WO2022181197A1 - 有機el素子用材料、有機el素子、表示装置および照明装置 - Google Patents

有機el素子用材料、有機el素子、表示装置および照明装置 Download PDF

Info

Publication number
WO2022181197A1
WO2022181197A1 PCT/JP2022/003268 JP2022003268W WO2022181197A1 WO 2022181197 A1 WO2022181197 A1 WO 2022181197A1 JP 2022003268 W JP2022003268 W JP 2022003268W WO 2022181197 A1 WO2022181197 A1 WO 2022181197A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
ring
substituted
layer
Prior art date
Application number
PCT/JP2022/003268
Other languages
English (en)
French (fr)
Inventor
徳田貴士
岡野翼
長尾和真
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2022506774A priority Critical patent/JP7231108B2/ja
Priority to KR1020237025027A priority patent/KR20230151982A/ko
Priority to EP22759239.1A priority patent/EP4300610A1/en
Priority to CN202280007975.XA priority patent/CN116583520A/zh
Publication of WO2022181197A1 publication Critical patent/WO2022181197A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene

Definitions

  • the present invention relates to an organic EL element material having a specific structure, and an organic EL element, display device and lighting device using the same.
  • organic EL elements have been steadily put into practical use, such as being used in TV and smartphone displays.
  • existing organic EL devices still have many technical problems. Among them, achieving both highly efficient light emission and extending the life of the organic EL element is a major issue.
  • phenanthroline derivatives having a terpyridine skeleton and substituted with a specific aryl group see, for example, Patent Document 1
  • phenanthroline derivatives having a pyrene skeleton see, for example, Patent Document 2
  • phenanthroline derivatives having a dibenzofuran skeleton see, for example, Patent Documents 3 and 4
  • phenanthroline derivatives having a specific arylene group and heteroaryl group see, for example, Patent Document 5
  • Patent Documents 1 to 5 phenanthroline derivatives linked with a terpyridine skeleton, a pyrene skeleton, a dibenzofuran skeleton, a specific aryl group, an arylene group, or a heteroaryl group are used to increase luminous efficiency, enable low-voltage driving, and improve durability.
  • An excellent organic EL device can be obtained.
  • the luminous efficiency and durability required for organic EL elements have been increasing more and more, and there is a demand for a technique that achieves both higher luminous efficiency and durable life.
  • An object of the present invention is to provide an organic EL device that is excellent in luminous efficiency and durability in view of the problems of the prior art.
  • the present invention is an organic EL device material represented by the following general formula (1).
  • any one of X 1 to X 3 is a nitrogen atom, and the others are methine groups.
  • L 1 is a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group or a substituted or unsubstituted anthrylene group
  • L 2 is a single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group or a substituted or unsubstituted anthrylene group.
  • the substituents are alkyl groups or alkoxy groups.
  • A is a phenyl group or a pyridyl group, n is 0 or 1;
  • the present invention can provide an organic EL device with excellent luminous efficiency and durable life.
  • Organic EL device material represented by general formula (1) which is one embodiment of the present invention, comprises a phenanthroline derivative shown below, and is used in any one of the layers constituting the organic EL device. represents the material used.
  • the organic EL device material means the application of the phenanthroline derivative represented by the following general formula (1).
  • any one of X 1 to X 3 is a nitrogen atom, and the others are methine groups.
  • L 1 is a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group or a substituted or unsubstituted anthrylene group
  • L 2 is a single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group or a substituted or unsubstituted anthrylene group.
  • the substituents are alkyl groups or alkoxy groups.
  • A is a phenyl group or a pyridyl group, n is 0 or 1;
  • the alkyl group is, for example, a saturated aliphatic hydrocarbon group such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, which is a substituent may or may not have
  • the number of carbon atoms in the alkyl group is not particularly limited, it is usually in the range of 1 to 20, more preferably 1 to 8 in terms of availability and cost.
  • the alkoxy group is a group in which an alkyl group is bonded to oxygen, such as a methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, It may or may not have a substituent.
  • the number of carbon atoms in the alkoxy group is not particularly limited, it is usually in the range of 1 to 20, more preferably 1 to 8 in terms of availability and cost.
  • Patent Documents 1 to 5 disclose compounds V, W, X, Y, and Z represented by the following formulas. .
  • a compound in which a phenanthrolinyl group is substituted with a pyrenyl group has a bulky substituent near the nitrogen atom on the highly coordinating phenanthrolinyl group. It tends to reduce the coordinating ability of the group to the metal atom. Therefore, when the compound V is used together with the metal atom, the film stability is lowered, the driving voltage is increased, and the luminous efficiency and the durable life are lowered.
  • Compounds having a bulky aromatic substituent on the linking group between the terpyridyl group and the phenanthrolinyl group such as compounds W and Y, are less effective in improving molecular interaction due to their bulkiness.
  • a compound in which a terpyridyl group and a phenanthrolinyl group are linked by a dibenzofuranylene group, such as compound X, has too high crystallinity due to the high planarity of the phenanthrolinyl group and the linking group.
  • the voltage became higher, and there were problems with luminous efficiency and durability.
  • the present inventors focused on the effects of a phenanthrolinyl group, a terpyridyl group, and their linking groups in the study of improving materials for organic EL devices. Both the phenanthrolinyl group and the terpyridyl group have a large electron-transporting property and are highly coordinating groups to metal atoms.
  • the organic EL device material represented by the general formula ( 1 ) is produced by selecting a phenylene group, a naphthylene group or an anthrylene group as L1 and a single bond, a phenylene group, a naphthylene group or an anthrylene group as L2. , a phenanthrolinyl group, a terpyridyl group, and their linking groups can be easily conjugated to increase the charge transportability of the compound as a whole. Therefore, when used in an organic EL element, the driving voltage can be reduced and the luminous efficiency can be improved.
  • the organic EL element material represented by the general formula (1) when used for the metal-doped layer in the organic EL element, a stable layer is formed. be able to.
  • the metal-doped layer means a layer obtained by doping any of the layers constituting the organic EL element with a metal.
  • the organic EL device material represented by the general formula (1) when used for the electron transport layer, the electron injection layer or the charge generation layer, these layers exhibit more stable and excellent performance.
  • L 1 is a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group or a substituted or unsubstituted anthrylene group
  • L 2 is a single bond, a substituted or unsubstituted phenylene group, It is a substituted or unsubstituted naphthylene group or a substituted or unsubstituted anthrylene group.
  • the substituent when L 1 is substituted is an alkyl group or an alkoxy group. These substituents are preferable because they can improve the stability of the compound without reducing the charge transport property of the compound.
  • L 1 or L 2 is preferably a naphthylene group from the viewpoint of enhancing film quality stability and further improving luminous efficiency and durable life. Moreover, when L2 is a single bond, the interaction between the phenanthrolinyl group and the terpyridyl group can be increased, and the luminous efficiency and durability can be further improved.
  • any one of X 1 to X 3 is a nitrogen atom, and the others are methine groups.
  • X 3 is preferably a nitrogen atom from the viewpoint of enhancing coordination with the metal atom and forming a more stable layer. By forming a more stable layer, it is possible to drive at a low voltage and further improve the durability life.
  • A is a phenyl group or a pyridyl group.
  • n the highly reactive 2- and 9-positions among the substitution positions of phenanthroline are substituted, so that the stability of the compound can be improved.
  • A is preferably a phenyl group from the viewpoint of enhancing the stability and durability of the device.
  • n when n is 0, position 9 of phenanthroline is hydrogen. When n is 0, phenanthroline is sterically unoccupied, so that when used in a metal-doped layer, a more stable layer with higher metal coordination can be formed.
  • the molecular weight of the organic EL device material represented by general formula (1) is preferably 400 or more.
  • the molecular weight of the organic EL element material represented by the general formula (1) is preferably 640 or less from the viewpoint of improving workability during sublimation purification and vapor deposition.
  • Examples of the organic EL element material represented by the general formula (1) include compounds composed of the compounds shown below. The following are examples, and compounds other than those specified here can also be preferably used as long as they are represented by the general formula (1).
  • the organic EL element material represented by general formula (1) can be synthesized by a known synthesis method.
  • Examples of the synthesis method include, but are not limited to, a coupling reaction between an aryl halide derivative and an arylboronic acid derivative using palladium.
  • Organic EL element material refers to a material used for one of the layers that make up the organic EL element.
  • Layers in which the organic EL element material represented by the general formula (1) is used include, as described later, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electrode protective film (cap layer) and so on.
  • An organic EL element has an anode, a cathode, and an organic layer interposed between the anode and the cathode, and the organic layer emits light by electric energy.
  • the layer structure between the anode and the cathode in such an organic EL element includes, in addition to the structure consisting only of the light-emitting layer, 1) light-emitting layer/electron transport layer, 2) hole transport layer/light-emitting layer, 3) hole transport layer/light emitting layer/electron transport layer, 4) hole injection layer/hole transport layer/light emitting layer/electron transport layer, 5) hole transport layer/light emitting layer/electron transport layer/electron injection layer, 6) positive 7) Layered structure of hole injection layer/hole transport layer/light emitting layer/electron transport layer/electron injection layer, hole injection layer/hole transport layer/light emitting layer/hole blocking layer/electron transport layer/electron injection layer is mentioned.
  • the intermediate layer is also generally referred to as an intermediate electrode, intermediate conductive layer, charge generation layer, electron withdrawal layer, connection layer, and intermediate insulating layer, and known material configurations can be used.
  • tandem type include, for example, 8) hole transport layer/light emitting layer/electron transport layer/charge generation layer/hole transport layer/light emitting layer/electron transport layer, 9) hole injection layer/hole transport layer/ A charge-generating layer as an intermediate layer between the anode and the cathode, such as light-emitting layer/electron-transporting layer/electron-injecting layer/charge-generating layer/hole-injecting layer/hole-transporting layer/light-emitting layer/electron-transporting layer/electron-injecting layer.
  • a laminate configuration including:
  • each of the above layers may be either a single layer or multiple layers, and may be doped.
  • the electron injection layer and the charge generation layer are metal-doped layers, the electron transport ability and the electron injection ability to other adjacent layers can be improved, which is preferable.
  • the organic EL device material represented by the general formula (1) may be used in any of the above layers in the organic EL device, but is particularly preferably used in the electron transport layer, charge generation layer or electron injection layer. .
  • the structure of the organic EL device of the present invention comprises at least an electron-transporting layer and a light-emitting layer between an anode and a cathode, and the electron-transporting layer contains an organic EL device material represented by general formula (1).
  • two or more layers may contain the organic EL element material represented by the general formula (1).
  • the anode and the cathode have a role of supplying a sufficient current for light emission of the device, and at least one of them is transparent or translucent to extract light. is desirable.
  • the anode formed on the substrate is used as a transparent electrode.
  • the organic EL element In order to maintain the mechanical strength of the organic EL element, it is preferable to form the organic EL element on a substrate.
  • the substrate include glass substrates such as soda glass and alkali-free glass, and plastic substrates.
  • the thickness should be sufficient to maintain mechanical strength, and a thickness of 0.5 mm or more is sufficient.
  • the material of the glass it is preferable that the amount of eluted ions from the glass is small, and alkali-free glass is preferable.
  • soda-lime glass with a barrier coating such as SiO 2 is commercially available, and this can also be used.
  • anode An anode is formed on the substrate.
  • the material used for the anode is preferably a material that can efficiently inject holes into the organic layer. Moreover, it is preferably transparent or translucent in order to take out light.
  • materials used for the anode include conductive metal oxides such as zinc oxide, tin oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); metals such as gold, silver, and chromium; Inorganic conductive substances such as copper and copper sulfide, and conductive polymers such as polythiophene, polypyrrole and polyaniline, and the like. Among these, ITO glass and Nesa glass are preferable.
  • the electrical resistance of the substrate on which the anode is formed may be within a range in which a current sufficient for light emission of the device can be supplied, but a low resistance is preferable from the viewpoint of power consumption of the device.
  • an ITO substrate with an electrical resistance of 300 ⁇ / ⁇ or less functions as an element electrode, but it is now possible to supply a substrate with an electrical resistance of about 10 ⁇ / ⁇ . is preferably used.
  • the thickness of the anode can be arbitrarily selected according to the resistance value, and is usually used in the range of 45 to 300 nm.
  • a hole-injecting layer is a layer interposed between the anode and the hole-transporting layer.
  • the hole injection layer may be a single layer or a laminate of a plurality of layers.
  • the presence of a hole injection layer between the hole transport layer and the anode is preferable because it not only enables the device to be driven at a lower voltage and extends the durability life, but also improves the carrier balance of the device and the luminous efficiency.
  • the material used for the hole injection layer is not particularly limited, but examples include 4,4'-bis(N-(3-methylphenyl)-N-phenylamino)biphenyl (TPD), 4,4'-bis (N-(1-naphthyl)-N-phenylamino)biphenyl (NPD), 4,4'-bis(N,N-bis(4-biphenylyl)amino)biphenyl (TBDB), bis(N,N'- benzidine derivatives such as diphenyl-4-aminophenyl)-N,N-diphenyl-4,4′-diamino-1,1′-biphenyl (TPD232); 4,4′,4′′-tris(3-methylphenyl ( A group of materials called starburst arylamines such as phenyl)amino)triphenylamine (m-MTDATA), 4,4′,4′′-tris(1-naphthyl
  • a hole injection layer may be formed by laminating a plurality of materials. Furthermore, it is more preferable that the hole injection layer is composed of an acceptor compound alone, or that the hole injection material as described above is doped with an acceptor compound, since the above effects can be obtained more remarkably.
  • the acceptor compound is a material that forms a charge-transfer complex with a material that forms a hole-transport layer in contact with it when used as a single-layer film, and a material that forms a hole-injection layer when it is doped and used. The use of such a material improves the conductivity of the hole injection layer, contributes to lowering the drive voltage of the device, and can further improve the luminous efficiency and durable life.
  • acceptor compounds include metal chlorides such as iron (III) chloride, aluminum chloride, gallium chloride, indium chloride, and antimony chloride; metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, and ruthenium oxide; Charge transfer complexes such as 4-bromophenyl) aminium hexachloroantimonate (TBPAH); organic compounds having a nitro group, cyano group, halogen or trifluoromethyl group in the molecule; quinone compounds; acid anhydride compounds; fullerenes etc.
  • metal oxides and cyano group-containing compounds are preferable because they are easy to handle and easy to vapor-deposit, so that the above effects can be easily obtained.
  • the hole injection layer may be a single layer, A plurality of layers may be laminated and configured.
  • the hole-transporting layer is a layer that transports holes injected from the anode to the light-emitting layer.
  • the hole transport layer may be a single layer or may be composed of a plurality of laminated layers.
  • Materials used for the hole transport layer include those exemplified as materials used for the hole injection layer.
  • a triarylamine derivative or a benzidine derivative is more preferable from the viewpoint of smoothly injecting and transporting holes into the light-emitting layer.
  • the light-emitting layer may be either a single layer or multiple layers.
  • the light-emitting layer is formed of a light-emitting material, which may be a mixture of a host material and a dopant material, a host material alone, or a mixture of two host materials and one dopant material. or either. That is, in the organic EL element according to the embodiment of the present invention, only the host material or the dopant material may emit light, or both the host material and the dopant material may emit light in each light emitting layer. From the viewpoint of efficient use of electrical energy and obtaining light emission with high color purity, the light-emitting layer is preferably made of a mixture of a host material and a dopant material.
  • the host material and the dopant material may be of one kind or a combination of a plurality of them.
  • the dopant material may be contained entirely or partially in the host material.
  • the dopant material can be either layered or dispersed. Dopant materials can control the emission color. From the viewpoint of suppressing the concentration quenching phenomenon, the amount of the dopant material is preferably 30% by weight or less, more preferably 20% by weight or less, based on 100% by weight of the total of the host material and the dopant material.
  • the doping method can be formed by a co-evaporation method with a host material, but it may be pre-mixed with the host material and then vapor-deposited at the same time.
  • Examples of light-emitting materials include condensed ring derivatives such as anthracene and pyrene, which are known as light emitters, metal chelated oxinoid compounds such as tris(8-quinolinolato)aluminum, bisstyryl derivatives such as bisstyryl anthracene derivatives and distyrylbenzene derivatives, Tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, thiadiazolopyridine derivatives, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, Examples include polymers such as polyphenylene vinylene derivatives, polyparaphenylene derivatives, polythiophene derivatives, and the like.
  • the host material contained in the light-emitting material need not be limited to one type of compound, and multiple compounds may be mixed or laminated.
  • Host materials include, but are not limited to, naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, compounds having condensed aryl rings such as indene, derivatives thereof, N,N'-dinaphthyl- aromatic amine derivatives such as N,N'-diphenyl-4,4'-diphenyl-1,1'-diamine, metal chelated oxinoid compounds such as tris(8-quinolinato)aluminum (III), distyrylbenzene derivatives, etc.
  • bisstyryl derivatives tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, pyrrolopyrrole derivatives, thiadiazolopyridine derivatives, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives; polymers such as polyphenylenevinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, and polythiophene derivatives.
  • the host used when the emitting layer performs triplet emission includes metal chelated oxinoid compounds, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives, triphenylene derivatives, and the like. is preferably used.
  • Dopant materials contained in the light-emitting material include, for example, compounds having an aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, fluoranthene, triphenylene, perylene, fluorene, and indene, and derivatives thereof (eg, 2-(benzothiazole-2- yl)-9,10-diphenylanthracene and 5,6,11,12-tetraphenylnaphthacene); furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene , benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, compounds having a heteroaryl ring
  • a dopant containing a diamine skeleton and a dopant containing a fluoranthene skeleton can further improve luminous efficiency, and the compound represented by the following general formula (2) further improves luminous efficiency and durability. be able to.
  • Za ring, Zb ring and Zc ring are each independently a substituted or unsubstituted aryl ring having 6 to 30 ring-forming carbon atoms or a substituted or unsubstituted ring having 5 to 30 ring-forming atoms. It is a heteroaryl ring. Za ring, Zb ring and Zc ring are each independently preferably a substituted or unsubstituted aryl ring having 6 to 30 ring-forming carbon atoms.
  • Z 1 and Z 2 are each independently an oxygen atom, NRa (a nitrogen atom having a substituent Ra) or a sulfur atom, and when Z 1 is NRa, Ra is bonded to the Za ring or Zb ring to form a ring may or may not form, and when Z2 is NRa , Ra may or may not form a ring with the Zb ring or Zc ring.
  • Ra is each independently a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring-forming atoms, or a substituted or unsubstituted 1 to 30 carbon atoms is an alkyl group of Both Z 1 and Z 2 are NRa, and Ra is preferably a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms.
  • Rb is each independently a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms or a substituted or unsubstituted 1 to 30 carbon atoms is an alkyl group of Y is preferably a boron atom.
  • substituents when substituted include alkyl groups, cycloalkyl groups, heterocyclic groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, hydroxyl groups, thiol groups, Alkoxy group, alkylthio group, arylether group, arylthioether group, halogen, cyano group, aldehyde group, acyl group, carboxyl group, ester group, amide group, acyl group, sulfonyl group, sulfonate ester group, sulfonamide group, amino group, nitro group, silyl group, siloxanyl group, boryl group and oxo group are preferred. In addition, these substituents may be further substituted with the above substituents.
  • alkyl group and alkoxy group examples include those exemplified as the substituent in general formula (1).
  • a cycloalkyl group is, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, and an adamantyl group, which may or may not have a substituent.
  • the number of ring-forming carbon atoms is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
  • a heterocyclic group is, for example, a pyran ring, a piperidine ring, an aliphatic ring having a non-carbon atom in the ring such as a cyclic amide, which may or may not have a substituent.
  • the number of ring-forming atoms is not particularly limited, it is preferably in the range of 3 or more and 20 or less.
  • alkenyl group is, for example, an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent.
  • the number of carbon atoms in the alkenyl group is not particularly limited, it is preferably in the range of 2 or more and 20 or less.
  • a cycloalkenyl group is an unsaturated alicyclic hydrocarbon group containing a double bond such as, for example, a cyclopentenyl group, a cyclopentadienyl group, a cyclohexenyl group, which may or may not have a substituent. You don't have to.
  • An alkynyl group is, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • the number of carbon atoms in the alkynyl group is not particularly limited, it is preferably in the range of 2 or more and 20 or less.
  • An aryl group includes, for example, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthryl group, anthracenyl group, a benzophenanthryl group, and a benzoanthracene.
  • phenyl group, biphenyl group, terphenyl group, naphthyl group, fluorenyl group, phenanthryl group, anthracenyl group, pyrenyl group, fluoranthenyl group and triphenylenyl group are preferable.
  • the aryl group may or may not have a substituent.
  • the number of carbon atoms in the aryl group is not particularly limited, but is preferably 6 or more and 40 or less, more preferably 6 or more and 30 or less.
  • the substituents when there are substituents on two adjacent carbon atoms in the phenyl group, the substituents may form a ring structure.
  • the resulting group is, depending on its structure, a "substituted phenyl group", an "aryl group having a structure in which two or more rings are condensed", or a "hetero group having a structure in which two or more rings are condensed.” aryl group”.
  • the heteroaryl group includes, for example, pyridyl group, furanyl group, thiophenyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, pyridazinyl group, triazinyl group, napthyridinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, benzocarbazolyl group, carbolinyl group, indolocarbazolyl group, benzoflocarbazolyl group, benzothienocarba non-carbon groups such as zolyl, dihydroindenocarbazolyl, benzoquinolinyl, acridinyl, dibenzoacridin
  • the naphthyridinyl group is any of a 1,5-naphthyridinyl group, a 1,6-naphthyridinyl group, a 1,7-naphthyridinyl group, a 1,8-naphthyridinyl group, a 2,6-naphthyridinyl group and a 2,7-naphthyridinyl group.
  • a heteroaryl group may or may not have a substituent.
  • the number of ring-forming atoms of the heteroaryl group is not particularly limited, it is preferably in the range of 3 to 40, more preferably in the range of 3 to 30.
  • An alkylthio group is an alkoxy group in which the oxygen atom of the ether bond is substituted with a sulfur atom.
  • the alkylthio group may or may not have a substituent.
  • the number of carbon atoms in the alkylthio group is not particularly limited, it is preferably in the range of 1 or more and 20 or less.
  • An aryl ether group is, for example, a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and may or may not have a substituent.
  • the number of carbon atoms in the aryl ether group is not particularly limited, it is preferably in the range of 6 or more and 40 or less.
  • An arylthioether group refers to a functional group in which an oxygen atom of an ether bond of an arylether group is substituted with a sulfur atom, and may or may not have a substituent.
  • the number of carbon atoms in the arylthioether group is not particularly limited, it is preferably in the range of 6 or more and 40 or less.
  • Halogen means fluorine, chlorine, bromine or iodine.
  • An acyl group is a functional group in which an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group is bonded via a carbonyl group, such as an acetyl group, a propionyl group, a benzoyl group, an acrylyl group, or the like. , may or may not have a substituent.
  • the number of carbon atoms in the acyl group is not particularly limited, it is preferably 2 or more and 40 or less, more preferably 2 or more and 30 or less.
  • An ester group refers to a functional group in which, for example, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, etc. are bonded via an ester bond, and may or may not have a substituent.
  • the number of carbon atoms in the ester group is not particularly limited, but is preferably in the range of 1 to 20.
  • a methyl ester group such as a methoxycarbonyl group, an ethyl ester group such as an ethoxycarbonyl group, a propyl ester group such as a propoxycarbonyl group, a butyl ester group such as a butoxycarbonyl group, and an isopropyl group such as an isopropoxymethoxycarbonyl group.
  • Examples include an ester group, a hexyl ester group such as a hexyloxycarbonyl group, and a phenyl ester group such as a phenoxycarbonyl group.
  • An amide group is, for example, a functional group in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, or the like is bonded via an amide bond, and may or may not have a substituent.
  • the number of carbon atoms in the amide group is not particularly limited, it is preferably in the range of 1 or more and 20 or less. More specific examples include a methylamido group, an ethylamido group, a propylamido group, a butylamido group, an isopropylamido group, a hexylamido group, a phenylamido group and the like.
  • the number of carbon atoms in the sulfonyl group is not particularly limited, but is preferably in the range of 1 to 20.
  • a sulfonate ester group is, for example, a functional group in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, or the like is bonded via a sulfonate ester bond, and may or may not have a substituent.
  • the number of carbon atoms in the sulfonate group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • a sulfonamide group is, for example, a functional group in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, or the like is bonded via a sulfonamide bond, and may or may not have a substituent. good.
  • the number of carbon atoms in the sulfonamide group is not particularly limited, it is preferably in the range of 1 or more and 20 or less.
  • the amino group may or may not have a substituent.
  • the number of carbon atoms in the amino group is not particularly limited, but is preferably 2 or more and 50 or less, more preferably 6 or more and 40 or less, and particularly preferably 6 or more and 30 or less.
  • a silyl group is a functional group to which a substituted or unsubstituted silicon atom is bonded, and examples thereof include alkylsilyl groups such as trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, propyldimethylsilyl group and vinyldimethylsilyl group. and arylsilyl groups such as a phenyldimethylsilyl group, a tert-butyldiphenylsilyl group, a triphenylsilyl group and a trinaphthylsilyl group.
  • a silyl group may or may not have a substituent. Although the number of carbon atoms in the silyl group is not particularly limited, it is preferably in the range of 1 or more and 30 or less.
  • a siloxanyl group indicates a silicon compound group via an ether bond such as a trimethylsiloxanyl group.
  • a siloxanyl group may or may not have a substituent.
  • the boryl group may or may not have a substituent.
  • Examples of compounds represented by general formula (2) include the following.
  • the light-emitting layer preferably contains a triplet light-emitting material.
  • a metal complex compound containing at least one metal selected from the group consisting of ) is preferred.
  • a ligand that constitutes the metal complex compound preferably has a nitrogen-containing aromatic heterocyclic ring such as a phenylpyridine skeleton, a phenylquinoline skeleton, or a carbene skeleton.
  • a nitrogen-containing aromatic heterocyclic ring such as a phenylpyridine skeleton, a phenylquinoline skeleton, or a carbene skeleton.
  • an appropriate complex is selected from the required emission color, device performance, and relationship with the host compound.
  • tris(2-phenylpyridyl)iridium complex tris ⁇ 2-(2-thiophenyl)pyridyl ⁇ iridium complex, tris ⁇ 2-(2-benzothiophenyl)pyridyl ⁇ iridium complex, tris(2-phenyl benzothiazole)iridium complex, tris(2-phenylbenzoxazole)iridium complex, trisbenzoquinolineiridium complex, bis(2-phenylpyridyl)(acetylacetonate)iridium complex, bis ⁇ 2-(2-thiophenyl)pyridyl ⁇ iridium complex, bis ⁇ 2-(2-benzothiophenyl)pyridyl ⁇ (acetylacetonato)iridium complex, bis(2-phenylbenzothiazole)(acetylacetonato)iridium complex, bis(2-phenylbenzoxazole)(acetylacetonato) nate) iridium
  • the above triplet light-emitting materials used as dopant materials may be contained in the light-emitting layer alone, or may be used in combination of two or more.
  • the total weight of the dopant materials is preferably 30% by weight or less, more preferably 20% by weight or less, when the total weight of the host material and the dopant materials is 100% by weight. .
  • Preferable host materials and dopant materials in the triplet emission system are not particularly limited, but specific examples include the following.
  • the light emitting layer contains a thermally activated delayed fluorescence material.
  • the heat-activated delayed fluorescence is explained on pages 87 to 103 of "State-of-the-Art Organic EL" (edited by Chihaya Adachi and Hiroshi Fujimoto, published by CMC Publishing). In that literature, by bringing the energy levels of the excited singlet state and the excited triplet state close to each other, the reverse energy transfer from the excited triplet state, which normally has a low transition probability, to the excited singlet state is high. It is explained that it occurs efficiently and thermally activated delayed fluorescence (TADF) is expressed. Furthermore, FIG. 5 in the document explains the generation mechanism of delayed fluorescence. Emission of delayed fluorescence can be confirmed by transient PL (Photo Luminescence) measurement.
  • Thermally activated delayed fluorescence materials are also generally called TADF materials.
  • the thermally activated delayed fluorescence material may be a single material that exhibits thermally activated delayed fluorescence, or a plurality of materials that exhibit thermally activated delayed fluorescence. When a plurality of materials are used, they may be used as a mixture, or may be used by stacking layers of each material.
  • a known material can be used as the thermally activated delayed fluorescence material. Examples include, but are not limited to, benzonitrile derivatives, triazine derivatives, disulfoxide derivatives, carbazole derivatives, indolocarbazole derivatives, dihydrophenazine derivatives, thiazole derivatives, oxadiazole derivatives and the like.
  • the light-emitting layer further contains a fluorescent dopant. This is because triplet excitons are converted into singlet excitons by the TADF material, and the singlet excitons are received by the fluorescent dopant, thereby achieving higher luminous efficiency and longer durability.
  • the electron transport layer is a layer into which electrons are injected from the cathode and which transports the electrons.
  • the electron transport layer is desired to have high electron injection efficiency and efficiently transport the injected electrons. Therefore, the material constituting the electron transport layer is preferably a substance that has high electron affinity, high electron mobility, excellent stability, and does not easily generate trapping impurities during production and use.
  • a compound having a molecular weight of 400 or more is preferable in order to maintain a stable film quality, because a low-molecular-weight compound tends to crystallize and deteriorate the film quality.
  • the electron-transporting layer in the present invention also includes a hole-blocking layer capable of efficiently blocking the movement of holes.
  • the hole-blocking layer and the electron-transporting layer may be composed of a single material or a laminate of multiple materials.
  • electron transport materials used in the electron transport layer include condensed polycyclic aromatic derivatives such as naphthalene and anthracene; styryl aromatic ring derivatives such as 4,4′-bis(diphenylethenyl)biphenyl; anthraquinone and diphenoquinone; phosphorus oxide derivatives; quinolinol complexes such as tris(8-quinolinolato)aluminum (III), benzoquinolinol complexes, hydroxyazole complexes, azomethine complexes, tropolone metal complexes and various metal complexes such as flavonol metal complexes.
  • a heteroaryl ring structure composed of an element selected from carbon, hydrogen, nitrogen, oxygen, silicon, and phosphorus and containing an electron-accepting nitrogen can be used to further reduce the driving voltage and obtain more efficient light emission. It is preferable to use a compound having
  • the electron-accepting nitrogen here means a nitrogen atom that forms a multiple bond with an adjacent atom. Due to the high electronegativity of the nitrogen atom, the multiple bond has electron-accepting properties. Therefore, heteroaromatic rings containing electron-accepting nitrogen have high electron affinities.
  • An electron-transporting material having electron-accepting nitrogen makes it easier to accept electrons from a cathode having a high electron affinity, and can be driven at a lower voltage. In addition, more electrons are supplied to the light-emitting layer and the probability of recombination is increased, so that the light emission efficiency is further improved.
  • Heteroaryl rings containing electron-accepting nitrogen include, for example, triazine ring, pyridine ring, pyrazine ring, pyrimidine ring, quinoline ring, quinoxaline ring, quinazoline ring, naphthyridine ring, pyrimidopyrimidine ring, benzoquinoline ring, phenanthroline ring, imidazole ring, oxazole ring, oxadiazole ring, triazole ring, thiazole ring, thiadiazole ring, benzoxazole ring, benzothiazole ring, benzimidazole ring, phenanthroimidazole ring and the like.
  • Examples of compounds having these heteroaryl ring structures include pyridine derivatives, triazine derivatives, quinazoline derivatives, pyrimidine derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazine. derivatives, phenanthroline derivatives, quinoxaline derivatives, quinoline derivatives, benzoquinoline derivatives, oligopyridine derivatives such as bipyridine and terpyridine, quinoxaline derivatives and naphthyridine derivatives.
  • imidazole derivatives such as tris(N-phenylbenzimidazol-2-yl)benzene, oxadiazole derivatives such as 1,3-bis[(4-tert-butylphenyl)1,3,4-oxadiazolyl]phenylene, triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole, phenanthroline derivatives such as bathocuproine and 1,3-bis(1,10-phenanthrolin-9-yl)benzene, 2,2' - benzoquinoline derivatives such as bis(benzo[h]quinolin-2-yl)-9,9'-spirobifluorene, 2,5-bis(6'-(2',2''-bipyridyl))-1, bipyridine derivatives such as 1-dimethyl-3,4-diphenylsilole, terpyridine derivatives such as 1,3-bis(4′-
  • the condensed polycyclic aromatic skeleton is preferably a fluoranthene skeleton, anthracene skeleton, a pyrene skeleton, or a phenanthroline skeleton. more preferred.
  • Preferable electron-transporting materials are not particularly limited, but specific examples include the following.
  • the organic EL element material represented by the general formula (1) is also preferable because it has a high electron-transporting property and exhibits excellent properties as an electron-transporting layer.
  • the electron-transporting material may be used alone, or two or more of the electron-transporting materials may be mixed and used, or one or more other electron-transporting materials may be mixed with the electron-transporting material. I do not care. Moreover, you may contain a donor compound.
  • the donor compound means that, when used in the electron transport layer, it facilitates electron injection from the cathode or the electron injection layer to the electron transport layer by improving the electron injection barrier, and further improves the electrical conductivity of the electron transport layer. is a compound that improves
  • the donor compound include an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, or a mixture of an alkaline earth metal and an organic substance. complexes, rare earth metals, and the like.
  • alkali metals, alkaline earth metals, and rare earth metals include alkali metals such as lithium, sodium, potassium, rubidium, and cesium, which have a low work function and are highly effective in improving electron transport ability, and magnesium, calcium, cerium, and barium. and alkaline earth metals such as samarium, europium, and ytterbium.
  • Preferred examples of alkali metals or alkaline earth metals include lithium and cesium from the viewpoint that the driving voltage can be further reduced. A plurality of these metals may be used, or an alloy of these metals may be used.
  • these metals are preferably in the form of an inorganic salt or a complex with an organic substance rather than a single metal, since vapor deposition in a vacuum is easy and handling is excellent. Furthermore, it is more preferable to be in the state of a complex with an organic substance in terms of facilitating handling in the atmosphere and facilitating adjustment of the addition concentration.
  • inorganic salts include oxides such as LiO and Li2O; nitrides; fluorides such as LiF, NaF , KF ; Li2CO3 , Na2CO3 , K2CO3 , Rb2CO3 ; Carbonates such as Cs 2 CO 3 and the like are included.
  • the organic matter in the complex with the organic matter include quinolinol, benzoquinolinol, pyridylphenol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, and hydroxytriazole.
  • an alkali metal complex compound which is a complex of an alkali metal and an organic substance, is preferable from the viewpoint that the driving voltage of the organic EL device can be further reduced.
  • a complex of lithium and an organic substance is more preferable, and lithium quinolinol (Liq), which is available at a relatively low cost, is particularly preferable.
  • the ionization potential of the electron transport layer is not particularly limited, it is preferably 5.6 eV or more and 8.0 eV or less, more preferably 5.6 eV or more and 7.0 eV or less.
  • an electron injection layer may be provided between the cathode and the electron transport layer.
  • An electron-injecting layer is generally inserted for the purpose of assisting the injection of electrons from the cathode into the electron-transporting layer.
  • a compound having a heteroaryl ring structure containing electron-accepting nitrogen may be used, or a layer containing the above-described donor material may be used.
  • inorganic materials such as insulators and semiconductors can also be used for the electron injection layer.
  • the short circuit of the organic EL element can be suppressed and the electron injection properties can be improved.
  • Such an insulator is preferably at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides.
  • preferred alkali metal chalcogenides include, for example, Li2O , Na2S and Na2Se .
  • Preferred alkaline earth metal chalcogenides also include, for example, CaO, BaO, SrO, BeO, BaS and CaSe.
  • Preferred alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl and NaCl.
  • Preferred examples of halides of alkaline earth metals include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • a complex of an organic substance and a metal is also preferably used.
  • a complex of an organic substance and a metal is used for the electron injection layer, the film thickness can be easily adjusted.
  • organic substances in organometallic complexes include quinolinol, benzoquinolinol, pyridylphenol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, and hydroxytriazole.
  • the layer containing the organic EL device material represented by the general formula (1) has a high electron injection property and exhibits excellent properties as an electron injection layer, which is preferable. Furthermore, when the organic EL element material represented by the general formula (1) is used as the electron injection layer, it is preferably doped with the alkali metal or rare earth metal, which further reduces the driving voltage and extends the durability life. can be improved.
  • the material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the light-emitting layer.
  • materials used for the cathode include metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, or combinations of these metals with low work function metals such as lithium, sodium, potassium, calcium, and magnesium. Examples include alloys and multilayer lamination. Among them, metals selected from aluminum, silver and magnesium are preferable as the main component in terms of electrical resistance, ease of film formation, film stability, and luminous efficiency. It is more preferable to be composed of magnesium and silver because electron injection is easy.
  • the material constituting the protective layer is not particularly limited, but for example, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium; alloys using these metals; silica, titania and Inorganic substances such as silicon nitride; organic polymer compounds such as polyvinyl alcohol, polyvinyl chloride, and hydrocarbon-based polymer compounds;
  • the organic EL element material represented by the general formula (1) can also be used as a capping material.
  • the capping material preferably has light transmittance in the visible light region.
  • the charge generation layer in the present invention generally consists of a double layer. Specifically, it is preferred to use a pn junction charge generation layer consisting of an n-type charge generation layer and a p-type charge generation layer.
  • the pn junction charge generation layer generates charges or separates the charges into holes and electrons when a voltage is applied in the organic EL element, and converts these holes and electrons into holes and electrons. It is injected into the light-emitting layer via the transport layer.
  • the charge-generating layer functions as an intermediate charge-generating layer between the plurality of light-emitting layers in an organic EL device in which a plurality of light-emitting layers are stacked.
  • the n-type charge-generating layer supplies electrons to the first light-emitting layer on the anode side
  • the p-type charge-generating layer supplies holes to the second light-emitting layer on the cathode side. Therefore, it is possible to further improve the luminous efficiency of the organic EL element in which a plurality of light-emitting layers are laminated, reduce the driving voltage, and further improve the durable life of the element.
  • the n-type charge generation layer consists of an n-type dopant material and a host material, and conventional materials can be used for these.
  • alkali metals, alkaline earth metals, or rare earth metals can be used as n-type dopant materials.
  • Preferred n-type dopant materials are lithium or ytterbium. A plurality of these metals may be used in combination. Alloys of alkali metals, alkaline earth metals or rare earth metals with other metals may also be used.
  • Metals that can be used as materials for the alloy include, but are not limited to, zinc, cadmium, and bismuth.
  • the host material compounds having nitrogen-containing aromatic heterocycles such as phenanthroline derivatives and oligopyridine derivatives can be used. Compounds with phosphine oxide groups can also be used.
  • the organic EL device material or the phenanthroline dimer represented by the general formula (1) is preferable because it exhibits excellent properties as a host for the n-type charge generation layer. A plurality of these may be used in combination.
  • the p-type charge generation layer comprises a p-type dopant material and a host material, and conventional materials can be used for these.
  • p-type dopant materials include tetrafluor-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), tetracyanoquinodimethane derivatives, radialene derivatives, iodine, FeCl 3 , FeF 3 , SbCl 5 and the like can be used.
  • a preferred p-type dopant material is a radialene derivative.
  • An arylamine derivative is preferred as the host material.
  • each layer constituting the organic EL element is not particularly limited, and may be resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, coating method, or the like. Resistance heating vapor deposition or electron beam vapor deposition is usually preferable from the viewpoint of device characteristics.
  • the total thickness of the organic layers interposed between the anode and the cathode cannot be limited because it depends on the resistance value of the light-emitting substance, but it is preferably 1 to 1000 nm.
  • the film thicknesses of the light-emitting layer, the electron-transporting layer, and the hole-transporting layer are each preferably 1 nm or more and 200 nm or less, more preferably 5 nm or more and 100 nm or less.
  • the organic EL element according to the embodiment of the present invention has the function of converting electrical energy into light.
  • direct current is mainly used as electric energy, but pulse current and alternating current can also be used.
  • the current value and voltage value it should be selected so that the maximum luminance can be obtained with the lowest possible energy.
  • the organic EL element according to the embodiment of the present invention is suitable for use as a display device such as a matrix and/or segment display.
  • the organic EL element according to the embodiment of the present invention is preferably used as a backlight for various devices.
  • Backlights are mainly used for the purpose of improving the visibility of display devices such as non-self-luminous displays, and are used in liquid crystal displays, clocks, audio devices, automobile panels, display boards, signs, and the like.
  • the organic EL device of the present invention is preferably used for liquid crystal displays, especially for backlights for personal computers, for which thinning is being considered, and it is possible to provide thinner and lighter backlights than conventional ones.
  • the organic EL element according to the embodiment of the present invention is also preferably used as various lighting devices.
  • the organic EL element according to the embodiment of the present invention can achieve both high luminous efficiency and high color purity, and furthermore, can be made thinner and lighter. , it is possible to realize a lighting device with a high degree of design.
  • the resulting compound 5 was purified by sublimation at about 360° C. under a pressure of 1 ⁇ 10 ⁇ 3 Pa using an oil diffusion pump.
  • the HPLC purity (area % at a measurement wavelength of 254 nm) of compound 5 before and after sublimation purification was both 99.9%.
  • the resulting compound 10 was purified by sublimation at about 360° C. under a pressure of 1 ⁇ 10 ⁇ 3 Pa using an oil diffusion pump.
  • the HPLC purity (area % at a measurement wavelength of 254 nm) of Compound 1 before and after sublimation purification was both 99.9%.
  • the devices obtained in Examples 1 to 12 and Comparative Examples 1 to 14 were each DC-driven at 10 mA/cm 2 and the initial driving voltage was measured. Further, the voltage was measured when DC driving was performed for 100 hours at a current density of 10 mA/cm 2 in an environment of temperature 70° C., and the amount of voltage increase from the initial driving voltage was calculated.
  • the organic EL devices obtained in Examples 13 to 24 and Comparative Examples 15 to 28 were lit at a luminance of 1000 cd/m 2 and the initial drive voltage was measured. Also, the voltage was measured when the device was driven at a constant current of 10 mA/cm 2 at room temperature for 100 hours. The amount of voltage increase was calculated after 100 hours from when the measurement was started.
  • Luminance The organic EL devices obtained in Examples 25 to 63 and Comparative Examples 29 to 70 were lit at 10 mA/cm 2 , luminance was measured, and luminous efficiency was evaluated. It can be evaluated that the higher the luminance, the better the luminous efficiency.
  • Example 1 A glass substrate (manufactured by Geomatec, 11 ⁇ / ⁇ , sputter product) on which an ITO transparent conductive film of 125 nm was deposited as an anode was cut into 38 mm ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned for 15 minutes using "Semico Clean” (registered trademark) 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.) and then cleaned with ultrapure water. This substrate was treated with UV-ozone for 1 hour immediately before manufacturing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus reached 5 ⁇ 10 ⁇ 4 Pa or less.
  • aluminum was vapor-deposited to a thickness of 60 nm to form a cathode, and a device of 5 mm ⁇ 5 mm square was produced.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value, and is common to other examples and comparative examples.
  • the initial drive voltage was 0.029 V
  • the voltage increase amount after driving at 70° C. for 100 hours was 0.001 V.
  • Examples 2-12, Comparative Examples 1-14 A device was fabricated in the same manner as in Example 1, except that the compound used and the vapor deposition rate ratio of the compound and the metal element were changed as shown in Table 1.
  • Table 1 shows the results of each example and comparative example.
  • Compounds 2 to 26 are compounds shown below.
  • Example 13 A glass substrate (manufactured by Geomatec, 11 ⁇ / ⁇ , sputtered product) on which an ITO transparent conductive film of 165 nm was deposited as an anode was cut into 38 mm ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned for 15 minutes using "Semico Clean" 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.) and then cleaned with ultrapure water. This substrate was treated with UV-ozone for 1 hour immediately before manufacturing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus reached 5 ⁇ 10 ⁇ 4 Pa or less.
  • "Semico Clean" 56 trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • HAT-CN 6 was vapor-deposited to a thickness of 5 nm as a hole injection layer, and then HT-1 was vapor-deposited to a thickness of 50 nm as a hole transport layer by resistance heating.
  • a mixed layer of host material H-1 and dopant material D-1 was deposited to a thickness of 20 nm with a doping concentration of 5% by weight.
  • aluminum was vapor-deposited to a thickness of 60 nm to form a cathode, and an organic EL element of 5 mm ⁇ 5 mm square was produced.
  • Examples 14-24, Comparative Examples 15-28 An organic EL device was produced in the same manner as in Example 13, except that the compound used and the vapor deposition rate ratio of the compound and the metal element were changed as shown in Table 2. Table 2 shows the results of each example and comparative example.
  • Example 25 A glass substrate (manufactured by Geomatec, 11 ⁇ / ⁇ , sputtered product) on which an ITO transparent conductive film of 165 nm was deposited as an anode was cut into 38 mm ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned for 15 minutes using "Semico Clean" 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.) and then cleaned with ultrapure water. This substrate was treated with UV-ozone for 1 hour immediately before manufacturing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus reached 5 ⁇ 10 ⁇ 4 Pa or less. First, HAT-CN 6 was vapor-deposited to 5 nm as a hole injection layer by a resistance heating method. Next, a light-emitting unit (first light-emitting unit) was formed on the hole-injection layer, comprising a hole-transporting layer, a light-emitting layer, and an electron-transporting layer.
  • first light-emitting unit
  • HT-1 was vapor-deposited to a thickness of 50 nm as a hole transport layer, and then a mixed layer of host material H-1 and dopant material D-1 was formed as a light-emitting layer with a doping concentration of 5% by weight. Then, as an electron transport layer, ET-1 and 2E-1 were deposited to a thickness of 35 nm so that the deposition rate ratio of ET-1 and 2E-1 was 1:1. vapor-deposited on.
  • 10 nm of HAT-CN 6 was vapor-deposited as a p-type charge generation layer.
  • a second light-emitting unit was formed in the same manner as the first light-emitting unit.
  • a 5 mm square organic EL device was produced.
  • the initial drive voltage was 8.21 V
  • the luminance was 1760 cd/m 2
  • the endurance life was 2620 hours.
  • Example 26-38 Comparative Examples 29-42 An organic EL device was produced in the same manner as in Example 25, except that the compound used and the vapor deposition rate ratio of the compound and the metal element were changed as shown in Table 3.
  • a mixed layer of host material H-1 and dopant material D-2 was vapor-deposited to a thickness of 20 nm as a light-emitting layer so that the doping concentration was 5% by weight.
  • Table 3 shows the results of each example and comparative example. D-2 and ET-2 are compounds shown below.
  • Example 39 Example 25 except that Compound 1 was used instead of ET-1 in forming the electron transport layer, and ET-2 was used instead of Compound 1 in forming the n-type charge generation layer. An organic EL device was produced in the same manner.
  • the initial drive voltage was 8.20 V
  • the luminance was 1790 cd/m 2
  • the endurance life was 2600 hours.
  • Examples 40-50, Comparative Examples 43-56 An organic EL device was produced in the same manner as in Example 39, except that the compound used and the vapor deposition rate ratio of the compound and the metal element were changed as shown in Table 4. Table 4 shows the results of each example and comparative example.
  • Examples 51-63, Comparative Examples 57-70 An organic EL device was produced in the same manner as in Example 25, except that the compounds used, the types of metal elements, and the vapor deposition rate ratio were changed as shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optics & Photonics (AREA)

Abstract

下記一般式(1)で表される有機EL素子用材料。 一般式(1)において、X1~X3のいずれか一つは窒素原子であり、それ以外はメチン基である。L1は置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基または置換もしくは無置換のアントリレン基であり、L2は単結合、置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基または置換もしくは無置換のアントリレン基である。ただし、これらの基が置換されている場合の置換基は、アルキル基またはアルコキシ基である。Aはフェニル基またはピリジル基であり、nは0または1である。発光効率および耐久寿命に優れた有機EL素子を提供する。

Description

有機EL素子用材料、有機EL素子、表示装置および照明装置
 本発明は、特定の構造を有する有機EL素子用材料と、それを用いた有機EL素子、表示装置および照明装置に関する。
 有機EL素子は、近年では、テレビやスマートフォンのディスプレイに採用されるなど、着実に実用化が進んでいる。しかし、既存の有機EL素子にはまだ技術的な課題も多い。中でも、高効率な発光を得ることと、有機EL素子の長寿命化との両立は、大きな課題となっている。
 これらの課題を解決する化合物として、これまでに、ターピリジン骨格を有し、特定のアリール基で置換されたフェナントロリン誘導体(例えば、特許文献1参照)、ピレン骨格を有するフェナントロリン誘導体(例えば、特許文献2参照)、ジベンゾフラン骨格を有するフェナントロリン誘導体(例えば、特許文献3~4参照)、特定のアリーレン基およびヘテロアリール基を有するフェナントロリン誘導体(例えば、特許文献5参照)などが開発されている。
国際公開第2016/121597号 韓国特許出願公開第10-2020-0064423号 特表2020-506892号公報 国際公開第2020/218648号 欧州特許出願公開第2983227号
 特許文献1~5によれば、ターピリジン骨格、ピレン骨格、ジベンゾフラン骨格や特定のアリール基、アリーレン基またはヘテロアリール基が連結したフェナントロリン誘導体により、発光効率を高め、低電圧駆動が可能で耐久性に優れた有機EL素子を得ることができる。しかしながら、近年有機EL素子に求められる発光効率と耐久性はますます高まっており、さらに高い発光効率と耐久寿命とを両立させる技術が求められている。
 本発明は、かかる従来技術の課題に鑑み、発光効率および耐久寿命に優れた有機EL素子を提供することを目的とするものである。
 本発明は、下記一般式(1)で表される有機EL素子用材料である。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、X~Xのいずれか一つは窒素原子であり、それ以外はメチン基である。Lは置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基または置換もしくは無置換のアントリレン基であり、Lは単結合、置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基または置換もしくは無置換のアントリレン基である。ただし、これらの基が置換されている場合の置換基は、アルキル基またはアルコキシ基である。Aはフェニル基またはピリジル基であり、nは0または1である。
 本発明により、発光効率および耐久寿命に優れた有機EL素子を提供することができる。
 以下、本発明に係る有機EL素子用材料、有機EL素子、表示装置および照明装置の好適な実施の形態を詳細に説明する。ただし、本発明は、以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。
 (一般式(1)で表される有機EL素子用材料)
 本発明の一つの実施形態である一般式(1)で表される有機EL素子用材料は、以下に示されるフェナントロリン誘導体からなり、有機EL素子を構成する層のうち、いずれかの層に使用される材料を表す。つまり、有機EL素子用材料とは、下記一般式(1)で表されるフェナントロリン誘導体の用途を意味する。
Figure JPOXMLDOC01-appb-C000004
 一般式(1)において、X~Xのいずれか一つは窒素原子であり、それ以外はメチン基である。Lは置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基または置換もしくは無置換のアントリレン基であり、Lは単結合、置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基または置換もしくは無置換のアントリレン基である。ただし、これらの基が置換されている場合の置換基は、アルキル基またはアルコキシ基である。Aはフェニル基またはピリジル基であり、nは0または1である。
 「置換もしくは無置換の」という場合における「無置換」とは、水素原子が結合していることを意味し、「置換」とは、水素原子の少なくとも一部が置換されていることを意味する。上記水素原子は重水素原子であってもよい。以下に説明する化合物またはその部分構造において、「置換もしくは無置換の」という場合においても上記と同様である。
 アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、通常1以上20以下、より好ましくは1以上8以下の範囲である。
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基などの、アルキル基が酸素に結合した基を示し、これは置換基を有していても有していなくてもよい。アルコキシ基の炭素数は特に限定されないが、入手の容易性やコストの点から、通常1以上20以下、より好ましくは1以上8以下の範囲である。
 従来の含窒素芳香族複素環および多環芳香族炭化水素を含む化合物として、例えば、特許文献1~5には下記式で表される化合物V、W、X、Y、Zが示されている。
Figure JPOXMLDOC01-appb-C000005
 しかしながら、これらの化合物を有機EL素子用材料として電子注入層、電子輸送層または電荷発生層に使用した素子であっても、近年求められる特性に対してはいまだ十分な性能が得られておらず、発光効率および耐久寿命の面で更なる性能向上が可能となる化合物の創出が求められている。
 例えば、化合物Vのようなフェナントロリニル基にピレニル基を置換した化合物は、配位性の高いフェナントロリニル基上の窒素原子の近傍に嵩高い置換基を有するため、フェナントロリニル基の金属原子への配位性を低下させやすい傾向にある。そのため、化合物Vを金属原子と同時に用いた場合の膜安定性が低下し、駆動電圧が高くなり、発光効率および耐久寿命が低下する課題があった。化合物WやYのような、ターピリジル基とフェナントロリニル基との連結基上に嵩高い芳香族性置換基を有する化合物は、その嵩高さにより分子相互作用向上の効果が小さくなるため、駆動電圧が高く、発光効率および耐久寿命になお課題があった。化合物Xのような、ターピリジル基とフェナントロリニル基とをジベンゾフラニレン基により連結した化合物は、フェナントロリニル基と連結基の平面性の高さにより結晶性が高くなりすぎるため、駆動電圧が高くなり、発光効率および耐久寿命に課題があった。化合物Zのような、ターピリジル基とフェナントロリニル基とを3つのアリーレン基により連結する化合物も同様に、その平面性の高さにより結晶性が高くなりすぎるため、駆動電圧が高くなり、発光効率および耐久寿命に課題があった。
 本発明者らは、有機EL素子用材料の改良の検討において、フェナントロリニル基、ターピリジル基およびそれらの連結基の効果に着目した。フェナントロリニル基およびターピリジル基はいずれも大きな電子輸送性を有し、金属原子への配位性の高い置換基である。
 一般式(1)で表される有機EL素子用材料は、Lとしてフェニレン基、ナフチレン基またはアントリレン基を選択し、Lとして単結合、フェニレン基、ナフチレン基またはアントリレン基を選択することによって、フェナントロリニル基、ターピリジル基およびそれらの連結基を共役しやすくして、化合物全体としての電荷輸送性をより大きくすることができる。このため、有機EL素子に用いた場合の駆動電圧を小さくし、発光効率を向上させることができる。また、金属原子への配位性を高めることができるため、前記一般式(1)で表される有機EL素子用材料を有機EL素子における金属ドーピング層に用いた場合、安定な層を形成することができる。ここで、金属ドーピング層とは、有機EL素子を構成するいずれかの層に金属をドープした層のことを言う。特に、前記一般式(1)で表される有機EL素子用材料を電子輸送層、電子注入層または電荷発生層に用いる場合、それらの層はより安定で優れた性能を示す。
 一般式(1)において、Lは置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基または置換もしくは無置換のアントリレン基であり、Lは単結合、置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基または置換もしくは無置換のアントリレン基である。Lが置換されている場合の置換基は、アルキル基またはアルコキシ基である。これらの置換基は化合物の電荷輸送性を低下させることなく、化合物の安定性を向上させることができるため好ましい。膜質安定性を高め、発光効率および耐久寿命をより向上させる観点から、LまたはLがナフチレン基であることが好ましい。また、Lが単結合である場合、フェナントロリニル基およびターピリジル基の相互作用をより大きくすることができ、発光効率および耐久寿命をより向上させることができる。
 一般式(1)において、X~Xのいずれか一つは窒素原子であり、それ以外はメチン基である。金属原子への配位性を高め、より安定な層を形成するという観点から、Xが窒素原子であることが好ましい。より安定な層を形成することにより、低電圧で駆動し、耐久寿命をより向上させることができる。
 一般式(1)において、nが1である場合、Aはフェニル基またはピリジル基である。nが1である場合、フェナントロリンの置換位置のうち反応性の高い2位と9位が置換されるため、化合物の安定性を向上させることができる。さらに、Aとしてフェニル基またはピリジル基を選択することにより、フェナントロリニル基上の窒素原子の高い配位性により、金属ドーピング層に用いた場合、金属配位性がより高く、より安定な層を形成することができる。このため、駆動電圧をより低減し、耐久寿命を向上させることができる。素子の安定性や耐久寿命をより高める観点から、Aとしてはフェニル基が好ましい。
 一般式(1)において、nが0である場合、フェナントロリンの9位は水素である。nが0である場合、フェナントロリンが立体的にすいているため、金属ドーピング層に用いた場合、金属配位性がより高く、より安定な層を形成することができる。
 一般式(1)で表される有機EL素子用材料の分子量は、結晶化を抑制して膜質の安定性を向上させる観点から、400以上であることが好ましい。一方、昇華精製や蒸着時の加工性を向上させる観点から、一般式(1)で表される有機EL素子用材料の分子量は、640以下であることが好ましい。
 上記一般式(1)で表される有機EL素子用材料としては、例えば、以下に示す化合物からなる化合物などが挙げられる。なお、以下は例示であり、ここに明記された化合物以外であっても一般式(1)で表されるものであれば同様に好ましく用いられる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 一般式(1)で表される有機EL素子用材料は、公知の合成法により合成することができる。合成法としては、例えば、パラジウムを用いたハロゲン化アリール誘導体とアリールボロン酸誘導体とのカップリング反応が挙げられるが、これに限定されるものではない。
 有機EL素子用材料とは、有機EL素子を構成する層のうち、いずれかの層に使用される材料を表す。一般式(1)で表される有機EL素子用材料が使用される層としては、後述するように、正孔注入層、正孔輸送層、発光層、電子輸送層、電極の保護膜(キャップ層)などが上げられる。本発明における一般式(1)で表される材料を、有機EL素子のいずれかの層に使用することにより、発光効率および耐久寿命に優れた有機EL素子を提供することができる。
 (有機EL素子)
 次に、有機EL素子の実施の形態について詳細に説明する。有機EL素子は、陽極と陰極、およびそれら陽極と陰極との間に介在する有機層を有し、該有機層が電気エネルギーにより発光する。
 このような有機EL素子における陽極と陰極の間の層構成は、発光層のみからなる構成の他に、1)発光層/電子輸送層、2)正孔輸送層/発光層、3)正孔輸送層/発光層/電子輸送層、4)正孔注入層/正孔輸送層/発光層/電子輸送層、5)正孔輸送層/発光層/電子輸送層/電子注入層、6)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層、7)正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層といった積層構成が挙げられる。
 さらに、上記の積層構成を、中間層を介して複数積層したタンデム型であってもよい。中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、公知の材料構成を用いることができる。タンデム型の具体例は、例えば8)正孔輸送層/発光層/電子輸送層/電荷発生層/正孔輸送層/発光層/電子輸送層、9)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/電荷発生層/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層といった、陽極と陰極の間に中間層として電荷発生層を含む積層構成が挙げられる。
 また、上記各層は、それぞれ単一層、複数層のいずれでもよく、ドーピングされていてもよい。特に、上記電子注入層および電荷発生層は、金属をドープした金属ドーピング層とすると、電子輸送能力や隣接する他層への電子注入能力を向上させることができるので好ましい。また、上記各層に加えて、保護層(キャップ層)をさらに有すると、光学干渉効果により発光効率をより向上させることができるので好ましい。
 一般式(1)で表される有機EL素子用材料は、有機EL素子において上記のいずれの層に用いられてもよいが、電子輸送層、電荷発生層または電子注入層に特に好適に用いられる。本発明の有機EL素子の構成としては、陽極と陰極との間に少なくとも電子輸送層と発光層とを有し、該電子輸送層に一般式(1)で表される有機EL素子用材料を含有する構成、陽極と陰極との間に少なくとも電荷発生層と発光層とを有し、該電荷発生層に一般式(1)で表される有機EL素子用材料を含有する構成、または、陽極と陰極との間に少なくとも電子注入層と発光層とを有し、該電子注入層に一般式(1)で表される有機EL素子用材料を含有する構成が好ましい。これらの層のうち、2層以上に一般式(1)で表される有機EL素子用材料を含有してもよい。
 本発明の実施の形態に係る有機EL素子において、陽極と陰極は素子の発光のために十分な電流を供給するための役割を有するものであり、光を取り出すために少なくとも一方は透明または半透明であることが望ましい。通常、基板上に形成される陽極を透明電極とする。
 (基板)
 有機EL素子の機械的強度を保つために、有機EL素子を基板上に形成することが好ましい。基板としては、ソーダガラスや無アルカリガラスなどのガラス基板や、プラスチック基板などが挙げられる。ガラス基板を用いる場合、厚みは、機械的強度を保つために十分な厚みがあればよく、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ないことが好ましく、無アルカリガラスが好ましい。また、SiOなどのバリアコートを施したソーダライムガラスも市販されており、これを使用することもできる。
 (陽極)
 基板上に陽極が形成される。陽極に用いる材料は、正孔を有機層に効率よく注入できる材料が好ましい。また、光を取り出すために、透明または半透明であることが好ましい。陽極に用いる材料としては、例えば、酸化亜鉛、酸化錫、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物;金、銀、クロムなどの金属;ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどが挙げられる。これらの中でも、ITOガラスやネサガラスが好ましい。これらの電極材料は、単独で用いてもよいし、複数の材料を積層または混合して用いてもよい。陽極を形成した基板の電気抵抗は、素子の発光に十分な電流が供給できる範囲であればよいが、素子の消費電力の観点からは、低抵抗であることが好ましい。例えば、電気抵抗が300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、20Ω/□以下の低抵抗の基板を使用することが好ましい。陽極の厚みは抵抗値に合わせて任意に選ぶことができ、通常45~300nmの間で用いられることが多い。
 (正孔注入層)
 正孔注入層は、陽極と正孔輸送層の間に挿入される層である。正孔注入層は1層であっても複数の層が積層されていてもよい。正孔輸送層と陽極の間に正孔注入層が存在すると、より低電圧駆動し、耐久寿命も向上するだけでなく、さらに素子のキャリアバランスが向上して発光効率も向上するため好ましい。
 正孔注入層に用いられる材料としては、特に限定されないが、例えば、4,4’-ビス(N-(3-メチルフェニル)-N-フェニルアミノ)ビフェニル(TPD)、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル(NPD)、4,4’-ビス(N,N-ビス(4-ビフェニリル)アミノ)ビフェニル(TBDB),ビス(N,N’-ジフェニル-4-アミノフェニル)-N,N-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル(TPD232)などのベンジジン誘導体;4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス(1-ナフチル(フェニル)アミノ)トリフェニルアミン(1-TNATA)などのスターバーストアリールアミンと呼ばれる材料群;トリアリールアミン誘導体;ビス(N-アリールカルバゾール)、ビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体;ピラゾリン誘導体;スチルベン系化合物;ヒドラゾン系化合物;ベンゾフラン誘導体、チオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物;前記単量体を側鎖に有するポリカーボネートやスチレン誘導体;ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾール、ポリシランなどのポリマー系材料などが挙げられる。陽極から正孔輸送層へ円滑に正孔を注入輸送する観点から、ベンジジン誘導体またはスターバーストアリールアミン系材料群がより好ましく用いられる。
 これらの材料は単独で用いてもよいし、2種以上の材料を混合して用いてもよい。また、複数の材料を積層して正孔注入層としてもよい。さらにこの正孔注入層が、アクセプター性化合物単独で構成されているか、または上記のような正孔注入材料にアクセプター性化合物をドープして用いると、上述した効果がより顕著に得られるのでより好ましい。アクセプター性化合物とは、単層膜として用いる場合は接している正孔輸送層と、ドープして用いる場合は正孔注入層を構成する材料と電荷移動錯体を形成する材料である。このような材料を用いると、正孔注入層の導電性が向上し、より素子の駆動電圧低下に寄与し、発光効率や耐久寿命をより向上させることができる。
 アクセプター性化合物としては、例えば、塩化鉄(III)、塩化アルミニウム、塩化ガリウム、塩化インジウム、塩化アンチモンなどの金属塩化物;酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ルテニウムなどの金属酸化物;トリス(4-ブロモフェニル)アミニウムヘキサクロロアンチモネート(TBPAH)などの電荷移動錯体;分子内にニトロ基、シアノ基、ハロゲンまたはトリフルオロメチル基を有する有機化合物;キノン系化合物;酸無水物系化合物;フラーレンなどが挙げられる。これらの中でも、金属酸化物やシアノ基含有化合物が取り扱いやすく、蒸着もしやすいことから、容易に上述した効果が得られるので好ましい。正孔注入層がアクセプター性化合物単独で構成される場合、または正孔注入層にアクセプター性化合物がドープされている場合のいずれの場合も、正孔注入層は1層であってもよいし、複数の層が積層されて構成されていてもよい。
 (正孔輸送層)
 正孔輸送層は、陽極から注入された正孔を発光層まで輸送する層である。正孔輸送層は単層であっても複数の層が積層されて構成されていてもよい。
 正孔輸送層に用いられる材料としては、正孔注入層に用いられる材料として例示したものが挙げられる。発光層へ円滑に正孔を注入輸送する観点から、トリアリールアミン誘導体またはベンジジン誘導体がより好ましい。
 (発光層)
 発光層は、単一層および複数層のいずれでもよい。発光層は、発光材料により形成され、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、2種類のホスト材料と1種類のドーパント材料との混合物であっても、いずれでもよい。すなわち、本発明の実施の形態における有機EL素子は、各発光層において、ホスト材料もしくはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。電気エネルギーを効率よく利用し、高色純度の発光を得るという観点からは、発光層はホスト材料とドーパント材料の混合物からなることが好ましい。また、ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。発光層がホスト材料とドーパント材料の混合物からなる場合、ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれでもよい。ドーパント材料は積層されていても、分散されていても、いずれでもよい。ドーパント材料は発光色の制御ができる。ドーパント材料の量は、濃度消光現象を抑制する観点から、ホスト材料とドーパント材料の合計を100重量%として30重量%以下が好ましく、さらに好ましくは20重量%以下である。ドーピング方法は、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
 発光材料としては、発光体として知られているアントラセンやピレンなどの縮合環誘導体、トリス(8-キノリノラート)アルミニウムなどの金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体や、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリチオフェン誘導体などのポリマーなどが挙げられる。
 発光材料に含有されるホスト材料は、化合物一種のみに限る必要はなく、複数の化合物を混合、もしくは積層して用いてもよい。ホスト材料としては、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体、トリス(8-キノリナート)アルミニウム(III)などの金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体や;ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体などのポリマーなどが挙げられる。中でも、発光層が三重項発光(りん光発光)を行う際に用いられるホストとしては、金属キレート化オキシノイド化合物、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、トリフェニレン誘導体などが好適に用いられる。
 発光材料に含有されるドーパント材料としては、例えば、ナフタレン、アントラセン、フェナンスレン、ピレン、フルオランテン、トリフェニレン、ペリレン、フルオレン、インデンなどのアリール環を有する化合物やその誘導体(例えば2-(ベンゾチアゾール-2-イル)-9,10-ジフェニルアントラセンや5,6,11,12-テトラフェニルナフタセンなど);フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどのヘテロアリール環を有する化合物やその誘導体;ジスチリルベンゼン誘導体;4,4’-ビス(2-(4-ジフェニルアミノフェニル)エテニル)ビフェニル、4,4’-ビス(N-(スチルベン-4-イル)-N-フェニルアミノ)スチルベンなどのアミノスチリル誘導体;芳香族アセチレン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロロ[3,4-c]ピロール誘導体;2,3,5,6-1H,4H-テトラヒドロ-9-(2’-ベンゾチアゾリル)キノリジノ[9,9a,1-gh]クマリンなどのクマリン誘導体;イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体、その金属錯体;N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体;下記一般式(2)で表される化合物などが挙げられる。これらの中でも、ジアミン骨格を含むドーパントや、フルオランテン骨格を含むドーパントは、発光効率をより向上させることができ、下記一般式(2)で表される化合物は、発光効率や耐久寿命をより向上させることができる。
Figure JPOXMLDOC01-appb-C000023
 一般式(2)において、Za環、Zb環およびZc環は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール環または置換もしくは無置換の環形成原子数5~30のヘテロアリール環である。Za環、Zb環およびZc環は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール環であることが好ましい。ZおよびZは、それぞれ独立に、酸素原子、NRa(置換基Raを有する窒素原子)または硫黄原子であり、ZがNRaである場合、RaはZa環もしくはZb環と結合して環を形成しても、形成してなくてもよく、ZがNRaである場合、RaはZb環もしくはZc環と結合して環を形成しても、形成してなくてもよい。Raは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基または置換もしくは無置換の炭素数1~30のアルキル基である。ZおよびZはいずれもNRaであり、Raは置換もしくは無置換の環形成炭素数6~30のアリール基であることが好ましい。Yは、ホウ素原子、リン原子、SiRb(置換基Rbを有するケイ素原子)、P=OまたはP=Sである。Rbは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基または置換もしくは無置換の炭素数1~30のアルキル基である。Yはホウ素原子であることが好ましい。上記の全ての基において、置換される場合における置換基としては、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、ヘテロアリール基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、ハロゲン、シアノ基、アルデヒド基、アシル基、カルボキシル基、エステル基、アミド基、アシル基、スルホニル基、スルホン酸エステル基、スルホンアミド基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、オキソ基が好ましい。また、これらの置換基は、さらに上述の置換基により置換されていてもよい。
 アルキル基およびアルコキシ基としては、一般式(1)における置換基として例示したものが挙げられる。
 シクロアルキル基とは、例えば、シクロプロピル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。環形成炭素数は特に限定されないが、好ましくは、3以上20以下の範囲である。
 複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換基を有していても有していなくてもよい。環形成原子数は特に限定されないが、好ましくは、3以上20以下の範囲である。
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。
 アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。
 アリール基とは、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フェナントリル基、アントラセニル基、ベンゾフェナントリル基、ベンゾアントラセニル基、クリセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基、ベンゾフルオランテニル基、ジベンゾアントラセニル基、ペリレニル基、ヘリセニル基などの芳香族炭化水素基を示す。中でも、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基が好ましい。アリール基は、置換基を有していても有していなくてもよい。アリール基の炭素数は特に限定されないが、好ましくは6以上40以下、より好ましくは6以上30以下の範囲である。
 また、置換のフェニル基においては、そのフェニル基中の隣接する2つの炭素原子上に各々置換基がある場合、それらの置換基同士で環構造を形成していてもよい。その結果としてできた基は、その構造に応じて、「置換のフェニル基」、「二以上の環が縮環した構造を有するアリール基」、「二以上の環が縮環した構造を有するヘテロアリール基」のいずれか1つ以上に該当しうる。
 ヘテロアリール基とは、例えば、ピリジル基、フラニル基、チオフェニル基、キノリニル基、イソキノリニル基、ピラジニル基、ピリミジル基、ピリダジニル基、トリアジニル基、ナフチリジニル基、シンノリニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ベンゾカルバゾリル基、カルボリニル基、インドロカルバゾリル基、ベンゾフロカルバゾリル基、ベンゾチエノカルバゾリル基、ジヒドロインデノカルバゾリル基、ベンゾキノリニル基、アクリジニル基、ジベンゾアクリジニル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基などの、炭素以外の原子を一個または複数個環内に有する環状芳香族基を示す。ただし、ナフチリジニル基とは、1,5-ナフチリジニル基、1,6-ナフチリジニル基、1,7-ナフチリジニル基、1,8-ナフチリジニル基、2,6-ナフチリジニル基、2,7-ナフチリジニル基のいずれかを示す。ヘテロアリール基は置換基を有していても有していなくてもよい。ヘテロアリール基の環形成原子数は特に限定されないが、好ましくは、3以上40以下、より好ましくは3以上30以下の範囲である。
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基は置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。
 アリールエーテル基とは、例えば、フェノキシ基など、エーテル結合を介して芳香族炭化水素基が結合した官能基を示し、置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。
 アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換された官能基を指し、置換基を有していても有していなくてもよい。アリールチオエーテル基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。
 ハロゲンとは、フッ素、塩素、臭素またはヨウ素を示す。
 アシル基とは、例えばアセチル基、プロピオニル基、ベンゾイル基、アクリリル基など、カルボニル基を介してアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基が結合した官能基を示し、置換基を有していても有していなくてもよい。アシル基の炭素数は特に限定されないが、好ましくは、2以上40以下、より好ましくは2以上30以下である。
 エステル基とは、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基などがエステル結合を介して結合した官能基を示し、置換基を有していても有していなくてもよい。エステル基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。より具体的には、メトキシカルボニル基などのメチルエステル基、エトキシカルボニル基などのエチルエステル基、プロポキシカルボニル基などのプロピルエステル基、ブトキシカルボニル基などのブチルエステル基、イソプロポキシメトキシカルボニル基などのイソプロピルエステル基、ヘキシロキシカルボニル基などのヘキシルエステル基、フェノキシカルボニル基などのフェニルエステル基などが挙げられる。
 アミド基とは、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基などがアミド結合を介して結合した官能基を示し、置換基を有していても有していなくてもよい。アミド基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。より具体的には、メチルアミド基、エチルアミド基、プロピルアミド基、ブチルアミド基、イソプロピルアミド基、ヘキシルアミド基、フェニルアミド基などが挙げられる。
 スルホニル基とは、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが-S(=O)-結合を介して結合した官能基を示し、置換基を有していても有していなくてもよい。スルホニル基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。
 スルホン酸エステル基とは、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基などがスルホン酸エステル結合を介して結合した官能基を示し、置換基を有していても有していなくてもよい。ここでスルホン酸エステル結合とは、エステル結合のカルボニル部、すなわち-C(=O)-がスルホニル部、すなわち-S(=O)-に置換されたものを指す。スルホン酸エステル基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。
 スルホンアミド基とは、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基などがスルホンアミド結合を介して結合した官能基を示し、置換基を有していても有していなくてもよい。ここでスルホンアミド結合とは、アミド結合のカルボニル部、すなわち-C(=O)-がスルホニル部、すなわち-S(=O)-に置換されたものを指す。スルホンアミド基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。
 アミノ基は、置換基を有していても有していなくてもよい。アミノ基の炭素数は特に限定されないが、好ましくは、2以上50以下、より好ましくは6以上40以下、特に好ましくは6以上30以下の範囲である。
 シリル基とは、置換もしくは無置換のケイ素原子が結合した官能基を示し、例えば、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、プロピルジメチルシリル基、ビニルジメチルシリル基などのアルキルシリル基や、フェニルジメチルシリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、トリナフチルシリル基などのアリールシリル基を示す。シリル基は、置換基を有していても有していなくてもよい。シリル基の炭素数は特に限定されないが、好ましくは、1以上30以下の範囲である。
 シロキサニル基とは、例えばトリメチルシロキサニル基などのエーテル結合を介したケイ素化合物基を示す。シロキサニル基は、置換基を有していても有していなくてもよい。
 ボリル基は、置換基を有していても有していなくてもよい。
 一般式(2)で表される化合物としては、例えば、以下のような例が挙げられる。
Figure JPOXMLDOC01-appb-C000024
 本発明の実施の形態に係る有機EL素子は、発光層が三重項発光材料を含有することも好ましい。
 発光層が三重項発光(りん光発光)を行う際に用いられるドーパントとしては、イリジウム(Ir)、ルテニウム(Ru)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)、およびレニウム(Re)からなる群から選択される少なくとも一つの金属を含む金属錯体化合物が好ましい。金属錯体化合物を構成する配位子は、フェニルピリジン骨格またはフェニルキノリン骨格またはカルベン骨格などの含窒素芳香族複素環を有することが好ましい。しかしながら、これらに限定されるものではなく、要求される発光色、素子性能、ホスト化合物との関係から適切な錯体が選ばれる。具体的には、トリス(2-フェニルピリジル)イリジウム錯体、トリス{2-(2-チオフェニル)ピリジル}イリジウム錯体、トリス{2-(2-ベンゾチオフェニル)ピリジル}イリジウム錯体、トリス(2-フェニルベンゾチアゾール)イリジウム錯体、トリス(2-フェニルベンゾオキサゾール)イリジウム錯体、トリスベンゾキノリンイリジウム錯体、ビス(2-フェニルピリジル)(アセチルアセトナート)イリジウム錯体、ビス{2-(2-チオフェニル)ピリジル}イリジウム錯体、ビス{2-(2-ベンゾチオフェニル)ピリジル}(アセチルアセトナート)イリジウム錯体、ビス(2-フェニルベンゾチアゾール)(アセチルアセトナート)イリジウム錯体、ビス(2-フェニルベンゾオキサゾール)(アセチルアセトナート)イリジウム錯体、ビスベンゾキノリン(アセチルアセトナート)イリジウム錯体、ビス{2-(2,4-ジフルオロフェニル)ピリジル}(アセチルアセトナート)イリジウム錯体、テトラエチルポルフィリン白金錯体、{トリス(セノイルトリフルオロアセトン)モノ(1,10-フェナントロリン)}ユーロピウム錯体、{トリス(セノイルトリフルオロアセトン)モノ(4,7-ジフェニル-1,10-フェナントロリン)}ユーロピウム錯体、{トリス(1,3-ジフェニル-1,3-プロパンジオン)モノ(1,10-フェナントロリン)}ユーロピウム錯体、トリスアセチルアセトンテルビウム錯体などが挙げられる。また、特開2009-130141号に記載されているリン光ドーパントも好適に用いられる。イリジウム錯体または白金錯体が好ましく、発光効率をより向上させることができる。
 ドーパント材料として用いられる上記三重項発光材料は、発光層中に各々一種類のみが含まれていてもよいし、二種以上を混合して用いてもよい。三重項発光材料を二種以上用いる際には、ドーパント材料の総重量がホスト材料とドーパント材料の合計を100重量%として30重量%以下であることが好ましく、さらに好ましくは20重量%以下である。
 三重項発光系における好ましいホスト材料およびドーパント材料としては、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 また、発光層が熱活性化遅延蛍光材料を含有することも好ましい。熱活性化遅延蛍光については、「最先端の有機EL」(安達千波矢、藤本弘編、シーエムシー出版発行)の87~103ページで解説されている。その文献の中で、蛍光発光材料の励起一重項状態と励起三重項状態のエネルギーレベルを近接させることにより、通常は遷移確率が低い励起三重項状態から励起一重項状態への逆エネルギー移動が高効率で生じ、熱活性化遅延蛍光(Thermally Activated delayed Fluorescence, TADF)が発現すると説明されている。さらに、当該文献中の図5で、遅延蛍光の発生メカニズムが説明されている。遅延蛍光の発光は過渡PL(Photo Luminescence)測定により確認できる。
 熱活性化遅延蛍光材料は、一般的に、TADF材料とも呼ばれる。熱活性化遅延蛍光材料は、単一の材料で熱活性化遅延蛍光を示す材料であってもよいし、複数の材料で熱活性化遅延蛍光を示す材料であってもよい。材料が複数からなる場合は、混合物として用いてもよいし、各材料からなる層を積層して用いてもよい。熱活性化遅延蛍光材料としては、公知の材料を用いることができる。例えば、ベンゾニトリル誘導体、トリアジン誘導体、ジスルホキシド誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ジヒドロフェナジン誘導体、チアゾール誘導体、オキサジアゾール誘導体などが挙げられるが、これらに限定されるものではない。
 TADF材料が発光層に含まれる素子には、さらに発光層に蛍光ドーパントが含まれていることが好ましい。TADF材料により三重項励起子が一重項励起子に変換され、その一重項励起子を蛍光ドーパントが受け取ることにより、より高い発光効率やより長い耐久寿命を達成できるためである。
 (電子輸送層)
 本発明において、電子輸送層とは、陰極から電子が注入され、さらに電子を輸送する層である。電子輸送層には、電子注入効率が高く、注入された電子を効率良く輸送することが望まれる。そのため、電子輸送層を構成する材料は、電子親和力が大きく、電子移動度が大きく、安定性に優れ、製造時および使用時に、トラップとなる不純物が発生しにくい物質であることが好ましい。特に膜厚を厚く積層する場合には、低分子量の化合物は結晶化するなどして膜質が劣化しやすいため、安定な膜質を保つため、分子量400以上の化合物が好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、電子輸送層が陽極からの正孔が再結合せずに陰極側へ流れることを効率よく阻止できる役割を主に果たすならば、電子輸送能力がそれ程高くない材料で構成されていても、発光効率を向上させる効果は電子輸送能力が高い材料で構成されている場合と同等となる。したがって、本発明における電子輸送層には、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。正孔阻止層および電子輸送層は単独でも複数の材料が積層されて構成されていてもよい。
 電子輸送層に用いられる電子輸送材料としては、例えば、ナフタレン、アントラセンなどの縮合多環芳香族誘導体;4,4’-ビス(ジフェニルエテニル)ビフェニルなどのスチリル系芳香環誘導体;アントラキノンやジフェノキノンなどのキノン誘導体;リンオキサイド誘導体;トリス(8-キノリノラート)アルミニウム(III)などのキノリノール錯体、ベンゾキノリノール錯体、ヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体などの各種金属錯体が挙げられる。駆動電圧をより低減し、より高効率の発光が得られることから、炭素、水素、窒素、酸素、ケイ素、リンの中から選ばれる元素で構成され、電子受容性窒素を含むヘテロアリール環構造を有する化合物を用いることが好ましい。
 ここで言う電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電子陰性度を有することから、該多重結合は電子受容的な性質を有する。それゆえ、電子受容性窒素を含む芳香族複素環は、高い電子親和性を有する。電子受容性窒素を有する電子輸送材料は、高い電子親和力を有する陰極からの電子を受け取りやすくし、より低電圧での駆動が可能となる。また、発光層への電子の供給が多くなり、再結合確率が高くなるため、発光効率がより向上する。
 電子受容性窒素を含むヘテロアリール環としては、例えば、トリアジン環、ピリジン環、ピラジン環、ピリミジン環、キノリン環、キノキサリン環、キナゾリン環、ナフチリジン環、ピリミドピリミジン環、ベンゾキノリン環、フェナントロリン環、イミダゾール環、オキサゾール環、オキサジアゾール環、トリアゾール環、チアゾール環、チアジアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンズイミダゾール環、フェナンスロイミダゾール環などが挙げられる。
 これらのヘテロアリール環構造を有する化合物としては、例えば、ピリジン誘導体、トリアジン誘導体、キナゾリン誘導体、ピリミジン誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体、キノキサリン誘導体およびナフチリジン誘導体などが挙げられる。中でも、トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼンなどのイミダゾール誘導体、1,3-ビス[(4-tert-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなどのオキサジアゾール誘導体、N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなどのトリアゾール誘導体、バソクプロインや1,3-ビス(1,10-フェナントロリン-9-イル)ベンゼンなどのフェナントロリン誘導体、2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなどのベンゾキノリン誘導体、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロールなどのビピリジン誘導体、1,3-ビス(4’-(2,2’:6’2”-ターピリジニル))ベンゼンなどのターピリジン誘導体、ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなどのナフチリジン誘導体が、電子輸送能の観点から好ましく用いられる。
 また、これらの誘導体が、縮合多環芳香族骨格を有していると、ガラス転移温度が向上すると共に、電子移動度も大きくなり、有機EL素子の駆動電圧をより低減することができるため好ましい。さらに、素子の耐久寿命がより向上し、合成のし易さ、原料入手が容易であることを考慮すると、縮合多環芳香族骨格はフルオランテン骨格、アントラセン骨格、ピレン骨格またはフェナントロリン骨格であることがより好ましい。
 好ましい電子輸送材料としては、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure JPOXMLDOC01-appb-C000027
 また前記一般式(1)で表される有機EL素子用材料も、高い電子輸送性を有し、電子輸送層として優れた性質を示すため好ましい。
 上記電子輸送材料は単独で用いてよいし、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いたりしても構わない。また、ドナー性化合物を含有してもよい。ここで、ドナー性化合物とは、電子輸送層に用いた場合、電子注入障壁の改善により、陰極または電子注入層からの電子輸送層への電子注入を容易にし、さらに電子輸送層の電気伝導性を向上させる化合物である。
 ドナー性化合物の好ましい例としては、アルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩またはアルカリ土類金属と有機物との錯体、希土類金属などが挙げられる。アルカリ金属、アルカリ土類金属および希土類金属の好ましい例としては、低仕事関数で電子輸送能向上の効果が大きいリチウム、ナトリウム、カリウム、ルビジウム、セシウムなどのアルカリ金属や、マグネシウム、カルシウム、セリウム、バリウムなどのアルカリ土類金属や、サマリウム、ユーロピウム、イッテルビウムなどの希土類金属が挙げられる。アルカリ金属またはアルカリ土類金属の好ましい例としては、駆動電圧をより低減することができるという観点では、リチウムまたはセシウムが挙げられる。またこれらの金属を複数用いてもよく、これらの金属からなる合金を用いてもよい。
 また、これらの金属は、真空中での蒸着が容易で取り扱いに優れることから、金属単体よりも無機塩、あるいは有機物との錯体の状態であることが好ましい。さらに、大気中における取扱を容易にし、添加濃度を調整しやすくできる点で、有機物との錯体の状態にあることがより好ましい。無機塩の例としては、LiO、LiO等の酸化物;窒化物;LiF、NaF、KF等のフッ化物;LiCO、NaCO、KCO、RbCO、CsCO等の炭酸塩などが挙げられる。また、有機物との錯体における有機物の好ましい例としては、キノリノール、ベンゾキノリノール、ピリジルフェノール、フラボノール、ヒドロキシイミダゾピリジン、ヒドロキシベンズアゾール、ヒドロキシトリアゾールなどが挙げられる。中でも、有機EL素子の駆動電圧をより低減することができる観点では、アルカリ金属と有機物との錯体であるアルカリ金属錯体化合物が好ましい。さらに、合成のしやすさ、熱安定性という観点から、リチウムと有機物との錯体がより好ましく、比較的安価で入手できるリチウムキノリノール(Liq)が特に好ましい。
 電子輸送層のイオン化ポテンシャルは、特に限定されないが、好ましくは5.6eV以上8.0eV以下であり、より好ましくは5.6eV以上7.0eV以下である。
 (電子注入層)
 本発明において、陰極と電子輸送層の間に電子注入層を設けてもよい。一般的に電子注入層は陰極から電子輸送層への電子の注入を助ける目的で挿入される。挿入する場合は、電子受容性窒素を含むヘテロアリール環構造を有する化合物を用いてもよいし、上記のドナー性材料を含有する層を用いてもよい。
 また、電子注入層に絶縁体や半導体の無機物を用いることもできる。これらの材料を用いることにより、有機EL素子の短絡を抑制して、かつ電子注入性を向上させることができる。
 このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物が好ましい。
 具体的に、好ましいアルカリ金属カルコゲナイドとしては、例えば、LiO、NaSおよびNaSeが挙げられる。また、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、CaO、BaO、SrO、BeO、BaSおよびCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KClおよびNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgFおよびBeF等のフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
 さらに、有機物と金属の錯体も好適に用いられる。電子注入層に有機物と金属の錯体を用いる場合、膜厚を容易に調整することができる。有機金属錯体における有機物の好ましい例としては、キノリノール、ベンゾキノリノール、ピリジルフェノール、フラボノール、ヒドロキシイミダゾピリジン、ヒドロキシベンズアゾール、ヒドロキシトリアゾールなどが挙げられる。
 また前記一般式(1)で表される有機EL素子用材料を含む層も高い電子注入性を有し、電子注入層として優れた性質を示すため好ましい。さらに、電子注入層としてとして一般式(1)で表される有機EL素子用材料を用いる場合、上記アルカリ金属または希土類金属がドーピングされることが好ましく、駆動電圧をより低減し、耐久寿命をより向上させることができる。
 (陰極)
 陰極に用いる材料は、電子を効率よく発光層に注入できる物質であれば特に限定されない。陰極に用いる材料としては、例えば、白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれらの金属とリチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどの低仕事関数金属との合金や多層積層などが挙げられる。中でも、電気抵抗値や製膜しやすさ、膜の安定性、発光効率などの面から、主成分としてはアルミニウム、銀およびマグネシウムから選ばれた金属が好ましく、電子輸送層および電子注入層への電子注入が容易であることから、マグネシウムと銀で構成されることがより好ましい。
 (保護層)
 陰極保護のために、陰極上に保護層(キャップ層)を積層することが好ましい。保護層を構成する材料(キャッピング材料)としては、特に限定されないが、例えば、白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属;これら金属を用いた合金;シリカ、チタニアおよび窒化ケイ素などの無機物;ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子化合物などの有機高分子化合物などが挙げられる。また、一般式(1)で表される有機EL素子用材料も、キャッピング材料として利用できる。ただし、有機EL素子が、陰極側から光を取り出す素子構造(トップエミッション構造)である場合は、キャッピング材料は、可視光領域において光透過性を有することが好ましい。
 (電荷発生層)
 本発明における電荷発生層は、一般に二重層からなり、具体的には、n型電荷発生層およびp型電荷発生層からなるpn接合電荷発生層を用いることが好ましい。上記pn接合型電荷発生層は、有機EL素子中で電圧が印加されることにより、電荷を発生、または電荷を正孔および電子に分離し、これらの正孔および電子を正孔輸送層および電子輸送層を経由して発光層に注入する。電荷発生層は、具体的には、複数の発光層が積層された有機EL素子において、該複数の発光層の中間の電荷発生層として機能する。n型電荷発生層は陽極側に存在する第一発光層に電子を供給し、p型電荷発生層は陰極側に存在する第二発光層に正孔を供給する。そのため、複数の発光層を積層した有機EL素子における発光効率をより向上させ、駆動電圧を下げることができ、素子の耐久寿命もより向上させることができる。
 上記n型電荷発生層は、n型ドーパント材料およびホスト材料からなり、これらは従来の材料を用いることができる。例えば、n型ドーパント材料として、アルカリ金属、アルカリ土類金属、または希土類金属を用いることができる。n型ドーパント材料として好ましくは、リチウムまたはイッテルビウムである。これらの金属を複数組み合わせて用いてもよい。また、アルカリ金属、アルカリ土類金属または希土類金属と他の金属の合金を用いてもよい。前記合金の材料として使用可能な金属として具体的には亜鉛、カドミウムまたはビスマスが挙げられるが、これらに限定されるものではない。ホスト材料としては、フェナントロリン誘導体およびオリゴピリジン誘導体などの含窒素芳香族複素環を有する化合物を用いることができる。また、ホスフィンオキシド基を有する化合物も使用することができる。特に、前記一般式(1)で表される有機EL素子用材料またはフェナントロリン二量体は、上記n型電荷発生層のホストとして優れた性質を示すため好ましい。これらを複数組み合わせて用いてもよい。
 上記p型電荷発生層は、p型ドーパント材料およびホスト材料からなり、これらは従来の材料を用いることができる。例えば、p型ドーパント材料として、テトラフルオレ-7,7,8,8-テトラシアノキノジメタン(F4-TCNQ)、テトラシアノキノジメタン誘導体、ラジアレン誘導体、ヨウ素、FeCl、FeF、SbClなどを用いることができる。p型ドーパント材料として好ましくは、ラジアレン誘導体である。ホスト材料として好ましくはアリールアミン誘導体である。
 有機EL素子を構成する上記各層の形成方法としては、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されない。通常は、素子特性の点から抵抗加熱蒸着または電子ビーム蒸着が好ましい。
 陽極と陰極との間に介在する有機層の合計厚みは、発光物質の抵抗値にもよるので限定することはできないが、1~1000nmであることが好ましい。上記発光層、電子輸送層および正孔輸送層の膜厚はそれぞれ、好ましくは1nm以上200nm以下であり、さらに好ましくは5nm以上100nm以下である。
 本発明の実施の形態に係る有機EL素子は、電気エネルギーを光に変換できる機能を有する。ここで電気エネルギーとしては主に直流電流が使用されるが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力や寿命を考慮すると、できるだけ低いエネルギーで最大の輝度が得られるよう選ばれるべきである。
 本発明の実施の形態に係る有機EL素子は、例えば、マトリクスおよび/またはセグメント方式で表示するディスプレイ等の表示装置として好適に用いられる。
 また、本発明の実施の形態に係る有機EL素子は、各種機器等のバックライトとしても好ましく用いられる。バックライトは、主に自発光しないディスプレイ等の表示装置の視認性を向上させる目的に使用され、液晶ディスプレイ、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶ディスプレイ、中でも薄型化が検討されているパソコン用途のバックライトに本発明の有機EL素子は好ましく用いられ、従来のものより薄型で軽量なバックライトを提供できる。
 また、本発明の実施の形態に係る有機EL素子は、各種照明装置としても好ましく用いられる。本発明の実施の形態に係る有機EL素子は、高い発光効率と高色純度との両立が可能であり、さらに、薄型化や軽量化が可能であることから、低消費電力と鮮やかな発光色、高いデザイン性を合わせ持った照明装置が実現できる。
 以下、実施例をあげて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。
 合成例1:化合物5の合成
Figure JPOXMLDOC01-appb-C000028
 1-ブロモ-3-クロロベンゼン4.0gおよびテトラヒドロフラン30mlの混合溶液に、窒素気流下、0℃でn-ブチルリチウム(1.6Mヘキサン溶液)13mlを滴下した。0℃で1時間撹拌した後、2-フェニル-1,10-フェナントロリン4.5gおよびテトラヒドロフラン30mlの混合液中に0℃で滴下した。室温に昇温した後、反応溶液をジクロロメタンで抽出し、溶媒を100ml残し、エバポレートした。得られた溶液に二酸化マンガン10.0gを加えて、室温で4時間撹拌した後、硫酸マグネシウムを加えてろ過し、エバポレートにより溶媒を除去した。得られた固体をシリカゲルカラムクロマトグラフィーにより精製し、エバポレートにより溶媒を除去して得られた固体を真空乾燥し、6.0gの中間体Aを得た。
 次に、中間体A3.0g、ボロン酸エステルA3.7g、ジクロロビス(トリフェニルホスフィンパラジウム)ジクロリド160mg、1.5Mリン酸三カリウム水溶液7ml、および1,4-ジオキサン80mlの混合溶液を、窒素気流下、還流下で7時間加熱撹拌した。室温に冷却した後、水を加えて、析出した固体をろ取し、メタノールで洗浄して真空乾燥した。得られた固体をトルエンとピリジンの混合溶媒に溶解した後、活性炭を用いて触媒除去を行った。エバポレートにより溶媒を除去して得られた固体を、トルエン、メタノールで洗浄した後、真空乾燥し、3.0gの化合物5を得た。
 得られた化合物5について、油拡散ポンプを用いて、1×10-3Paの圧力下、約360℃で昇華精製を行った。昇華精製前後の化合物5のHPLC純度(測定波長254nmにおける面積%)は、いずれも99.9%であった。
 昇華精製後、マススペクトル(MS)分析およびH-NMR分析により化合物5の構造を同定した。その分析結果を以下に示す。
MS(m/z):640[M+H]
H-NMR(400MHz、CDCl)δ:8.94(s、1H)、8.81-8.87(m、2H)、8.65-8.74(m、4H)、8.40-8.52(m、3H)、8.23-8.40(m、4H)、7.78-7.99(m、6H)、7.64-7.78(m、2H)、7.31-7.50(m、4H)。
 合成例2:化合物10の合成
Figure JPOXMLDOC01-appb-C000029
 8-アミノキノリン-7-カルバルデヒド10.0g、1-(4-ブロモナフタレン-1-イル)エタン-1-オン13.1g、2.0M水酸化カリウム水溶液50ml、およびエタノール250mlの混合溶液を、窒素気流下、70℃で5時間加熱撹拌した。室温に冷却した後、水を加えて、析出した固体をろ取し、得られた固体をメタノールで洗浄して真空乾燥し、12.1gの中間体Bを得た。
 次に、中間体B3.0g、ボロン酸エステルB3.6g、ジクロロビス(トリフェニルホスフィンパラジウム)ジクロリド160mg、1.5Mリン酸三カリウム水溶液7ml、および1,4-ジオキサン70mlの混合溶液を、窒素気流下、還流下で7時間加熱撹拌した。室温に冷却した後、水を加えて、析出した固体をろ取し、メタノールで洗浄して真空乾燥した。得られた固体をトルエンとピリジンの混合溶媒に溶解した後、活性炭を用いて触媒除去を行った。エバポレートにより溶媒を除去して得られた固体を、トルエン、メタノールで洗浄した後、真空乾燥し、2.7gの化合物10を得た。
 得られた化合物10について、油拡散ポンプを用いて、1×10-3Paの圧力下、約360℃で昇華精製を行った。昇華精製前後の化合物1のHPLC純度(測定波長254nmにおける面積%)は、いずれも99.9%であった。
 昇華精製後、マススペクトル(MS)分析およびH-NMR分析により化合物10の構造を同定した。その分析結果を以下に示す。
MS(m/z):614[M+H]
H-NMR(400MHz、CDCl)δ:9.23(s、1H)、8.84-8.88(m、2H)、8.65-8.79(m、3H)、8.34-8.43(m、1H)、8.24-8.34(m、1H)、7.82-8.20(m、9H)、7.58-7.74(m、4H)、7.42-7.52(m、2H)、7.31-7.42(m、2H)。
 次に、各実施例における評価方法について説明する。
 (駆動電圧)
 実施例1~12および比較例1~14において得られた素子を、それぞれ10mA/cmで直流駆動し、初期駆動電圧を測定した。さらに、温度70℃の環境下、電流密度10mA/cmで100時間直流駆動したときの電圧を測定し、初期駆動電圧からの電圧上昇量を算出した。
 また、実施例13~24および比較例15~28において得られた有機EL素子を、それぞれ輝度1000cd/mで点灯させ、初期駆動電圧を測定した。また、室温下、電流密度10mA/cmで100時間定電流駆動したときの電圧を測定した。測定を始めた時点から100時間経過後までの電圧上昇量を算出した。
 また、実施例25~63および比較例29~70において得られた有機EL素子を、それぞれ10mA/cmの電流密度で駆動させ、初期駆動電圧を測定した。
 初期駆動電圧が小さいほど低電圧で駆動できるため、発光効率(輝度/電力)に優れると評価できる。また、電圧上昇量が小さいほど、耐久寿命に優れると評価できる。
 (外部量子効率)
 実施例13~24および比較例15~28において得られた有機EL素子を、それぞれ電流密度10mA/cmで点灯させ、外部量子効率を測定し、発光効率を評価した。外部量子効率が高いほど、発光効率に優れると評価できる。
 (輝度)
 実施例25~63および比較例29~70において得られた有機EL素子を、10mA/cmで点灯させ、輝度を測定し、発光効率を評価した。輝度が高いほど、発光効率に優れると評価できる。
 (耐久寿命)
 実施例13~63および比較例15~70において得られた有機EL素子を、10mA/cmの定電流で継続駆動させた。測定を始めた時点の輝度から輝度が20%低下する時間を測定し、耐久寿命とした。
 実施例1
 陽極としてITO透明導電膜を125nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38mm×46mmに切断し、エッチングを行った。得られた基板を、“セミコクリーン”(登録商標)56(商品名、フルウチ化学(株)製)を用いて15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、前記化合物1と、ドーパントである金属元素Liとを、蒸着速度比が化合物1:Li=99:1となるように100nm蒸着し、重量比が99:1の層を形成した。その後、アルミニウムを60nm蒸着して陰極とし、5mm×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値であり、他の実施例および比較例においても共通する。
 この素子について、前述の方法により評価したところ、初期駆動電圧は0.029V、70℃で100時間駆動したときの電圧上昇量は0.001Vであった。
Figure JPOXMLDOC01-appb-C000030
 実施例2~12、比較例1~14
 用いる化合物および化合物と金属元素の蒸着速度比を表1に記載の通りに変更したこと以外は実施例1と同様にして素子を作製した。各実施例および比較例の結果を表1に示す。なお、化合物2~26は以下に示す化合物である。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-T000035
 実施例13
 陽極としてITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を、38mm×46mmに切断し、エッチングを行った。得られた基板を、“セミコクリーン”56(商品名、フルウチ化学(株)製)を用いて15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CNを5nm蒸着し、次いで正孔輸送層として、HT-1を50nm蒸着した。次に、発光層として、ホスト材料H-1、ドーパント材料D-1の混合層を、ドープ濃度が5重量%になるようにして20nmの厚さに蒸着した。次に、電子輸送層として、ET-1と2E-1を蒸着速度比がET-1と2E-1=1:1となるように35nmの厚さに蒸着した。次に、電子注入層として、前記化合物1と、ドーパントである金属元素Liとを、蒸着速度比が化合物1:Li=99:1となるように10nm蒸着した。その後、アルミニウムを60nm蒸着して陰極とし、5mm×5mm角の有機EL素子を作製した。
 この有機EL素子について、前述の方法により評価したところ、初期駆動電圧は4.00V、外部量子効率(発光効率)は5.79%、耐久寿命は1080時間、室温下で100時間駆動したときの電圧上昇量は0.001Vであった。なおHAT-CN、HT-1、H-1、D-1、ET-1および2E-1は以下に示す化合物である。
Figure JPOXMLDOC01-appb-C000036
 実施例14~24、比較例15~28
 用いる化合物および化合物と金属元素の蒸着速度比を表2に記載の通りに変更したこと以外は実施例13と同様にして有機EL素子を作製した。各実施例および比較例の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000037
 実施例25
 陽極としてITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を、38mm×46mmに切断し、エッチングを行った。得られた基板を、“セミコクリーン”56(商品名、フルウチ化学(株)製)を用いて15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CNを5nm蒸着した。次いで、正孔注入層上に正孔輸送層、発光層および電子輸送層からなる、発光ユニット(第一の発光ユニット)を形成した。
 具体的には、正孔輸送層として、HT-1を50nm蒸着し、次に、発光層として、ホスト材料H-1、ドーパント材料D-1の混合層を、ドープ濃度が5重量%になるようにして20nmの厚さに蒸着し、次に、電子輸送層として、ET-1と2E-1を蒸着速度比がET-1と2E-1=1:1となるように35nmの厚さに蒸着した。
 第一の発光ユニット上に、n型電荷発生層として、前記化合物1と、ドーパントである金属元素Liとを、蒸着速度比が化合物1:Li=99:1となるように10nm蒸着し、次に、p型電荷発生層として、HAT-CNを10nm蒸着した。
 電荷発生層に続いて、第一の発光ユニットと同様に第二の発光ユニットを形成した。その後、電子注入層として、化合物1と、ドーパントである金属元素Liとを、蒸着速度比が化合物1:Li=99:1で10nm蒸着し、続いてアルミニウムを60nm蒸着して陰極とし、5mm×5mm角の有機EL素子を作製した。
 この有機EL素子について、前述の方法により評価したところ、初期駆動電圧は8.21V、輝度は1760cd/m、耐久寿命は2620時間であった。
 実施例26~38、比較例29~42
 用いる化合物および化合物と金属元素の蒸着速度比を表3に記載の通りに変更したこと以外は実施例25と同様にして有機EL素子を作製した。実施例37ではn型電荷発生層として化合物1、ET-2金属元素Liとを、蒸着速度比が化合物1:ET-2:Li=49.5:49.5:1となるように10nm蒸着した。実施例38では発光層として、ホスト材料H-1、ドーパント材料D-2の混合層を、ドープ濃度が5重量%となるようにして20nmの厚さに蒸着した。各実施例および比較例の結果を表3に示す。なおD-2およびET-2は以下に示す化合物である。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-T000039
 実施例39
 電子輸送層の形成において、ET-1にかえて前記化合物1を用いたこと、および、n型電荷発生層の形成において、化合物1にかえてET-2を用いたこと以外は実施例25と同様にして有機EL素子を作製した。
 この有機EL素子について、前述の方法により評価したところ、初期駆動電圧は8.20V、輝度は1790cd/m、耐久寿命は2600時間であった。
 実施例40~50、比較例43~56
 用いる化合物および化合物と金属元素の蒸着速度比を表4に記載の通りに変更したこと以外は実施例39と同様にして有機EL素子を作製した。各実施例および比較例の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000040
 実施例51~63、比較例57~70
 用いる化合物、金属元素の種類および蒸着速度比を表5に記載の通りに変更したこと以外は実施例25と同様にして有機EL素子を作製した。
Figure JPOXMLDOC01-appb-T000041

Claims (18)

  1. 下記一般式(1)で表される有機EL素子用材料:
    Figure JPOXMLDOC01-appb-C000001
    一般式(1)において、X~Xのいずれか一つは窒素原子であり、それ以外はメチン基である;Lは置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基または置換もしくは無置換のアントリレン基であり、Lは単結合、置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基または置換もしくは無置換のアントリレン基である;ただし、これらの基が置換されている場合の置換基は、アルキル基またはアルコキシ基である;Aはフェニル基またはピリジル基であり、nは0または1である。
  2. 前記一般式(1)においてXが窒素原子である、請求項1に記載の有機EL素子用材料。
  3. 前記一般式(1)においてnが1である、請求項1または2に記載の有機EL素子用材料。
  4. 前記一般式(1)においてAがフェニル基である、請求項1~3のいずれかに記載の有機EL素子用材料。
  5. 前記一般式(1)においてnが0である、請求項1または2に記載の有機EL素子用材料。
  6. 前記一般式(1)においてLまたはLがナフチレン基である、請求項1~5のいずれかに記載の有機EL素子用材料。
  7. 前記一般式(1)においてLが単結合である、請求項1~6のいずれかに記載の有機EL素子用材料。
  8. 陽極と陰極との間に少なくとも電子輸送層と発光層とが存在し、電気エネルギーにより発光する発光素子であって、該電子輸送層が請求項1~7のいずれかに記載の有機EL素子用材料を含有する有機EL素子。
  9. 前記電子輸送層がさらにアルカリ金属錯体化合物を含有する、請求項8に記載の有機EL素子。
  10. 陽極と陰極との間に少なくとも電荷発生層と発光層とが存在し、電気エネルギーにより発光する発光素子であって、該電荷発生層が請求項1~7のいずれかに記載の有機EL素子用材料を含有する有機EL素子。
  11. 前記電荷発生層がさらにフェナントロリン二量体を含有する請求項10に記載の有機EL素子。
  12. 前記電荷発生層がさらにアルカリ金属または希土類金属を含有する請求項10または11に記載の有機EL素子。
  13. 前記アルカリ金属がLiである請求項12に記載の有機EL素子。
  14. 前記希土類金属がYbである請求項12に記載の有機EL素子。
  15. 陽極と陰極との間に少なくとも電子注入層と発光層とが存在し、電気エネルギーにより発光する発光素子であって、該電子注入層が請求項1~7のいずれかに記載の化合物を含有する有機EL素子。
  16. 前記発光層が下記一般式(2)で表される化合物を含有する請求項8~15のいずれかに記載の有機EL素子:
    Figure JPOXMLDOC01-appb-C000002
    一般式(2)において、Za環、Zb環およびZc環は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール環または置換もしくは無置換の環形成原子数5~30のヘテロアリール環である;ZおよびZは、それぞれ独立に、酸素原子、NRa(置換基Raを有する窒素原子)または硫黄原子であり、ZがNRaである場合、A環もしくはB環と結合して環を形成しても、形成してなくてもよく、ZがNRaである場合、B環もしくはC環と結合して環を形成しても、形成してなくてもよい;Raは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基または置換もしくは無置換の炭素数1~30のアルキル基である;Yは、ホウ素原子、リン原子、SiRb(置換基Rbを有するケイ素原子)、P=OまたはP=Sである;Rbは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基または置換もしくは無置換の炭素数1~30のアルキル基から選ばれる。
  17. 請求項8~16のいずれかに記載のEL素子を含む表示装置。
  18. 請求項8~16のいずれかに記載のEL素子を含む照明装置。
PCT/JP2022/003268 2021-02-24 2022-01-28 有機el素子用材料、有機el素子、表示装置および照明装置 WO2022181197A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022506774A JP7231108B2 (ja) 2021-02-24 2022-01-28 有機el素子用材料、有機el素子、表示装置および照明装置
KR1020237025027A KR20230151982A (ko) 2021-02-24 2022-01-28 유기 el 소자용 재료, 유기 el 소자, 표시 장치 및조명 장치
EP22759239.1A EP4300610A1 (en) 2021-02-24 2022-01-28 Organic el element material, organic el element, display device, and illumination device
CN202280007975.XA CN116583520A (zh) 2021-02-24 2022-01-28 有机el元件用材料、有机el元件、显示装置及照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021027160 2021-02-24
JP2021-027160 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022181197A1 true WO2022181197A1 (ja) 2022-09-01

Family

ID=83049210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003268 WO2022181197A1 (ja) 2021-02-24 2022-01-28 有機el素子用材料、有機el素子、表示装置および照明装置

Country Status (6)

Country Link
EP (1) EP4300610A1 (ja)
JP (1) JP7231108B2 (ja)
KR (1) KR20230151982A (ja)
CN (1) CN116583520A (ja)
TW (1) TW202233618A (ja)
WO (1) WO2022181197A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190159A1 (ja) * 2022-04-01 2023-10-05 東レ株式会社 化合物、それを用いた発光素子材料および発光素子、光電変換素子材料、色変換組成物、色変換シート、光源ユニット、表示装置、照明装置
KR102610656B1 (ko) * 2023-08-02 2023-12-07 주식회사 진웅산업 신규 화합물 및 이를 포함하는 유기 발광 소자
WO2024161905A1 (ja) * 2023-01-30 2024-08-08 東レ株式会社 化合物、有機el素子、表示装置および照明装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130141A (ja) 2007-11-22 2009-06-11 Idemitsu Kosan Co Ltd 有機el素子および有機el材料含有溶液
WO2019093547A1 (ko) * 2017-11-10 2019-05-16 주식회사 진웅산업 페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자
KR20190053354A (ko) * 2017-11-10 2019-05-20 주식회사 진웅산업 페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자
KR20190053562A (ko) * 2017-11-10 2019-05-20 주식회사 진웅산업 페난트롤린-트리아진 화합물 및 이를 포함하는 유기발광소자
JP2019096823A (ja) * 2017-11-27 2019-06-20 Jnc株式会社 有機電界発光素子
KR102020842B1 (ko) * 2018-11-27 2019-09-11 주식회사 진웅산업 페난트롤린 제조를 위한 화합물, 이의 제조 방법 및 이를 이용한 페난트롤린 화합물의 제조 방법
JP2019161218A (ja) * 2018-03-08 2019-09-19 Jnc株式会社 有機電界発光素子
JP2020508580A (ja) * 2017-02-20 2020-03-19 ノヴァレッド ゲーエムベーハー アクティブoledディスプレイ、アクティブoledディスプレイの製造方法および化合物
KR20200064423A (ko) 2018-11-29 2020-06-08 주식회사 진웅산업 파이렌 화합물 및 이를 포함하는 유기발광소자
WO2020218648A1 (ko) * 2019-04-25 2020-10-29 주식회사 진웅산업 페난트롤린 화합물 및 이를 포함하는 유기발광소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6769303B2 (ja) 2015-01-29 2020-10-14 東レ株式会社 フェナントロリン誘導体、それを含有する電子デバイス、発光素子および光電変換素子
KR102016081B1 (ko) 2017-04-27 2019-08-29 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130141A (ja) 2007-11-22 2009-06-11 Idemitsu Kosan Co Ltd 有機el素子および有機el材料含有溶液
JP2020508580A (ja) * 2017-02-20 2020-03-19 ノヴァレッド ゲーエムベーハー アクティブoledディスプレイ、アクティブoledディスプレイの製造方法および化合物
JP2020509586A (ja) * 2017-02-20 2020-03-26 ノヴァレッド ゲーエムベーハー 電子半導体デバイスおよびその製造方法
WO2019093547A1 (ko) * 2017-11-10 2019-05-16 주식회사 진웅산업 페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자
KR20190053354A (ko) * 2017-11-10 2019-05-20 주식회사 진웅산업 페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자
KR20190053562A (ko) * 2017-11-10 2019-05-20 주식회사 진웅산업 페난트롤린-트리아진 화합물 및 이를 포함하는 유기발광소자
JP2019096823A (ja) * 2017-11-27 2019-06-20 Jnc株式会社 有機電界発光素子
JP2019161218A (ja) * 2018-03-08 2019-09-19 Jnc株式会社 有機電界発光素子
KR102020842B1 (ko) * 2018-11-27 2019-09-11 주식회사 진웅산업 페난트롤린 제조를 위한 화합물, 이의 제조 방법 및 이를 이용한 페난트롤린 화합물의 제조 방법
KR20200064423A (ko) 2018-11-29 2020-06-08 주식회사 진웅산업 파이렌 화합물 및 이를 포함하는 유기발광소자
WO2020218648A1 (ko) * 2019-04-25 2020-10-29 주식회사 진웅산업 페난트롤린 화합물 및 이를 포함하는 유기발광소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHIHAYA ADACHIHIROSHI FUJIMOTO: "State-of-the-Art Organic EL", CMC PUBLISHING CO, pages: 87 - 103

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190159A1 (ja) * 2022-04-01 2023-10-05 東レ株式会社 化合物、それを用いた発光素子材料および発光素子、光電変換素子材料、色変換組成物、色変換シート、光源ユニット、表示装置、照明装置
WO2024161905A1 (ja) * 2023-01-30 2024-08-08 東レ株式会社 化合物、有機el素子、表示装置および照明装置
KR102610656B1 (ko) * 2023-08-02 2023-12-07 주식회사 진웅산업 신규 화합물 및 이를 포함하는 유기 발광 소자

Also Published As

Publication number Publication date
EP4300610A1 (en) 2024-01-03
CN116583520A (zh) 2023-08-11
JPWO2022181197A1 (ja) 2022-09-01
KR20230151982A (ko) 2023-11-02
JP7231108B2 (ja) 2023-03-01
TW202233618A (zh) 2022-09-01

Similar Documents

Publication Publication Date Title
JP7120015B2 (ja) 発光素子
JP5376063B2 (ja) 発光素子材料および発光素子
JP5821635B2 (ja) 発光素子材料および発光素子
KR101966680B1 (ko) 벤즈인돌로카르바졸 유도체, 그것을 사용한 발광 소자 재료 및 발광 소자
JP6183214B2 (ja) フルオランテン誘導体、それを含有する発光素子材料および発光素子
JP6051864B2 (ja) 発光素子材料および発光素子
JP7231108B2 (ja) 有機el素子用材料、有機el素子、表示装置および照明装置
JP6183211B2 (ja) 発光素子材料および発光素子
KR101980730B1 (ko) 니트릴계 화합물 및 이를 포함하는 유기 발광 소자
JP6318617B2 (ja) 発光素子材料および発光素子
JP7052885B2 (ja) 化合物、有機薄膜発光素子、表示装置および照明装置
WO2023058644A1 (ja) 化合物、有機el素子、表示装置および照明装置
WO2014024750A1 (ja) 発光素子材料および発光素子
JP2014093501A (ja) 発光素子材料および発光素子
WO2024043018A1 (ja) 有機el素子、表示装置および照明装置
WO2024018915A1 (ja) 化合物、発光素子、表示装置および照明装置
WO2024157868A1 (ja) 化合物、それを含む発光素子、表示装置、照明装置およびフォトセンシタイザ
JP2024031880A (ja) 有機el素子、表示装置および照明装置
WO2024161905A1 (ja) 化合物、有機el素子、表示装置および照明装置
JPWO2014007022A1 (ja) 発光素子材料および発光素子
CN117567499A (zh) 一种胺类衍生物及其有机电致发光器件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022506774

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007975.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022759239

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759239

Country of ref document: EP

Effective date: 20230925