WO2024024956A1 - 電気化学デバイス - Google Patents

電気化学デバイス Download PDF

Info

Publication number
WO2024024956A1
WO2024024956A1 PCT/JP2023/027804 JP2023027804W WO2024024956A1 WO 2024024956 A1 WO2024024956 A1 WO 2024024956A1 JP 2023027804 W JP2023027804 W JP 2023027804W WO 2024024956 A1 WO2024024956 A1 WO 2024024956A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
carbonate
negative electrode
electrochemical device
porous carbon
Prior art date
Application number
PCT/JP2023/027804
Other languages
English (en)
French (fr)
Inventor
英郎 坂田
信敬 武田
祥平 増田
宣寛 島村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024024956A1 publication Critical patent/WO2024024956A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to electrochemical devices.
  • electrochemical devices that combine the energy storage principles of lithium ion secondary batteries and electric double layer capacitors have been attracting attention.
  • Such electrochemical devices typically use a polarizable electrode for the positive electrode and a non-polarizable electrode for the negative electrode.
  • electrochemical devices are expected to have both the high energy density of lithium ion secondary batteries and the high output characteristics of electric double layer capacitors.
  • Patent Document 1 discloses an electrolytic solution that is a mixture of LiFSI and LiBF 4 in which the molar ratio of LiFSI to LiBF 4 is from 90/10 to 30/70, and a solvent containing at least one type of cyclic or chain carbonate compound.
  • a lithium ion capacitor has been proposed, which has an electrolytic solution containing a film-forming agent, and a concentration of the electrolytic solution in the electrolytic solution is 1.2 to 1.8 mol/L.
  • One aspect of the present disclosure includes a positive electrode including a positive active material reversibly doped with anions, a negative electrode including a negative active material reversibly doping lithium ions, and an electrolyte including a solvent and a lithium salt.
  • the lithium salt includes an imide-based lithium salt
  • the positive electrode active material includes a porous carbon material
  • the porous carbon material has a total surface functional group amount F (meq/g) per unit mass;
  • the area S (nm 2 ) of a circle whose diameter is the average pore diameter of the porous carbon material relates to an electrochemical device that satisfies the relationship 0.01 ⁇ F/S ⁇ 0.20.
  • FIG. 2 is a diagram schematically showing a part of a cross section of a porous carbon material.
  • FIG. 1 is a longitudinal cross-sectional view showing an example of an electrochemical device.
  • An electrochemical device includes a positive electrode including a positive electrode active material reversibly doped with anions, a negative electrode including a negative electrode active material reversibly doped with lithium ions, and an electrolyte.
  • the electrolyte has lithium ion conductivity and contains a lithium salt and a solvent.
  • the lithium salt can form lithium ions and anions by dissolving in the solvent.
  • anions are doped into the positive electrode active material during charging, and the anions are dedoped from the positive electrode active material during discharge.
  • anions are adsorbed to the positive electrode active material in the electrolyte, an electric double layer is formed and capacity is developed.
  • anions are desorbed from the positive electrode active material, a non-Faradaic current flows.
  • the positive electrode utilizes this phenomenon.
  • lithium ions are doped into the negative electrode active material during charging, and the lithium ions are dedoped from the negative electrode active material during discharge.
  • a faradaic reaction in which lithium ions are reversibly intercalated and released progresses to develop capacity.
  • Doping lithium ions into a negative electrode active material includes at least the phenomenon of occlusion of lithium ions into the negative electrode active material, such as adsorption of lithium ions into the negative electrode active material, chemical interaction between the negative electrode active material and lithium ions, etc. It is a concept that can also include
  • the lithium salt of the electrolyte includes an imide-based lithium salt.
  • the positive electrode active material includes a porous carbon material (eg, activated carbon). Area of a circle whose diameter is the total surface functional group amount F (meq/g) per unit mass of the porous carbon material and the average pore diameter (hereinafter also referred to as "average pore diameter d") of the porous carbon material S (nm 2 ) satisfies the relationship 0.01 ⁇ F/S ⁇ 0.20.
  • the area S of a circle whose diameter is the average pore diameter d is calculated by the formula ⁇ (d/2) 2 .
  • total surface functional group density D in an average cross section of pores
  • total surface functional group density D Average surface functional group density D
  • Average pore cross section refers to a pore in which the area surrounded by the outline of the inner wall surface of the pore is the same as the area of a circle whose diameter is the average pore diameter d in the cross section of the porous carbon material. means the cross section of
  • the "total surface functional group density D" is an index representing the functional group density within the pores of the porous carbon material.
  • Porous carbon materials usually have hydrophilic acidic functional groups (for example, carboxy groups, hydroxy groups, quinone groups, phenolic hydroxyl groups, etc.) on the surface (inner wall surfaces of pores).
  • hydrophilic acidic functional groups for example, carboxy groups, hydroxy groups, quinone groups, phenolic hydroxyl groups, etc.
  • Such a porous carbon material has the ability to adsorb solvated ions including anions derived from lithium salts. Thereby, a positive electrode with large capacity and low resistance can be obtained.
  • solvated ions containing anions derived from lithium salts in the electrolyte move into the pores of the porous carbon material and are adsorbed on the inner wall of the pore. It reacts with the hydrophilic acidic functional group of HF to generate an acid such as HF, and when the acid attacks the solvent, gas may be generated.
  • FIG. 1 is a diagram schematically showing a part of a cross section of a porous carbon material.
  • the pores 2 of the porous carbon material 1 shown in FIG. 1 represent pores having an average cross section.
  • the average cross section is, for example, a cross section of the porous carbon material 1 perpendicular to the direction in which the pores 2 extend.
  • the outline of the inner wall surface 3 of the pore 2 is circular. That is, the diameter of the pore 2 is the average pore diameter d.
  • Acidic functional groups 4 are present on the inner wall surface 3 of the pore 2 .
  • An electrolytic solution 5 enters into the pores 2.
  • Electrolytic solution 5 includes a solvent 6, anions 7, and lithium ions (not shown).
  • Anion 7 may combine with solvent 6 to form a solvated ion.
  • Anions 7 can be adsorbed on the inner wall surface 3 of the pore 2 during charging.
  • the total surface functional group density D changes depending on the amount of acidic functional groups 4 present on the inner wall surface 3 of the pore 2 and the size of the pore 2 (average pore diameter d).
  • Factors that influence the side reaction (gas generation) mentioned above include not only the amount of acidic functional groups 4, but also the size and stability of the anion 7, the size of the pore 2, and the amount of anion 7 within the pore 2.
  • the distance L to the acidic functional group 4 (inner wall surface 3), etc. can be considered. The distance L affects the size of the anion 7 and the pore 2.
  • solvated imide-based anions for example, FSI anions
  • FSI anions have a larger diameter than solvated PF 6 - , making it difficult to enter the pores. It is assumed that this is due to the fact that it is difficult to decompose.
  • the present inventors further conducted intensive studies.
  • the total surface functional group density D within the range of 0.01 to 0.2, good solvated ion adsorption properties of the porous carbon material can be ensured, while We have newly discovered that the side reactions mentioned above and the deterioration in performance of electrochemical devices caused by them can be suppressed.
  • the performance deterioration of the electrochemical device includes, for example, an increase in DCR (internal resistance) and a decrease in capacity due to float charging.
  • the total surface functional group amount F (meq/g) per unit mass of the porous carbon material can be determined by the following method.
  • a sample of the porous carbon material is dried in a dryer at 115° C. ⁇ 5° C. for 3 hours or more, and then left to cool in a desiccator for 20 minutes or more.
  • a 2 g ⁇ 0.01 g sample is placed in a stoppered Erlenmeyer flask (volume 100 ml), and 50 ml of a C 2 H 5 ONa solution (concentration 0.1 mol/L) is added as a reagent. Note that the sample is weighed to the nearest 0.1 mg.
  • the charges (sample and reagents) in the Erlenmeyer flask are stirred for 2 hours and then left for 24 hours. After standing, stir again for 30 minutes. Note that stirring is performed using a stirrer.
  • the stirred material is filtered using filter paper (Type 5 C) to obtain a filtrate.
  • Titration is performed on 25 ml of the filtrate using an aqueous HCl solution (concentration 0.1 mol/L). Titration is performed using an automatic titrator while stirring the filtrate with a stirrer. The titration is completed when the pH of the filtrate reaches 4.0, and the total titration amount t1 from the start to the end of the titration is measured. Further, the same amount of reagent (C 2 H 5 ONa solution) is titrated in the same manner without adding the sample, and the total titration amount t2 until the pH reaches 4.0 is measured (blank test). Using the obtained t1 (ml) and t2 (ml), the total surface functional group amount F (meq/g) is calculated from the following formula (1).
  • the average pore diameter d can be determined by the following method.
  • 0.20 g to 0.25 g of a sample of the porous carbon material is collected, and the sample is placed in a measurement cell composed of a glass tube for specific surface area measurement, and the measurement cell is dried and degassed. Dry degassing is performed at a pressure of 6.67 Pa and a temperature of 250°C ⁇ 5°C for 1 hour or more. Thereafter, the mass of the sample in the measurement cell is measured to the order of 0.1 mg. Then, the amount of nitrogen adsorbed by the sample at a temperature of -196° C. is measured using a specific surface area measuring device.
  • a specific surface area measuring device for example, an automatic specific surface area/pore distribution measuring device “Tristar II 3020” manufactured by Shimadzu Corporation is used.
  • the specific surface area A is determined using the BET multipoint method within a partial pressure (relative pressure) range of 0.001 to 0.2.
  • the pore volume V is calculated from the total adsorption amount of nitrogen in the sample when the partial pressure (relative pressure) is 0.93.
  • the average pore diameter d (nm) is calculated from the following formula (2).
  • the electrochemical device is disassembled, the positive electrode is taken out, washed with a solvent such as dimethyl carbonate, dried, and the positive electrode mixture layer is collected from the positive electrode.
  • a solvent such as dimethyl carbonate
  • the positive electrode mixture layer is collected from the positive electrode.
  • it may be used as a sample.
  • Components other than the porous carbon material (such as a binder) contained in the positive electrode mixture are small in amount, and the influence of other components on the measurement of the total surface functional group amount F and the average pore diameter d is small.
  • the porous carbon material can be produced, for example, by heat-treating a raw material to carbonize it, and then subjecting the obtained carbide to activation treatment to make it porous.
  • raw materials include wood, coconut shells, pulp waste liquid, coal or coal-based pitch obtained by thermal decomposition thereof, heavy oil or petroleum-based pitch obtained by thermal decomposition thereof, phenolic resin, petroleum-based coke, and coal-based coke.
  • activation treatment include gas activation using a gas such as water vapor, and chemical activation using an alkali such as potassium hydroxide.
  • the above-mentioned total surface functional group amount F and area S can be adjusted by changing the raw materials, heat treatment temperature, activation temperature in gas activation, type of chemicals, etc.
  • the above total surface functional group amount F is, for example, 0.05 meq/g or more and 1 meq/g or less.
  • the above average pore diameter d is, for example, 1.5 nm or more and 6 nm or less.
  • Porous carbon materials are usually particulate.
  • the average particle size of the porous carbon material is not particularly limited, but may be 1 ⁇ m or more and 20 ⁇ m or less, or 3 ⁇ m or more and 15 ⁇ m or less.
  • the average particle size means a particle size (median diameter) at which the volume integrated value is 50% in a volume-based particle size distribution measured by a laser diffraction/scattering method.
  • the specific surface area A of the porous carbon material is, for example, 1200 to 2500 m 2 /g, and may be in the range of 1350 to 2300 m 2 /g.
  • the specific surface area A is 1200 m 2 /g or more (for example, 1350 m 2 /g or more), it is easy to realize a high capacity.
  • the specific surface area A is 2,500 m 2 /g or less (for example, 2,300 m 2 /g or less), the contact area with the electrolyte decreases, and decomposition of the electrolyte due to side reactions is suppressed.
  • the specific surface area A is determined by the method described above.
  • the specific surface area and average particle size of the porous carbon material may be adjusted by subjecting the porous carbon material to pulverization and/or classification.
  • the pulverization process may be performed using a ball mill, jet mill, or the like.
  • Lithium salts include imide-based lithium salts.
  • An imide-based lithium salt is a salt composed of a lithium ion and an imide-based anion.
  • the imide anion include imide anions containing a sulfur atom and a fluorine atom (eg, fluorine-containing alkylsulfonylimide anion, fluorosulfonylimide anion, etc.).
  • Examples of the imide anion include N(SO 2 C m F 2m+1 )(SO 2 C n F 2n+1 ) ⁇ (m and n are each independently an integer of 0 or more). m and n may each be from 0 to 3, and may be 0, 1 or 2.
  • the imide anion may be N(SO 2 CF 3 ) 2 ⁇ , N(SO 2 C 2 F 5 ) 2 ⁇ or N(SO 2 F) 2 ⁇ .
  • N(SO 2 F) 2 - is sometimes expressed as FSI -
  • lithium bis(fluorosulfonyl)imide which is a salt of FSI - and lithium ion, is sometimes expressed as LiFSI.
  • the imide-based lithium salt contains LiFSI.
  • the use of LiFSI tends to significantly reduce the DCR change rate at low temperatures.
  • LiFSI is considered to have the effect of suppressing deterioration of the positive electrode active material and the negative electrode active material.
  • FSI - has a strong bond between fluorine and sulfur and is highly stable, suppressing the generation of HF compared to PF 6 - and contributing to smooth charging and discharging without damaging the surface of the active material. considered to be a thing.
  • the positive electrode active material includes at least a porous carbon material (for example, a porous carbon material such as activated carbon, which has an average particle size of 1 ⁇ m or more and 20 ⁇ m or less and a specific surface area A of 1200 to 2500 m 2 /g), and It may also contain materials other than the carbon material (for example, conductive polymers).
  • the proportion of the porous carbon material in the positive electrode active material may be 60% by mass or more, 80% by mass or more, and preferably 95% by mass or more. All of the positive electrode active material may be a porous carbon material.
  • the positive electrode includes, for example, a positive electrode mixture layer and a positive electrode current collector that supports the positive electrode mixture layer.
  • the positive electrode mixture layer contains a positive electrode active material as an essential component, and may also contain a conductive agent, a binder, a thickener, etc. as optional components.
  • the content of the positive electrode active material in the positive electrode mixture layer may be 70% by mass or more, and preferably 90% by mass or more.
  • the thickness of the positive electrode mixture layer is, for example, 10 to 300 ⁇ m per side of the positive electrode current collector.
  • Examples of the conductive agent include carbon black and carbon fiber.
  • Examples of carbon black include acetylene black and Ketjen black.
  • Examples of the binder include fluororesin, acrylic resin, and rubber material.
  • Examples of the thickener include cellulose derivatives.
  • a positive electrode mixture slurry is prepared by mixing a positive electrode active material, a conductive agent, etc. with a dispersion medium, the positive electrode mixture slurry is applied to a positive electrode current collector, and then dried. formed by.
  • a sheet-shaped metal material is used for the positive electrode current collector.
  • the sheet-shaped metal material may be metal foil, porous metal, etched metal, or the like.
  • As the metal material aluminum, aluminum alloy, nickel, titanium, etc. can be used.
  • the negative electrode potential (25° C.) is, for example, 0.2 V or less based on lithium (vs. Li/Li + ).
  • the negative electrode mixture layer is pre-doped with lithium ions so that the negative electrode potential in the electrolytic solution is 0.2 V or less with respect to metallic lithium. This lowers the potential of the negative electrode, increases the potential difference (that is, voltage) between the positive electrode and the negative electrode, and improves the energy density of the electrochemical device.
  • the amount of lithium to be pre-doped may be, for example, about 50% to 95% of the maximum amount that can be stored in the negative electrode mixture layer.
  • non-graphitizable carbon easily graphitizable carbon (soft carbon), graphite (natural graphite, artificial graphite, etc.), lithium titanium oxide (spinel type lithium titanium oxide, etc.), silicon oxide, silicon alloy, Examples include tin oxides and tin alloys.
  • the negative electrode active material contains non-graphitizable carbon.
  • Non-graphitizable carbon has lower resistance and higher capacity than graphite. When non-graphitizable carbon is used, it is easy to obtain a negative electrode that has low low-temperature DCR and exhibits low expansion and contraction during charging and discharging.
  • Non-graphitizable carbon has better compatibility with propylene carbonate than graphite, and is easier to reduce DCR.
  • the non-graphitizable carbon may have a lattice distance d002 of the (002) plane (i.e., a lattice spacing between carbon layers) of 3.8 ⁇ or more as measured by X-ray diffraction. It is desirable that the theoretical capacity of the non-graphitizable carbon is, for example, 150 mAh/g or more. It is desirable that the non-graphitizable carbon accounts for 50% by mass or more, more preferably 80% by mass or more, and even more preferably 95% by mass or more of the negative electrode active material. Further, it is desirable that the non-graphitizable carbon accounts for 40% by mass or more, more preferably 70% by mass or more, and even more preferably 90% by mass or more of the negative electrode mixture layer.
  • the average particle size of the negative electrode active material may be 1 ⁇ m or more and 20 ⁇ m or less. , 2 ⁇ m or more and 15 ⁇ m or less.
  • the negative electrode includes, for example, a negative electrode mixture layer and a negative electrode current collector that supports the negative electrode mixture layer.
  • the negative electrode mixture layer contains a negative electrode active material as an essential component, and may also contain a conductive agent, a binder, a thickener, etc. as optional components.
  • the thickness of the negative electrode mixture layer is, for example, 10 to 300 ⁇ m per side of the negative electrode current collector.
  • Examples of the conductive agent include carbon black and carbon fiber.
  • Examples of the binder include fluororesin, acrylic resin, and rubber material.
  • Examples of the thickener include cellulose derivatives.
  • a negative electrode mixture slurry is prepared by mixing a negative electrode active material, a conductive agent, etc. with a dispersion medium, the negative electrode mixture slurry is applied to a negative electrode current collector, and then dried. formed by.
  • a sheet-shaped metal material is used for the negative electrode current collector.
  • the sheet-shaped metal material may be metal foil, porous metal, etched metal, or the like.
  • As the metal material copper, copper alloy, nickel, stainless steel, etc. can be used.
  • the concentration of the lithium salt in the electrolytic solution is, for example, 0.5 mol/L or more and 5 mol/L or less.
  • the lithium salt includes an imide-based lithium salt, and may also contain other components other than the imide-based lithium salt.
  • the proportion of imide-based lithium salt in the lithium salt is preferably 50 mol% or more, may be 70 mol% or more, or may be 90 mol% or more, and all of the lithium salt is imide-based lithium. It may also be salt.
  • components other than the imide lithium salt include, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiFSO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , LiCl, LiBr, LiI, LiBCl 4 and the like. These may be used alone or in combination of two or more.
  • solvents examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, and aliphatic carbons such as methyl formate, methyl acetate, methyl propionate, and ethyl propionate.
  • Cyclic ether of dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propionitrile, nitromethane, ethyl monoglyme, trimethoxymethane, sulfolane, methylsulfolane, 1,3-propanesultone etc. can be used. These may be used alone or in combination of two or more.
  • the solvent contains a cyclic carbonate and a chain carbonate.
  • the volume ratio of cyclic carbonate to linear carbonate is preferably 1/9 to 9/1, and more preferably is 2/8 to 8/2.
  • the cyclic carbonate preferably contains propylene carbonate and preferably does not substantially contain ethylene carbonate.
  • substantially not containing means that the content is below the detection limit in the composition analysis of the electrolytic solution.
  • gas chromatography mass spectrometry GC/MS
  • IC ion chromatography
  • NMR nuclear magnetic resonance spectroscopy
  • propylene carbonate compared to ethylene carbonate, the melting point is lower and the electrolyte solution is less likely to solidify, so it is easier to obtain an electrolyte solution with a moderately low viscosity and has excellent ionic conductivity at low temperatures.
  • propylene carbonate has a methyl group and has greater steric hindrance than ethylene carbonate, so it is less likely to be decomposed by acids such as HF and an increase in DCR is easily suppressed.
  • the proportion of propylene carbonate in the cyclic carbonate may be 30% by volume or more, 50% by volume or more, or at most 80% by volume.
  • the chain carbonate preferably contains ethyl methyl carbonate, and preferably does not substantially contain dimethyl carbonate and diethyl carbonate.
  • the proportion of ethyl methyl carbonate in the chain carbonate may be 60% by volume or more, or 80% by volume or more.
  • Ethyl methyl carbonate has a lower melting point, is less likely to solidify at low temperatures, and has a lower viscosity than dimethyl carbonate. Ethyl methyl carbonate has higher conductivity and lower viscosity than diethyl carbonate. Ethyl methyl carbonate can further reduce DCR at low temperatures.
  • the electrolytic solution may contain various additives as necessary.
  • unsaturated carbonates such as vinylene carbonate, vinylethylene carbonate, and divinylethylene carbonate may be added as additives that form a low-resistance film on the surface of the negative electrode.
  • a separator is disposed between the positive electrode and the negative electrode.
  • a nonwoven fabric made of cellulose fiber, a nonwoven fabric made of glass fiber, a microporous membrane made of polyolefin, a woven fabric, or a nonwoven fabric can be used.
  • the thickness of the separator is, for example, 8 to 300 ⁇ m, preferably 8 to 40 ⁇ m.
  • FIG. 2 is a longitudinal cross-sectional view showing an example of an electrochemical device.
  • the electrochemical device 200 includes an electrode body 100, an electrolytic solution (not shown), a metal cell case 210 with a bottom that accommodates the electrode body 100 and the electrolytic solution, and a sealing plate that seals the opening of the cell case 210. 220.
  • the electrode body 100 is a columnar wound body formed by winding a strip-shaped positive electrode 10 and a strip-shaped negative electrode 20 with a separator 30 interposed between the positive electrode 10 and the negative electrode 20.
  • a gasket 221 is disposed around the peripheral edge of the sealing plate 220, and the open end of the cell case 210 is caulked to the gasket 221, thereby sealing the inside of the cell case 210.
  • the positive electrode current collector plate 13 having a through hole 13h in the center is welded to the positive electrode core exposed portion 11x.
  • the tab lead 15 has one end connected to the positive current collector plate 13 and the other end connected to the inner surface of the sealing plate 220 . Therefore, the sealing plate 220 has a function as an external positive terminal.
  • the negative electrode current collector plate 23 is welded to the negative electrode core exposed portion 21x.
  • the negative electrode current collector plate 23 is directly welded to a welding member provided on the inner bottom surface of the cell case 210. Therefore, cell case 210 has a function as an external negative terminal.
  • the positive electrode current collector plate 13 is a generally disc-shaped metal plate. It is preferable to form a through hole in the center of the positive electrode current collector plate to serve as a passage for the electrolytic solution.
  • the material of the positive electrode current collector plate is, for example, aluminum, aluminum alloy, titanium, stainless steel, or the like. The material of the positive electrode current collector plate may be the same as the material of the positive electrode current collector.
  • the negative electrode current collector plate 23 is a generally disc-shaped metal plate.
  • the material of the negative electrode current collector plate is, for example, copper, copper alloy, nickel, stainless steel, or the like.
  • the material of the negative electrode current collector plate may be the same as the material of the negative electrode current collector.
  • the electrochemical device is not limited to the wound type electrochemical device shown in FIG.
  • it may be a stacked electrochemical device. That is, the electrode body may be configured as a laminate by laminating a sheet-like positive electrode and a negative electrode with a separator interposed between the positive and negative electrodes.
  • the positive electrode active material includes a porous carbon material, The total surface functional group amount F (meq/g) per unit mass of the porous carbon material and the area S (nm 2 ) of a circle whose diameter is the average pore diameter of the porous carbon material are 0.01.
  • ⁇ Devices A1 to A14, Devices B1 to B18 ⁇ (Preparation of positive electrode) 88 parts by mass of the positive electrode active material, 2 parts by mass of polytetrafluoroethylene (PTFE), 4 parts by mass of carboxymethyl cellulose, and 6 parts by mass of acetylene black were dispersed in water to obtain a positive electrode mixture slurry.
  • the positive electrode mixture slurry was applied to both sides of an aluminum foil (thickness: 30 ⁇ m) serving as a positive electrode current collector, and the coating film was dried and rolled to form a positive electrode mixture layer to obtain a positive electrode.
  • Porous carbon materials (activated carbon particles) a1 to a14 and b1 to b2 shown in Table 1 were used as positive electrode active materials.
  • metallic lithium foil was attached to the negative electrode mixture layer in an amount calculated such that the negative electrode potential in the electrolyte after pre-doping was 0.2 V or less relative to metallic lithium.
  • An electrode body was formed by winding a positive electrode and a negative electrode into a column with a cellulose nonwoven fabric separator (thickness: 25 ⁇ m) in between. At this time, the positive electrode current collector exposed portion was made to protrude from one end surface of the electrode body, and the negative electrode current collector exposed portion was made to protrude from the other end surface of the electrode body. A disk-shaped positive electrode current collector plate and a negative electrode current collector plate were welded to the positive electrode current collector exposed portion and the negative electrode current collector exposed portion, respectively.
  • An electrolytic solution was prepared by dissolving a lithium salt in a solvent.
  • the solvent used was a mixture of a cyclic carbonate and a chain carbonate at a volume ratio of 30:70.
  • Propylene carbonate (PC) and ethyl methyl carbonate (EMC) were used as the cyclic carbonate and the chain carbonate, respectively.
  • LiFSI or LiPF 6 was used as the lithium salt.
  • the concentration of lithium salt (LiFSI or LiPF 6 ) in the electrolyte was 1.0 mol/L.
  • the electrode body was housed in a bottomed cell case having an opening, a tab lead connected to the positive electrode current collector plate was connected to the inner surface of the sealing plate, and a negative electrode current collector plate was further welded to the inner bottom surface of the cell case. After pouring the electrolyte into the cell case, the opening of the cell case was closed with a sealing plate, and an electrochemical device as shown in FIG. 2 was assembled. Note that A1 to A14 in Table 2 are electrochemical devices of Examples. B1 to B2 in Table 2 and B3 to B18 in Table 3 are electrochemical devices of comparative examples.
  • aging was performed at 25° C. for 24 hours while applying a charging voltage of 3.8 V between the positive electrode and negative electrode terminals to advance pre-doping of lithium ions into the negative electrode.
  • the DCR change rate was smaller than in devices B1 to B18, and the increase in internal resistance was suppressed.
  • the DCR change rate was reduced by using porous carbon material a8 as the positive electrode active material and using LiFSI as the lithium salt in the electrolyte.
  • the DCR change rate became even smaller. .
  • the electrochemical device according to the present disclosure is suitable for, for example, in-vehicle use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)

Abstract

電気化学デバイスは、アニオンを可逆的にドープする正極活物質を含む正極と、リチウムイオンを可逆的にドープする負極活物質を含む負極と、溶媒およびリチウム塩を含む電解液と、を備える。リチウム塩はイミド系リチウム塩を含み、正極活物質は多孔質炭素材料を含む。多孔質炭素材料の単位重量あたりの全表面官能基量F(meq/g)と、多孔質炭素材料の平均細孔径を直径とする円の面積S(nm)とは、0.01≦F/S≦0.20の関係を満たす。

Description

電気化学デバイス
 本開示は、電気化学デバイスに関する。
 近年、リチウムイオン二次電池と電気二重層キャパシタの蓄電原理を組み合わせた電気化学デバイスが注目されている。このような電気化学デバイスは、通常、正極に分極性電極を使用し、負極に非分極性電極を使用する。その結果、電気化学デバイスは、リチウムイオン二次電池の高エネルギー密度と電気二重層キャパシタの高出力特性とを兼ね備えるものと期待されている。
 特許文献1では、LiFSI及びLiBFの混合物であってLiBFに対するLiFSIのモル比率が90/10~30/70である電解液と、環状又は鎖状のカーボネート化合物の少なくとも1種を含む溶媒と、被膜形成剤と、を含む電解液を有し、電解液中の電解液の濃度が1.2~1.8mol/Lである、リチウムイオンキャパシタが提案されている。
特開2017-216310号公報
 電気化学デバイスの性能低下の抑制が求められている。
 本開示の一側面は、アニオンを可逆的にドープする正極活物質を含む正極と、リチウムイオンを可逆的にドープする負極活物質を含む負極と、溶媒およびリチウム塩を含む電解液と、を具備し、前記リチウム塩は、イミド系リチウム塩を含み、前記正極活物質は、多孔質炭素材料を含み、前記多孔質炭素材料の単位質量あたりの全表面官能基量F(meq/g)と、前記多孔質炭素材料の平均細孔径を直径とする円の面積S(nm)とは、0.01≦F/S≦0.20の関係を満たす、電気化学デバイスに関する。
 本開示によれば、電気化学デバイスの性能の低下が抑制される。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
多孔質炭素材料の断面の一部を模式的に示す図である。 電気化学デバイスの一例を示す縦断面図である。
 以下では、本開示の実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などの数値に関して下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかとを任意に組み合わせることができる。複数の材料が例示される場合、その中から1種を選択して単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、本開示は、添付の請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項の組み合わせを包含する。つまり、技術的な矛盾が生じない限り、添付の請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項を組み合わせることができる。
 本開示の実施形態に係る電気化学デバイスは、アニオンを可逆的にドープする正極活物質を含む正極と、リチウムイオンを可逆的にドープする負極活物質を含む負極と、電解液と、を備える。電解液は、リチウムイオン伝導性を有し、リチウム塩と溶媒とを含む。電解液において、リチウム塩は、溶媒に溶解することにより、リチウムイオンとアニオンとを形成し得る。
 正極では、充電時にアニオンが正極活物質にドープされ、放電時に当該アニオンが正極活物質から脱ドープされる。電解液中で正極活物質にアニオンが吸着すると電気二重層が形成され、容量を発現する。正極活物質からアニオンが脱着すると非ファラデー的な電流が流れる。正極はこのような現象を利用するものである。
 負極では、充電時にリチウムイオンが負極活物質にドープされ、放電時に当該リチウムイオンが負極活物質から脱ドープされる。負極では、リチウムイオンが可逆的に吸蔵および放出されるファラデー反応が進行して容量を発現する。リチウムイオンの負極活物質へのドープとは、少なくとも負極活物質へのリチウムイオンの吸蔵現象を含み、リチウムイオンの負極活物質への吸着や、負極活物質とリチウムイオンとの化学的相互作用なども含み得る概念である。
 電解液のリチウム塩は、イミド系リチウム塩を含む。正極活物質は、多孔質炭素材料(例えば活性炭)を含む。多孔質炭素材料の単位質量あたりの全表面官能基量F(meq/g)と、多孔質炭素材料の平均細孔径(以下、「平均細孔径d」とも称する。)を直径とする円の面積S(nm)とは、0.01≦F/S≦0.20の関係を満たす。
 平均細孔径dを直径とする円の面積Sは、π×(d/2)の式により算出される。
 以下、F/S(meq/g/nm)は、「細孔の平均的断面における全表面官能基密度D」もしくは単に「全表面官能基密度D」とも称する。「細孔の平均的断面」とは、多孔質炭素材料の断面において、細孔の内壁面の輪郭で囲まれた面積が、平均細孔径dを直径とする円の面積と同じである細孔の断面を意味する。「全表面官能基密度D」は、多孔質炭素材料の細孔内の官能基密度を表す指標である。
 多孔質炭素材料は、通常、表面(細孔の内壁面)に親水性の酸性官能基(例えば、カルボキシ基、ヒドロキシ基、キノン基、フェノール性水酸基など)を有する。このような多孔質炭素材料は、リチウム塩由来のアニオンを含む溶媒和イオンの吸着性を有する。これにより、容量が大きく、かつ、抵抗が小さい正極を得ることができる。
 しかし、充電時に、電解液中のリチウム塩由来のアニオンを含む溶媒和イオンは、多孔質炭素材料の細孔内に移動し、細孔の内壁面に吸着すると、当該細孔の内壁面に存在する親水性の酸性官能基と反応し、HFなどの酸が生成し、その酸が溶媒などを攻撃することによってガスが発生することがある。
 ここで、図1は、多孔質炭素材料の断面の一部を模式的に示す図である。
 図1に示す多孔質炭素材料1の細孔2は、平均的断面を有する細孔を表している。平均的断面は、例えば、細孔2が延びる方向に垂直な多孔質炭素材料1の断面である。この断面において、細孔2の内壁面3の輪郭は円形状であると仮定する。すなわち細孔2の直径は平均細孔径dである。細孔2の内壁面3に酸性官能基4が存在する。細孔2内に電解液5が入り込んでいる。電解液5は、溶媒6とアニオン7とリチウムイオン(図示しない)とを含む。アニオン7は溶媒6と結合して溶媒和イオンを形成し得る。充電時に細孔2の内壁面3にアニオン7が吸着し得る。全表面官能基密度Dは、細孔2の内壁面3に存在する酸性官能基4の量、および、細孔2の大きさ(平均細孔径d)により変化する。上記の副反応(ガス発生)に影響を及ぼす因子として、酸性官能基4の量だけでなく、アニオン7の大きさおよび安定性、細孔2の大きさ、細孔2内でのアニオン7と酸性官能基4(内壁面3)との距離Lなどが考えられる。距離Lは、アニオン7および細孔2の大きさに影響する。
 そこで、本発明者らは、アニオンの種類および全表面官能基密度Dに着目して鋭意検討を行った。その結果、下記(i)および(ii)の新たな知見が得られた。
 (i)電解液に含まれるリチウム塩がLiPFの場合、全表面官能基密度Dに依らず副反応(HFのガス発生)が生じ易い。これは、溶媒和したPF は、径が小さく、細孔内に移動し易いことによるものと推測される。
 (ii)一方、電解液に含まれるリチウム塩がイミド系リチウム塩(例えばLiFSI)の場合、全表面官能基密度Dにより副反応の度合い(ガス発生量)が変化する。このような、イミド系リチウム塩の場合に特有の現象は、溶媒和したイミド系アニオン(例えばFSIアニオン)が、溶媒和したPF よりも、径が大きく、細孔内に入りにくくなるため分解しにくいことなどが影響しているものと推測される。
 本発明者らは、上記の知見に基づいて、更に鋭意検討を行った。その結果、イミド系リチウム塩を用いる場合に全表面官能基密度Dを0.01~0.2の範囲内とすることにより、多孔質炭素材料の良好な溶媒和イオン吸着性を確保しつつ、上記の副反応およびそれに起因する電気化学デバイスの性能低下を抑制できることを新たに見出した。なお、電気化学デバイスの性能低下は、例えば、フロート充電に伴うDCR(内部抵抗)上昇、容量低下などである。
 F/Sが0.2よりも大きい場合、多孔質炭素材料の細孔内の酸性官能基の密度が大きくなり、上記の副反応が進み、フロート充電時にDCRが上昇する。
 F/Sが0.01よりも小さい場合、多孔質炭素材料の細孔内の酸性官能基の密度が小さくなり、多孔質炭素材料の溶媒和イオン吸着性が低下し、フロート充電時にDCRが上昇する。
(全表面官能基量Fの測定)
 多孔質炭素材料の単位質量あたりの全表面官能基量F(meq/g)は、以下の方法により求めることができる。
 多孔質炭素材料の試料を、115℃±5℃の乾燥器中で3時間以上乾燥し、その後、デシケータ中で20分以上放冷する。共栓付き三角フラスコ(容積100ml)に2g±0.01gの試料を投入し、さらに、試薬として50mlのCONa溶液(濃度0.1mol/L)を投入する。なお、試料の計量は0.1mgの桁まで行う。三角フラスコ中の投入物(試料および試薬)を2時間撹拌し、その後、24時間放置する。放置後、再度30分間撹拌する。なお、撹拌はスターラーを用いて行う。その後、撹拌物をろ紙(5種C)を用いてろ過し、ろ液を得る。25mlのろ液に対してHCl水溶液(濃度0.1mol/L)を用いて滴定を行う。滴定は、自動滴定装置を用いて、スターラーでろ液を攪拌しながら行う。ろ液のpHが4.0になった時点で滴定を終了し、滴定開始から終了までの総滴定量t1を測定する。また、試料を加えずに同量の試薬(CONa溶液)に対しても同様に滴定を行い、pHが4.0になるまでの総滴定量t2を測定する(ブランクテスト)。
 得られたt1(ml)およびt2(ml)を用いて、下記式(1)より全表面官能基量F(meq/g)を算出する。
 F=0.1×(t2-t1)   (1)
(平均細孔径dの測定)
 平均細孔径dは、以下の方法により求めることができる。
 多孔質炭素材料の試料を0.20g~0.25g採取し、比表面積測定用のガラス管より構成される測定セル内に当該試料を収容し、測定セル内の乾燥脱気を行う。乾燥脱気は、圧力6.67Paおよび温度250℃±5℃で1時間以上行う。その後、測定セル中の試料の質量を0.1mgの桁まで測定する。そして、比表面積測定装置を用いて温度-196℃下における試料の窒素の吸着量を測定する。測定装置には、例えば、島津製作所社製の自動比表面積/細孔分布測定装置「トライスターII 3020」が用いられる。吸着量の測定結果から、比表面積AをBET多点法により分圧(相対圧)0.001~0.2の範囲で求める。細孔容積Vを、分圧(相対圧)が0.93となる時の試料の窒素の全吸着量から算出する。
 得られた比表面積A(m/g)および細孔容積V(cm/g)を用いて、下記式(2)より平均細孔径d(nm)を算出する。
 d=(4V/A)×10   (2)
 また、上記の全表面官能基量Fおよび平均細孔径dの測定では、電気化学デバイスを分解して正極を取り出し、ジメチルカーボネートなどの溶媒で洗浄し、乾燥し、正極から正極合剤層を採取し、それを試料として用いてもよい。正極合剤に含まれる多孔質炭素材料以外の他の成分(結着剤など)は少量であり、他の成分による全表面官能基量Fおよび平均細孔径dの測定への影響は小さい。
(多孔質炭素材料)
 多孔質炭素材料は、例えば、原料を熱処理して炭化し、得られた炭化物を賦活処理して多孔質化することにより作製することができる。原料としては、例えば、木材、ヤシ殻、パルプ廃液、石炭またはその熱分解により得られる石炭系ピッチ、重質油またはその熱分解により得られる石油系ピッチ、フェノール樹脂、石油系コークス、石炭系コークス等が挙げられる。賦活処理としては、例えば、水蒸気等のガスを利用したガス賦活、水酸化カリウム等のアルカリを利用した薬品賦活が挙げられる。
 上記の全表面官能基量Fおよび面積S(平均細孔径d)は、原料、熱処理温度、ガス賦活での賦活温度、薬品の種類などを変えることにより調整することができる。
 上記の全表面官能基量Fは、例えば、0.05meq/g以上、1meq/g以下である。上記の平均細孔径dは、例えば、1.5nm以上、6nm以下である。
 多孔質炭素材料は、通常、粒子状である。多孔質炭素材料の平均粒径は、特に限定されないが、1μm以上、20μm以下であってもよく、3μm以上、15μm以下であってもよい。なお、本明細書中、平均粒径とは、レーザ回折/散乱法により測定される体積基準の粒度分布において体積積算値が50%となる粒径(メジアン径)を意味する。
 多孔質炭素材料の比表面積Aは、例えば、1200~2500m/gであり、1350~2300m/gの範囲であってもよい。比表面積Aが1200m2/g以上(例えば1350m/g以上)である場合、高い容量を実現し易い。比表面積Aが2500m2/g以下(例えば2300m/g以下)である場合、電解液との接触部分が少なくなり、副反応に伴う電解液の分解が抑制される。比表面積Aは、既述の方法により求められる。
 多孔質炭素材料の比表面積および平均粒径は、多孔質炭素材料を粉砕処理および/または分級処理することによって調整してもよい。粉砕処理は、ボールミルやジェットミルなどを用いて行ってもよい。
(イミド系リチウム塩)
 リチウム塩は、イミド系リチウム塩を含む。イミド系リチウム塩は、リチウムイオンとイミド系アニオンとで構成される塩である。イミド系アニオンとしては、硫黄原子とフッ素原子とを含むイミド系アニオン(例えば、含フッ素アルキルスルホニルイミドアニオン、フルオロスルホニルイミドアニオンなど)が挙げられる。
 イミド系アニオンとしては、N(SO2m+1)(SO2n+1(mおよびnは、それぞれ独立して0以上の整数である。)などが挙げられる。mおよびnは、それぞれ、0~3であってもよく、0、1または2であってもよい。イミド系アニオンは、N(SOCF 、N(SO 、N(SOF) であってもよい。
 N(SOF) をFSIと表し、FSIとリチウムイオンとの塩であるリチウムビス(フルオロスルホニル)イミドをLiFSIと表すことがある。
 中でも、イミド系リチウム塩はLiFSIを含むことが好ましい。LiFSIを用いることで、低温でのDCR変化率が顕著に小さくなる傾向がある。LiFSIには、正極活物質および負極活物質の劣化を抑制する効果があると考えられる。FSIはフッ素と硫黄の結合が強く、安定性に優れており、PF の場合と比べてHFの生成が抑制され、活物質の表面を損傷することなく、スムーズに充放電に寄与するものと考えられる。
 以下、電気化学デバイスの各構成要素について詳述する。
(正極)
 正極活物質は、少なくとも多孔質炭素材料(例えば活性炭のような、平均粒径が1μm以上、20μm以下であり、比表面積Aが1200~2500m/gである多孔質炭素材料)を含み、多孔質炭素材料以外の他の材料(例えば導電性高分子)を含んでもよい。正極活物質に占める多孔質炭素材料の割合は、60質量%以上であってもよく、80質量%以上であってもよく、95質量%以上であることが望ましい。正極活物質の全てが多孔質炭素材料であってもよい。
 正極は、例えば、正極合剤層と、正極合剤層を担持する正極集電体と、を備える。正極合剤層は、正極活物質を必須成分として含み、任意成分として、導電剤、結着剤、増粘剤などを含んでもよい。正極合剤層中の正極活物質の含有率は、70質量%以上であってもよく、90質量%以上であることが望ましい。正極合剤層の厚さは、正極集電体の片面あたり、例えば10~300μmである。
 導電剤としては、カーボンブラック、炭素繊維などが挙げられる。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック等が挙げられる。結着剤としては、フッ素樹脂、アクリル樹脂、ゴム材料などが挙げられる。増粘剤としては、セルロース誘導体などが挙げられる。
 正極合剤層は、例えば、正極活物質と、導電剤などとを、分散媒とともに混合して正極合剤スラリーを調製し、正極合剤スラリーを正極集電体に塗布した後、乾燥することにより形成される。
 正極集電体には、シート状の金属材料が用いられる。シート状の金属材料は、金属箔、金属多孔体、エッチングメタルなどであればよい。金属材料としては、アルミニウム、アルミニウム合金、ニッケル、チタンなどを用い得る。
(負極)
 負極電位(25℃)は、例えば、リチウム基準(vs.Li/Li)で0.2V以下である。電解液中での負極電位が金属リチウムに対して0.2V以下となるように、負極合剤層に予めリチウムイオンがプレドープされる。これにより、負極の電位が低下し、正極と負極の電位差(すなわち電圧)が大きくなり、電気化学デバイスのエネルギー密度が向上する。プレドープされるリチウム量は、例えば、負極合剤層に吸蔵可能な最大量の50%~95%程度とすればよい。
 負極活物質として、難黒鉛化炭素、易黒鉛化炭素(ソフトカーボン)、黒鉛(天然黒鉛、人造黒鉛など)、リチウムチタン酸化物(スピネル型リチウムチタン酸化物など)、ケイ素酸化物、ケイ素合金、錫酸化物、錫合金などが例示できる。
 中でも、負極活物質は、難黒鉛化炭素を含むことが好ましい。難黒鉛化炭素は、黒鉛に比べて、抵抗が低く、かつ、高い容量を有する。難黒鉛化炭素を用いる場合、低温DCRが小さく、かつ充放電に伴う膨張と収縮の小さい負極を得易い。難黒鉛化炭素は、黒鉛に比べて、プロピレンカーボネートとの相性が良く、低DCR化し易い。
 難黒鉛化炭素は、X線回折法にて測定される(002)面の面間隔(すなわち、炭素層と炭素層の面間隔)d002が3.8Å以上であってもよい。難黒鉛化炭素の理論容量は、例えば150mAh/g以上であることが望ましい。難黒鉛化炭素は、負極活物質の50質量%以上、更には80質量%以上、更には95質量%以上を占めることが望ましい。また、難黒鉛化炭素は、負極合剤層の40質量%以上、更には70質量%以上、更には90質量%以上を占めることが望ましい。
 負極における負極活物質の充填性が高く、電解液との副反応を抑制し易い観点から、負極活物質(特に難黒鉛化炭素)の平均粒径は、1μm以上、20μm以下であってもよく、2μm以上、15μm以下であってもよい。
 負極は、例えば、負極合剤層と、負極合剤層を担持する負極集電体と、を備える。負極合剤層は、負極活物質を必須成分として含み、任意成分として、導電剤、結着剤、増粘剤などを含んでもよい。負極合剤層の厚さは、負極集電体の片面あたり、例えば10~300μmである。
 導電剤としては、カーボンブラック、炭素繊維などが挙げられる。結着剤としては、フッ素樹脂、アクリル樹脂、ゴム材料などが挙げられる。増粘剤としては、セルロース誘導体などが挙げられる。
 負極合剤層は、例えば、負極活物質と、導電剤などとを、分散媒とともに混合して負極合剤スラリーを調製し、負極合剤スラリーを負極集電体に塗布した後、乾燥することにより形成される。
 負極集電体には、シート状の金属材料が用いられる。シート状の金属材料は、金属箔、金属多孔体、エッチングメタルなどであればよい。金属材料としては、銅、銅合金、ニッケル、ステンレス鋼などを用い得る。
(電解液)
 電解液中のリチウム塩の濃度は、例えば、0.5mol/L以上、5mol/L以下である。リチウム塩は、イミド系リチウム塩を含み、イミド系リチウム塩以外の他の成分を含んでもよい。リチウム塩に占めるイミド系リチウム塩の割合は、50モル%以上であることが望ましく、70モル%以上であってもよく、90モル%以上であってもよく、リチウム塩の全てがイミド系リチウム塩であってもよい。
 イミド系リチウム塩以外の他の成分としては、例えば、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiFSO3、LiCF3CO2、LiAsF6、LiB10Cl10、LiCl、LiBr、LiI、LiBCl4などが挙げられる。これらは1種を単独で用いても、2種以上を組み合わせてもよい。
 溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル、γ-ブチロラクトン、γ-バレロラクトンなどのラクトン類、1,2-ジメトキシエタン、1,2-ジエトキシエタン、エトキシメトキシエタン(EME)などの鎖状エーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピオニトリル、ニトロメタン、エチルモノグライム、トリメトキシメタン、スルホラン、メチルスルホラン、1,3-プロパンサルトンなどを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせてもよい。
 中でも、溶媒は、環状カーボネートと、鎖状カーボネートと、を含むことが好ましい。フロート充電に伴うDCR上昇の抑制の観点から、鎖状カーボネートに対する環状カーボネートの体積比(例えば、エチルメチルカーボネートに対するプロピレンカーボネートの体積比)は、好ましくは1/9~9/1であり、より好ましくは2/8~8/2である。
 環状カーボネートは、プロピレンカーボネートを含むことが好ましく、エチレンカーボネートを実質的に含まないことが好ましい。なお、上記の「実質的に含まない」とは、電解液の組成分析において検出限界以下であることを意味する。電解液の組成分析としては、例えば、ガスクロマトグラフィー質量分析法(GC/MS)、イオンクロマトグラフィー(IC)、核磁気共鳴分光法(NMR)などを用いることができる。
 プロピレンカーボネートの場合、エチレンカーボネートの場合と比べて、融点が低く、電解液が凝固しにくいため、適度に低い粘度の電解液が得られ易く、低温でのイオン伝導性に優れている。また、プロピレンカーボネートは、メチル基を有し、エチレンカーボネートに比べて立体障害が大きいことから、HFなどの酸に分解されにくく、DCR上昇が抑制され易い。
 環状カーボネートに占めるプロピレンカーボネートの割合は、30体積%以上であってもよく、50体積%以上であってもよく、最大で80体積%であってもよい。
 鎖状カーボネートは、エチルメチルカーボネートを含むことが好ましく、ジメチルカーボネートおよびジエチルカーボネートをそれぞれ実質的に含まないことが好ましい。この場合、鎖状カーボネートに占めるエチルメチルカーボネートの割合は、60体積%以上であってもよく、80体積%以上であってもよい。
 エチルメチルカーボネートの場合、ジメチルカーボネートの場合と比べて、融点が低く、低温で固化しにくく、粘度が低い。エチルメチルカーボネートの場合、ジエチルカーボネートの場合と比べて電導度が高いとともに粘度が低い。エチルメチルカーボネートでは、低温でのDCRを更に低減できる。
 電解液に、必要に応じて、種々の添加剤を含ませてもよい。例えば、負極表面に低抵抗の被膜を形成する添加剤として、ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネートなどの不飽和カーボネートを添加してもよい。
(セパレータ)
 正極と負極との間にはセパレータが配置されていることが望ましい。セパレータとしては、セルロース繊維製の不織布、ガラス繊維製の不織布、ポリオレフィン製の微多孔膜、織布もしくは不織布などを用い得る。セパレータの厚さは、例えば8~300μmであり、8~40μmが好ましい。
 図2は、電気化学デバイスの一例を示す縦断面図である。電気化学デバイス200は、電極体100と、電解液(図示せず)と、電極体100および電解液を収容する金属製の有底のセルケース210と、セルケース210の開口を封口する封口板220とを具備する。電極体100は、帯状の正極10と帯状の負極20とを、正極10と負極20との間にセパレータ30を介在させて巻回することにより構成される柱状の巻回体である。封口板220の周縁部にはガスケット221が配されており、セルケース210の開口端部をガスケット221にかしめることでセルケース210の内部が密閉されている。中央に貫通孔13hを有する正極集電板13は、正極芯材露出部11xと溶接されている。正極集電板13に一端が接続されているタブリード15の他端は、封口板220の内面に接続されている。よって、封口板220は、外部正極端子としての機能を有する。一方、負極集電板23は、負極芯材露出部21xと溶接されている。負極集電板23は、セルケース210の内底面に設けられた溶接用部材に直接溶接されている。よって、セルケース210は、外部負極端子としての機能を有する。
 正極集電板13は、概ね円盤状の金属板である。正極集電板の中央部には電解液の通路となる貫通孔を形成することが好ましい。正極集電板の材質は、例えばアルミニウム、アルミニウム合金、チタン、ステンレス鋼などである。正極集電板の材質は、正極集電体の材質と同じでもよい。
 負極集電板23は、概ね円盤状の金属板である。負極集電板の材質は、例えば銅、銅合金、ニッケル、ステンレス鋼などである。負極集電板の材質は、負極集電体の材質と同じでもよい。
 電気化学デバイスは、図2に示す巻回型の電気化学デバイスに限定されない。例えば、積層型の電気化学デバイスであってもよい。すなわち、電極体は、シート状の正極および負極を、当該正負極の間にセパレータを介して積層して積層体として構成されてもよい。
《付記》
 以上の実施形態の記載により、以下の技術が開示される。
(技術1)
 アニオンを可逆的にドープする正極活物質を含む正極と、
 リチウムイオンを可逆的にドープする負極活物質を含む負極と、
 溶媒およびリチウム塩を含む電解液と、
を具備し、
 前記リチウム塩は、イミド系リチウム塩を含み、
 前記正極活物質は、多孔質炭素材料を含み、
 前記多孔質炭素材料の単位質量あたりの全表面官能基量F(meq/g)と、前記多孔質炭素材料の平均細孔径を直径とする円の面積S(nm)とは、0.01≦F/S≦0.2の関係を満たす、電気化学デバイス。
(技術2)
 前記イミド系リチウム塩は、リチウムビス(フルオロスルホニル)イミドを含む、技術1に記載の電気化学デバイス。
(技術3)
 前記溶媒は、環状カーボネートと、鎖状カーボネートと、を含む、技術1または2に記載の電気化学デバイス。
(技術4)
 前記鎖状カーボネートに対する前記環状カーボネートの体積比は、1/4以上、4以下である、技術3に記載の電気化学デバイス。
(技術5)
 前記環状カーボネートは、プロピレンカーボネートを含み、エチレンカーボネートを実質的に含まない、技術3または4に記載の電気化学デバイス。
(技術6)
 前記鎖状カーボネートは、エチルメチルカーボネートを含み、ジメチルカーボネートおよびジエチルカーボネートをそれぞれ実質的に含まない、技術3~5のいずれか1つに記載の電気化学デバイス。
(技術7)
 前記負極活物質は、難黒鉛化炭素を含む、技術1~6のいずれか1つに記載の電気化学デバイス。
[実施例]
 以下、実施例に基づいて、本開示をより具体的に説明するが、本開示は実施例に限定されるものではない。
《デバイスA1~A14、デバイスB1~B18》
(正極の作製)
 正極活物質88質量部と、ポリテトラフルオロエチレン(PTFE)2質量部と、カルボキシメチルセルロース4質量部と、アセチレンブラック6質量部とを、水に分散させ、正極合剤スラリーを得た。正極合剤スラリーを正極集電体であるアルミニウム箔(厚さ30μm)の両面に塗布し、塗膜を乾燥し、圧延して、正極合剤層を形成し、正極を得た。
 正極活物質には、表1に示す多孔質炭素材料(活性炭粒子)a1~a14、b1~b2を用いた。
Figure JPOXMLDOC01-appb-T000001
(負極の作製)
 難黒鉛化炭素90質量部と、ケッチェンブラック5質量部と、カルボキシメチルセルロース1.5質量部と、スチレンブタジエンゴム3質量部とを、水に分散させ、負極合剤スラリーを得た。負極合剤スラリーを負極集電体である銅箔(厚さ8μm)の両面に塗布し、塗膜を形成し、乾燥し、圧延して、負極合剤層を形成し、負極を得た。
 次に、負極合剤層に、プレドープ完了後の電解液中での負極電位が金属リチウムに対して0.2V以下となるように計算された分量の金属リチウム箔を貼り付けた。
(電極体の作製)
 正極と負極とをセルロース製不織布のセパレータ(厚さ25μm)を介して柱状に巻回して電極体を形成した。このとき、正極集電体露出部を電極体の一方の端面から突出させ、負極集電体露出部を電極体の他方の端面から突出させた。正極集電体露出部および負極集電体露出部にそれぞれ円盤状の正極集電板および負極集電板を溶接した。
(電解液の調製)
 溶媒にリチウム塩を溶解させて電解液を調製した。溶媒には、環状カーボネートと鎖状カーボネートとを、30:70の体積比で混合したものを用いた。環状カーボネートおよび鎖状カーボネートには、それぞれプロピレンカーボネート(PC)およびエチルメチルカーボネート(EMC)を用いた。リチウム塩には、LiFSIまたはLiPFを用いた。電解液中のリチウム塩(LiFSIまたはLiPF)の濃度は、1.0mol/Lとした。
(電気化学デバイスの組み立て)
 開口を有する有底のセルケースに電極体を収容し、正極集電板と接続されているタブリードを封口板の内面に接続し、更に、負極集電板をセルケースの内底面に溶接した。セルケース内に電解液を入れた後、セルケースの開口を封口板で塞ぎ、図2に示すような電気化学デバイスを組み立てた。なお、表2中のA1~A14は、実施例の電気化学デバイスである。表2中のB1~B2および表3中のB3~B18は、比較例の電気化学デバイスである。
 その後、正極と負極との端子間に3.8Vの充電電圧を印加しながら25℃で24時間エージングし、リチウムイオンの負極へのプレドープを進行させた。
 各電気化学デバイスについて、以下の評価を行った。
[評価]
(初期の電気化学デバイスの内部抵抗(DCR)の測定)
 エージング直後の電気化学デバイスに対し、-30℃の環境下で、電圧が3.8Vになるまで、正極面積当たり2mA/cmの電流密度で定電流充電を行った後、3.8Vの電圧を印加した状態を10分間保持した。その後、-30℃の環境下で、電圧が2.2Vになるまで正極面積当たり2mA/cmの電流密度で定電流放電を行った。
 上記放電で得られた放電曲線(縦軸:放電電圧、横軸:放電時間)を用い、当該放電曲線の放電開始から0.5秒~2秒経過時の範囲における一次の近似直線を求め、当該近似直線の切片の電圧VSを求めた。放電開始時(放電開始から0秒経過時)の電圧V0から電圧VSを差し引いた値(V0-VS)をΔVとして求めた。ΔV(V)と、放電時の電流値(正極面積当たりの電流密度2mA/cm×正極面積)Idとを用いて、下記式(A)より電気化学デバイスの内部抵抗R1(Ω)を求めた。
 内部抵抗R1=ΔV/Id   (A)
(フロート試験後の電気化学デバイスの内部抵抗(DCR)の測定)
 次に、85℃の環境下で電気化学デバイスに定電圧3.8Vを印加した状態で1000時間保持してフロート試験を行った。その後、上記R1と同様にして電気化学デバイスの内部抵抗R2(Ω)を求めた。
 得られたR1およびR2を用いて、下記式(B)よりDCR変化率(%)を求めた。
 DCR変化率={(R2-R1)/R1}×100   (B)
 DCR変化率が小さいほど、内部抵抗の上昇が抑制され、信頼性が高い。
 評価結果を表2および表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 デバイスA1~A14では、デバイスB1~B18よりも、DCR変化率が小さく、内部抵抗の上昇が抑制された。
《デバイスA15~A26》
 電解液の調製において、溶媒中の環状カーボネートおよび鎖状カーボネートの含有率を、それぞれ表4に示す値(体積%)とした。環状カーボネートおよび鎖状カーボネートには、それぞれ表4に示す化合物を用いた。なお、表4中、ECはエチレンカーボネートであり、DMCはジメチルカーボネートであり、DECはジエチルカーボネートである。表4中、デバイスA22~A26では、環状カーボネート(必要に応じて鎖状カーボネート)に2種類の化合物を用いており、括弧内は2種類の化合物の体積比を示す。
 上記以外はデバイスA8と同様にしてデバイスA15~A26を作製し、評価した。デバイスA8とともにデバイスA15~A26の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 デバイスA15~A26においても、デバイスA8の場合と同様に、正極活物質に多孔質炭素材料a8を用い、電解液のリチウム塩にLiFSIを用いることによりDCR変化率は小さくなった。PC/EMCの体積比が1/4以上、4以下であり、電解液中にEC、DMC、DECが実質的に含まれない、デバイスA8、A16~A18では、DCR変化率が更に小さくなった。
 本開示に係る電気化学デバイスは、例えば車載用途として好適である。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 1:多孔質炭素材料、2:細孔、3:細孔の内壁面、4:酸性官能基、5:電解液、6:溶媒、7:アニオン、10:正極、11x:正極芯材露出部、13:正極集電板、15:タブリード、20:負極、21x:負極芯材露出部、23:負極集電板、30:セパレータ、100:電極体、200:電気化学デバイス、210:セルケース、220:封口板、221:ガスケット

Claims (7)

  1.  アニオンを可逆的にドープする正極活物質を含む正極と、
     リチウムイオンを可逆的にドープする負極活物質を含む負極と、
     溶媒およびリチウム塩を含む電解液と、
    を具備し、
     前記リチウム塩は、イミド系リチウム塩を含み、
     前記正極活物質は、多孔質炭素材料を含み、
     前記多孔質炭素材料の単位質量あたりの全表面官能基量F(meq/g)と、前記多孔質炭素材料の平均細孔径を直径とする円の面積S(nm)とは、0.01≦F/S≦0.2の関係を満たす、電気化学デバイス。
  2.  前記イミド系リチウム塩は、リチウムビス(フルオロスルホニル)イミドを含む、請求項1に記載の電気化学デバイス。
  3.  前記溶媒は、環状カーボネートと、鎖状カーボネートと、を含む、請求項1に記載の電気化学デバイス。
  4.  前記鎖状カーボネートに対する前記環状カーボネートの体積比は、1/4以上、4以下である、請求項3に記載の電気化学デバイス。
  5.  前記環状カーボネートは、プロピレンカーボネートを含み、エチレンカーボネートを実質的に含まない、請求項3に記載の電気化学デバイス。
  6.  前記鎖状カーボネートは、エチルメチルカーボネートを含み、ジメチルカーボネートおよびジエチルカーボネートをそれぞれ実質的に含まない、請求項3に記載の電気化学デバイス。
  7.  前記負極活物質は、難黒鉛化炭素を含む、請求項1に記載の電気化学デバイス。
PCT/JP2023/027804 2022-07-29 2023-07-28 電気化学デバイス WO2024024956A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022121472 2022-07-29
JP2022-121472 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024956A1 true WO2024024956A1 (ja) 2024-02-01

Family

ID=89706656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027804 WO2024024956A1 (ja) 2022-07-29 2023-07-28 電気化学デバイス

Country Status (1)

Country Link
WO (1) WO2024024956A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043568A1 (ja) * 2015-09-10 2017-03-16 株式会社キャタラー リチウムイオンキャパシタ及びその正極活物質として使用する炭素材料
JP2020053488A (ja) * 2018-09-25 2020-04-02 太陽誘電株式会社 電気化学デバイス用電解液および電気化学デバイス
JP2022055902A (ja) * 2020-09-29 2022-04-08 日本ケミコン株式会社 電気二重層キャパシタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043568A1 (ja) * 2015-09-10 2017-03-16 株式会社キャタラー リチウムイオンキャパシタ及びその正極活物質として使用する炭素材料
JP2020053488A (ja) * 2018-09-25 2020-04-02 太陽誘電株式会社 電気化学デバイス用電解液および電気化学デバイス
JP2022055902A (ja) * 2020-09-29 2022-04-08 日本ケミコン株式会社 電気二重層キャパシタ

Similar Documents

Publication Publication Date Title
US10242809B2 (en) Non-aqueous lithium-type power storage element
JP5291617B2 (ja) リチウムイオン二次電池用、電気二重層キャパシタ用又は燃料電池用の電極、並びに、それを用いたリチウムイオン二次電池、電気二重層キャパシタ及び燃料電池
EP2998973B1 (en) Capacitor and method for charging and discharging the same
US10396361B2 (en) Nonaqueous lithium-type power storage element
JP5228531B2 (ja) 蓄電デバイス
EP1876663A1 (en) Negative electrode active material for charging device
JP2007266064A (ja) 電気二重層キャパシタ
EP3279911A1 (en) Hybrid capacitor and separator for hybrid capacitors
US9007742B2 (en) Supercapacitor materials and devices
US20220393147A1 (en) Non-Aqueous Lithium Power Storage Element
JP2016167443A (ja) 非水電解液蓄電素子
JPH1131637A (ja) 電気二重層キャパシタ、そのための炭素材料及び電極
WO2024024956A1 (ja) 電気化学デバイス
WO2022092050A1 (ja) 電気化学デバイス
US20240128031A1 (en) Electrochemical capacitor
JP6500116B2 (ja) リチウムイオンキャパシタ及びその正極活物質として使用する炭素材料
JP2007194614A (ja) 電気二重層キャパシタ
WO2022209928A1 (ja) リチウムイオンキャパシタ
WO2022202580A1 (ja) 電気化学デバイス
WO2021251075A1 (ja) 電気化学デバイス
WO2022181605A1 (ja) 電気化学キャパシタ
WO2022202577A1 (ja) 電気化学デバイス
JP2008130690A (ja) 電気化学キャパシタ及び電気化学キャパシタ用非水系電解液
WO2024048182A1 (ja) 電気化学デバイス
US20240194421A1 (en) Electrochemical capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846686

Country of ref document: EP

Kind code of ref document: A1