WO2022181605A1 - 電気化学キャパシタ - Google Patents

電気化学キャパシタ Download PDF

Info

Publication number
WO2022181605A1
WO2022181605A1 PCT/JP2022/007212 JP2022007212W WO2022181605A1 WO 2022181605 A1 WO2022181605 A1 WO 2022181605A1 JP 2022007212 W JP2022007212 W JP 2022007212W WO 2022181605 A1 WO2022181605 A1 WO 2022181605A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode
capacity
positive electrode
electrochemical capacitor
Prior art date
Application number
PCT/JP2022/007212
Other languages
English (en)
French (fr)
Inventor
奈穂 宮口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US18/546,932 priority Critical patent/US20240194421A1/en
Priority to CN202280015504.3A priority patent/CN116888698A/zh
Priority to JP2023502432A priority patent/JPWO2022181605A1/ja
Publication of WO2022181605A1 publication Critical patent/WO2022181605A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to electrochemical capacitors.
  • An electrochemical capacitor includes a pair of electrodes and an electrolytic solution, and at least one of the pair of electrodes contains an active material capable of adsorbing and desorbing ions.
  • An electric double-layer capacitor which is an example of an electrochemical capacitor, has a longer life than a secondary battery, can be rapidly charged, and has excellent output characteristics, and is widely used as a backup power source and the like.
  • Patent Document 1 as a non-aqueous electrolyte for an electric double layer capacitor, N-ethyl-N-methylpyrrolidinium tetrafluoroborate is dissolved as a quaternary ammonium salt, and K + is added as an alkali metal cation at 28.
  • An example containing 3 ppm and 0.4 ppm Na + is described (Example 1).
  • Electrochemical capacitors tend to lose performance under float charging, and further improvements are required.
  • one aspect of the present invention includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution, wherein the electrolytic solution contains a lactone compound, and the capacity of the positive electrode is relates to an electrochemical capacitor that is larger than the capacity of the negative electrode and 1.6 times or less than the capacity of the negative electrode.
  • deterioration of the float characteristics of the electrochemical capacitor can be suppressed.
  • FIG. 1 is a partially cutaway perspective view of an electrochemical capacitor according to one embodiment of the present invention.
  • FIG. 2 is a graph plotting the rate of resistance increase after the float test of the electrochemical device against the potential of the positive electrode (Ag/Ag + reference) when charged at 3V.
  • FIG. 3 is a graph plotting the capacity deterioration rate after the float test of the electrochemical device against the potential of the positive electrode (Ag/Ag + reference) when charged at 3V.
  • An electrochemical capacitor according to one embodiment of the present invention includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution.
  • the electrolyte contains a lactone compound.
  • the capacity of the positive electrode is greater than the capacity of the negative electrode and is 1.6 times or less than the capacity of the negative electrode. This configuration can improve the float characteristics.
  • the float characteristic is an index of the degree of deterioration of an electrochemical device when float charging is performed using an external DC power supply to maintain a constant voltage. It can be said that the smaller the decrease in capacity during float charging and the smaller the increase in internal resistance, the better the float characteristics.
  • the capacity of the positive electrode is the maximum value of the capacity that can be expressed in the positive electrode, and is a theoretical capacity determined according to the amount of the positive electrode active material and the like.
  • the negative electrode capacity is the maximum value of the capacity that can be expressed in the negative electrode, and is a theoretical capacity that is determined according to the amount of the negative electrode active material and the like.
  • the capacity of the positive electrode is roughly defined by the amount of the positive electrode active material loaded per unit area (g/cm 2 ) and the capacity per unit weight of the positive electrode active material (F/g ) is the value obtained by multiplying
  • the capacity of the negative electrode is roughly defined by the amount of the negative electrode active material loaded per unit area (g/cm 2 ) and the capacity per unit weight of the negative electrode active material (F/g ) is the value obtained by multiplying
  • the capacity (F) of the positive electrode active material and the negative electrode active material is obtained from the amount of charge when 3V is applied.
  • Lactone compounds have low viscosity even at low temperatures, so they are used as solvents for electrolytes in electrochemical capacitors.
  • Lactone compounds include ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone and the like.
  • ⁇ -butyrolactone GBL is most preferred because it has a low viscosity even at low temperatures, a high boiling point, and a small amount of gas released due to side reactions.
  • the lactone compound may be decomposed by being placed in a strong oxidizing environment.
  • float charging a state in which a high voltage is applied to the electrochemical capacitor continues for a long period of time, so a state in which the potential of the positive electrode continues to be high for a long period of time, and the lactone compound is susceptible to oxidative decomposition. As a result, it is considered that the float characteristics are degraded.
  • the potential of the positive electrode during charging can be lowered by making the capacity of the positive electrode larger than the capacity of the negative electrode.
  • the oxidative decomposition of the lactone compound is suppressed, and the deterioration of the float characteristics can be suppressed.
  • the capacity of the positive electrode is preferably 1.1 times or more the capacity of the negative electrode.
  • the larger the capacity of the positive electrode relative to the capacity of the negative electrode the larger the portion of the capacity of the positive electrode that does not contribute to the capacity of the electrical capacitor, and the smaller the capacity of the electrochemical capacitor.
  • the reducing property is further enhanced on the negative electrode side.
  • the capacity of the positive electrode is made 1.6 times or less the capacity of the negative electrode in order to suppress a decrease in the capacity of the electrochemical capacitor and to suppress a side reaction due to reductive decomposition at the negative electrode.
  • the capacity of the positive electrode is preferably 1.1 times or more and 1.6 times or less than the capacity of the negative electrode in order to keep the capacity of the electrochemical capacitor high while suppressing the deterioration of the float characteristics.
  • the positive electrode of the electrochemical capacitor may be a polarizable electrode.
  • a polarizable electrode may comprise an active material capable of adsorbing and desorbing ions.
  • capacity is developed by adsorption of ions to the active material.
  • a non-faradaic current flows when ions are desorbed from the active material.
  • the negative electrode may be a polarizable electrode or a non-polarizable electrode.
  • the electrochemical capacitor may be an electric double layer capacitor (EDLC) in which an electric double layer is formed by adsorbing ions to the active material.
  • EDLC electric double layer capacitor
  • the electrochemical capacitor may be a lithium ion capacitor (LIC) that develops capacity by adsorption or desorption of lithium ions on the negative electrode side.
  • LIC lithium ion capacitor
  • the negative electrode used in lithium ion secondary batteries may be used as the negative electrode.
  • the electrode body is usually configured such that the outermost periphery serves as the negative electrode.
  • a polarizable electrode includes, for example, a current collector and a polarizable electrode layer supported by the current collector.
  • the positive electrode includes, for example, a positive electrode current collector and a polarizable electrode layer supported by the positive electrode current collector.
  • the negative electrode includes, for example, a negative electrode current collector and a polarizable electrode layer carried on the negative electrode current collector.
  • the capacities of the positive electrode and the negative electrode depend on the loading amount of the active material contained in the polarizable electrode layer, and also on the specific surface area of the active material when the capacity is expressed by ion adsorption to the active material. However, by making the polarizable electrode layer of the positive electrode thicker than the polarizable electrode layer of the negative electrode, the capacity of the positive electrode can be easily made larger than that of the negative electrode.
  • the capacity of the positive electrode may be larger than that of the negative electrode.
  • the thickness of the polarizable electrode layer of the positive electrode is preferably greater than the thickness of the polarizable electrode layer of the negative electrode and 1.6 times or less than the thickness of the polarizable electrode layer of the negative electrode.
  • the thickness of the polarized electrode layer of the positive electrode is more preferably 1.1 to 1.6 times the thickness of the polarized electrode layer of the negative electrode.
  • the binder when a binder is included in the positive electrode and/or the negative electrode, the binder preferably has high resistance to reduction. Binders with high resistance to reduction include styrene-butadiene rubber (SBR). Styrene-butadiene rubber (SBR) includes styrene-butadiene copolymers and modifications thereof.
  • SBR styrene-butadiene rubber
  • the styrene-butadiene rubber is preferably contained in at least the polarizable electrode layer of the negative electrode.
  • a quaternary alkylammonium ion represented by NR 4 + (R is an alkyl group) is preferable because of its high voltage resistance and high solubility in an aprotic solvent.
  • R is an alkyl group
  • Each of the four alkyl groups R attached to N may be different from the others or the same as any one of the others.
  • Each of the four alkyl groups R may independently be a C1-C4 alkyl group.
  • Each of the alkyl groups R is preferably a straight-chain alkyl group that is unbranched and that two alkyl groups R do not combine to form a ring structure.
  • diethyldimethylammonium ion (N(C 2 H 5 ) 2 (CH 3 ) is preferred in that it easily reacts with OH - which can be generated by decomposition of a trace amount of water and easily maintains the pH of the electrolyte solution. 2 + ) can be preferably used.
  • a quaternary alkylammonium ion is added to the electrolyte in the form of a salt with an anion.
  • the anion is preferably an anion containing fluorine. It preferably contains an anion of a fluorine-containing acid. Examples of fluorine-containing anions include BF 4 ⁇ and PF 6 ⁇ .
  • the potential of the positive electrode is +0.96 V or more and +1.0 V or less based on the Ag/Ag + potential (the potential of the negative electrode is -2 04 V or more and -2.0 V or less). In this case, it is possible to realize an electrochemical capacitor in which deterioration of float characteristics is significantly suppressed.
  • the potential of the positive electrode (negative electrode) was 3 V, and the positive electrode and the negative electrode after charging were immersed in a non-aqueous solution having the same composition as the electrolytic solution so that the active material layers (polarizable electrode layers) faced each other.
  • Positive electrode is used as a counter electrode, and the potential is measured when the Ag electrode is used as a reference electrode.
  • the positive electrode and the negative electrode have active material layers (polarizable electrode layers) on both sides, one side of the active material layer (polarizable electrode layer) is removed so as not to form a non-facing portion.
  • the Ag electrode was a reference electrode obtained by adding a solvent (GBL) to the electrolytic solution so that the salt concentration was 0.1 mol/L, and then adding AgBF 4 so that the Ag + ion concentration was 0.1 mol/L.
  • a glass tube filled with the internal solution for the reference electrode and a silver wire immersed in the internal solution for the reference electrode can be used.
  • an electrode comprising an active layer (polarizable electrode layer) containing an active material and a current collector supporting the active layer is used as a polarizable electrode.
  • the active material includes, for example, porous carbon particles.
  • the active layer contains porous carbon particles as an active material as an essential component, and may contain a binder, a conductive agent and the like as optional components.
  • Porous carbon particles can be produced, for example, by heat-treating a raw material to carbonize it, and then activating the resulting carbide to make it porous.
  • the carbide may be crushed and granulated before the activation treatment.
  • the porous carbon particles obtained by the activation treatment may be pulverized. After the pulverization treatment, a classification treatment may be performed. Examples of the activation treatment include gas activation using a gas such as water vapor, and chemical activation using an alkali such as potassium hydroxide.
  • Raw materials include, for example, wood, coconut shells, pulp waste liquid, coal or coal-based pitch obtained by thermal decomposition thereof, heavy oil or petroleum-based pitch obtained by thermal decomposition thereof, phenolic resin, petroleum-based coke, coal-based coke etc. Among them, petroleum-based coke and coal-based coke are preferred as raw materials.
  • the porous carbon particles may be pulverized.
  • pulverization for example, a ball mill, jet mill, or the like is used.
  • Fine porous carbon particles are obtained by the above pulverization treatment, and the average particle size (D50) is, for example, 1 ⁇ m or more and 4 ⁇ m or less.
  • the average particle diameter (D50) means the particle diameter (median diameter) at which the volume integrated value is 50% in the volume-based particle size distribution measured by the laser diffraction/scattering method.
  • the pore distribution and particle size distribution of the porous carbon particles can be adjusted by the raw material, heat treatment temperature, activation temperature in gas activation, degree of pulverization, and the like. Also, two types of porous carbon particles made from different raw materials may be mixed to adjust the pore size distribution and particle size distribution of the porous carbon particles.
  • the average particle size and particle size distribution of porous carbon particles are measured by a laser diffraction/scattering method.
  • a laser diffraction/scattering particle size distribution measuring device “MT3300EXII” manufactured by Microtrack Co., Ltd. is used as a measuring device.
  • binder for example, resin materials such as polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC), and styrene-butadiene rubber (SBR) are used. Carbon black such as acetylene black is used as the conductive agent, for example.
  • PTFE polytetrafluoroethylene
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • Carbon black such as acetylene black is used as the conductive agent, for example.
  • the electrode is produced by applying a slurry containing porous carbon particles, a binder and/or a conductive agent, and a dispersion medium to the surface of a current collector, drying the coating film, and rolling it to activate it. Obtained by forming layers.
  • Metal foil such as aluminum foil is used for the current collector, for example.
  • an electrode containing the porous carbon particles can be used as at least one of the positive electrode and the negative electrode.
  • the electrochemical capacitor is a lithium ion capacitor (LIC)
  • the electrode containing the porous carbon particles can be used as the positive electrode
  • the negative electrode used in the lithium ion secondary battery can be used as the negative electrode.
  • a negative electrode used in a lithium ion secondary battery includes, for example, a negative electrode active material (such as graphite) capable of intercalating and deintercalating lithium ions.
  • the electrolytic solution contains a solvent (non-aqueous solvent) and an ionic substance. Ionic substances are dissolved in a solvent and include cations and anions.
  • the ionic substance may include, for example, a low melting point compound (ionic liquid) that can exist as a liquid at around room temperature.
  • the concentration of the ionic substance in the electrolytic solution is, for example, 0.5 mol/L or more and 2.0 mol/L.
  • the solvent preferably has a high boiling point.
  • the solvent contains the lactone compound and optionally other solvents.
  • Other solvents include, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, methyl formate, methyl acetate, methyl propionate and ethyl propionate.
  • polyhydric alcohols such as ethylene glycol and propylene glycol
  • cyclic sulfones such as sulfolane
  • N-methylacetamide N,N-dimethylformamide
  • amides such as N-methyl-2-pyrrolidone
  • Ethers such as 1,4-dioxane
  • ketones such as methyl ethyl ketone
  • formaldehyde can be used.
  • Ionic substances include, for example, organic salts.
  • An organic salt is a salt in which at least one of the anion and cation contains an organic substance.
  • Examples of organic salts whose cations include organic substances include quaternary ammonium salts.
  • Organic salts in which the anion (or both ions) contain an organic substance include, for example, trimethylamine maleate, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono-1,2,3,4-tetramethylimidazolinium phthalate, phthalate acid mono 1,3-dimethyl-2-ethylimidazolinium;
  • the anion preferably contains an anion of a fluorine-containing acid from the viewpoint of improving withstand voltage characteristics.
  • Anions of fluorine-containing acids include, for example, BF 4 - and/or PF 6 - .
  • the organic salt preferably contains, for example, a quaternary alkylammonium cation and a fluorine-containing acid anion. Specific examples include diethyldimethylammonium tetrafluoroborate (DEDMABF 4 ), triethylmethylammonium tetrafluoroborate (TEMABF 4 ), and the like.
  • a separator is usually interposed between the positive electrode and the negative electrode.
  • the separator has ion permeability and has a role of physically separating the positive electrode and the negative electrode to prevent a short circuit.
  • a cellulose fiber nonwoven fabric, a glass fiber nonwoven fabric, a polyolefin microporous film, a woven fabric or a nonwoven fabric, or the like can be used as the separator.
  • the thickness of the separator is, for example, 8-300 ⁇ m, preferably 8-40 ⁇ m.
  • FIG. 1 is a partially cutaway perspective view of an electrochemical capacitor according to an embodiment of the present invention. Note that the present invention is not limited to the electrochemical device of FIG.
  • An electrochemical capacitor 10 in FIG. 1 is an electric double layer capacitor and includes a wound capacitor element 1 .
  • the capacitor element 1 is configured by winding a sheet-like first electrode (positive electrode) 2 and a sheet-like second electrode (negative electrode) 3 with a separator 4 interposed therebetween.
  • the first electrode 2 and the second electrode 3 each have a first current collector and a second current collector made of metal, and a first active layer and a second active layer supported on the surface thereof, and adsorb ions. And the capacity is expressed by desorption.
  • the first active layer and the second active layer contain, for example, porous carbon particles.
  • a first lead wire 5a and a second lead wire 5b are connected to the first electrode 2 and the second electrode 3, respectively, as lead members.
  • Capacitor element 1 is housed in a cylindrical exterior case 6 together with an electrolytic solution (not shown).
  • the material of the exterior case 6 may be any metal such as aluminum, stainless steel, copper, iron, brass, or the like.
  • the opening of the exterior case 6 is sealed with a sealing member 7 .
  • the lead wires 5 a and 5 b are led out to the outside so as to pass through the sealing member 7 .
  • a rubber material such as butyl rubber, for example, is used for the sealing member 7 .
  • a wound capacitor has been described, but the scope of application of the present invention is not limited to the above, and it can also be applied to capacitors with other structures, such as laminated or coin capacitors.
  • An electrolytic solution was prepared by dissolving diethyldimethylammonium tetrafluoroborate (DEDMABF 4 ) in ⁇ -butyrolactone (GBL), which is a lactone compound as a non-aqueous solvent.
  • the concentration of DEDMABF 4 in the electrolytic solution was 1.0 mol/L.
  • a microporous film made of polypropylene (PP) was prepared as a separator.
  • a lead wire was connected to each of the positive electrode and the negative electrode, and wound through a cellulosic nonwoven fabric separator to obtain a capacitor element.
  • the capacitor element was housed in a predetermined exterior case together with an electrolyte, and sealed with a sealing member to complete an electrochemical capacitor (electric double layer capacitor). After that, an aging treatment was performed at 60° C. for 16 hours while applying a rated voltage.
  • Each electrochemical capacitor obtained above was evaluated as follows. [evaluation] (1) Evaluation of float characteristics (measurement of initial capacity and initial internal resistance (DCR)) In an environment of ⁇ 30° C., constant current charging was performed with a current of 2700 mA until the voltage reached 3 V, and then the state of applying a voltage of 3 V was maintained for 7 minutes. After that, in an environment of ⁇ 30° C., constant current discharge was performed at a current of 20 mA until the voltage reached 0V.
  • DCR initial internal resistance
  • Capacitance C1 Id ⁇ t/V (1)
  • Id is the current value (0.02 A) during discharge
  • V is the value obtained by subtracting 1.08 V from 2.16 V (1.08 V).
  • Capacity deterioration rate (%) ((C2/C1)-1) x 100
  • the evaluation cell was charged at a constant current of 1.8 mA under an environment of 25°C until the voltage reached 3V. After that, the state in which the voltage of 3.0 V was applied was maintained for 10 minutes. After the voltage of 3.0 V was maintained for 10 minutes, the potentials of the positive and negative electrodes were measured.
  • Table 1 shows the evaluation results.
  • the electrochemical capacitors of Examples 1-3 are electrochemical capacitors A1-A3 in Table 1.
  • the electrochemical capacitors of Comparative Examples 1-8 are electrochemical devices B1-B8 in Table 1.
  • Table 1 also shows the binder used in each electrochemical capacitor, the thickness ( ⁇ m) of the active layer in the positive electrode and the negative electrode, and the thickness ratio Rd.
  • the density of the active layer was the same for the positive electrode and the negative electrode, and was also the same for the electrochemical capacitors. Therefore, the ratio Rd of the thickness of the active layer in the positive electrode to the thickness of the active layer in the negative electrode is approximately equal to the ratio of the capacity of the positive electrode to the capacity of the negative electrode.
  • the thickness of the active layer in the positive electrode is thicker than the thickness of the active layer in the negative electrode, and Rd>1.
  • the capacity of the electrochemical capacitor is regulated by the capacity of the negative electrode (the thickness of the active layer in the negative electrode).
  • the thickness of the active layer in the positive electrode is thinner than the thickness of the active layer in the negative electrode, and Rd ⁇ 1.
  • the capacity of the electrochemical capacitor is regulated by the capacity of the positive electrode (the thickness of the active layer in the positive electrode).
  • the electrochemical capacitors of Examples 4-8 are electrochemical capacitors A4-A8 in Table 2.
  • the electrochemical capacitors of Comparative Examples 9-17 are electrochemical devices B9-B17 in Table 2.
  • Table 2 also shows the binder used in each electrochemical capacitor, the thickness ( ⁇ m) of the active layer in the positive electrode and the negative electrode, and the thickness ratio Rd.
  • the density of the active layer was the same for the positive electrode and the negative electrode, and the same for the electrochemical capacitors. Therefore, the ratio Rd of the thickness of the active layer in the positive electrode to the thickness of the active layer in the negative electrode is approximately equal to the ratio of the capacity of the positive electrode to the capacity of the negative electrode.
  • the thickness of the active layer in the positive electrode is thicker than the thickness of the active layer in the negative electrode, and Rd>1.
  • the capacity of the electrochemical capacitor is regulated by the capacity of the negative electrode (the thickness of the active layer in the negative electrode).
  • the thickness of the active layer in the positive electrode is thinner than the thickness of the active layer in the negative electrode, and Rd ⁇ 1. In this case, the capacity of the electrochemical capacitor is regulated by the capacity of the positive electrode (the thickness of the active layer in the positive electrode).
  • the ratio of the thickness of the active layer in the positive electrode to the thickness of the active layer in the negative electrode (the ratio of the capacity of the positive electrode to the capacity of the negative electrode) Rd is more than 1 and 1.6 or less.
  • the devices A1 to A8 it was possible to suppress the deterioration of the float characteristics.
  • the electrochemical devices A4 to A8 using SBR having high resistance to reduction as a binder suppress the reductive decomposition of the binder at the negative electrode. It maintains a smaller resistance increase rate and capacity deterioration rate than chemical devices A1 to A3. In other words, in the electrochemical devices A4 to A8, the deterioration of the float characteristics is remarkably suppressed in the range of Rd exceeding 1 and 1.6 or less.
  • FIG. 2 shows a graph in which the resistance increase rate of the electrochemical device is plotted against the positive electrode potential.
  • FIG. 3 shows a graph in which the capacity deterioration rate of the electrochemical device is plotted against the positive electrode potential. 2 and 3, when the positive electrode potential is in the range of +0.96 V or more and +1.0 V or less based on the Ag/Ag + potential, the resistance increase rate and capacity deterioration rate can be reduced, and the float characteristics are maintained high. I know it can be done.
  • the electrochemical device according to the present invention is suitable for applications requiring large capacity and excellent float characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

電気化学キャパシタのフロート特性の低下を抑制することを目的とし、本発明の電気化学キャパシタは、正極と、負極と、正極と負極との間に介在するセパレータと、電解液と、を備える。電解液は、ラクトン化合物を含む。正極の容量は、負極の容量よりも大きく、負極の容量の1.6倍以下である。

Description

電気化学キャパシタ
 本発明は、電気化学キャパシタに関する。
 電気化学キャパシタは、一対の電極と、電解液と、を備え、一対の電極の少なくとも一方は、イオンを吸着および脱着可能な活物質を含む。電気化学キャパシタの一例である電気二重層キャパシタは、二次電池と比べて、寿命が長く、急速充電が可能であり、出力特性に優れており、バックアップ用電源等に広く用いられている。
 特許文献1には、電気二重層キャパシタ用の非水電解液として、第4級アンモニウム塩としてN-エチル-N-メチルピロリジニウムテトラフルオロボレートが溶解され、アルカリ金属カチオンとしてKを28.3ppmおよびNaを0.4ppm含む例が記載されている(実施例1)。
国際公開第2016/092664号
 電気化学キャパシタは、フロート充電下での性能が低下し易く、更なる改良が必要である。
 上記に鑑み、本発明の一側面は、正極と、負極と、正極と負極との間に介在するセパレータと、電解液と、を備え、前記電解液は、ラクトン化合物を含み、前記正極の容量は、前記負極の容量よりも大きく、前記負極の容量の1.6倍以下である、電気化学キャパシタに関する。
 本発明によれば、電気化学キャパシタのフロート特性の低下を抑制することができる。
図1は、本発明の一実施形態に係る電気化学キャパシタの一部を切り欠いた斜視図である。 図2は、3Vで充電したときの正極の電位(Ag/Ag基準)に対して、電気化学デバイスのフロート試験後の抵抗上昇率をプロットしたグラフである。 図3は、3Vで充電したときの正極の電位(Ag/Ag基準)に対して、電気化学デバイスのフロート試験後の容量劣化率をプロットしたグラフである。
[電気化学キャパシタ]
 本発明の一実施形態に係る電気化学キャパシタは、正極と、負極と、正極と負極との間に介在するセパレータと、電解液と、を備える。電解液は、ラクトン化合物を含む。正極の容量は、負極の容量よりも大きく、負極の容量の1.6倍以下である。この構成により、フロート特性を向上できる。
 なお、フロート特性とは、外部直流電源を用いて一定電圧を保つフロート充電を行ったときの電気化学デバイスの劣化度合の指標である。フロート充電時の容量低下が小さく、内部抵抗の増大が小さいほどフロート特性は良好であると言える。
 ここで、正極の容量とは、正極において発現し得る容量の最大値であり、正極活物質の量などに応じて決まる理論容量である。同様に、負極の容量とは、負極において発現し得る容量の最大値であり、負極活物質の量などに応じて決まる理論容量である。正極の容量は、概ね、正極と負極との対向面積(cm)に、正極活物質の単位面積当たりの搭載量(g/cm)および正極活物質の単位重量当たりの容量(F/g)を乗算して得られる値である。負極の容量は、概ね、正極と負極との対向面積(cm)に、負極活物質の単位面積当たりの搭載量(g/cm)および負極活物質の単位重量当たりの容量(F/g)を乗算して得られる値である。正極活物質および負極活物質の容量(F)は、3Vを印加したときの充電電気量から求める。
 電気化学キャパシタにおいて、正極の容量が負極の容量に対して大きいほど、正極および負極の電位が低下し、負極の容量が正極の容量に対して大きいほど、正極および負極の電位が上昇する。
 ラクトン化合物は、低温においても粘度が小さいことから、電気化学キャパシタにおける電解液の溶媒として用いられる。ラクトン化合物としては、β-プロピオラクトン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトンなどが挙げられる。なかでも、低温においても粘度が小さく、高沸点であり、かつ副反応によるガス放出量が少ない点で、γ-ブチロラクトン(GBL)が最も好ましい。
 しかしながら、ラクトン化合物は、正極の電位が高い場合、強い酸化性の環境に置かれることで分解される場合がある。フロート充電では、電気化学キャパシタに高電圧が印加される状態が長期間継続するため、正極の電位が高い状態が長期間において継続し、ラクトン化合物は酸化分解を受け易い。この結果、フロート特性が低下すると考えられる。
 これに対し、本発明の一実施形態に係る電気化学キャパシタによれば、正極の容量を負極の容量よりも大きくすることにより、充電時における正極の電位を低下させることができる。これにより、ラクトン化合物の酸化分解が抑制され、フロート特性の低下を抑制できる。
 負極の容量に対する正極の容量が大きいほど、ラクトン化合物の酸化分解が抑制される効果が高まり、フロート特性の低下を抑制する効果が高まる。フロート特性の低下を抑制する点で、正極の容量は、負極の容量に対して1.1倍以上が好ましい。
 一方で、正極の容量を負極の容量に対して大きくするほど、正極の容量において電気キャパシタの容量に寄与しない部分が多くなり、電気化学キャパシタの容量が小さくなる。また、負極の電位が低下するため、負極側において還元性が一層高くなる。電気化学キャパシタの容量低下を抑えるとともに、負極での還元分解による副反応を抑制する点で、正極の容量は負極の容量の1.6倍以下とする。
 フロート特性の低下を抑制しながら、電気化学キャパシタの容量を高く維持できる点で、正極の容量は、負極の容量の1.1倍以上1.6倍以下が望ましい。
 電気化学キャパシタの正極は分極性電極であってもよい。分極性電極は、イオンを吸着および脱着可能な活物質を含み得る。電気化学キャパシタは、少なくとも正極側で、活物質にイオンが吸着することで容量が発現する。活物質からイオンが脱着すると非ファラデー的な電流が流れる。負極は、分極性電極であってもよいし、非分極性電極であってもよい。
 正極および負極の両方が分極性電極である場合、電気化学キャパシタは、活物質にイオンが吸着されることにより電気二重層が形成される電気二重層キャパシタ(EDLC)であってもよい。負極が非分極性電極である場合、電気化学キャパシタは、負極の側でリチウムイオンの吸着または脱離により容量を発現するリチウムイオンキャパシタ(LIC)であってもよい。LICの場合、負極として、リチウムイオン二次電池で用いられる負極を用いてもよい。なお、捲回式の電極体を用いる電気化学キャパシタにおいては、通常、最外周が負極となるように電極体が構成される。
 分極性電極は、例えば、集電体と、集電体に担持される分極性電極層と、を備える。正極および負極の両方が分極性電極である場合、正極は、例えば、正極集電体と、正極集電体に担持される分極性電極層と、を備える。負極は、例えば、負極集電体と、負極集電体に担持される分極性電極層と、を備える。正極および負極の容量は、それぞれ、分極性電極層に含まれる活物質の搭載量に依存するほか、活物質へのイオン吸着により容量が発現する場合、活物質の比表面積などにも依存する。しかしながら、正極の分極性電極層の厚みを、負極の分極性電極層の厚みよりも厚くすることで、正極の容量を負極の容量よりも多くすることが容易に可能である。
 他に、正極の分極電極層を圧縮し、正極集電体に担持される分極電極層の担持面積当たりの活物質の搭載密度を高めることで、正極および負極の厚さを略同じとしながら、正極の容量を負極の容量よりも大きくしてもよい。
 正極および負極の両方が分極性電極である場合、正極の分極電極層の厚みは負極の分極性電極層の厚みより厚く、且つ負極の分極性電極層の厚みの1.6倍以下が好ましい。正極の分極電極層の厚みは、負極の分極性電極層の厚みの1.1倍以上1.6倍以下がより好ましい。
 正極の容量を負極の容量よりも大きくすることで、フロート充電時における正極の電位が低下する一方で、負極の電位も低下し、負極がより還元性の高い環境になる。結果、負極に含まれる材料(例えば、活物質層に含まれる結着剤など)が還元分解され、電気化学キャパシタの特性が低下する場合がある。よって、正極および/または負極に結着剤を含ませる場合、結着剤は高い耐還元性を有するものが好ましい。高い耐還元性を有する結着剤としては、スチレン-ブタジエンゴム(SBR)が挙げられる。スチレン-ブタジエンゴム(SBR)は、スチレン-ブタジエン共重合体およびその変性体を含む。
 正極および負極の両方が分極性電極層を備える場合、スチレン-ブタジエンゴムは、少なくとも負極の分極性電極層に含まれていることが好ましい。
 電解液に含まれるカチオンとしては、耐電圧性が高く、非プロトン性溶媒への溶解性が高い点で、NR (Rはアルキル基)で表される第4級アルキルアンモニウムイオンが好ましい。Nと結合する4つのアルキル基Rのそれぞれは、他と異なっていてもよく、他といずれか1つと同じであってもよい。4つのアルキル基Rはそれぞれ独立にC1~C4アルキル基であってもよい。アルキル基Rのそれぞれは、直鎖アルキル基であって、分岐を有さず、且つ2つのアルキル基R同士が結合して環構造を形成しないものが好ましい。なかでも、微量の水が分解されて発生し得るOHと反応し易く、電解液のpHを一定に維持し易い点で、ジエチルジメチルアンモニウムイオン(N(C(CH )を好ましく用いることができる。
 第4級アルキルアンモニウムイオンは、アニオンとの塩の形で電解液に加えられる。アニオンは、フッ素を含むアニオンが好ましい。フッ素含有酸のアニオンを含むことが好ましい。フッ素を含むアニオンとしては、例えば、BF 、PF などが挙げられる。
 電気化学キャパシタは、正極と負極との間に3Vの電圧を印加して充電したとき、正極の電位がAg/Ag電位を基準として+0.96V以上+1.0V以下(負極の電位が-2.04V以上-2.0V以下)であると好ましい。この場合に、フロート特性の低下が顕著に抑制された電気化学キャパシタを実現できる。
 なお、正極(負極)の電位は、3Vで充電後の正極および負極を、活物質層(分極性電極層)が互いに対向するように電解液と同じ組成を有する非水溶液に浸漬し、負極(正極)を対極として、Ag電極を参照電極としたときの電位を測定することにより求められる。正極および負極は、活物質層(分極性電極層)を両面に有する場合、非対向部を作らないように、活物質層(分極性電極層)の片面を取り除いておく。Ag電極は、電解液に塩濃度が0.1mol/Lとなるように溶媒(GBL)を加え、さらにAgイオン濃度が0.1mol/LとなるようにAgBFを加えて得た参照電極用内部溶液を、ガラス管に充填するとともに、銀線を参照電極用内部溶液に浸漬したものが用いられ得る。
 以下に、本発明の実施形態に係る電気化学キャパシタの各構成要素について、電気二重層キャパシタを例として、更に詳細に説明する。
(正極および負極)
 電気化学キャパシタの正極および/または負極としては、例えば、活物質を含む活性層(分極性電極層)と、活性層を担持する集電体と、を備えた電極が、分極性電極として用いられる。活物質は、例えば、多孔質炭素粒子を含む。活性層は、活物質である多孔質炭素粒子を必須成分として含み、結着剤、導電剤等を任意成分として含み得る。
 多孔質炭素粒子は、例えば、原料を熱処理して炭化し、得られた炭化物を賦活処理して多孔質化することで作製することができる。賦活処理前に炭化物を破砕・整粒してもよい。賦活処理で得られた多孔質炭素粒子を粉砕処理してもよい。粉砕処理後、分級処理を行ってもよい。賦活処理としては、例えば、水蒸気等のガスを利用したガス賦活、水酸化カリウム等のアルカリを利用した薬品賦活が挙げられる。
 原料としては、例えば、木材、ヤシ殻、パルプ廃液、石炭またはその熱分解により得られる石炭系ピッチ、重質油またはその熱分解により得られる石油系ピッチ、フェノール樹脂、石油系コークス、石炭系コークス等が挙げられる。中でも、原料は、石油系コークス、石炭系コークスが好ましい。
 石油系コークスまたは石炭系コークスを熱処理し、得られた炭化物を賦活処理した後、当該多孔質炭素粒子について粉砕処理を行ってもよい。粉砕処理には、例えば、ボールミル、ジェットミル等が用いられる。上記の粉砕処理により、微細な多孔質炭素粒子が得られ、その平均粒径(D50)は、例えば1μm以上、4μm以下である。なお、本明細書中、平均粒径(D50)とは、レーザ回折/散乱法により測定される体積基準の粒度分布において体積積算値が50%となる粒径(メジアン径)を意味する。
 多孔質炭素粒子の細孔分布および粒度分布は、原料、熱処理温度、ガス賦活での賦活温度、粉砕の度合い等により調整することができる。また、原料が異なる2種類の多孔質炭素粒子を混合して、多孔質炭素粒子の細孔分布および粒度分布を調整してもよい。多孔質炭素粒子の平均粒径および粒度分布は、レーザ回折/散乱法により測定される。測定装置には、例えば、マイクロトラック社製のレーザ回折/散乱式粒子径分布測定装置「MT3300EXII」が用いられる。
 結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)等の樹脂材料、カルボキシメチルセルロース(CMC)、スチレン-ブタジエンゴム(SBR)が用いられる。導電剤としては、例えば、アセチレンブラック等のカーボンブラックが用いられる。
 上記の電極は、例えば、多孔質炭素粒子と、結着剤および/または導電剤と、分散媒と、を含むスラリーを集電体の表面に塗布し、塗膜を乾燥し、圧延して活性層を形成することにより得られる。集電体には、例えば、アルミニウム箔等の金属箔が用いられる。
 電気化学キャパシタが電気二重層キャパシタ(EDLC)の場合、正極および負極の少なくとも一方に、上記の多孔質炭素粒子を含む電極を用いることができる。電気化学キャパシタがリチウムイオンキャパシタ(LIC)の場合、正極に上記の多孔質炭素粒子を含む電極を用い、負極にリチウムイオン二次電池で用いられる負極を用いることができる。リチウムイオン二次電池で用いられる負極は、例えば、リチウムイオンを吸蔵および放出可能な負極活物質(例えば黒鉛)を含む。
(電解液)
 電解液は、溶媒(非水溶媒)と、イオン性物質と、を含む。イオン性物質は、溶媒中に溶解しており、カチオンと、アニオンと、を含む。イオン性物質は、例えば常温付近で液体として存在し得る、低融点の化合物(イオン性液体)を含んでいてもよい。電解液中のイオン性物質の濃度は、例えば、0.5mol/L以上、2.0mol/Lである。
 溶媒は、高沸点であると好ましい。溶媒は、ラクトン化合物を含み、必要に応じて他の溶媒を含む。他の溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル、エチレングリコール、プロピレングリコールなどの多価アルコール類、スルホランなどの環状スルホン類、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドンなどのアミド類、1,4-ジオキサンなどのエーテル類、メチルエチルケトンなどのケトン類、ホルムアルデヒドなどを用いることができる。
 イオン性物質は、例えば、有機塩を含む。有機塩とは、アニオンおよびカチオンの少なくとも一方が有機物を含む塩である。カチオンが有機物を含む有機塩としては、例えば、4級アンモニウム塩が挙げられる。アニオン(もしくは両イオン)が有機物を含む有機塩としては、例えば、マレイン酸トリメチルアミン、ボロジサリチル酸トリエチルアミン、フタル酸エチルジメチルアミン、フタル酸モノ1,2,3,4-テトラメチルイミダゾリニウム、フタル酸モノ1,3-ジメチル-2-エチルイミダゾリニウムなどが挙げられる。
 アニオンは、耐電圧特性を向上させる観点から、フッ素含有酸のアニオンを含むことが好ましい。フッ素含有酸のアニオンとしては、例えば、BF および/またはPF が挙げられる。有機塩は、例えば、第4級アルキルアンモニウムのカチオンと、フッ素含有酸のアニオンと、を含むことが好ましい。具体的には、ジエチルジメチルアンモニウムテトラフルオロボレート(DEDMABF)、トリエチルメチルアンモニウムテトラフルオロボレート(TEMABF)等が挙げられる。
(セパレータ)
 正極と負極の間には、通常、セパレータが介在している。セパレータは、イオン透過性を有し、正極と負極とを物理的に離間させて短絡を防止する役割を有する。セパレータとしては、セルロース繊維製の不織布、ガラス繊維製の不織布、ポリオレフィン製の微多孔膜、織布もしくは不織布などを用い得る。セパレータの厚さは、例えば8~300μmであり、8~40μmが好ましい。
 以下、本発明の実施形態に係る電気化学キャパシタを、図1を参照しながら説明する。図1は、本発明の実施形態に係る電気化学キャパシタの一部を切り欠いた斜視図である。なお、本発明は、図1の電気化学デバイスに限定されない。
 図1の電気化学キャパシタ10は、電気二重層キャパシタであり、捲回型のキャパシタ素子1を具備する。キャパシタ素子1は、それぞれシート状の第1電極(正極)2と第2電極(負極)3とをセパレータ4を介して捲回して構成されている。第1電極2および第2電極3は、それぞれ金属製の第1集電体、第2集電体と、その表面に担持された第1活性層、第2活性層を有し、イオンを吸着および脱着することで容量を発現する。第1活性層および第2活性層は、例えば、多孔質炭素粒子を含む。
 集電体には、例えば、アルミニウム箔が用いられる。集電体の表面は、エッチング等の手法によって粗面化してもよい。セパレータ4には、例えば、セルロースを主成分とする不織布が用いられる。第1電極2および第2電極3には、それぞれ引出部材として第1リード線5aおよび第2リード線5bが接続されている。キャパシタ素子1は、電解液(図示なし)とともに円筒型の外装ケース6に収容されている。外装ケース6の材質は、例えば、アルミニウム、ステンレス鋼、銅、鉄、真鍮等の金属であればよい。外装ケース6の開口は、封口部材7によって封止されている。リード線5a、5bは、封口部材7を貫通するように外部に導出されている。封口部材7には、例えば、ブチルゴム等のゴム材が用いられる。
 上記実施形態では、捲回型キャパシタについて説明したが、本発明の適用範囲は上記に限定されず、他構造のキャパシタ、例えば、積層型あるいはコイン型のキャパシタにも適用し得る。
 以下、実施例に基づいて、本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。
《実施例1~3、比較例1~8》
 本実施例では、電気化学キャパシタとして、捲回型の電気二重層キャパシタを作製した。以下に、電気化学キャパシタの具体的な製造方法について説明する。
(電極の作製)
 活物質である多孔質炭素粒子88質量部と、結着剤であるポリテトラフルオロエチレン(PTFE)6質量部と、導電剤であるアセチレンブラック6質量部とを、水に分散させ、スラリーを調製した。得られたスラリーをAl箔(厚み30μm)に塗布し、塗膜を110℃で熱風乾燥し、圧延して、表1に示す厚みの活性層(分極性電極層)を形成し、正極および負極を得た。正極の容量および負極の容量は、活性層の厚みに比例する。
(電解液の調製)
 非水溶媒としてラクトン化合物であるγ-ブチロラクトン(GBL)に、ジエチルジメチルアンモニウムテトラフルオロボレート(DEDMABF)を溶解し、電解液を調製した。電解液中のDEDMABFの濃度は、1.0mol/Lとした。
(電気化学デバイスの作製)
 セパレータとして、ポリプロピレン(PP)製の微多孔フィルムを準備した。正極および負極のそれぞれにリード線を接続し、セルロース性の不織布セパレータを介して捲回してキャパシタ素子を得た。キャパシタ素子を、電解液とともに所定の外装ケースに収容し、封口部材で封口して、電気化学キャパシタ(電気二重層キャパシタ)を完成させた。その後、定格電圧を印加しながら、60℃で16時間エージング処理を行った。
 上記で得られた各電気化学キャパシタについて、以下の評価を行った。
[評価]
(1)フロート特性の評価
(初期容量および初期内部抵抗(DCR)の測定)
 -30℃の環境下で、電圧が3Vになるまで2700mAの電流で定電流充電を行った後、3Vの電圧を印加した状態を7分間保持した。その後、-30℃の環境下で、電圧が0Vになるまで20mAの電流で定電流放電を行った。
 上記の放電において、電圧が2.16Vから1.08Vに降下するまでに要する時間t(sec)を測定した。測定された時間tを用いて、下記式(1)より電気化学キャパシタのフロート試験前の容量(初期容量)C1(F)を求めた。
 容量C1=Id×t/V   (1)
 なお、式(1)中、Idは、放電時の電流値(0.02A)であり、Vは、2.16Vから1.08Vを差し引いた値(1.08V)である。
 上記の放電で得られた放電曲線(縦軸:放電電圧、横軸:放電時間)を用い、当該放電曲線の放電開始から0.5秒~2秒経過時の範囲における一次の近似直線を求め、当該近似直線の切片の電圧VSを求めた。放電開始時(放電開始から0秒経過時)の電圧V0から電圧VSを差し引いた値(V0-VS)をΔVとして求めた。ΔV(V)と、放電時の電流値Id(0.02A)とを用いて、下記式(2)より電気化学キャパシタのフロート試験前の内部抵抗(DCR)R1(Ω)を求めた。
 内部抵抗R1=ΔV/Id   (2)
(フロート試験後の容量および内部抵抗(DCR)の測定)
 65℃の環境下で、電圧が3Vになるまで1000mAの電流で定電流充電を行った後、3.0Vの電圧を200時間保持した。このように、3.0Vの電圧を印加した状態で電気化学デバイスを保存した。その後、65℃の環境下で、電圧が0Vになるまで1000mAの電流で定電流放電を行った。その後、上記の初期容量および初期内部抵抗の測定の場合と同様の方法により、-30℃の環境下で充放電を行い、電気化学デイバスのフロート試験後の容量C2(F)および内部抵抗R2(Ω)を求めた。
 上記で得られた、電気化学キャパシタのフロート試験前後の容量C1および容量C2を用いて、下記式より容量の劣化率を評価した。容量劣化率の絶対値が小さいほど、フロート試験後において容量の低下が抑制されていることを示す。
 容量劣化率(%)=((C2/C1)-1)×100
 上記で得られた、電気化学キャパシタのフロート試験前後の内部抵抗R1および内部抵抗R2を用いて、下記式より抵抗の上昇率を求めた。上昇率が小さいほど、フロート試験後において内部抵抗の増加が抑制されていることを示す。
 抵抗上昇率(%)=(R2/R1)×100
(2)正極および負極の電位測定
 製造後の電気化学キャパシタを分解し、正極、負極およびセパレータを取り出した。取り出した正極および負極の両面に形成されている分極性電極層の片面を剥離し、それぞれ、直径16mmに打ち抜いた。取り出したセパレータを直径24mmに打ち抜いた。打ち抜いた正極、負極およびセパレータを、分極性電極層がセパレータを介して対向するように積層し、評価用セルを組み立てた。評価用セルを、電気化学キャパシタの電解液と同じ組成を有する非水溶液に浸漬し、上述の方法で準備したAg電極を参照電極として配置した。
 評価用セルに対して、25℃の環境下で、電圧が3Vになるまで1.8mAの電流で定電流充電を行った。その後、3.0Vの電圧を印加した状態を10分間保持した。3.0Vの電圧を10分間保持後の正極および負極の電位を測定した。
 正極における活性層の厚みおよび負極における活性層の厚みを変えながら、複数の電気化学キャパシタを作製し、評価した。評価結果を表1に示す。実施例1~3の電気化学キャパシタは、表1における電気化学キャパシタA1~A3である。比較例1~8の電気化学キャパシタは、表1における電気化学デバイスB1~B8である。表1では、各電気化学キャパシタで用いた結着剤、正極および負極における活性層の厚み(μm)および厚み比Rdを併せて示す。
 電気化学キャパシタA1~A3およびB1~B8において、活性層の密度は正極および負極において同じであり、電気化学キャパシタ間でも同じとした。よって、正極における活性層の厚みの負極における活性層の厚みに対する比Rdは、正極の容量の負極の容量に対する比に概ね等しい。
 電気化学キャパシタA1~A3およびB4~B8では、正極における活性層の厚みは、負極における活性層の厚みよりも厚く、Rd>1である。この場合、電気化学キャパシタの容量は負極の容量(負極における活性層の厚み)により規制される。これに対し、電気化学キャパシタB1およびB2では、正極における活性層の厚みは、負極における活性層の厚みよりも薄く、Rd<1である。この場合、電気化学キャパシタの容量は正極の容量(正極における活性層の厚み)により規制される。
《実施例4~8、比較例9~17》
 電極の作製において、活物質である多孔質炭素粒子88質量部と、結着剤であるスチレン-ブタジエンゴム(SBR)6質量部と、導電剤であるアセチレンブラック6質量部とを、水に分散させ、スラリーを調製した。得られたスラリーをAl箔(厚み30μm)に塗布し、塗膜を110℃で熱風乾燥し、圧延して、表2に示す厚みの活性層を形成し、正極および負極を得た。
 他は実施例1と同様にして、電気化学デバイスを作製し、同様に評価した。
 正極における活性層の厚みおよび負極における活性層の厚みを変えながら、複数の電気化学キャパシタを作製し、評価した。結果を表2に示す。実施例4~8の電気化学キャパシタは、表2における電気化学キャパシタA4~A8である。比較例9~17の電気化学キャパシタは、表2における電気化学デバイスB9~B17である。表2では、各電気化学キャパシタで用いた結着剤と、正極および負極における活性層の厚み(μm)および厚み比Rdを併せて示す。
 電気化学キャパシタA4~A8およびB9~B17において、活性層の密度は正極および負極において同じであり、電気化学キャパシタ間でも同じとした。よって、正極における活性層の厚みの負極における活性層の厚みに対する比Rdは、正極の容量の負極の容量に対する比に概ね等しい。
 電気化学キャパシタA4~A8およびB13~B17では、正極における活性層の厚みは、負極における活性層の厚みよりも厚く、Rd>1である。この場合、電気化学キャパシタの容量は負極の容量(負極における活性層の厚み)により規制される。これに対し、電気化学キャパシタB9~B11では、正極における活性層の厚みは、負極における活性層の厚みよりも薄く、Rd<1である。この場合、電気化学キャパシタの容量は正極の容量(正極における活性層の厚み)により規制される。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示すように、正極における活性層の厚みの負極における活性層の厚みに対する比(正極の容量の負極の容量に対する比)Rdが1を超え、1.6以下である電気化学デバイスA1~A8において、フロート特性の低下を抑制できた。
 表1より、厚み比Rdを大きくするほど、正極電位および負極電位が低下する。これに伴って、Rdが1を超えて1.6以下の範囲では、ラクトン化合物の正極での酸化分解が抑制され、抵抗上昇率および容量劣化率が小さく、高いフロート特性が維持されている。一方で、Rdが1.6を超えると、抵抗上昇率および容量劣化率が大きくなる。この理由は、負極電位の低下により、負極の活性層に結着剤として含まれるPTFEが還元分解を受け易くなるためと考えられる。
 表2より、結着剤として高い耐還元性を有するSBRを用いた電気化学デバイスA4~A8は、負極での結着剤の還元分解が抑制されるため、PTFEを結着剤に用いた電気化学デバイスA1~A3よりも小さな抵抗上昇率および容量劣化率を維持している。すなわち、Rdが1を超えて1.6以下の範囲において、電気化学デバイスA4~A8では、フロート特性の低下が顕著に抑制されている。
 図2に、電気化学デバイスの抵抗上昇率を、正極電位に対してプロットしたグラフを示す。図3に、電気化学デバイスの容量劣化率を、正極電位に対してプロットしたグラフを示す。図2および図3より、正極電位がAg/Ag電位を基準として+0.96V以上+1.0V以下の範囲にある場合に、抵抗上昇率および容量劣化率を小さくでき、フロート特性を高く維持することができることが分かる。
 本発明に係る電気化学デバイスは、大容量および優れたフロート特性が要求される用途に好適に用いられる。
 1:キャパシタ素子、2:第1電極、3:第2電極、4:セパレータ、5a:第1リード線、5b:第2リード線、6:外装ケース、7:封口部材、10:電気化学デバイス

Claims (7)

  1.  正極と、
     負極と、
     前記正極と前記負極との間に介在するセパレータと、
     電解液と、を備え、
     前記電解液は、ラクトン化合物を含み、
     前記正極の容量は、前記負極の容量よりも大きく、前記負極の容量の1.6倍以下である、電気化学キャパシタ。
  2.  前記正極の容量は、前記負極の容量の1.1倍以上1.6倍以下である、請求項1に記載の電気化学キャパシタ。
  3.  前記正極および前記負極は、分極性電極層をそれぞれ有し、
     前記正極の前記分極性電極層の厚みは、前記負極の前記分極性電極層の厚みよりも厚い、請求項1または2に記載の電気化学キャパシタ。
  4.  前記負極の前記分極性電極層は、スチレン-ブタジエンゴムを含む、請求項3に記載の電気化学キャパシタ。
  5.  前記電解液は、第4級アルキルアンモニウムイオンを含む、請求項1~4のいずれか1項に記載の電気化学キャパシタ。
  6.  前記ラクトン化合物は、γ-ブチロラクトンを含む、請求項1~5のいずれか1項に記載の電気化学キャパシタ。
  7.  3Vで充電したときの前記正極の電位は、Ag/Ag電位を基準として+0.96V以上+1.0V以下である、請求項1~6のいずれか1項に記載の電気化学キャパシタ。
PCT/JP2022/007212 2021-02-26 2022-02-22 電気化学キャパシタ WO2022181605A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/546,932 US20240194421A1 (en) 2021-02-26 2022-02-22 Electrochemical capacitor
CN202280015504.3A CN116888698A (zh) 2021-02-26 2022-02-22 电化学电容器
JP2023502432A JPWO2022181605A1 (ja) 2021-02-26 2022-02-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-030865 2021-02-26
JP2021030865 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181605A1 true WO2022181605A1 (ja) 2022-09-01

Family

ID=83048222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007212 WO2022181605A1 (ja) 2021-02-26 2022-02-22 電気化学キャパシタ

Country Status (4)

Country Link
US (1) US20240194421A1 (ja)
JP (1) JPWO2022181605A1 (ja)
CN (1) CN116888698A (ja)
WO (1) WO2022181605A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203614A (ja) * 1985-03-07 1986-09-09 松下電器産業株式会社 電気二重層コンデンサ
JP2000286161A (ja) * 1999-01-26 2000-10-13 Seiko Instruments Inc 電気二重層キャパシタ
JP2012069910A (ja) * 2010-08-23 2012-04-05 Seiko Instruments Inc 電子部品、及び電子装置
JP2012084612A (ja) * 2010-10-07 2012-04-26 Nippon Chemicon Corp 電気二重層キャパシタ用集電体及び電気二重層キャパシタ
JP2014029898A (ja) * 2012-07-31 2014-02-13 Taiyo Yuden Co Ltd 電気化学キャパシタ
WO2019188760A1 (ja) * 2018-03-29 2019-10-03 パナソニックIpマネジメント株式会社 電気化学デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203614A (ja) * 1985-03-07 1986-09-09 松下電器産業株式会社 電気二重層コンデンサ
JP2000286161A (ja) * 1999-01-26 2000-10-13 Seiko Instruments Inc 電気二重層キャパシタ
JP2012069910A (ja) * 2010-08-23 2012-04-05 Seiko Instruments Inc 電子部品、及び電子装置
JP2012084612A (ja) * 2010-10-07 2012-04-26 Nippon Chemicon Corp 電気二重層キャパシタ用集電体及び電気二重層キャパシタ
JP2014029898A (ja) * 2012-07-31 2014-02-13 Taiyo Yuden Co Ltd 電気化学キャパシタ
WO2019188760A1 (ja) * 2018-03-29 2019-10-03 パナソニックIpマネジメント株式会社 電気化学デバイス

Also Published As

Publication number Publication date
CN116888698A (zh) 2023-10-13
JPWO2022181605A1 (ja) 2022-09-01
US20240194421A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
JP4731967B2 (ja) リチウムイオンキャパシタ
WO2014185162A1 (ja) キャパシタおよびその充放電方法
JP2014530502A (ja) 高電圧電気化学的二重層キャパシタ
JP2013157603A (ja) リチウムイオンキャパシタ用活性炭、これを活物質として含む電極、及び前記電極を用いるリチウムイオンキャパシタ
JP5548837B1 (ja) 分極性電極用炭素材料及びその製造方法
TW201522219A (zh) 高電壓與高電容之活性碳以及碳爲主之電極
EP2665074B1 (en) Electrochemical cell
US20160104584A1 (en) Electrical double-layer capacitor for high-voltage operation at high-temperatures
WO2022196746A1 (ja) 電気化学キャパシタ
EP1296338B1 (en) Process for producing an electric double layer capacitor and positive electrode for an electric double layer capacitor
JPWO2007037523A1 (ja) 電気二重層キャパシタ用炭素材料および電気二重層キャパシタ
WO2021241334A1 (ja) 電気化学デバイス
WO2021241420A1 (ja) 電気化学デバイス用電極および電気化学デバイス
WO2022181605A1 (ja) 電気化学キャパシタ
JP2007294539A (ja) リチウムイオンハイブリッドキャパシタ
JP6500116B2 (ja) リチウムイオンキャパシタ及びその正極活物質として使用する炭素材料
JP2002151364A (ja) 電気二重層キャパシタ及びその製造方法
JP2014524156A (ja) 炭素電極及び電気化学キャパシタ
JP2022550959A (ja) バイアス電極を有する超コンデンサ
EP3109877A1 (en) Capacitor and method for charging and discharging same
JP2022129258A (ja) 電気化学キャパシタ
WO2023276436A1 (ja) 電気化学デバイス用電極および電気化学デバイス
JP4370019B2 (ja) 電気二重層コンデンサの電界賦活方法
JP3792528B2 (ja) 電気二重層コンデンサの製造方法
WO2024024956A1 (ja) 電気化学デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502432

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18546932

Country of ref document: US

Ref document number: 202280015504.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759641

Country of ref document: EP

Kind code of ref document: A1