WO2022181291A1 - ポリイミド樹脂組成物及び金属ベース基板 - Google Patents

ポリイミド樹脂組成物及び金属ベース基板 Download PDF

Info

Publication number
WO2022181291A1
WO2022181291A1 PCT/JP2022/004379 JP2022004379W WO2022181291A1 WO 2022181291 A1 WO2022181291 A1 WO 2022181291A1 JP 2022004379 W JP2022004379 W JP 2022004379W WO 2022181291 A1 WO2022181291 A1 WO 2022181291A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide resin
filler
resin composition
group
less
Prior art date
Application number
PCT/JP2022/004379
Other languages
English (en)
French (fr)
Inventor
慎太郎 原
史朗 石川
京佳 薄
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP22759331.6A priority Critical patent/EP4299649A1/en
Priority to US18/275,302 priority patent/US20240117119A1/en
Publication of WO2022181291A1 publication Critical patent/WO2022181291A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a polyimide resin composition and a metal base substrate.
  • a metal base substrate is known as one of the substrates for mounting electronic components such as semiconductor elements and LEDs.
  • a metal base substrate is a laminate in which a metal substrate, an insulating film, and a metal circuit layer are laminated in this order. Electronic components are mounted on the metal circuit layer via solder.
  • the heat generated in the electronic component is transmitted to the metal substrate through the insulating film and radiated from the metal substrate to the outside.
  • the insulating film of the metal base substrate is generally made of an insulating composition containing a resin with excellent insulation and voltage resistance and a filler with excellent thermal conductivity.
  • a resin with excellent insulation and voltage resistance and a filler with excellent thermal conductivity.
  • Polyimide resins, polyamide resins, polyamideimide resins, epoxy resins, silicone resins, and the like are used as resins for insulating films.
  • fillers for insulating films aluminum oxide particles, aluminum hydroxide particles, magnesium oxide particles, magnesium hydroxide particles, aluminum nitride particles, silica particles, silicon carbide particles, titanium oxide particles, boron nitride particles and the like are used. (Patent Documents 1 to 5).
  • a metal base substrate is manufactured, for example, by forming an insulating film on a metal substrate and then thermocompression bonding the insulating film and the metal circuit layer.
  • a method of forming an insulating film on a metal substrate for example, a method of applying a resin solution in which a filler is dispersed onto the substrate and drying the obtained coating film is used.
  • voids may occur between the resin and the filler when the coating film is dried. If voids are generated between the resin and the filler in the insulating film, heat is difficult to conduct through the void portions, and thus the thermal conductivity of the insulating film may decrease.
  • the withstand voltage of the insulating film may be lowered, for example, dielectric breakdown of the insulating film may easily occur due to partial discharge occurring in the void portion.
  • the present invention has been made in view of the above circumstances, and is a resin composition containing a filler and a resin, which is less likely to generate voids and has excellent thermal conductivity and voltage resistance, and A metal base substrate using this resin composition as an insulating film is provided.
  • a resin composition of one embodiment of the present invention contains a resin and a filler dispersed in the resin,
  • the resin includes a polyimide resin having a dicarboxylic acid group or an acid anhydride group of a dicarboxylic acid group at both ends, and the filler has, on the surface, aluminum oxide, aluminum hydroxide, magnesium oxide, and magnesium hydroxide.
  • a polyimide resin composition containing at least one selected inorganic compound is containing at least one selected inorganic compound.
  • the polyimide resin contained in the base material resin has a dicarboxylic acid group or an acid anhydride group of a dicarboxylic acid group at both ends, and the filler has aluminum oxide on the surface. , aluminum hydroxide, magnesium oxide, and magnesium hydroxide.
  • the bonding strength between the resin and the filler is increased, and voids are less likely to form between the two. Therefore, the polyimide resin composition having the above structure has improved thermal conductivity and withstand voltage.
  • the polyimide resin may be a compound represented by the following general formula (1) or general formula (2).
  • the bonding strength between the polyimide resin and the filler becomes stronger, and more voids are generated between the two. become difficult.
  • R1 represents a tetravalent organic group
  • R2 represents a divalent organic group
  • S is 10 or more and 200 or less calculated from the number average molecular weight. Represents a number within the range of .
  • the number average molecular weight of the said polyimide resin may be set as the structure which exists in the range of 5000-50000. In this case, since the number average molecular weight of the polyimide resin is in the range of 5000 or more and 50000 or less, the fluidity of the polyimide resin is controlled and defects hardly occur during resin-metal bonding.
  • the content of the filler may be in the range of 60% by mass or more and 90% by mass or less.
  • the filler content is in the range of 60% by mass or more and 90% by mass or less, so the thermal conductivity is reliably improved.
  • the proportion of the polyimide resin in the resin may be in the range of 66% by mass or more and 100% by mass or less.
  • the resin contains a polyimide resin having a dicarboxylic acid group or an acid anhydride group of a dicarboxylic acid group at both ends within the above range, the bonding strength between the resin and the filler is further enhanced.
  • a metal base substrate according to another aspect of the present invention (hereinafter referred to as “the metal base substrate of the present invention") is a metal base substrate in which a metal substrate, an insulating film, and a metal circuit layer are laminated in this order,
  • the insulating film is characterized by being made of the polyimide resin composition described above. According to the metal base substrate having this configuration, since the insulating film composed of the above polyimide resin composition is arranged between the metal substrate and the metal circuit layer, it is excellent in thermal conductivity and voltage resistance. .
  • a resin composition containing a filler and a resin which is less likely to generate voids and has excellent thermal conductivity and voltage resistance, and the resin composition used as an insulating film It becomes possible to provide a metal base substrate.
  • a polyimide resin composition and a metal base substrate which are one embodiment of the present invention, will be described with reference to the attached drawings.
  • FIG. 1 is a schematic cross-sectional view of a polyimide resin composition that is one embodiment of the present invention.
  • the polyimide resin composition 10 of this embodiment includes a polyimide resin 11 and fillers 12 dispersed in the polyimide resin 11 .
  • the content of the filler 12 of the polyimide resin composition 10 is preferably in the range of 60% by mass or more and 90% by mass or less, and is particularly in the range of 70% by mass or more and 88% by mass or less. preferable.
  • the content of the filler 12 based on mass may be 80% by mass or more and 85% by mass or less.
  • the content of the filler 12 of the polyimide resin composition 10 is preferably in the range of 40% by volume or more and 80% by volume or less on a volume basis, and is in the range of 45% by volume or more and 75% by volume or less. is particularly preferred.
  • the content of the filler 12 based on the volume of the filler 12 may be 50% by volume or more and 65% by volume or less.
  • Polyimide resin 11 is a base material (matrix resin) of polyimide resin composition 10 .
  • the polyimide resin 11 has a dicarboxylic acid group or an acid anhydride group of a dicarboxylic acid group at both ends. Therefore, the polyimide resin 11 has a high affinity with inorganic compounds such as aluminum oxide, aluminum hydroxide, magnesium oxide, and magnesium hydroxide, and easily chemically bonds with these.
  • the polyimide resin 11 may be a compound represented by the following general formula (1) or general formula (2).
  • R1 represents a tetravalent organic group
  • R2 represents a divalent organic group
  • S is 10 or more and 200 or less calculated from the number average molecular weight. represents the number of
  • the tetravalent organic group represented by R1 is a tetravalent aromatic hydrocarbon group obtained by removing four hydrogen atoms from an aromatic hydrocarbon, or a tetravalent aromatic hydrocarbon group obtained by removing four hydrogen atoms from an alicyclic hydrocarbon. It may be a valence alicyclic hydrocarbon group.
  • Aromatic hydrocarbons include monocyclic aromatics, fused polycyclic aromatics, and non-fused polycyclic aromatics in which two monocyclic aromatics are linked together directly or by a bridging group.
  • the alicyclic hydrocarbon may have from 4 to 8 carbon atoms.
  • the tetravalent organic group represented by R1 may be, for example, groups represented by the following general formulas (3) to (6).
  • X represents a cross-linking group.
  • the bridging group may be a divalent hydrocarbon group, an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, an imino group, or a combination of these groups.
  • the divalent hydrocarbon group is, for example, an aliphatic group having 1 to 10 carbon atoms (alkylene group, alkenylene group, alkynylene group), a cycloalkylene group having 4 to 10 carbon atoms, an arylene group, or these It may be a combination of groups.
  • a divalent aliphatic group and an imino group may have a substituent.
  • Examples of the substituent include a monovalent hydrocarbon group, a fluorocarbon group in which a monovalent hydrocarbon group is substituted with fluorine, an alkoxy group having 1 to 10 carbon atoms, and an —OCOCH 3 group.
  • Monovalent hydrocarbon groups include, for example, aliphatic groups having 1 to 10 carbon atoms (alkyl groups, alkenyl groups, alkynyl groups), cycloalkyl groups having 4 to 10 carbon atoms, and 6 to 6 carbon atoms. 10 aryl groups and aralkyl groups having 7 to 10 carbon atoms may also be used.
  • the bridging group represented by X may be, for example, groups represented by the following formulas (7) to (13).
  • the divalent organic group represented by R2 preferably has a methylene chain.
  • the methylene chain preferably has 3 or more carbon atoms.
  • the divalent organic group may be a group in which a methylene chain and a divalent linking group are combined.
  • a divalent linking group includes a divalent hydrocarbon group, an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, an imino group, a —(Si(R3R4)—O) n — group (wherein R3 and R4 each independently represents an alkyl group having 1 to 10 carbon atoms, and n represents a number within the range of 1 to 30.) or a group combining these groups may be .
  • Divalent hydrocarbon groups include, for example, aliphatic groups having 1 to 10 carbon atoms (alkylene groups, alkenylene groups, alkynylene groups), cycloalkylene groups having 4 to 10 carbon atoms, and 6 to 6 carbon atoms. It may be 10 arylene groups or a combination of these groups.
  • a divalent hydrocarbon group and an imino group may have a substituent. Examples of substituents include monovalent hydrocarbon groups.
  • Monovalent hydrocarbon groups include, for example, aliphatic groups having 1 to 10 carbon atoms (alkyl groups, alkenyl groups, alkynyl groups), cycloalkyl groups having 4 to 20 carbon atoms, and 6 to 6 carbon atoms. 10 aryl groups and aralkyl groups having 7 to 20 carbon atoms may be used.
  • the divalent organic group represented by R2 may be, for example, a group represented by the following general formulas (14) to (15). Moreover, the divalent organic group represented by R2 may be, for example, a hydrocarbon group derived from dimer diamine having a methylene chain. The hydrocarbon group derived from dimer diamine has a number of carbon atoms in the range of 20 to 50, and the number of hydrogen atoms is (m ⁇ 2-6) or more and (m ⁇ 2) or less, where m is the number of carbon atoms. may be within the range.
  • p represents a number within the range of 3 or more and 10 or less.
  • q and r each independently represent a number within the range of 3 or more and 8 or less, and n represents a number within the range of 1 or more and 30 or less.
  • the polyimide resin 11 can be produced by a method comprising, for example, a step of reacting a tetracarboxylic dianhydride and a diamine in an organic solvent to produce a polyamic acid, and a step of imidating the polyamic acid.
  • a compound represented by the following general formula (16) may be used as the tetracarboxylic dianhydride.
  • a compound represented by the following general formula (17) may be used as the diamine.
  • R1 is the same as in general formulas (1) and (2) above.
  • R2 is the same as in general formulas (1) and (2) above.
  • a polar organic solvent may be used as the organic solvent.
  • polar organic solvents include N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC), N-methyl-2-pyrrolidone (NMP), cyclohexanone.
  • the organic solvent, the tetracarboxylic dianhydride and the diamine may be stirred and mixed to react the tetracarboxylic dianhydride and the diamine to generate the polyamic acid.
  • the reaction temperature may be, for example, within the range of 10°C or higher and 100°C or lower.
  • the reaction atmosphere may be an air atmosphere or an inert gas atmosphere (eg, argon, nitrogen).
  • the dicarboxylic acid groups or the acid anhydride groups present at both ends thereof are derived from the raw material tetracarboxylic dianhydride.
  • the amount of tetracarboxylic dianhydride in the organic solvent may be greater than that of diamine.
  • the mixing ratio of tetracarboxylic dianhydride to diamine in the organic solvent may be in the range of 1.005 or more and 1.2 or less.
  • a method of heating the polyamic acid solution or a method of adding an imidization catalyst to the polyamic acid solution can be used.
  • the heating temperature may be in the range of 100°C or higher and 300°C or lower.
  • an imidization catalyst an amine compound conventionally used as an imidization catalyst, such as an aliphatic amine, an alicyclic amine, or an aromatic amine, can be used as the imidization catalyst.
  • the number average molecular weight of the polyimide resin 11 is preferably in the range of 5000 or more and 50000 or less, and particularly preferably in the range of 8000 or more and 30000 or less. Although not particularly limited, the polyimide resin 11 may have a number average molecular weight of 10,000 or more and 15,000 or less.
  • the filler 12 has, on its surface, at least one inorganic compound selected from the group consisting of aluminum oxide, aluminum hydroxide, magnesium oxide, and magnesium hydroxide.
  • the presence of the above inorganic compound on the surface of the filler 12 increases the bonding strength between the polyimide resin 11 and the filler 12, making it difficult for voids to form between them.
  • the filler may be a single particle containing only one of the above inorganic compounds, or may be a composite particle in which two or more of the above inorganic compounds are combined. Further, the filler 12 may be a coated particle obtained by partially or entirely coating the surface of the core particle with one or more of the above inorganic compounds.
  • core particles for example, aluminum nitride particles, silica particles, silicon carbide particles, titanium oxide particles, and boron nitride particles can be used. These particles may be used singly or in combination of two or more.
  • the filler 12 is composed of a component different from the inorganic compound and part of its surface is coated with the inorganic compound, at least 50% or more of the filler surface is coated with the inorganic compound.
  • the coverage rate (area coverage rate) on the particle surface can be obtained by fixing 10 or more fillers to a tape or the like and measuring the area for each composition by SEM and EDX.
  • the filler 12 preferably has an average particle size within the range of 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the thermal conductivity of the resin composition is improved.
  • the average particle size of the filler 12 is less likely to form aggregated particles and is less likely to settle, so that the filler 12 can be easily dispersed uniformly in the polyimide resin 11 .
  • the average particle size of the filler 12 is preferably in the range of 0.3 ⁇ m or more and 20 ⁇ m or less.
  • the polyimide resin composition 10 can be produced, for example, by a method including a preparation step of preparing a filler-dispersed polyimide resin solution and a molding step of applying the filler-dispersed polyimide resin solution and drying the resulting coating film. .
  • the filler-dispersed polyimide resin solution may be prepared, for example, as follows. First, polyimide resin 11 is dissolved in an organic solvent to obtain a polyimide resin solution. As the organic solvent, for example, a polar organic solvent used in the production of polyimide resin may be used. Next, the polyimide solution and the filler 12 are mixed to obtain a mixture. Then, the mixture is subjected to dispersion treatment to disperse the filler 12 in the solution of the polyimide resin 11 . As the dispersing treatment, ultrasonic dispersing treatment, dispersing treatment by a ball mill, and treatment for dispersing particles by colliding raw materials jetted under high pressure with each other can be used.
  • dispersing treatment ultrasonic dispersing treatment, dispersing treatment by a ball mill, and treatment for dispersing particles by colliding raw materials jetted under high pressure with each other can be used.
  • a spin coating method for applying the filler-dispersed polyimide resin solution
  • a bar coating method for a knife coating method, a roll coating method, a blade coating method, a die coating method, a gravure coating method, a dip coating method, or the like
  • a method for drying the coating film methods such as heat drying, hot air drying, and reduced pressure drying can be used.
  • the drying temperature is preferably 100° C. or higher and not higher than the thermal decomposition temperature of the polyimide resin. By heating to 100° C. or higher, the bonding strength between the polyimide resin and the filler becomes stronger.
  • the polyimide resin 11 which is the base material, has a dicarboxylic acid group or an acid anhydride group of a dicarboxylic acid group at both ends, and a filler Since 12 has an inorganic compound such as aluminum oxide, aluminum hydroxide, magnesium oxide, or magnesium hydroxide on the surface, the polyimide resin 11 and the filler 12 have high affinity with each other and are easily chemically bonded. Therefore, the bonding strength between the polyimide resin 11 and the filler 12 is increased, and voids are less likely to be generated between them. Therefore, the polyimide resin composition 10 of the present embodiment has improved thermal conductivity and withstand voltage.
  • the bonding strength between the polyimide resin 11 and the filler 12 is higher. becomes stronger, and voids are less likely to be generated between them.
  • the number average molecular weight of the polyimide resin 11 is within the range of 5000 or more and 50000 or less, the hardness and flexibility of the polyimide resin 11 are well balanced and difficult to deform. Therefore, the thermal conductivity and withstand voltage of the polyimide resin composition 10 are stable over a long period of time.
  • the content of the filler 12 is within the range of 60% by mass or more and 90% by mass or less, the thermal conductivity is reliably improved.
  • FIG. 2 is a schematic cross-sectional view of a metal base substrate that is one embodiment of the present invention.
  • the metal base substrate 20 is a laminate in which a metal substrate 21, an insulating film 22, and a metal circuit layer 23 are laminated in this order.
  • the metal substrate 21 is a member that serves as the base of the metal base substrate 20 .
  • a copper plate, an aluminum plate, or a laminated plate thereof can be used as the metal substrate 21 .
  • the insulating film 22 is a member for insulating the metal substrate 21 and the metal circuit layer 23 .
  • the insulating film 22 is composed of the polyimide resin composition 10 shown in FIG. For this reason, the same reference numerals are used and detailed descriptions thereof are omitted.
  • the metal circuit layer 23 is formed in a circuit pattern.
  • An electronic component is bonded via solder or the like onto the metal circuit layer 23 formed in the circuit pattern.
  • solder or the like As a material for the metal circuit layer 23, copper, aluminum, gold, or the like can be used.
  • Examples of electronic components mounted on the metal circuit layer 23 are not particularly limited, and include semiconductor elements, resistors, capacitors, crystal oscillators, and the like.
  • semiconductor elements include MOSFET (Metal-oxide-semiconductor field effect transistor), IGBT (Insulated Gate Bipolar Transistor), LSI (Large Scale Integration), LED (light emitting diode), LED chip, LED-CSP (LED-Chip Size Package).
  • the metal base substrate 20 of this embodiment includes an insulating film forming process of forming an insulating film 22 on one surface of a metal substrate 21 and a metal circuit layer press-bonding process of press-bonding a metal circuit layer 23 onto the insulating film 22 . and a method comprising the steps of:
  • the insulating film 22 can be formed, for example, by applying a filler-dispersed polyimide resin solution to one surface of the metal substrate 21 and then drying the resulting coating film.
  • the method for preparing the filler-dispersed polyimide resin solution, the method for applying the filler-dispersed polyimide resin solution, and the method for drying the coating film are the same as in the method for producing the polyimide resin composition 10 described above.
  • the metal circuit layer 23 is, for example, laminated on the insulating film 22, and then crimped by applying pressure in the lamination direction while heating the obtained laminate. can be done.
  • the heating temperature is preferably 200° C. or higher, particularly preferably 250° C. or higher.
  • the upper limit of the heating temperature is lower than the thermal decomposition temperature of the polyimide resin 11, preferably lower than the thermal temperature by 30°C.
  • the pressure during pressurization is preferably in the range of 1 MPa or more and 30 MPa or less, and particularly preferably in the range of 3 MPa or more and 25 MPa or less.
  • the crimping time varies depending on the heating temperature and pressure, but is generally 10 minutes or more and 180 minutes or less.
  • the insulating film 22 composed of the polyimide resin composition 10 described above is arranged between the metal substrate 21 and the metal circuit layer 23. Therefore, it is excellent in thermal conductivity and withstand voltage.
  • the present invention is not limited to this, and can be modified as appropriate without departing from the technical idea of the invention.
  • a polyimide resin 11 having a dicarboxylic acid group or a dicarboxylic acid anhydride group at both ends was used alone.
  • the resin composition 10 may contain other resins.
  • other resins for example, polyimide resins and epoxy resins having an amine group on at least one end can be used.
  • the content of the polyimide resin 11 having a dicarboxylic acid group or a dicarboxylic acid anhydride group at both ends is in the range of 66% by mass or more and 100% by mass or less. is preferred.
  • the polyimide resin composition 10 is used as the insulating layer of the metal base substrate 20 , but the application of the polyimide resin composition 10 is not limited to this.
  • the polyimide resin composition 10 may be used, for example, as an insulating film for an insulating conductor covered with an insulating film such as an enameled wire.
  • the obtained polyamic acid solution was transferred to an evaporating dish and dried and baked in the order of 50° C. for 24 hours, 200° C. for 5 hours, and 250° C. for 30 minutes under a reduced pressure atmosphere.
  • a polyimide resin A having dicarboxylic anhydride terminals was obtained.
  • the molar ratio of 6FDA/PMDD in the mixed solution is 1.05.
  • the obtained polyimide resin A had a number average molecular weight of 11,000.
  • Example of the present invention except that 4 g of polyimide resin A and 2 g of polyimide resin B were added to 10 g of DMF, and the amount of aluminum oxide powder added was set to the amount described in Table 1 below.
  • a filler-dispersed polyimide resin solution was prepared in the same manner as in 1.
  • the resin contained in the filler-dispersed polyimide resin solution has a content of 66.7% of a polyimide resin (polyimide resin A) having dicarboxylic anhydride at both ends, and a polyimide resin having amine groups at both ends (polyimide resin The content of B) is 33.3% by mass.
  • Invention Example 7 Filler-dispersed polyimide in the same manner as in Invention Example 1, except that magnesium oxide powder (average particle size: 10 ⁇ m) was added instead of aluminum oxide powder in an amount corresponding to the content described in Table 1 below. A resin solution was prepared.
  • Invention Example 8 Filler dispersion was carried out in the same manner as in Invention Example 1, except that instead of aluminum oxide powder, aluminum hydroxide powder (average particle size: 3 ⁇ m) was added in an amount corresponding to the content shown in Table 1 below. A polyimide resin solution was prepared.
  • the content of polyimide resin (polyimide resin A) having dicarboxylic acid anhydride at both ends is 97% by mass, and the content of epoxy resin is 3% by mass.
  • Example of the present invention except that 5 g of polyimide resin B was added instead of polyimide resin A to 10 g of DMF, and the amount of aluminum oxide powder added was set to the content described in Table 1 below.
  • a filler-dispersed polyimide resin solution was prepared in the same manner as in 1.
  • Example of the present invention except that 1 g of polyimide resin D was added instead of polyimide resin A to 10 g of DMF, and the amount of aluminum oxide powder added was set to the amount described in Table 1 below.
  • a filler-dispersed polyimide resin solution was prepared in the same manner as in 1.
  • the filler-dispersed polyimide resin solution is spin-coated at a rotational speed of 500 rpm on a copper substrate of 50 mm long ⁇ 50 mm wide ⁇ 1 mm thick to obtain a coating film of 20 ⁇ m thick.
  • the obtained coating film is heated at a temperature of 100° C. for 3 hours and dried to form a polyimide resin composition film containing a filler, thereby obtaining a copper substrate with a polyimide resin composition film.
  • the resulting polyimide resin composition film is observed with an optical microscope to count the number of filler aggregates having a particle size of 0.1 mm or more.
  • the number of aggregates per 1 cm 2 of the polyimide resin composition film is determined as A when it is 3 or less, B when it is 4 or more and 10 or less, and C when it is 11 or more. did.
  • a PTFE (polytetrafluoroethylene) plate having a size of 50 mm long ⁇ 50 mm wide ⁇ 1 mm thick is coated with a filler-dispersed polyimide resin solution using a bar coater to obtain a coating film having a thickness of 100 ⁇ m.
  • the obtained coating film is heated at a temperature of 100° C. for 30 minutes, then heated at a temperature of 150° C. for 30 minutes, and dried to form a polyimide resin composition film containing a filler.
  • the obtained polyimide resin composition film is peeled off from the PTFE plate and embedded with a resin. A section of the resin-filled polyimide resin composition film is exposed by CP processing.
  • a cross section of the exposed polyimide resin composition film is observed using an SEM (scanning electron microscope).
  • the area occupied by voids is measured with respect to the cross-sectional area of 100 ⁇ m 2 of the polyimide resin composition film, and the occupation ratio is calculated.
  • a void is defined as a region that exists between the polyimide resin and the filler and is neither polyimide nor filler.
  • the minimum void area is 0.01 ⁇ m 2 .
  • thermo conductivity A 50 mm long ⁇ 50 mm wide ⁇ 1 mm thick copper substrate is coated with the filler-dispersed polyimide resin solution using a bar coater to obtain a coating film of 100 ⁇ m thick.
  • the obtained coating film is heated at a temperature of 100° C. for 3 hours and dried to form a polyimide resin composition film containing a filler, thereby obtaining a copper substrate with a polyimide resin composition film.
  • the thermal conductivity of the polyimide resin composition film is measured by a laser flash method using LFA477 Nanoflash manufactured by NETZSCH-Geratebau GmbH.
  • the withstand voltage of the polyimide resin composition film is measured using a multifunctional safety tester 7440 manufactured by Keisoku Giken Co., Ltd.
  • a copper substrate with a polyimide resin composition film is obtained in the same manner as in the measurement of the thermal conductivity.
  • An electrode ( ⁇ 6 mm) is arranged on the surface of the polyimide resin composition film of the copper substrate with the polyimide resin composition film.
  • the copper substrate of the polyimide resin composition film-coated copper substrate and the electrodes arranged on the surface of the polyimide resin composition film are each connected to a power supply, and the voltage is increased to 6000 V in 30 seconds.
  • the voltage at which the current flowing between the copper substrate and the electrode reached 5000 ⁇ A was defined as the withstand voltage of the polyimide resin composition film.
  • the film thickness is measured with a micrometer, and the withstand voltage per film thickness is calculated by subtracting the film thickness from the withstand voltage.
  • Inventive Examples 1 to 10 containing either aluminum oxide powder, aluminum hydroxide powder, magnesium oxide powder, or magnesium hydroxide powder as a filler, using a polyimide resin having a dicarboxylic acid group or an acid anhydride group thereof at both ends.
  • the polyimide resin composition film formed using the filler-dispersed polyimide resin solution of No. 2 was excellent in filler dispersibility, had a low void occupation rate, and had high thermal conductivity and withstand voltage. This is because the affinity between the dicarboxylic acid groups or acid anhydride groups at both ends of the polyimide resin and the filler is high, and defects are less likely to occur between the polyimide resin and the filler.
  • the terminal dicarboxylic anhydride groups of the polyimide resin are easily hydrolyzed by water adsorbed on the aluminum oxide particles or moisture in the air to form dicarboxylic acid groups.
  • a dicarboxylic acid group reacts with a hydroxyl group on the aluminum oxide particles to generate two carboxylate groups.
  • the two carboxylate groups produced are stabilized by bidentate cross-linking with respect to two aluminum atoms, respectively, and the polyimide resin is immobilized on the surface of the aluminum oxide particles. Heating at 100° C. or higher is preferable for the progress of the bidentate cross-linking reaction.
  • a resin composition containing a filler and a resin which is less likely to generate voids and has excellent thermal conductivity and voltage resistance, and a metal base substrate using the resin composition as an insulating film. becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

ポリイミド樹脂と、前記ポリイミド樹脂に分散されているフィラーとを含み、前記ポリイミド樹脂は、両末端にジカルボン酸基又はジカルボン酸基の酸無水物基を有し、前記フィラーは、表面に、酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウムからなる群より選ばれる少なくとも一種の無機化合物を有することを特徴とするポリイミド樹脂組成物。

Description

ポリイミド樹脂組成物及び金属ベース基板
 本発明は、ポリイミド樹脂組成物及び金属ベース基板に関する。
 本願は、2021年2月25日に、日本に出願された特願2021-028910号に基づき優先権を主張し、その内容をここに援用する。
 半導体素子やLEDなどの電子部品を実装するための基板の一つとして、金属ベース基板が知られている。金属ベース基板は、金属基板と、絶縁膜と、金属回路層とがこの順で積層された積層体である。電子部品は、金属回路層の上に、はんだを介して実装される。
このような構成とされた金属ベース基板では、電子部品にて発生した熱は、絶縁膜を介して金属基板に伝達され、金属基板から外部に放熱される。
 金属ベース基板の絶縁膜は、一般に絶縁性や耐電圧性に優れる樹脂と、熱伝導性に優れるフィラーとを含む絶縁性組成物から形成されている。絶縁膜用の樹脂としては、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、シリコーン樹脂などが用いられている。また、絶縁膜用のフィラーとしては、酸化アルミニウム粒子、水酸化アルミニウム粒子、酸化マグネシウム粒子、水酸化マグネシウム粒子、窒化アルミニウム粒子、シリカ粒子、炭化珪素粒子、酸化チタン粒子、窒化硼素粒子などが用いられている(特許文献1~5)。
米国特許出願公開第2007/0116976号(A)明細書 日本国特開2013-60575号公報(A) 日本国特開2009-13227号公報(A) 日本国特開2013-159748号公報(A) 日本国特開2019-140094号公報(A)
 ところで、金属ベース基板は、例えば、金属基板の上に絶縁膜を形成し、次いで、絶縁膜と金属回路層とを熱圧着することによって製造されている。金属基板の上に絶縁膜を形成する方法としては、例えば、基板の上に、フィラーを分散させた樹脂溶液を塗布し、得られた塗布膜を乾燥する方法が用いられる。この方法の場合、塗布膜を乾燥する際に、樹脂とフィラーとの間にボイド(気孔)が発生することがある。絶縁膜中の樹脂とフィラーとの間にボイドが発生すると、ボイド部分は熱が伝わりにくいため、絶縁膜の熱伝導性が低下するおそれがある。さらに、ボイド部分で部分放電が起こることによって、絶縁膜の絶縁破壊が起こりやすくなるなど、絶縁膜の耐電圧性が低下するおそれがある。
 本発明は、上記事情に鑑みてなされたものであって、フィラーと樹脂とを含む樹脂組成物であって、ボイドが発生しにくく、熱伝導性と耐電圧性とに優れる樹脂組成物、及びこの樹脂組成物を絶縁膜として用いた金属ベース基板を提供する。
 上記の課題を解決するために、本発明の一態様の樹脂組成物(以下、「本発明のポリイミド樹脂組成物」と称する)は、樹脂と、前記樹脂に分散されているフィラーとを含み、前記樹脂は、両末端にジカルボン酸基又はジカルボン酸基の酸無水物基を有するポリイミド樹脂を含み、前記フィラーは、表面に、酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウムからなる群より選ばれる少なくとも一種の無機化合物を有するポリイミド樹脂組成物である。
 この構成のポリイミド樹脂組成物によれば、母材である樹脂に含まれるポリイミド樹脂は、両末端にジカルボン酸基又はジカルボン酸基の酸無水物基を有し、フィラーは、表面に、酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウムなどの無機化合物を有するので、樹脂とフィラーとは互いに親和性が高くなり、化学的に結合しやすくなる。このため、樹脂とフィラーとの接合力が強くなり、両者の間にボイドが生成しにくくなる。よって、上記の構成のポリイミド樹脂組成物は、熱導電率と耐電圧が向上する。
 ここで、本発明のポリイミド樹脂組成物においては、前記ポリイミド樹脂が、下記の一般式(1)又は一般式(2)で表される化合物である構成とされていてもよい。
 この場合、ポリイミド樹脂が下記の一般式(1)又は一般式(2)で表される化合物であるので、ポリイミド樹脂とフィラーとの接合力がより強くなり、両者の間にボイドがより生成しにくくなる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 ただし、一般式(1)及び一般式(2)において、R1は、4価の有機基を表し、R2は2価の有機基を表し、Sは、数平均分子量から算出される10以上200以下の範囲内にある数を表す。
 また、本発明のポリイミド樹脂組成物においては、前記ポリイミド樹脂の数平均分子量が、5000以上50000以下の範囲内にある構成とされていてもよい。
 この場合、ポリイミド樹脂の数平均分子量が、5000以上50000以下の範囲内にあるので、ポリイミド樹脂の流動性が制御され、樹脂-金属接合時の不良が生じにくい。
 また、本発明のポリイミド樹脂組成物においては、前記フィラーの含有量が、60質量%以上90質量%以下の範囲内にある構成とされていてもよい。
 この場合、フィラーの含有量が60質量%以上90質量%以下の範囲内にあるので、熱伝導率が確実に向上する。
 また、本発明のポリイミド樹脂組成物においては、前記樹脂において、前記ポリイミド樹脂の割合が66質量%以上100質量%以下の範囲内にある構成とされていてもよい。
 この場合、樹脂が両末端にジカルボン酸基又はジカルボン酸基の酸無水物基を有するポリイミド樹脂を上記の範囲で含むので、樹脂とフィラーとの接合力がさらに強くなる。
 本発明の他態様の金属ベース基板(以下「本発明の金属ベース基板」と称する)は、金属基板と、絶縁膜と、金属回路層とがこの順で積層された金属ベース基板であって、前記絶縁膜が請前述のポリイミド樹脂組成物からなることを特徴としている。
 この構成の金属ベース基板によれば、金属基板と金属回路層との間に、上述のポリイミド樹脂組成物から構成される絶縁膜が配置されているので、熱伝導性と耐電圧性とに優れる。
 本発明によれば、フィラーと樹脂とを含む樹脂組成物であって、ボイドが発生しにくく、熱伝導性と耐電圧性とに優れる樹脂組成物、及びこの樹脂組成物を絶縁膜として用いた金属ベース基板を提供することが可能となる。
本発明の一実施形態であるポリイミド樹脂組成物の概略断面図である。 本発明の一実施形態に係る金属ベース基板の概略断面図である。
 本発明の一実施形態であるポリイミド樹脂組成物及び金属ベース基板について、添付した図面を参照して説明する。
<ポリイミド樹脂組成物>
 図1は、本発明の一実施形態であるポリイミド樹脂組成物の概略断面図である。
 図1に示すように、本実施形態であるポリイミド樹脂組成物10は、ポリイミド樹脂11と、ポリイミド樹脂11に分散されているフィラー12とを含む。ポリイミド樹脂組成物10のフィラー12の含有量は、質量基準で、60質量%以上90質量%以下の範囲内にあることが好ましく、70質量%以上88質量%以下の範囲内にあることが特に好ましい。特に限定されないが、質量基準でのフィラー12の含量は、80質量%以上85質量%以下であってもよい。
 また、ポリイミド樹脂組成物10のフィラー12の含有量は、体積基準で、40体積%以上80体積%以下の範囲内にあることが好ましく、45体積%以上75体積%以下の範囲内にあることが特に好ましい。特に限定されないが、フィラー12の体積基準でのフィラー12の含量は、50体積%以上65体積%以下であってもよい。
(ポリイミド樹脂11)
 ポリイミド樹脂11は、ポリイミド樹脂組成物10の母材(マトリックス樹脂)である。ポリイミド樹脂11は、両末端にジカルボン酸基又はジカルボン酸基の酸無水物基を有する。このため、ポリイミド樹脂11は、酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウムなどの無機化合物に対して親和性が高く、これらと化学的に結合しやすい。
 ポリイミド樹脂11は、下記の一般式(1)又は一般式(2)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 ただし、一般式(1)及び一般式(2)において、R1は、4価の有機基を表し、R2は2価の有機基を表し、Sは、数平均分子量から算出される10以上200以下の数を表す。
 R1で表される4価の有機基は、芳香族炭化水素から4個の水素原子を除いた4価の芳香族炭化水素基、又は脂環式炭化水素から4個の水素原子を除いた4価の脂環式炭化水素基であってもよい。芳香族炭化水素は、単環式芳香族、縮合多環式芳香族、2つの単環式芳香族が直接もしくは架橋基により互いに連結した非縮合多環式芳香族を含む。脂環式炭化水素は炭素原子数が4以上8以下の範囲内にあってもよい。
 R1で表される4価の有機基は、例えば、下記の一般式(3)~(6)で表される基であってもよい。
Figure JPOXMLDOC01-appb-C000007
 一般式(3)~(6)において、*は、結合手を表す。
 一般式(6)において、Xは、架橋基を表す。架橋基は、2価の炭化水素基、酸素原子、硫黄原子、カルボニル基、スルホニル基、イミノ基、又はこれらの基を組み合わせた基であってもよい。2価の炭化水素基は、例えば、炭素原子数が1~10の脂肪族基(アルキレン基、アルケニレン基、アルキニレン基)、炭素原子数が4~10のシクロアルキレン基、アリーレン基、又はこれらを組み合わせた基であってもよい。2価の脂肪族基及びイミノ基は置換基を有していてもよい。置換基の例としては、1価の炭化水素基、1価の炭化水素基をフッ素で置換したフッ化炭素基、炭素原子数が1~10のアルコキシ基、-OCOCH基を挙げることができる。1価の炭化水素基は、例えば、炭素原子数が1~10の脂肪族基(アルキル基、アルケニル基、アルキニル基)、炭素原子数が4~10のシクロアルキル基、炭素原子数が6~10のアリール基、炭素原子数が7~10のアラルキル基であってもよい。Xで表される架橋基は、例えば、下記の式(7)~(13)で表される基であってもよい。
Figure JPOXMLDOC01-appb-C000008
 R2で表される2価の有機基は、メチレン鎖を有することが好ましい。メチレン鎖は、炭素原子数が3以上であることが好ましい。2価の有機基は、メチレン鎖と2価の連結基を組み合わせた基であってもよい。2価の連結基は、2価の炭化水素基、酸素原子、硫黄原子、カルボニル基、スルホニル基、イミノ基、-(Si(R3R4)-O)-基(ただし、式中、R3及びR4は、それぞれ独立して、炭素原子数が1~10のアルキル基を表し、nは、1以上30以下の範囲内にある数を表す。)又はこれらの基を組み合わせた基であってもよい。2価の炭化水素基は、例えば、炭素原子数が1~10の脂肪族基(アルキレン基、アルケニレン基、アルキニレン基)、炭素原子数が4~10のシクロアルキレン基、炭素原子数が6~10のアリーレン基、又はこれらを組み合わせた基であってもよい。2価の炭化水素基及びイミノ基は、置換基を有していてもよい。置換基の例としては、1価の炭化水素基を挙げることができる。1価の炭化水素基は、例えば、炭素原子数が1~10の脂肪族基(アルキル基、アルケニル基、アルキニル基)、炭素原子数が4~20のシクロアルキル基、炭素原子数が6~10のアリール基、炭素原子数が7~20のアラルキル基であってもよい。
 R2で表される2価の有機基は、例えば、下記の一般式(14)~(15)で表される基であってもよい。また、R2で表される2価の有機基は、例えば、メチレン鎖を有するダイマージアミン由来の炭化水素基であってもよい。ダイマージアミン由来の炭化水素基は、炭素原子数が20~50の範囲内にあって、水素原子数は、炭素原子数をmとして、(m×2-6)以上(m×2)以下の範囲内にあってもよい。
Figure JPOXMLDOC01-appb-C000009
 一般式(14)において、pは、3以上10以下の範囲内にある数を表す。
 一般式(15)において、q及びrは、それぞれ独立して3以上8以下の範囲内にある数を表し、nは、1以上30以下の範囲内にある数を表す。
 ポリイミド樹脂11は、例えば、テトラカルボン酸二無水物と、ジアミンとを、有機溶媒中で反応させてポリアミド酸を生成させる工程と、ポリアミド酸をイミド化する工程とを有する方法によって製造することができる。テトラカルボン酸二無水物としては、下記の一般式(16)で表される化合物を用いてもよい。ジアミンとしては、下記の一般式(17)で表される化合物を用いてもよい。
Figure JPOXMLDOC01-appb-C000010
 一般式(16)において、R1は、上記の一般式(1)及び一般式(2)の場合と同じである。
Figure JPOXMLDOC01-appb-C000011
 一般式(17)において、R2は、上記の一般式(1)及び一般式(2)の場合と同じである。
 有機溶媒としては、極性有機溶媒を用いてもよい。極性有機溶媒の例としては、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、N-メチル-2-ピロリドン(NMP)、シクロヘキサノンを挙げることができる。
 ポリアミド酸を生成させる工程では、有機溶媒とテトラカルボン酸二無水物とジアミンとを撹拌混合して、テトラカルボン酸二無水物とジアミンとを反応させることによってポリアミド酸を生成させてもよい。反応温度は、例えば、10℃以上100℃以下の範囲内であってもよい。反応雰囲気は、空気雰囲気又は不活性ガス雰囲気(例えば、アルゴン、窒素)であってもよい。
 ポリイミド樹脂11において、その両末端に存在するジカルボン酸基又はその酸無水物基は、原料のテトラカルボン酸二無水物に由来する。ポリイミド樹脂11の両末端にジカルボン酸基又はその酸無水物基を存在させるため、有機溶媒中のテトラカルボン酸二無水物の量をジアミンよりも多くしてもよい。有機溶媒中のジアミンに対するテトラカルボン酸二無水物の混合比(テトラカルボン酸二無水物/ジアミン比)は、1.005以上1.2以下の範囲内にあってもよい。
 ポリアミド酸をイミド化する工程において、ポリアミド酸溶液中のポリアミド酸をイミド化する方法としては、ポリアミド酸溶液を加熱する方法、ポリアミド酸溶液にイミド化触媒を添加する方法を用いることができる。ポリアミド酸溶液を加熱する場合、加熱温度は、100℃以上300℃以下の範囲内であってもよい。イミド化触媒を添加する場合、イミド化触媒としては、脂肪族アミン、脂環式アミン、芳香族アミンなどの従来よりイミド化触媒として利用されているアミン化合物を用いることができる。
 ポリイミド樹脂11の数平均分子量は、5000以上50000以下の範囲内にあることが好ましく、8000以上30000以下の範囲内にあることが特に好ましい。特に限定されないが、ポリイミド樹脂11の数平均分子量は、10000以上15000以下であってもよい。
(フィラー12)
 フィラー12は、表面に、酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウムからなる群より選ばれる少なくとも一種の無機化合物を有する。フィラー12の表面に、上記の無機化合物が存在することによって、ポリイミド樹脂11とフィラー12との接合力が強くなり、両者の間にボイドが生成しにくくなる。フィラーは、上記の無機化合物の一種のみを含む単体粒子であってもよいし、上記の無機化合物の二種以上を組み合わせた複合粒子であってもよい。また、フィラー12は、核粒子の表面の一部もしくは全部を上記の無機化合物の一種もしくは二種以上で被覆した被覆粒子であってもよい。核粒子としては、例えば、窒化アルミニウム粒子、シリカ粒子、炭化珪素粒子、酸化チタン粒子、窒化硼素粒子を用いることができる。これらの粒子は、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
 フィラー12が、前記無機化合物とは異なるの成分からなり、その表面の一部が前記無機化合物で被覆されたものである場合、少なくともフィラー表面の50%以上が前記無機化合物で被覆される。
 上記被覆率は、10個以上のフィラーをテープ等に固定し、SEMおよびEDXによって組成ごとの面積を測定することで、粒子表面における被覆率(面積被覆率)を取得することができる。
 フィラー12は、平均粒子径が0.1μm以上20μm以下の範囲内にあることが好ましい。フィラー12の平均粒子径が0.1μm以上であることによって、樹脂組成物の熱伝導性が向上する。フィラー12の平均粒子径が20μm以下であることによって、樹脂組成物の耐電圧性が向上する。また、フィラー12の平均粒子径が上記の範囲内にあると、フィラー12が凝集粒子を形成しにくく、また沈降しにくいため、ポリイミド樹脂11中にフィラー12を均一に分散させやすくなる。フィラー12が凝集粒子を形成せずに、一次粒子もしくはそれに近い微細な粒子として絶縁樹脂に分散していると、ポリイミド樹脂11の耐電圧性が向上する。フィラー12の平均粒子径は0.3μm以上20μm以下の範囲内にあることが好ましい。
(ポリイミド樹脂組成物10の製造方法)
 次に、本実施形態のポリイミド樹脂組成物10の製造方法について説明する。
 ポリイミド樹脂組成物10は、例えば、フィラー分散ポリイミド樹脂溶液を調製する調製工程と、フィラー分散ポリイミド樹脂溶液を塗布し、得られた塗布膜を乾燥する成形工程とを含む方法によって製造することができる。
 調製工程において、フィラー分散ポリイミド樹脂溶液は、例えば、次のようにして調製してもよい。まず、ポリイミド樹脂11を有機溶媒に溶解して、ポリイミド樹脂溶液を得る。有機溶媒としては、例えば、ポリイミド樹脂の製造で使用する極性有機溶媒を用いてもよい。次いで、ポリイミド溶液とフィラー12とを混合して混合物を得る。そして、混合物に対して分散処理を行なって、ポリイミド樹脂11の溶液にフィラー12を分散させる。分散処理としては、超音波分散処理、ボールミルによる分散処理、高圧噴射された原料同士を衝突させて、粒子を分散させる処理を用いることができる。
 成形工程において、フィラー分散ポリイミド樹脂溶液を塗布する方法としては、スピンコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法、ディップコート法などを用いることができる。塗布膜を乾燥する方法としては、加熱乾燥、熱風乾燥、減圧乾燥などの方法を用いることができる。乾燥温度は、100℃以上ポリイミド樹脂の熱分解温度以下であることが好ましい。100℃以上に加熱することによって、ポリイミド樹脂とフィラーとの接合力がより強くなる。
 以上のような構成とされた本実施形態のポリイミド樹脂組成物10によれば、母材であるポリイミド樹脂11は、両末端にジカルボン酸基又はジカルボン酸基の酸無水物基を有し、フィラー12は、表面に、酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウムなどの無機化合物を有するので、ポリイミド樹脂11とフィラー12とが互いに親和性が高く、化学的に結合しやすい。このため、ポリイミド樹脂11とフィラー12との接合力が強くなり、両者の間にボイドが生成しにくくなる。よって、本実施形態のポリイミド樹脂組成物10は、熱導電率と耐電圧が向上する。
 本実施形態のポリイミド樹脂組成物10において、ポリイミド樹脂11が上記の一般式(1)又は一般式(2)で表される化合物である場合は、ポリイミド樹脂11とフィラー12との接合力がより強くなり、両者の間にボイドがより生成しにくくなる。また、本実施形態のポリイミド樹脂組成物10において、ポリイミド樹脂11の数平均分子量が、5000以上50000以下の範囲内にある場合は、ポリイミド樹脂11の硬度と柔軟性のバランスがよく、変形しにくくなるので、ポリイミド樹脂組成物10の熱導電率と耐電圧が長期間にわたって安定する。さらに、本実施形態のポリイミド樹脂組成物10において、フィラー12の含有量が60質量%以上90質量%以下の範囲内にある場合は、熱伝導率が確実に向上する。
<金属ベース基板20>
 図2は、本発明の一実施形態である金属ベース基板の概略断面図である。
 金属ベース基板20は金属基板21と、絶縁膜22と、金属回路層23とがこの順で積層された積層体である。
 金属基板21は、金属ベース基板20のベースとなる部材である。金属基板21としては、銅板、アルミニウム板及びこれらの積層板を用いることができる。
 絶縁膜22は、金属基板21と金属回路層23とを絶縁するための部材である。絶縁膜22は、図1に示すポリイミド樹脂組成物10から構成されていて、ポリイミド樹脂11と、ポリイミド樹脂11に分散されているフィラー12とを含む。このため、同一の符号を付し、詳細な説明を省略する。
 金属回路層23は、回路パターン状に形成される。その回路パターン状に形成された金属回路層23の上に、電子部品がはんだ等を介して接合される。金属回路層23の材料としては、銅、アルミニウム、金などを用いることができる。
 金属回路層23に実装される電子部品の例としては、特に制限はなく、半導体素子、抵抗、キャパシタ、水晶発振器などが挙げられる。半導体素子の例としては、MOSFET(Metal-oxide-semiconductor field effect transistor)、IGBT(Insulated GateBipolar Transistor)、LSI(Large Scale Integration)、LED(発光ダイオード)、LEDチップ、LED-CSP(LED-Chip Size Package)が挙げられる。
 次に、本実施形態の金属ベース基板20の製造方法について説明する。
 本実施形態の金属ベース基板20は、例えば、金属基板21の一方の表面に絶縁膜22を成膜する絶縁膜形成工程と、絶縁膜22の上に金属回路層23を圧着する金属回路層圧着工程と、を含む方法によって製造することができる。
 絶縁膜形成工程において、絶縁膜22は、例えば、金属基板21の一方の表面に、フィラー分散ポリイミド樹脂溶液を塗布し、次いで得られた塗布膜を乾燥する方法によって成膜することができる。フィラー分散ポリイミド樹脂溶液の調製方法、フィラー分散ポリイミド樹脂溶液の塗布方法、塗布膜の乾燥方法は、上述のポリイミド樹脂組成物10の製造方法の場合と同じである。
 金属回路層圧着工程において、金属回路層23は、例えば、絶縁膜22の上に金属回路層23を積層し、次いで得られた積層体を加熱しながら、積層方向に加圧することによって圧着することができる。加熱温度は、好ましくは200℃以上であり、特に好ましくは250℃以上である。加熱温度の上限は、ポリイミド樹脂11の熱分解温度未満であり、好ましくは熱分温度よりも30℃低い温度以下である。加圧時の圧力は、好ましくは1MPa以上30MPa以下の範囲内にあり、特に好ましくは3MPa以上25MPa以下の範囲内にある。圧着時間は、加熱温度や圧力によって異なるが、一般に10分間以上180分間以下である。
 以上のような構成とされた本実施形態である金属ベース基板20によれば、金属基板21と金属回路層23との間に、上述のポリイミド樹脂組成物10から構成される絶縁膜22が配置されているので、熱伝導性と耐電圧性とに優れる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、ポリイミド樹脂組成物10に含まれる樹脂として、両末端にジカルボン酸基又はジカルボン酸基の酸無水物基を有するポリイミド樹脂11を単独で用いた例を説明したが、ポリイミド樹脂組成物10は、他の樹脂を含んでいてもよい。他の樹脂としては、例えば、少なくとも一方の末端にアミン基を有するポリイミド樹脂、エポキシ樹脂を用いることができる。ただし、ポリイミド樹脂組成物10に含まれる樹脂は、両末端にジカルボン酸基又はジカルボン酸基の酸無水物基を有するポリイミド樹脂11の含有量が66質量%以上100質量%以下の範囲内にあることが好ましい。
 また、本実施形態では、ポリイミド樹脂組成物10を、金属ベース基板20の絶縁層として利用した例を説明したが、ポリイミド樹脂組成物10の用途はこれに限定されるものではない。ポリイミド樹脂組成物10は、例えば、エナメル線などの絶縁膜で被覆された絶縁性導体の絶縁膜として利用してもよい。
[合成例1:ポリイミド樹脂Aの合成]
 DMF(N,N-ジメチルホルムアミド、富士フイルム和光純薬株式会社製)100g中に、PMDD(3,3’-(ペンタメチレンジオキシ)ジアニリン、メルク株式社製)6.20gを加えて溶解し、次いで6FDA(4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、東京化成工業株式会社製)10.10gを加えた。その後、アルゴン雰囲気下、室温で72時間撹拌混合してポリアミック酸を生成させた。得られたポリアミック酸溶液を蒸発皿に移し、減圧雰囲気下で50℃の温度で24時間、200℃の温度で5時間、250℃の温度で30分間の順で、乾燥、焼成することで両末端がジカルボン酸無水物のポリイミド樹脂Aを得た。混合溶液中の6FDA/PMDDのモル比は1.05である。
 得られたポリイミド樹脂Aの数平均分子量は、11000であった。
[合成例2:ポリイミド樹脂Bの合成]
 DMF100g中に、PMDD6.20gを加えて溶解し、次いで6FDA9.14gを加えた。その後、アルゴン雰囲気下、室温で72時間撹拌混合してポリアミック酸を生成させた。得られたポリアミック酸溶液を蒸発皿に移し、減圧雰囲気下で50℃の温度で24時間、200℃の温度で5時間、250℃の温度で30分間の順で、乾燥、焼成することで両末端がアミン基のポリイミド樹脂Bを得た。混合溶液中の6FDA/PMDDのモル比は0.95である。
 得られたポリイミド樹脂Bの数平均分子量は、11000であった。
[合成例3:ポリイミド樹脂Cの合成]
 シクロヘキサノン100g中に、V551(Versamine551、BASFジャパン株式会社製)6.20gを加えて溶解し、次いで、ODPA(4,4’-オキシジフタル酸無水物、東京化成工業株式会社製)4.93gを加えた。その後、アルゴン雰囲気下、室温で72時間撹拌混合してポリアミック酸を生成させた。得られたポリアミック酸溶液を蒸発皿に移し、減圧雰囲気下で50℃の温度24時間、150℃の温度で5時間、乾燥、焼成することで両末端がジカルボン酸無水物基のポリイミド樹脂Cを得た。混合溶液中のODPA/V551のモル比は1.05である。
 得られたポリイミド樹脂Cの数平均分子量は、11000であった。
[合成例4:ポリイミド樹脂Dの合成]
 シクロヘキサノン100g中に、V551を6.20g加えて溶解し、次いでODPA4.46gを加えた。その後、アルゴン雰囲気下、室温で72時間撹拌混合してポリアミック酸を生成させた。得られたポリアミック酸溶液を蒸発皿に移し、減圧雰囲気下で50℃の温度24時間、150℃の温度で5時間、乾燥、焼成することで両末端がアミン基のポリイミド樹脂Dを得た。混合溶液中のODPA/V551のモル比は0.95である。
 得られたポリイミド樹脂Dの数平均分子量は、11000であった。
[本発明例1]
 DMF10gに対してポリイミド樹脂Aを5g投入し、均一に溶解するまで撹拌した。
得られたポリイミド樹脂溶液に、酸化アルミニウム粉末(平均粒子径:3μm)をポリイミド樹脂Aと酸化アルミニウム粉末の合計量に対して、質量換算で60質量%(体積換算で35体積%)となるように投入し、マグネティックスターラーで撹拌した。得られた混合物を、スギノマシン社製スターバーストを用い、圧力50MPaの高圧噴射処理を10回繰り返すことにより分散処理を行なって、フィラー分散ポリイミド樹脂溶液を調製した。フィラー分散ポリイミド樹脂溶液に含まれる樹脂は、両末端がジカルボン酸無水物であるポリイミド樹脂(ポリイミド樹脂A)の含有量が100質量%である。
[本発明例2~4]
 酸化アルミニウム粉末の投入量を、下記の表1に記載されている含有量となる量としたこと以外は、本発明例1と同様にしてフィラー分散ポリイミド樹脂溶液を調製した。
[本発明例5]
 DMF10gに対して、ポリイミド樹脂Aを4gとポリイミド樹脂Bを2g投入し、酸化アルミニウム粉末の投入量を、下記の表1に記載されている含有量となる量としたこと以外は、本発明例1と同様にしてフィラー分散ポリイミド樹脂溶液を調製した。フィラー分散ポリイミド樹脂溶液に含まれる樹脂は、両末端がジカルボン酸無水物であるポリイミド樹脂(ポリイミド樹脂A)の含有量が66.7%であり、両末端がアミン基であるポリイミド樹脂(ポリイミド樹脂B)の含有量が33.3質量%である。
[本発明例6]
 DMFの代わりにシクロヘキサノンを用い、シクロヘキサノン10gに対して、ポリイミド樹脂Aの代わりにポリイミド樹脂Cを1g投入し、酸化アルミニウム粉末の投入量を、下記の表1に記載されている含有量となる量としたこと以外は、本発明例1と同様にしてフィラー分散ポリイミド樹脂溶液を調製した。フィラー分散ポリイミド樹脂溶液に含まれる樹脂は、両末端がジカルボン酸無水物であるポリイミド樹脂(ポリイミド樹脂C)の含有量が100質量%である。
[本発明例7]
 酸化アルミニウム粉末の代わりに酸化マグネシウム粉末(平均粒子径:10μm)を、下記の表1に記載されている含有量となる量で投入したこと以外は、本発明例1と同様にしてフィラー分散ポリイミド樹脂溶液を調製した。
[本発明例8]
 酸化アルミニウム粉末の代わりに水酸化アルミニウム粉末(平均粒子径:3μm)を、下記の表1に記載されている含有量となる量で投入したこと以外は、本発明例1と同様にしてフィラー分散ポリイミド樹脂溶液を調製した。
[本発明例9]
 DMF10gに対してポリイミド樹脂Aを4.85g投入し、均一に溶解するまで撹拌した。得られたポリイミド樹脂溶液に、エポキシ樹脂原料(JER-630、三菱ケミカル株式会社製)0.15gを加えた。さらに酸化アルミニウム粉末(平均粒子径:3μm)をポリイミド樹脂Aとエポキシ樹脂と酸化アルミニウム粉末の合計量に対して、質量換算で79質量%(体積換算で57体積%)となるように投入し、マグネティックスターラーで撹拌した。得られた混合物を、スギノマシン社製スターバーストを用い、圧力50MPaの高圧噴射処理を10回繰り返すことにより分散処理を行なって、フィラー分散ポリイミド樹脂溶液を調製した。フィラー分散ポリイミド樹脂溶液に含まれる樹脂は、両末端がジカルボン酸無水物であるポリイミド樹脂(ポリイミド樹脂A)の含有量が97質量%であり、エポキシ樹脂の含有量は3質量%である。
[本発明例10]
 平均粒径3μmの酸化アルミニウム粉末の代わりに平均粒径0.7μmの酸化アルミニウム粉末を、下記の表1に記載されている含有量となる量で投入したこと以外は、本発明例1と同様にしてフィラー分散ポリイミド樹脂溶液を調製した。
[比較例1]
 DMF10gに対して、ポリイミド樹脂Aの代わりにポリイミド樹脂Bを5g投入し、酸化アルミニウム粉末の投入量を、下記の表1に記載されている含有量となる量としたこと以外は、本発明例1と同様にしてフィラー分散ポリイミド樹脂溶液を調製した。
[比較例2]
 酸化アルミニウム粉末の代わりにシリカ粉末(平均粒子径:0.7μm)を、下記の表1に記載されている含有量となる量で投入したこと以外は、本発明例1と同様にしてフィラー分散ポリイミド樹脂溶液を調製した。
[比較例3]
 DMF10gに対して、ポリイミド樹脂Aの代わりにポリイミド樹脂Dを1g投入し、酸化アルミニウム粉末の投入量を、下記の表1に記載されている含有量となる量としたこと以外は、本発明例1と同様にしてフィラー分散ポリイミド樹脂溶液を調製した。
[評価]
 本発明例1~10及び比較例1~3で得られたフィラー分散ポリイミド樹脂溶液を用いて、フィラーを含むポリイミド樹脂組成物膜を作製し、得られたポリイミド樹脂膜のフィラー分散性、ボイド占有率、熱伝導率、膜厚当たりの耐電圧を、下記の方法により評価した。その結果を、下記の表1に示す。
(フィラー分散性)
 縦50mm×横50mm×厚さ1mmの銅基板上に、フィラー分散ポリイミド樹脂溶液を500rpmの回転速度でスピンコートして、厚さ20μmの塗布膜を得る。得られた塗布膜を100℃の温度で3時間加熱して乾燥することにより、フィラーを含むポリイミド樹脂組成物膜を成膜して、ポリイミド樹脂組成物膜付銅基板を得る。得られたポリイミド樹脂組成物膜を、光学顕微鏡を用いて観察して、粒径が0.1mm以上のフィラーの凝集体の個数を計測する。ポリイミド樹脂組成物膜1cmあたりの凝集体の個数が、3個以下であった場合をAとし、4個以上10個以下であった場合をB、11個以上であった場合をCと判定した。
(ボイド占有率)
 縦50mm×横50mm×厚さ1mmのPTFE(ポリテトラフルオロエチレン)板の上に、フィラー分散ポリイミド樹脂溶液を、バーコーターを用いて塗布して厚さ100μmの塗布膜を得る。得られた塗布膜を100℃の温度で30分間加熱した後150℃の温度で30分間加熱して、乾燥することにより、フィラーを含むポリイミド樹脂組成物膜を成膜する。得られたポリイミド樹脂組成物膜をPTFE板から剥離して、樹脂埋めする。
 樹脂埋めしたポリイミド樹脂組成物膜を、CP加工によって断面を露出させる。次いで、露出したポリイミド樹脂組成物膜の断面を、SEM(走査型電子顕微鏡)を用いて観察する。ポリイミド樹脂組成物膜の断面積100μmに対して、ボイドが占める面積を計測し、その占有率を算出する。
 SEMでの観察対象となる断面において、ポリイミド樹脂とフィラーとの間に存在し、ポリイミドでもなくフィラーでもない領域をボイドとする。ボイドの最少面積は0.01μmとする。
(熱伝導率)
 縦50mm×横50mm×厚さ1mmの銅基板上に、フィラー分散ポリイミド樹脂溶液を、バーコーターを用いて塗布して厚さ100μmの塗布膜を得る。得られた塗布膜を100℃の温度で3時間加熱して乾燥することにより、フィラーを含むポリイミド樹脂組成物膜を成膜して、ポリイミド樹脂組成物膜付銅基板を得る。
 ポリイミド樹脂組成物膜の熱伝導率(ポリイミド樹脂組成物膜の厚さ方向の熱伝導率)は、NETZSCH-GeratebauGmbH製のLFA477 Nanoflashを用いて、レーザーフラッシュ法により測定する。
(膜厚当たりの耐電圧)
 ポリイミド樹脂組成物膜の耐電圧は、株式会社計測技術研究所の多機能安全試験器7440を用いて測定する。
 上記熱伝導率の測定と同様にして、ポリイミド樹脂組成物膜付銅基板を得る。ポリイミド樹脂組成物膜付き銅基板のポリイミド樹脂組成物膜の表面に電極(φ6mm)を配置する。ポリイミド樹脂組成物膜付銅基板の銅基板とポリイミド樹脂組成物膜の表面に配置した電極をそれぞれ電源に接続し、6000Vまで30秒で昇圧する。銅基板と電極との間に流れる電流値が5000μAになった時点の電圧をポリイミド樹脂組成物膜の耐電圧とした。マイクロメーターにより膜厚を計測し、耐電圧から膜厚を除することで膜厚当たりの耐電圧を算出する。
Figure JPOXMLDOC01-appb-T000012
 両末端にジカルボン酸基又はその酸無水物基を有するポリイミド樹脂を用い、フィラーとして、酸化アルミニウム粉末、水酸化アルミニウム粉末、酸化マグネシウム粉末、水酸化マグネシウム粉末のいずれかを含む本発明例1~10のフィラー分散ポリイミド樹脂溶液を用いて成膜したポリイミド樹脂組成物膜は、フィラー分散性に優れ、ボイド占有率が低く、熱伝導率と耐電圧が高くなった。これは、ポリイミド樹脂の両末端のジカルボン酸基又はその酸無水物基とフィラーとの親和性が高く、ポリイミド樹脂とフィラーとの間に欠陥が発生しにくいためである。例えば、フィラーが、酸化アルミニウム粉末の場合は、ポリイミド樹脂の末端のジカルボン酸無水物基は酸化アルミニウム粒子上の吸着水もしくは空気中の水分で容易に加水分解され、ジカルボン酸基が生成する。ジカルボン酸基と酸化アルミニウム粒子上の水酸基が反応し、カルボキシレート基が2つ生成する。生成した2つのカルボキシレート基は、それぞれ2つのアルミニウム原子に対して二座架橋することで安定化し、酸化アルミニウム粒子に表面にポリイミド樹脂が固定化される。二座架橋の反応進行のためには100℃以上の加熱が好ましい。
 これに対して、両末端にジカルボン酸基及びその酸無水物基を有しないポリイミド樹脂を用いた比較例1、3及びフィラーとして、シリカ粉末を用いた比較例2では、ポリイミド樹脂組成物膜のフィラー分散性が低下した。なお、比較例1、3及び比較例2で得られたポリイミド樹脂組成物膜は、凝集体が多数生成したため、ボイド占有率、熱伝導率、耐電圧は測定できなかった。
 フィラーと樹脂とを含む樹脂組成物であって、ボイドが発生しにくく、熱伝導性と耐電圧性とに優れる樹脂組成物、及びこの樹脂組成物を絶縁膜として用いた金属ベース基板を提供することが可能となる。
 10  ポリイミド樹脂組成物
 11  ポリイミド樹脂
 12  フィラー
 20  金属ベース基板
 21  金属基板
 22  絶縁膜
 23  金属回路層

Claims (6)

  1.  樹脂と、前記樹脂に分散されているフィラーとを含み、
     前記樹脂は、両末端にジカルボン酸基又はジカルボン酸基の酸無水物基を有するポリイミド樹脂を含み、
     前記フィラーは、表面に、酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウムからなる群より選ばれる少なくとも一種の無機化合物を有することを特徴とするポリイミド樹脂組成物。
  2.  前記ポリイミド樹脂が、下記の一般式(1)又は一般式(2)で表される化合物である請求項1に記載のポリイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
     ただし、一般式(1)及び一般式(2)において、R1は、4価の有機基を表し、R2は2価の有機基を表し、Sは、数平均分子量から算出される10以上200以下の数を表す。
  3.  前記ポリイミド樹脂の数平均分子量が、5000以上50000以下の範囲内にある請求項1又は請求項2に記載のポリイミド樹脂組成物。
  4.  前記フィラーの含有量が60質量%以上90質量%以下の範囲内にある請求項1から請求項3のいずれか一項に記載のポリイミド樹脂組成物。
  5.  前記樹脂において、前記ポリイミド樹脂の含有量が66質量%以上100質量%以下の範囲内にある請求項1から請求項4のいずれか一項に記載のポリイミド樹脂組成物。
  6.  金属基板と、絶縁膜と、金属回路層とがこの順で積層された金属ベース基板であって、
     前記絶縁膜が請求項1から請求項5のいずれ一項に記載のポリイミド樹脂組成物からなることを特徴とする金属ベース基板。
PCT/JP2022/004379 2021-02-25 2022-02-04 ポリイミド樹脂組成物及び金属ベース基板 WO2022181291A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22759331.6A EP4299649A1 (en) 2021-02-25 2022-02-04 Polyimide resin composition and metal-based substrate
US18/275,302 US20240117119A1 (en) 2021-02-25 2022-02-04 Polyimide resin composition and metal base substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-028910 2021-02-25
JP2021028910A JP2022129993A (ja) 2021-02-25 2021-02-25 ポリイミド樹脂組成物及び金属ベース基板

Publications (1)

Publication Number Publication Date
WO2022181291A1 true WO2022181291A1 (ja) 2022-09-01

Family

ID=83048233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004379 WO2022181291A1 (ja) 2021-02-25 2022-02-04 ポリイミド樹脂組成物及び金属ベース基板

Country Status (5)

Country Link
US (1) US20240117119A1 (ja)
EP (1) EP4299649A1 (ja)
JP (1) JP2022129993A (ja)
TW (1) TW202246389A (ja)
WO (1) WO2022181291A1 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214065A (ja) * 1999-11-22 2001-08-07 Kyowa Chem Ind Co Ltd 半導体封止用材料およびその樹脂組成物およびその成型品
US20070116976A1 (en) 2005-11-23 2007-05-24 Qi Tan Nanoparticle enhanced thermoplastic dielectrics, methods of manufacture thereof, and articles comprising the same
JP2007246772A (ja) * 2006-03-17 2007-09-27 Nagoya Industrial Science Research Inst 多分岐ポリイミド系ハイブリッド材料
JP2009013227A (ja) 2007-07-02 2009-01-22 Tokyo Electric Power Co Inc:The 電気絶縁材料用の樹脂組成物及びその製造方法
JP2010155895A (ja) * 2008-12-26 2010-07-15 Asahi Kasei E-Materials Corp 組成物、組成物からなる塗膜、塗膜を含む積層体、及び積層体を組み込んだ電子機器
JP2011225675A (ja) * 2010-04-16 2011-11-10 Mitsui Chemicals Inc 熱伝導性接着樹脂組成物、それを含む積層体および半導体装置
JP2013060575A (ja) 2011-08-25 2013-04-04 Nitto Denko Corp 絶縁フィルム
WO2013108890A1 (ja) * 2012-01-20 2013-07-25 旭化成イーマテリアルズ株式会社 樹脂組成物、積層体、多層プリント配線板及び多層フレキシブル配線板並びにその製造方法
JP2013159748A (ja) 2012-02-08 2013-08-19 Kyushu Institute Of Technology 樹脂組成物及びその製造方法
JP2014031484A (ja) * 2012-08-06 2014-02-20 Gunze Ltd 絶縁性熱伝導フィラー分散組成物
JP2014177554A (ja) * 2013-03-14 2014-09-25 New Japan Chem Co Ltd 複合樹脂組成物
JP2015044905A (ja) * 2013-08-27 2015-03-12 昭和電工株式会社 樹脂組成物、透明フィルム、その製造方法及び用途
JP2018095715A (ja) * 2016-12-12 2018-06-21 コニカミノルタ株式会社 ポリイミドフィルムおよび当該フィルムを用いる表示装置
JP2019012632A (ja) * 2017-06-30 2019-01-24 三菱マテリアル株式会社 絶縁皮膜
JP2019140094A (ja) 2018-02-05 2019-08-22 三菱マテリアル株式会社 絶縁膜、絶縁導体、金属ベース基板
JP2021028910A (ja) 2019-08-09 2021-02-25 エフ イー アイ カンパニFei Company 共振rf空洞の誘電体インサートへのコーティング

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214065A (ja) * 1999-11-22 2001-08-07 Kyowa Chem Ind Co Ltd 半導体封止用材料およびその樹脂組成物およびその成型品
US20070116976A1 (en) 2005-11-23 2007-05-24 Qi Tan Nanoparticle enhanced thermoplastic dielectrics, methods of manufacture thereof, and articles comprising the same
JP2007246772A (ja) * 2006-03-17 2007-09-27 Nagoya Industrial Science Research Inst 多分岐ポリイミド系ハイブリッド材料
JP2009013227A (ja) 2007-07-02 2009-01-22 Tokyo Electric Power Co Inc:The 電気絶縁材料用の樹脂組成物及びその製造方法
JP2010155895A (ja) * 2008-12-26 2010-07-15 Asahi Kasei E-Materials Corp 組成物、組成物からなる塗膜、塗膜を含む積層体、及び積層体を組み込んだ電子機器
JP2011225675A (ja) * 2010-04-16 2011-11-10 Mitsui Chemicals Inc 熱伝導性接着樹脂組成物、それを含む積層体および半導体装置
JP2013060575A (ja) 2011-08-25 2013-04-04 Nitto Denko Corp 絶縁フィルム
WO2013108890A1 (ja) * 2012-01-20 2013-07-25 旭化成イーマテリアルズ株式会社 樹脂組成物、積層体、多層プリント配線板及び多層フレキシブル配線板並びにその製造方法
JP2013159748A (ja) 2012-02-08 2013-08-19 Kyushu Institute Of Technology 樹脂組成物及びその製造方法
JP2014031484A (ja) * 2012-08-06 2014-02-20 Gunze Ltd 絶縁性熱伝導フィラー分散組成物
JP2014177554A (ja) * 2013-03-14 2014-09-25 New Japan Chem Co Ltd 複合樹脂組成物
JP2015044905A (ja) * 2013-08-27 2015-03-12 昭和電工株式会社 樹脂組成物、透明フィルム、その製造方法及び用途
JP2018095715A (ja) * 2016-12-12 2018-06-21 コニカミノルタ株式会社 ポリイミドフィルムおよび当該フィルムを用いる表示装置
JP2019012632A (ja) * 2017-06-30 2019-01-24 三菱マテリアル株式会社 絶縁皮膜
JP2019140094A (ja) 2018-02-05 2019-08-22 三菱マテリアル株式会社 絶縁膜、絶縁導体、金属ベース基板
JP2021028910A (ja) 2019-08-09 2021-02-25 エフ イー アイ カンパニFei Company 共振rf空洞の誘電体インサートへのコーティング

Also Published As

Publication number Publication date
JP2022129993A (ja) 2022-09-06
US20240117119A1 (en) 2024-04-11
TW202246389A (zh) 2022-12-01
EP4299649A1 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
CN103222040B (zh) 粘接剂组合物、半导体装置的制造方法以及半导体装置
JP5569576B2 (ja) 半導体用フィルム状接着剤、半導体装置の製造方法及び半導体装置
TWI460249B (zh) 黏合組成物、黏合膜及製造半導體元件的方法
WO2000011084A1 (fr) Composition d'une pate, et film protecteur et semi-conducteur en etant faits
TWI513575B (zh) 熱傳導性聚醯亞胺薄膜及使用該薄膜之熱傳導性積層體
EP1918341A1 (en) Adhesive film and semiconductor device using same
JP5922060B2 (ja) 半導体装置の製造方法
JP4748292B2 (ja) フィルム状電子部品用接着剤及び電子部品
US20210166844A1 (en) Insulating film, insulated conductor, metal base substrate
JP5643536B2 (ja) 熱伝導性接着樹脂組成物、それを含む積層体および半導体装置
JP5439863B2 (ja) 半導体封止用接着剤、半導体封止用フィルム状接着剤、半導体装置及びその製造方法
JP4174274B2 (ja) ポリアミドイミド樹脂、これを含有する樹脂組成物、電子部品用被覆材料及び電子部品用接着剤
JP3915779B2 (ja) 導電性樹脂組成物およびこれを用いた電子部品
JP5641067B2 (ja) 半導体封止用フィルム状接着剤
JPH0551541A (ja) ポリイミド樹脂で被覆された無機充填剤、それを配合した樹脂組成物およびその樹脂組成物で封止された半導体装置
WO2022181291A1 (ja) ポリイミド樹脂組成物及び金属ベース基板
JP5332799B2 (ja) 半導体封止用フィルム状接着剤、半導体装置及びその製造方法
JP5881927B2 (ja) 半導体封止用接着剤、半導体封止用フィルム状接着剤、半導体装置の製造方法、および半導体装置
JP5263050B2 (ja) 接着剤組成物及びそれを用いた半導体装置の製造方法、半導体装置
JP2005060417A (ja) スクリーン印刷用接着剤ワニス及び接着剤付きリードフレーム、樹脂基板、半導体ウエハ、並びにそれを使った半導体装置
JP5671778B2 (ja) 半導体封止用フィルム状接着剤、半導体装置及びその製造方法
JP2005120270A (ja) 接着剤組成物及び接着フイルム
JP5397526B2 (ja) 半導体装置の製造方法
JP2000086742A (ja) エポキシ樹脂組成物及び導電性ペースト
JPH0532892A (ja) ペースト組成物及びこれを用いた半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759331

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18275302

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022759331

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759331

Country of ref document: EP

Effective date: 20230925