 nm laser beam, generates the signal light ⁇ s of 798.15 nm and the idler light ⁇ i of 1596.3 nm.
  • the wavelength of the optical sum frequency generated from the idler light ⁇ i having a wavelength of 1596.3 nm and the excitation light of 532.1 nm is 399.08 nm, and this wavelength is 798 nm in the second wavelength converter.
  • the characteristic that the second harmonic generated from the signal light ⁇ s of 0.15 nm coincides with the wavelength of 399.08 nm is utilized (see FIG. 4). Therefore, a more efficient ultraviolet laser light generator with a wavelength of 399.08 nm can be realized.
  • both the output light of the OPO signal light and the idler light can be used to generate ultraviolet light with a wavelength of 399.08 nm.
  • the sum frequency generation of light generated from allows the generation of deep UV light with a wavelength of 228.04 nm. Therefore, a more efficient deep ultraviolet laser light generator with a wavelength of 228.04 nm can be realized.
  • the laser light with a wavelength of 399.08 nm obtained by the device of the present invention can be used as a light source with other wavelengths in combination with a nonlinear crystal or the like.
  • the laser light with a wavelength of 228.04 nm obtained by the device of the present invention is close to the wavelength of 222 nm, it is considered to have a sterilizing effect.
  • both signal light and idler light can be used, so it is possible to generate deep ultraviolet laser light more efficiently. For this reason, it is possible to irradiate ultraviolet rays with a wavelength of 399.08 nm or 228.04 nm over a wide range and to irradiate liquids such as water, and it is useful for applications such as entrances and exits of unspecified facilities and sterilization of liquids. . Additionally, the generated laser light can, if desired, be directed at the target via a laser light guide such as a fiber. Therefore, for example, it becomes easy to irradiate ultraviolet rays to a portion such as the back side of the structure.
  • the present invention is effective not only in the medical field but also in disinfection work in large facilities.
  • it since it has little effect on the human body, it does not use toxic gases such as ethylene oxide such as ozone, so it has no effect on the human body and is easy to handle.
  • toxic gases such as ethylene oxide such as ozone
  • it since it does not use liquids such as alcohol disinfection, it can also be used for disinfecting paper media such as books that should not be wet.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本発明は、1064.2nmレーザ光を第2高調波に変換して532.1nmレーザ光を生成する励起光源部、532.1nmレーザ光から798.15nmシグナル光と1596.3nmアイドラー光を発生させる光パラメトリック発振部、アイドラー光と532.1nm光を和周波発生させて399.08nm光を発生させる第1波長変換部、及びシグナル光から第2高調波を発生させる第2波長変換部を含む、399.08nm紫外線レーザ光発生装置(第1波長変換部及び第2波長変換部は順不同)。399.08nmレーザ光発生装置、及び399.08nm光と532.1nm光を和周波発生させて228.04nm光を発生させる第3波長変換部を含む、228.04nm紫外線レーザ光発生装置に関する。本発明は、深紫外線の1種である228.04nmレーザ光の高効率かつ簡易な発生装置及びその光源となる399.08nmレーザ光の高効率かつ簡易な発生装置を提供する。

Description

紫外線レーザ光発生装置
 本発明は、紫外線レーザ光発生装置に関する。特に、波長399.08nmレーザ光発生装置及び波長228.04nmレーザ光発生装置に関する。
関連出願の相互参照
 本出願は、2021年2月24日出願の日本特願2021-027497号の優先権を主張し、その全記載は、ここに特に開示として援用される。
 波長が200~280nmの領域にあるレーザ光は深紫外線とも呼ばれ、半導体露光装置やウエハ検査、あるいは殺菌装置などのさまざまな分野で利用されている。深紫外線レーザ光発生装置の光源としては、エキシマレーザや半導体レーザが挙げられるが、エキシマレーザは有毒ガスを使用するうえ、メンテナンスコストがかかるという欠点がある。また、半導体レーザは出力が弱く、開発が困難である。一方、1μm帯に発振波長を有する固体レーザ発振器を基本光源とし、非線形結晶などを用いた波長変換素子部を組み合わせたレーザ光発生装置により、種々の波長の深紫外線レーザ光が得られるようなっている(特許文献1、2)。しかし、高調波発生による波長変換で得られるレーザ光波長は、基本光源の波長の整数分の1の波長に限られていた。また、それ以外の波長のレーザ光をえるためには、光パラメトリック発振器による波長変換を行うが、その際にシグナル光又はアイドラー光のいずれかの出力が利用されないため、システム全体の効率が低いという欠点があった。
 また、所望波長のレーザ光を得るために複数のレーザ発振器を用いることもある(特許文献3、4)。しかし、2台のレーザによるシステムのため、コストや効率の低下が懸念される。
特許文献1:日本特開平09-292638号公報
特許文献2:日本特開平11-258645号公報
特許文献3:日本特開2003-114454号公報
特許文献4:日本特開2007-086104号公報
特許文献1~4の全記載は、ここに特に開示として援用される。
 本発明の第1の目的は、単独の半導体レーザ発振器を用い、かつ従来提供されたことがない深紫外線である228.04nmのレーザ光発生装置を提供することであり、本発明の第2の目的は、単独の半導体レーザ発振器を用い、従来提供されたことがない深紫外線である228.04nmのレーザ光発生装置の光源として利用できる399.08nmの紫外線レーザ光発生装置を提供することにある。
 本発明は、以下の通りである。
 [1]
 波長1064.2nmのレーザ光を第2高調波に変換して波長532.1nmのレーザ光を生成する励起光源部、
 励起光源部で生成した波長532.1nmのレーザ光を励起光として波長798.15nmのシグナル光と波長1596.3nmのアイドラー光を発生させる光パラメトリック発振部、
 波長1596.3nmのアイドラー光と532.1nm光を和周波発生させて、波長399.08nm光を発生させる第1波長変換部、及び
 波長798.15nmのシグナル光から第2高調波である波長399.08nm光を発生させる第2波長変換部を含み、
 励起光源部、光パラメトリック発振部、第1波長変換部及び第2波長変換部の順、または励起光源部、光パラメトリック発振部、第2波長変換部及び第1波長変換部の順にレーザ光の光路を有する、波長399.08nmの紫外線レーザ光発生装置。
 [2]
 第1波長変換部で和周波発生させる532.1nm光は、光パラメトリック発振部で変換されなかった532.1nm光である、[1]に記載の装置。
[3]
 励起光源部、光パラメトリック発振部、第1波長変換部及び第2波長変換部の順にレーザ光の光路を有する、[1]または[2]に記載の装置。
[4]
 [1]~3のいずれかに記載の波長399.08nmレーザ光発生装置、及び
 399.08nm光と532.1nm光を和周波発生させて228.04nm光を発生させる第3波長変換部を含む、波長228.04nmの紫外線レーザ光発生装置。
[5]
 第3波長変換部で和周波発生させる532.1nm光は、光パラメトリック発振部で変換されなかった532.1nm光である、[4]に記載の装置。
[6]
 第3波長変換部の後部に228.04nm光とその他の波長の光を分離する分離部を含む、[4]または[5]に記載の装置。
 本発明によれば、殺菌に用いられる可能性がある深紫外線である228.04nmの波長範囲のレーザ光を高効率かつ簡易に発生させ得る操作性に優れたレーザ発生装置を提供することができる。本発明によれば、228.04nmのレーザ光発生装置の光源として利用できる399.08nmの紫外線レーザ光発生装置を提供することができる。
図1は、本発明のレーザ発生装置の概略説明図を示す。 図2は、本発明のレーザ発生装置の一実施形態の概略説明図を示す。 図3は、本発明のレーザ発生装置の一実施形態を示す。 図4は、OPOで発生する波長1596.3nmのアイドラー光λiと励起光である532.1nm光との光和周発生の波長が399.08nmであり、同じOPOで発生する波長798.15nmのシグナル光λsの第2高調波である399.08nm光とが一致することの説明図を示す。
 本発明のレーザ光発生装置の第1の態様は、波長399.08nmの紫外線レーザ光発生装置であり、この装置は、
 波長1064.2nmのレーザ光を第2高調波に変換して波長532.1nmのレーザ光を生成する励起光源部、
 励起光源部で生成した波長532.1nmのレーザ光を励起光として波長798.15nmのシグナル光と波長1596.3nmのアイドラー光を発生させる光パラメトリック発振部、
 波長1596.3nmのアイドラー光と532.1nm光を和周波発生させて、波長399.08nm光を発生させる第1波長変換部、及び
 波長798.15nmシグナル光から第2高調波である波長399.08nm光を発生させる第2波長変換部を含み、
 励起光源部、光パラメトリック発振部、第1波長変換部及び第2波長変換部の順、または励起光源部、光パラメトリック発振部、第2波長変換部及び第1波長変換部の順にレーザ光の光路を有する。
 本発明のレーザ光発生装置の第2の態様は、波長228.04nmの紫外線レーザ光発生装置であり、この装置は、本発明の第1の態様である波長399.08nmレーザ光発生装置、及び399.08nm光と532.1nm光を和周波発生させて228.04nm光を発生させる第3波長変換部を含む。
 本発明の第1及び第2の態様のレーザ光発生装置であって、励起光源部、光パラメトリック発振部、第1波長変換部及び第2波長変換部の順にレーザ光の光路を有する装置の概略説明図を図1に示す。
 本発明の第1の態様のレーザ光発生装置は、図1の10~40を含む装置であり、10は励起光源部であり、20は光パラメトリック発振部であり、30は第1波長変換部であり、40は第2波長変換部である。第1波長変換部30及び第2波長変換部40は、順序が逆転してもよい。本発明の第2の態様のレーザ光発生装置は、図1の10~40に加えて、第3波長変換部50を含む。
 図2には、本発明のレーザ光発生装置の一態様の概略説明図であり、特に、励起光源部はSHGを含み、第1波長変換部30はSFGを含み、第2波長変換部40はSHGを含み、第3波長変換部50はSFGを含むことを示す。
 図3には、本発明のレーザ光発生装置の一態様の説明図を示す。
 尚、本願明細書における略語の意味は以下の通りである。
 SHG:第2高調波発生(Second Harmonic Generation)
 SFG:光和周波発生(Sum Frequency Generation)
 OPO:光パラメトリック発振部(optical parametric oscillator)
 KTP:KTiOPO
 BBO:β-BaB
 LBO:LiB
 BiBO:BiB
 MgO:PPLT: MgO添加周期反転(Periodically Poled)LiTaO
 KBBF:KBeBO
(励起光源部の説明)
 励起光源部10は、波長1064.2nmのレーザ光を第2高調波に変換して波長532.1nmのレーザ光を生成する部位である。波長1064.2nmのレーザ光を発生する励起光源は、例えば、Nd:YAG(Nd3+:YAl512)レーザであることができる。波長1064.2nmのレーザ光は、パルスレーザ光であり、パルスの時間幅はナノ秒又はピコ秒であることができる。励起光源部10は、例えば、励起光源と、このレーザ光を第2高調波(SHG)である532.1nmレーザ光に変換する非線形光学結晶を含むものであることができる。非線形光学結晶は、例えば、KTP結晶であることができ、図3では結晶1として示される。結晶1は、KTP結晶以外に、例えば、BBO、LBO、MgO添加MgO:PPLT、PPKTPのいずれかであることもできる。尚、「PP+結晶名」のPPは、周期反転「Periodically Poled」の略である。
 より具体的には、非線形光学結晶にKTP結晶を用いる場合、図3に示すように、励起光源のレーザ光を、半波長板(λ/2板)を通して偏光方向を斜め45度にした後、結晶1を通過させることで第2高調波である532.1nmレーザ光に変換する。波長変換における位相整合はタイプ2である。また、結晶1にLBO又はBBO結晶を用いる場合、λ/2板を通して偏光方向を紙面に垂直方向にした後、結晶1を通過させることで第2高調波である532.1nmレーザ光に変換する。
 さらに、結晶1にMgO:PPLT又はPPKTPを用いる場合は、λ/2板は不要である。この532.1nmレーザ光の偏光方向は紙面に水平方向になるように結晶1を設置する。尚、タイプ2の位相整合は異なった光線(すなわち直交する異なる偏光)の入射光から二次高調波を発生させる位相整合を意味し、同一光線の入射光(つまり同じ偏光)から入射光とは異なる偏光の2次高調波を発生させるタイプ1の位相整合と区別される。さらに、入射光と第2高調波がすべて同じ異常光線の方向となる位相整合を本明細書ではタイプ0と呼ぶ。
 励起光源部、光パラメトリック発振部、第1波長変換部、第2波長変換部、及び第3波長変換部において用いることができる結晶の種類とそれらの機能、位相整合のタイプ及び偏光の一覧表を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1中の偏光の欄におけるoは、常光線(ordinary wave)を意味し、eは異常光線(extraordinary wave)を意味する。
(ダイクロイックミラーM1)
 励起光源部10とOPO20の間にダイクロイックミラー(図3中のM1)を設けることができる。ダイクロイックミラーM1では、励起光源部10からの光に含まれる1064.2nm光を反射し、532.1nmレーザ光とすることができる。1064.2nm光は以降のプロセスで使用しないので、532.1nmレーザ光から分離しておくことが、これ以降のプロセスで他の波長のレーザを集光する場合に光学素子に不要なダメージや結晶への温度負荷がかかることを回避できる。ダイクロイックミラーM1を透過した532.1nmレーザ光をOPOに入射する。
(光パラメトリック発振部(OPO)の説明)
 OPO20は、励起光源部で生成した波長532.1nmのレーザ光を励起光として波長798.15nmのシグナル光と波長1596.3nmのアイドラー光を発生させ、かつ発生したシグナル光を分離する部位である。OPOは、非線形光学結晶と2枚のミラーで構成される。非線形光学結晶は例えば、BBO結晶又はBiBO結晶であることができ、それ以外にもMgO:PPLT又はPPKTPのいずれかを挙げることができる。結晶2は波長798.15nmのシグナル光λsと波長1596.3nmのアイドラー光λiを発生させる位相整合角にカットされている。尚、MgO:PPLT及びPPKTPは、上記のシグナル光及びアイドラー光波長を発生させることができる分極反転周期長を有するように調整される。この結晶から発せられた2つの波長は2枚のミラーで構成されている共振器で増幅され、OPO発振が得られる。光パラメトリック発振部20を構成する結晶2は、表1に示すように、位相整合はタイプ1のプロセスの場合、励起光は紙面に水平偏光とするとシグナル光及びアイドラー光は紙面に垂直方向に偏光している。
 光パラメトリック発振部20のシグナル光の波長精度は、半導体レーザによるシード光で狭帯域化され、結晶2は温度同調により、およそ0.1nm以下に制御することが望ましい。これにより、399.08nmの紫色光波長のスペクトル幅及び変動量をおよそ0.05nm以下にすることができる。
(第1波長変換部30)
 第1波長変換部30は、OPOから発生した波長1596.3nmのアイドラー光とOPOを透過した励起光源部で生成した波長532.1nmの光とから、光和周波混合により波長399.08nmの光を発生させる部位である。第1波長変換部30で和周波発生させる532.1nm光は、OPO20で変換されなかった532.1nm光である。図3に示す結晶3には、例えば、BBO結晶などの非線形光学結晶を用いることができる。結晶3は、BBO以外に、MgO:PPLTを用いる場合、光パラメトリック発振部20の結晶2としてMgO:PPLTを使用する。そのとき、結晶3は、波長1596.3nmのアイドラー光と波長532.1nmの光和周波が発生する分極反転周期長に調整されている。このときの、399.08nm光の偏光方向は紙面に水平方向である。
(第2波長変換部40)
 第2波長変換部40は、波長798.15nmのシグナル光から波長399.08nmのSHG部位である。図3に示す結晶4には、例えば、LBO又はBBO結晶などの非線形光学結晶を用いることができる。LBO又はBBO以外に、例えば、MgO:PPLTなどの非線形光学結晶であることができる。結晶4がMgO:PPLTの場合、光パラメトリック発振部20の結晶2としてMgO:PPLTを使用する。そのとき、結晶4は、波長798.15nmのSHGが発生する分極反転周期長に調整されている。このときも、399.08nm光の偏光方向は紙面に水平方向である。
 第1波長変換部30と第2波長変換部40の順序は入れ替えることができる。即ち、本発明の波長399.08nmの紫外線レーザ光発生装置(第1の態様)は、励起光源部10、光パラメトリック発振部20、第1波長変換部30及び第2波長変換部40の順、または励起光源部10、光パラメトリック発振部20、第2波長変換部40及び第1波長変換部30の順にレーザ光の光路を有することができる。
 第1波長変換部30と第2波長変換部の40は順番を入れ替えることができる。
(第3波長変換部50)
 第3波長変換部50は、OPO20、第1波長変換部30及び第2波長変換部40を透過した励起光源部で生成した波長532.1nmの光と第1波長変換部30及び第2波長変換部40で発生した波長399.08nmの光とから、光和周波混合により228.04nmの光を発生させる部位である。第3波長変換部50で和周波発生させる532.1nm光は、OPO20で変換されず、かつ第1波長変換部30及び第2波長変換部40を透過した532.1nm光である。図3に示す結晶5には、例えば、BBOやKBBF結晶などの非線形光学結晶を用いることができる。
(分離部60)
 第3波長変換部50の後部に、波長変換のプロセスの途中で発生したいろいろな波長のレーザ光を分離して、228.04nm光を取り出すための分離部60(図1及び2には図示せず)を設けることができる。分離部60は、例えば、プリズムであることができる(図3参照)プリズムは、波長変換のプロセスで発生した228.04nm以外の波長のレーザ光を取り除くことができるものであれば、特に制限はなく、例えば、石英プリズム、MgFプリズムなどであることができる。分離部60で228.04nm以外の波長の光を分離して、波長228.04nmのレーザ光を得る。
 図3に示した例は、光パラメトリック発振部がタイプ1の位相整合の場合であるが、光パラメトリック発振部がタイプ0の位相整合の場合、結晶3及び結晶4としては、いずれもMgO:PPLTを用いる。但し、これらの例は単なる例示であり、本発明がこれらの例に限定される意図ではない。
(波長228.04nmレーザ光の生成機構)
 OPOにおいて、励起光波長λp、シグナル光波長λs及びアイドラー光波長λiのときに、以下の関係がある。
 (数1) 1/λs+1/λi=1/λp
 また、SFGは、入射光波長λ、もう一つの入射光波長λ、光和周波波長λのときに以下の関係がある。
 (数2) 1/λ+1/λ=1/λ
 波長変換による紫外線レーザ発生方式おいては(数1)及び(数2)を用いた様々な組み合わせが存在するが、上記の関係により所望の波長のコヒーレント光を発生させる。通常は(数1)のシグナル光又はアイドラー光のいずれか一方の出力光を波長変換に利用することで深紫外線レーザ光を発生させており、もう一方の出力光は使用されず、フィルターでカットされていたため、システム全体の深紫外線への変換効率が低いという欠点があった。
 本発明では、上述のように1064.2nmレーザ光の第2高調波である532.1nm励起のOPOで798.15nmのシグナル光λsと波長1596.3nmのアイドラー光λiを発生させる。第1波長変換部で、波長1596.3nmのアイドラー光λiと励起光の532.1nm光から生成される光和周発生の波長が399.08nmであり、この波長が第2波長変換部で798.15nmのシグナル光λsから生成される第2高調波の波長399.08nmと一致するという特性を利用する(図4参照)。そのため、より効率的な波長399.08nmの紫外レーザ光発生装置が実現できる。
 加えて本発明では、OPOのシグナル光とアイドラー光双方の出力光を波長399.08nmの紫外光発生に利用することができ、さらに、この波長399.08nmの光と励起光の532.1nm光から生成される光和周発生により、波長228.04nmの深紫外光発生が可能となる。そのため、より効率的な波長228.04nmの深紫外レーザ光発生装置が実現できる。
 本発明の装置で得られる波長399.08nmのレーザ光は、非線形結晶などと組合せて他の波長の光源としても利用できる。
 本発明の装置で得られる波長228.04nmのレーザ光は、波長222nmに近似することから、殺菌効果もあると考えられる。
 本発明のレーザ光発生装置では、シグナル光とアイドラー光双方を利用できることから、より効率的な深紫外レーザ光発生が可能である。このことから、広範囲への波長399.08nm又は228.04nmの紫外線の照射や水などの液体への照射が可能であり、不特定出入りする施設の出入り口や液体の殺菌などの用途に有用である。加えて発生させたレーザ光は、必要に応じて、ファイバなどのレーザ光導体を介して、目的物に照射できることができる。したがって、例えば、構造物の裏側などの部分への紫外線照射も容易となる。
 本発明は、医療現場はもとより、大型施設における消毒作業においても有効である。また、人体への影響も少ないことから、オゾンなどの酸化エチレンなどの有毒ガスを使用しないため人体への影響や取り扱いが容易である。さらに、アルコール消毒など液体も使用しないことから、書籍など水に濡らせない紙媒体の消毒にも利用可能である。
 10 励起光源部
 20 光パラメトリック発振部
 30 第1波長変換部
 40 第2波長変換部
 50 第3波長変換部

Claims (6)

  1.  波長1064.2nmのレーザ光を第2高調波に変換して波長532.1nmのレーザ光を生成する励起光源部、
     励起光源部で生成した波長532.1nmのレーザ光を励起光として波長798.15nmのシグナル光と波長1596.3nmのアイドラー光を発生させる光パラメトリック発振部、
     波長1596.3nmのアイドラー光と532.1nm光を和周波発生させて、波長399.08nm光を発生させる第1波長変換部、及び
     波長798.15nmのシグナル光から第2高調波である波長399.08nm光を発生させる第2波長変換部を含み、
     励起光源部、光パラメトリック発振部、第1波長変換部及び第2波長変換部の順、または励起光源部、光パラメトリック発振部、第2波長変換部及び第1波長変換部の順にレーザ光の光路を有する、波長399.08nmの紫外線レーザ光発生装置。
  2.  第1波長変換部で和周波発生させる532.1nm光は、光パラメトリック発振部で変換されなかった532.1nm光である、請求項1に記載の装置。
  3.  励起光源部、光パラメトリック発振部、第1波長変換部及び第2波長変換部の順にレーザ光の光路を有する、請求項1または2に記載の装置。
  4.  請求項1~3のいずれかに記載の波長399.08nmレーザ光発生装置、及び
     399.08nm光と532.1nm光を和周波発生させて波長228.04nm光を発生させる第3波長変換部を含む、波長228.04nmの紫外線レーザ光発生装置。
  5.  第3波長変換部で和周波発生させる532.1nm光は、光パラメトリック発振部で変換されなかった532.1nm光である、請求項4に記載の装置。
  6.  第3波長変換部の後部に228.04nm光とその他の波長の光を分離する分離部を含む、請求項4または5に記載の装置。
PCT/JP2022/007567 2021-02-24 2022-02-24 紫外線レーザ光発生装置 WO2022181677A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023502476A JPWO2022181677A1 (ja) 2021-02-24 2022-02-24
US18/547,616 US20240131209A1 (en) 2021-02-24 2022-02-24 Ultraviolet laser light generation device
CN202280016813.2A CN116888528A (zh) 2021-02-24 2022-02-24 紫外线激光产生装置
EP22759712.7A EP4300186A1 (en) 2021-02-24 2022-02-24 Ultraviolet laser light generation device
KR1020237032354A KR20230145205A (ko) 2021-02-24 2022-02-24 자외선 레이저광 발생장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-027497 2021-02-24
JP2021027497 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022181677A1 true WO2022181677A1 (ja) 2022-09-01

Family

ID=83049021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007567 WO2022181677A1 (ja) 2021-02-24 2022-02-24 紫外線レーザ光発生装置

Country Status (7)

Country Link
US (1) US20240131209A1 (ja)
EP (1) EP4300186A1 (ja)
JP (1) JPWO2022181677A1 (ja)
KR (1) KR20230145205A (ja)
CN (1) CN116888528A (ja)
TW (1) TW202240265A (ja)
WO (1) WO2022181677A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292638A (ja) 1996-04-25 1997-11-11 Sony Corp 高出力紫外線レーザー光発生装置
WO1999014631A1 (fr) * 1997-09-17 1999-03-25 Kabushiki Kaisya Ushiosougougizyutsukenkyusyo Source de lumiere
JPH11258645A (ja) 1998-03-13 1999-09-24 Sony Corp 波長変換装置
JP2003114454A (ja) 1995-09-20 2003-04-18 Mitsubishi Materials Corp 波長変換素子および波長変換方法並びにレーザ装置
JP2007086104A (ja) 2005-09-20 2007-04-05 Megaopto Co Ltd 深紫外レーザー装置
JP2012252289A (ja) * 2011-06-07 2012-12-20 Nikon Corp レーザ装置、露光装置及び検査装置
WO2015174388A1 (ja) * 2014-05-15 2015-11-19 株式会社オキサイド 深紫外レーザ発生装置および光源装置
CN111404011A (zh) * 2020-03-26 2020-07-10 富通尼激光科技(东莞)有限公司 一种高次谐波激光器
CN112003118A (zh) * 2020-08-10 2020-11-27 中国科学院上海光学精密机械研究所 222nm波长深紫外脉冲激光源

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114454A (ja) 1995-09-20 2003-04-18 Mitsubishi Materials Corp 波長変換素子および波長変換方法並びにレーザ装置
JPH09292638A (ja) 1996-04-25 1997-11-11 Sony Corp 高出力紫外線レーザー光発生装置
WO1999014631A1 (fr) * 1997-09-17 1999-03-25 Kabushiki Kaisya Ushiosougougizyutsukenkyusyo Source de lumiere
JPH11258645A (ja) 1998-03-13 1999-09-24 Sony Corp 波長変換装置
JP2007086104A (ja) 2005-09-20 2007-04-05 Megaopto Co Ltd 深紫外レーザー装置
JP2012252289A (ja) * 2011-06-07 2012-12-20 Nikon Corp レーザ装置、露光装置及び検査装置
WO2015174388A1 (ja) * 2014-05-15 2015-11-19 株式会社オキサイド 深紫外レーザ発生装置および光源装置
CN111404011A (zh) * 2020-03-26 2020-07-10 富通尼激光科技(东莞)有限公司 一种高次谐波激光器
CN112003118A (zh) * 2020-08-10 2020-11-27 中国科学院上海光学精密机械研究所 222nm波长深紫外脉冲激光源

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIROV, S.B. FEDOROV, V.V. BOCZAR, B. FROST, R. PRYOR, B.: "All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO", OPTICS COMMUNICATIONS, vol. 198, no. 4-6, 1 November 2001 (2001-11-01), AMSTERDAM, NL , pages 403 - 406, XP004323186, ISSN: 0030-4018, DOI: 10.1016/S0030-4018(01)01514-0 *
SAKUMA JUN, ASAKAWA YUICHI, IMAHOKO TOMOHIRO, OBARA MINORU: "Generation of all-solid-state, high-power continuous-wave 213-nm light based on sum-frequency mixing in CsLiB 6 O 10", OPTICS LETTERS, vol. 29, no. 10, 15 May 2004 (2004-05-15), pages 1096 - 1098, XP055961647, DOI: 10.1364/OL.29.001096 *

Also Published As

Publication number Publication date
KR20230145205A (ko) 2023-10-17
EP4300186A1 (en) 2024-01-03
TW202240265A (zh) 2022-10-16
JPWO2022181677A1 (ja) 2022-09-01
CN116888528A (zh) 2023-10-13
US20240131209A1 (en) 2024-04-25

Similar Documents

Publication Publication Date Title
JP2016526699A5 (ja)
JP4590578B1 (ja) 光源装置、マスク検査装置、及びコヒーレント光発生方法
JP4925085B2 (ja) 深紫外レーザー光の発生方法および深紫外レーザー装置
TW501320B (en) Laser light generating apparatus and optical apparatus using the same
KR20130119416A (ko) 자외 레이저 장치
RU2666345C1 (ru) Фемтосекундный ультрафиолетовый лазер
US20030043452A1 (en) Device for the frequency conversion of a fundamental laser frequency to other frequencies
US10720749B2 (en) Generation of frequency-tripled laser radiation
JP6020441B2 (ja) 紫外レーザ装置
US20070064750A1 (en) Deep ultraviolet laser apparatus
JP2009058782A (ja) レーザ光発生装置およびレーザ光発生方法
WO2022181677A1 (ja) 紫外線レーザ光発生装置
CN101202405A (zh) 用1342nm激光7倍频获得192nm紫外激光的方法
US7385752B1 (en) Disposal of residual radiation from a frequency-conversion process
JP2002122898A (ja) コヒーレント光光源、半導体露光装置、レーザ治療装置、レーザ干渉計装置、レーザ顕微鏡装置
JP2006308908A (ja) Duv光源装置及びレーザ加工装置
WO2022181676A1 (ja) 波長215~222nmレーザ光発生装置
JP6299589B2 (ja) 紫外レーザ装置、該紫外レーザ装置を備えた露光装置及び検査装置
JP2013044764A (ja) レーザ装置、疑似位相整合型の波長変換光学素子のフォトリフラクティブ効果抑制方法、露光装置及び検査装置
JP7421987B2 (ja) レーザ装置
JP2011090254A (ja) レーザ光発生装置およびレーザ光発生方法
JPH06216453A (ja) 固体レーザ装置
JP2005242257A (ja) 高効率コヒーレント紫外線発生装置および同方法
EP2317377A1 (en) High-power electromagnetic sum frequency generator system
Roissé et al. Walk-off and phase-compensated resonantly enhanced frequency-doubling of picosecond pulses using type II nonlinear crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759712

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023502476

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18547616

Country of ref document: US

Ref document number: 202280016813.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237032354

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237032354

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022759712

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759712

Country of ref document: EP

Effective date: 20230925