WO2019093547A1 - 페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자 - Google Patents

페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자 Download PDF

Info

Publication number
WO2019093547A1
WO2019093547A1 PCT/KR2017/012717 KR2017012717W WO2019093547A1 WO 2019093547 A1 WO2019093547 A1 WO 2019093547A1 KR 2017012717 W KR2017012717 W KR 2017012717W WO 2019093547 A1 WO2019093547 A1 WO 2019093547A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
phenanthroline
electrode
mmol
layer
Prior art date
Application number
PCT/KR2017/012717
Other languages
English (en)
French (fr)
Inventor
이응
김동현
이병윤
이상진
이지환
조은상
국창훈
김대환
황보선
Original Assignee
주식회사 진웅산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 진웅산업 filed Critical 주식회사 진웅산업
Priority to PCT/KR2017/012717 priority Critical patent/WO2019093547A1/ko
Publication of WO2019093547A1 publication Critical patent/WO2019093547A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a phenanthroline-anthracene compound and an organic light emitting device comprising the same.
  • the organic light emitting device includes a structure in which an organic layer capable of emitting light is formed between an anode and a cathode, for converting electric energy into light energy using an organic material.
  • Organic light emitting devices can be formed in various structures, and a tandem type organic light emitting device in which a plurality of light emitting units are stacked has been studied.
  • a charge generating layer for generating and moving charges is located between the adjacent light emitting portions. And an N-type charge generating layer and a P-type charge generating layer capable of generating electrons and holes.
  • the charge generating layer should have good energy level and charge injection performance with the adjacent layer, be transparent, and have low surface resistance. In addition, it should be deposited stably and the interface with the adjacent layer should be well matched and be driven stably.
  • An object of the present invention is to provide a phenanthroline-anthracene compound having a novel structure and an organic light emitting device including the same.
  • tandem-type organic light emitting device phenanthroline-anthracene compounding that can minimize the energy level difference between the N-type charge generation layer and the P-type charge generation layer to improve the electron injection amount in the light emitting portion, .
  • Still another object of the present invention is to provide a phenanthroline-anthracene compound which can minimize the phenomenon that the alkali metal is diffused into the P-type charge generation layer even when the N-type charge generation layer is doped with an alkali metal, Device.
  • the present invention is achieved by a phenanthroline-anthracene compound represented by the following general formulas (1) to (2).
  • X 1 , X 2 , X 3 and X 4 are carbon or nitrogen;
  • R 1 to R 6 are each independently hydrogen, substituted or unsubstituted phenyl, alkylphenyl, biphenyl, Alkylphenyl, alkylphenyl, alkylphenyl, alkylphenyl, alkylphenyl, alkylphenyl, alkylphenyl, alkylphenyl, alkenyl, Wherein the aryl group is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, cyano, pyridyl, cyanopyridyl, alkoxypyridyl, silylpyridyl, pyrimidyl, halopyrimidyl, cyanopyrimidyl, alkoxypyrimidyl, quinolinyl, isoquinolinyl, quinoxalinyl, , Naphth
  • the phenanthroline-anthracene compound may be selected from the following compounds.
  • It is another object of the present invention to provide an organic light emitting device comprising a first electrode, a second electrode, a first electrode, and an organic material layer disposed between the second electrode and emitting light, wherein the organic material layer comprises a plurality of layers, May include the phenanthroline-anthracene compound.
  • the at least one layer may include a charge generation layer (CGL).
  • CGL charge generation layer
  • the charge generation layer (CGL) may be N-type.
  • the charge generation layer is characterized in that any one of an alkali metal and an alkaline earth metal is doped.
  • the alkali metal includes at least one selected from the group consisting of Li, Na, K, Rb and Cs, Ca, Sr, and Ba.
  • a further object of the present invention is to provide a light emitting device comprising a first electrode, a second electrode, a first light emitting portion located between the first electrode and the second electrode and including a first light emitting layer, A second light emitting portion including a second light emitting layer, and a charge generation layer located between the first light emitting portion and the second light emitting portion, wherein the charge generation layer includes the phenanthroline-anthracene compound .
  • a novel structure of phenanthroline-anthracene compound is provided.
  • electrons can be smoothly transferred from the N-type charge generation layer to the electron transport layer, and electrons injected into the N-type charge generation layer due to the LUMO energy level difference between the electron transport layer and the N-
  • a phenanthroline-anthracene compound and an organic light emitting device including the phenanthroline-anthracene compound capable of solving the problem that the driving voltage generated when the electron transport layer moves to the electron transport layer is increased.
  • FIG. 1 is a cross-sectional view of an organic light emitting diode according to an embodiment of the present invention.
  • the phenanthroline-anthracene compound according to the present invention is represented by the general formulas (1) to (2).
  • X 1 , X 2 , X 3, and X 4 are carbon or nitrogen, and each of R 1 to R 6 is independently hydrogen, substituted or unsubstituted phenyl, alkylphenyl,
  • the aryl group include phenyl, naphthyl, biphenyl, halophenyl, alkoxyphenyl, haloalkoxyphenyl, cyanophenyl, silylphenyl, naphthyl, alkylnaphthyl, halonaphthyl, cyanonaphthyl, , Cyano pyridyl, alkoxypyridyl, silylpyridyl, pyrimidyl, halopyrimidyl, cyanopyrimidyl, alkoxypyrimidyl, quinolinyl, isoquinolinyl, quinoxalinyl, pyrazinyl, quina
  • the phenanthroline-anthracene compound represented by Formula 1 or 2 may be selected from the following compounds.
  • the phenanthroline-anthracene compound represented by Formula 1 or 2 may be selected from the following compounds.
  • ring forming carbon means a saturated ring, an unsaturated ring, or a carbon atom constituting an aromatic ring.
  • the ring forming atom means a carbon atom and a hetero atom constituting a heterocycle (including a saturated ring, an unsaturated ring, and an aromatic ring).
  • Examples of the substituent in the case of the substituted or unsubstituted ring include an aryl group, a heterocyclic group, an alkyl group (straight chain or branched alkyl group, cycloalkyl group, halogenated alkyl group), alkenyl group, alkynyl group, alkylsilyl group, A nitro group, and a carboxyl group, in addition to an alkoxy group, an alkoxy group, a halogenated alkoxy group, an aralkyl group, an aryloxy group, a halogen atom and a cyano group.
  • the unsubstitution means that the substituent is not substituted, and hydrogen atoms are bonded.
  • hydrogen atoms include isotopes having different neutron numbers, that is, protium, deuterium, tritium.
  • Substituents comprising " alkyl ", " alkoxy " and other " alkyl " moieties described in the present invention include both straight chain and branched forms.
  • the phenanthroline-anthracene compound according to the present invention can be represented by the following scheme.
  • the moiety serves to add charge characteristics and regulates HOMO and LUMO.
  • amines are enriched with electrons including amines, compounds impart hole characteristics, and compounds containing heteroaryl containing electrons containing nitrogen are given electronic characteristics to impart electronic characteristics.
  • the phenanthroline of formula (1) or (2) is characterized in that the core bonds with the alkali metal or alkaline earth metal doped in the N-type charge generating layer to characterize the N-type charge generating layer. It is possible to smoothly transfer electrons from the N-type charge generation layer to the electron transport layer by forming a gap state at the time of binding and forming the gap state. And the alkaline metal or alkaline earth metal is not diffused into the P-type charge generation layer by bonding with the alkali metal or alkaline earth metal co-deposited on the N-type charge generation layer, so that the lifetime can be improved.
  • Moiety 2 is a moiety having a variety of electron attracting and electron donating properties, and the carrier mobility of phenanthroline can be finely controlled to improve the properties of phenanthroline.
  • the linker acts as a pathway for the rich electrons of anthracene to reach the phenanthroline and the substituent of moiety 1 has the highest occupied molecular (HOMO) orbital) and LUMO (lowest unoccupied molecular orbital) can be controlled to provide a highly efficient organic compound.
  • HOMO highest occupied molecular
  • LUMO lowest unoccupied molecular orbital
  • the electron attracts electrons gathered in the phenanthroline, allowing electrons to spread widely in the molecule. It also increases the stability of the molecule and increases the glass transition temperature by blocking the reaction point of the molecule.
  • Anthracene shows amorphous, heat-resistant, and high-purity characteristics by reducing the intermolecular interaction by causing a strong rotation disorder of the compound.
  • the band gap can be easily controlled and a substance having good characteristics can be easily found.
  • a heteroaryl group or a strong electron withdrawing of -F, -CN, -NO 2, -POPh 2, -CF 3, -SO moiety such as turning off the e-Ph 2 in each of the moieties in the manner described for By adding the phenanthroline, the strong electron withdrawing property of phenanthroline is mitigated to disperse the density of electrons, thereby increasing the chemical stability, thereby improving the lifetime of the organic light emitting device.
  • the compound according to the present invention is excellent in thermal stability.
  • the glass transition temperature may be 158 ⁇ ⁇ or higher, and the melting temperature may be 330 ⁇ ⁇ or higher. As a result, it is possible to realize a highly efficient organic light emitting device.
  • the organic light emitting diode 1 is a cross-sectional view of an organic light emitting diode according to an embodiment of the present invention.
  • the organic light emitting diode 1 includes a first electrode (anode) 110, a second electrode (cathode) 120, a first light emitting portion 210, a second light emitting portion 220, And a charge generating layer 230.
  • the first light emitting portion 210, the second light emitting portion 220 and the charge generating layer 230 are positioned between the first electrode 110 and the second electrode 120 as organic layers, And is positioned between the first light emitting portion 210 and the second light emitting portion 220.
  • the first light emitting portion 210 includes a hole injection layer 211, a first hole transporting layer 212, a first light emitting layer 213 and a first electron transporting layer 214, Two hole transporting layers 221, a second light emitting layer 222, a second electron transporting layer 223, and an electron injection layer 224.
  • the charge generation layer 230 is composed of an N-type charge generation layer 231 and a P-type charge generation layer 232.
  • the N-type charge generation layer 231 may be doped with an alkali metal.
  • the phenanthroline-anthracene compound according to the present invention may be included in the first electron transporting layer 212, the second electron transporting layer 223 and the charge generating layer 230, Can be used.
  • the organic light emitting element 1 described above can be variously modified. Some organic layers may be omitted or added, may not be tandem-shaped, and may be in a tandem form having three or more light-emitting layers.
  • the filtrate was dissolved in MC by heating on a silica gel, and the mixture was filtered under reduced pressure through silica gel, and then concentrated to obtain 23 g of 1- (5- (10-phenylanthracen-9-yl) pyridin-3-yl) ethanone.
  • the filtered crude was dissolved by heating in MC, filtered through a silica gel under reduced pressure, and then concentrated to obtain 18 g of 9- (3-chloro-5- (naphthalen-2-yl) phenyl) -10-phenylanthracene .
  • reaction solution was subjected to a celite / silica / celite column (50 g / 50 g / 50 g), filtered, and 1 liter of a dioxane solution was further flowed.
  • a celite / silica / celite column 50 g / 50 g / 50 g
  • 1 liter of a dioxane solution was further flowed.
  • reaction solution was subjected to a cellite / silica / celite column (50 g / 50 g / 50 g), filtered, and 1 liter of a dioxane solution was further flowed.
  • a cellite / silica / celite column 50 g / 50 g / 50 g
  • 1 liter of a dioxane solution was further flowed.
  • the filtrate was dissolved in MC by heating on a silica gel, and the mixture was filtered under reduced pressure through silica gel, and then concentrated to obtain 23 g of 1- (5- (10-phenylanthracen-9-yl) pyridin-3-yl) ethanone.
  • intermediate A 15 g, 33.2 mmol
  • 4-fluorophenylboronic acid 5.1 g, 36.5 mmol
  • tetrakis (triphenylphosphine) palladium (0) 1.92 g, 1.66 mmol) g, 83.3 mmol
  • 150 mL of toluene 75 mL of ethanol and 75 mL of water
  • the reaction solution was filtered to obtain a crude product.
  • the crude crystals were dissolved by heating on MC and then filtered under reduced pressure through silica gel. The filtrate was concentrated to obtain 13 g of 9- (5-chloro-4'-fluoro- [1,1'- biphenyl] -10-phenylanthracene. ≪ / RTI >
  • the NMR data of the synthesized compounds are as follows.
  • the glass transition temperature and melting temperature of the compounds prepared in Preparation Examples 1 to 6 according to the present invention were measured and are shown in Table 2 below.
  • the compounds of Production Examples 1 to 6 according to the present invention have a much higher glass transition temperature and melting temperature than the comparative examples. Accordingly, it can be seen that the phenanthroline-anthracene compound according to the present invention has improved thermal stability as compared with the comparative example.
  • an organic light emitting device was manufactured by using Bphen and a compound according to the present invention in the charge generation layer, respectively.
  • the ITO substrate was patterned to have a light emitting area of 2 mm x 2 mm, and then washed with isopropyl alcohol and UV ozone, respectively. Then, the ITO substrate was mounted on the substrate holder of the vacuum evaporation apparatus, and the pressure was set so that the degree of vacuum was 1 ⁇ 10 -7 torr.
  • a HAT-CN compound was formed by vacuum deposition to a thickness of 5 nm. This compound acts as a hole injection layer.
  • An NPB material was formed thereon to a thickness of 35 nm as a hole transport layer.
  • the CPB material was co-deposited with the Ir compound as a dopant to a thickness of about 30 nm so as to have a mass ratio of about 10%, thereby forming a yellow light-emitting layer.
  • a TmPyPB compound was formed to an electron transporting layer with a thickness of 25 nm. Then, a charge generation layer was formed by vacuum depositing a Li material in a BPhen material to a thickness of 10 nm to a mass ratio of 2%. Then, Al was deposited to a thickness of 100 nm to form a cathode, thereby fabricating an organic light emitting device.
  • low voltage high efficiency driving is realized by electrically doping the charge transport layer in the OLED structure.
  • the P doping layer is doped with an organic material or a metal oxide that is lean with electrons in the hole transporting material and the N doping layer is doped with an alkali metal such as lithium or cesium with a low work function in the electron transporting material.
  • the doped layer reduces the surface resistance of the organic material during driving to facilitate charge injection from adjacent layers. It is known that a buffer layer is introduced on a doped anode layer to realize a low voltage by energy banding and a low voltage driving technique using a material having a high charge mobility. High efficiency is obtained by fabricating a fluorescent and phosphorescent material in a laminated structure.
  • Driving current J (mA / cm 2) The driving voltage Current efficiency (cd / A) Luminescent efficiency (lm / W) Comparative Example 1 BPhen 10 4.5 56.5 39.4 Example 1 1-40 10 4.1 55.6 42.6
  • Example 1 the driving voltage and the luminous efficiency of Example 1 are improved as compared with Comparative Example 1.
  • the ITO substrate was patterned to have a light emitting area of 2 mm x 2 mm, and then washed with isopropyl alcohol and UV ozone, respectively. Thereafter, the ITO substrate was mounted on a substrate holder of a vacuum deposition apparatus, and the pressure was adjusted so that the degree of vacuum was 1 x 10 < -7 > torr.
  • a HAT-CN compound was formed by vacuum deposition to a thickness of 5 nm. This compound functions as a first hole injection layer.
  • An NPB material having a thickness of 35 nm was formed thereon as a first hole transporting layer.
  • the CPB material was co-deposited with the Ir compound to a thickness of 30 nm so as to have a mass ratio of about 10% to the dopant, thereby forming a yellow first light emitting layer.
  • a TmPyPB compound was formed on the light emitting layer to a thickness of 25 nm to form a first electron transporting layer. Thereafter, a Li material was co-deposited on the BPhen material to a thickness of 10 nm so as to have a mass ratio of 2%, thereby forming an N-type charge generation layer. Thereafter, a HAT-CN compound was vacuum deposited as a P-type charge generation layer to a thickness of 5 nm. The foreign substance is also utilized as the second hole injection layer. An NPB material having a thickness of 35 nm was formed thereon as a second hole transport layer.
  • the CPB material was co-deposited with the Ir compound to a thickness of 30 nm so as to have a mass ratio of about 10% to the dopant, thereby forming a yellow second light emitting layer.
  • a TmPyPB compound was formed on the light emitting layer to a thickness of 25 nm to form a second electron transporting layer.
  • a LiF material was vacuum deposited as an electron injection layer to a thickness of 1 nm.
  • Al was deposited to a thickness of 100 nm to form a cathode, thereby fabricating an organic light emitting device.
  • the organic light emitting device including the phenanthroline-anthracene compound according to the present invention has improved lifetime and efficiency as compared with the organic light emitting device including the conventional compound.

Abstract

본 발명은 페난트롤린-안트라센 화합물 및 이를 하나 이상의 유기층에 포함함으로써 우수한 효율 특성을 나타내는 유기전기발광소자에 관한 것이다.

Description

페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자
본 발명은 페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자에 관한 것이다.
유기발광소자는 유기 물질을 이용하여 전기 에너지를 빛 에너지로 전환하기 위한 소자로서, 애노드(anode)와 캐소드(cathode) 사이에 발광 가능한 유기물층이 형성된 구조를 포함한다. 유기발광소자는 다양한 구조로 형성될 수 있으며, 그 중 복수의 발광부가 적층된 탠덤(Tandem)형 유기발광소자가 연구되고 있다.
인접한 발광부 사이에는 전하의 생성 및 이동을 위한 전하생성층이 위치한다. 전자와 정공이 생성될 수 있는 N형 전하생성층 및 P형 전하생성층으로 이루어져 있다. 이 때, 전하생성층은 인접층과은 에너지 레벨 및 전하 주입의 성능이 좋아야 하고, 투명해야 하며 표면 저항이 작아야 한다. 또한 안정적으로 증착되어 인접층과 계면이 잘 맞아야 하고 안정적으로 구동되어야 한다.
따라서 낮은 구동전압과 높은 효율을 가진 화합물 및 이를 포함하는 유기발광소자가 요구된다.
본 발명의 목적은 새로운 구조의 페난트롤린-안트라센 화합물 및 이를 포함한 유기발광소자를 제공하는 것이다.
또한, 탠덤형 유기발광소자에서 N형 전하생성층과 P형 전하생성층 사이의 에너지 레벨 차이를 최소화하여 발광부에 전자 주입량을 향상시킬 수 있는 페난트롤린-안트라센 화합 및 이를 포함하는 유기발광소자를 제공하는 것이다.
본 발명의 또 다른 목적은 N형 전하생성층이 알칼리 금속으로 도핑된 경우에도, 알칼리 금속이 P형 전하생성층으로 확산되는 현상을 최소화할 수 있는 페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자를 제공하는 것이다.
본 발명은 하기 화학식 1 내지 화학식 2로 표시되는 페난트롤린(phenanthroline)-안트라센(anthracene) 화합물에 의해 달성된다.
Figure PCTKR2017012717-appb-C000001
Figure PCTKR2017012717-appb-C000002
상기 화학식 1 또는 화학식 2에서, X1, X2, X3 및 X4는 탄소 또는 질소이며, R1 내지 R6는 각각 독립적으로, 수소, 치환 또는 치환되지 않은 페닐, 알킬페닐, 비페닐, 알킬비페닐, 할로페닐, 알콕시페닐, 할로알콕시페닐, 시아노페닐, 실릴페닐, 나프틸, 알킬나프틸, 할로나프틸, 시아노나프틸, 실릴나프틸, 피리딜, 알킬피리딜, 할로피리딜, 시아노피리딜, 알콕시피리딜, 실릴피리딜, 피리미딜, 할로피리미딜, 시아노피리미딜, 알콕시피리미딜, 퀴놀리닐, 이소퀴놀리닐, 퀴녹살리닐, 피라지닐, 퀴나졸리닐, 나프틸리디닐, 벤조티오페닐, 벤조퓨라닐, 디벤조티오페닐, 아릴티아졸릴, 디벤조퓨라닐, 플루오레닐, 카바조일, 이미다졸릴, 카볼리닐, 페난쓰레닐, 터페닐, 터피리디닐, 트리페닐레닐, 플루오르안테닐 및 디아카플루오레닐 중에서 선택된다.
상기 페난트롤린-안트라센 화합물은 하기 표시되는 화합물들 중에서 선택될 수 있다.
Figure PCTKR2017012717-appb-I000001
Figure PCTKR2017012717-appb-I000002
본 발명의 다른 목적은 제1전극, 제2전극, 제1전극 및 상기 제2전극 사이에 위치하며 빛을 발광하는 유기물층을 포함하며, 상기 유기물층은 복수의 층으로 이루어지며, 적어도 어느 하나의 층은 상기 페난트롤린-안트라센 화합물을 포함할 수 있다.
상기 적어도 하나의 층은 전하생성층(Charge Generation Layer; CGL)을 포함할 수 있다.
전하생성층(Charge Generation Layer; CGL)은 N형일 수 있다.
전하생성층은 알칼리금속 및 알칼리토금속 중 어느 하나가 도핑되어 있는 것을 특징으로 하며, 알칼리금속은 Li, Na, K, Rb 및 Cs 중에서 선택되는 적어도 어느 하나를 포함하고, 알칼리토금속은 Be, Mg, Ca, Sr 및 Ba 중에서 선택되는 적어도 어느 하나를 포함할 수 있다.
본 발명의 또 다른 목적은 제1전극, 제2전극 및 제1전극과 상기 제2전극 사이에 위치하며 제1발광층을 포함하는 제1발광부, 제2전극과 상기 제1발광부 사이에 위치하며 제2발광층을 포함하는 제2발광부, 제1발광부와 제2발광부 사이에 위치하는 전하생성층을 포함하며, 전하생성층은 상기 페난트롤린-안트라센 화합물을 포함하는 것에 의해 달성된다.
본 발명에 따르면 새로운 구조의 페난트롤린-안트라센 화합물이 제공된다.
본 발명에 따르면, 전기음성도가 높은 코어를 포함하여 전자가 풍부해지고, 빠른 전자 이동도를 가져 전자의 수송을 용이하게 하는 페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자가 제공된다.
또한 본 발명에 따르면, N형 전하생성층에서 전자수송층으로 전자의 전달을 원활하게 할 수 있으며, 전자수송층과 N형 전하생성층 간의 LUMO 에너지레벨 차이로 인해 N형 전하생성층으로 주입된 전자가 전자수송층으로 이동할 때 생기는 구동 전압이 상승되는 문제점을 개선할 수 있는 페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자가 제공된다.
도 1은 본 발명의 일 실시예에 따른 유기발광소자의 단면도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 도시된 것이며, 본 발명이 도시된 구성의 크기 및 두께에 반드시 한정되는 것은 아니다.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하며, 당업자가 충분히 이해할 수 있듯이 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시 가능할 수도 있다.
이하, 첨부된 도면을 참조하여 본 발명의 다양한 실시예들을 상세히 설명한다.
본 발명에 따른 페난트롤린(phenanthroline)-안트라센(anthracene) 화합물은 화학식 1 내지 화학식 2로 표시된다.
[화학식 1]
Figure PCTKR2017012717-appb-I000003
[화학식 2]
Figure PCTKR2017012717-appb-I000004
화학식 1 또는 화학식 2에서, X1, X2, X3 및 X4는 탄소 또는 질소이며, R1 내지 R6는 각각 독립적으로, 수소, 치환 또는 치환되지 않은 페닐, 알킬페닐, 비페닐, 알킬비페닐, 할로페닐, 알콕시페닐, 할로알콕시페닐, 시아노페닐, 실릴페닐, 나프틸, 알킬나프틸, 할로나프틸, 시아노나프틸, 실릴나프틸, 피리딜, 알킬피리딜, 할로피리딜, 시아노피리딜, 알콕시피리딜, 실릴피리딜, 피리미딜, 할로피리미딜, 시아노피리미딜, 알콕시피리미딜, 퀴놀리닐, 이소퀴놀리닐, 퀴녹살리닐, 피라지닐, 퀴나졸리닐, 나프틸리디닐, 벤조티오페닐, 벤조퓨라닐, 디벤조티오페닐, 아릴티아졸릴, 디벤조퓨라닐, 플루오레닐, 카바조일, 이미다졸릴, 카볼리닐, 페난쓰레닐, 터페닐, 터피리디닐, 트리페닐레닐, 플루오르안테닐 및 디아카플루오레닐 중에서 선택된다.
상기 화학식 1 또는 2로 표시되는 페난트롤린-안트라센 화합물은 하기 표시되는 화합물들 중에서 선택될 수 있다.
Figure PCTKR2017012717-appb-I000005
Figure PCTKR2017012717-appb-I000006
또한, 상기 화학식 1 또는 2로 표시되는 페난트롤린-안트라센 화합물은 하기 표시되는 화합물들 중에서 선택될 수 있다.
Figure PCTKR2017012717-appb-I000007
Figure PCTKR2017012717-appb-I000008
Figure PCTKR2017012717-appb-I000009
Figure PCTKR2017012717-appb-I000010
Figure PCTKR2017012717-appb-I000011
Figure PCTKR2017012717-appb-I000012
Figure PCTKR2017012717-appb-I000013
Figure PCTKR2017012717-appb-I000014
Figure PCTKR2017012717-appb-I000015
Figure PCTKR2017012717-appb-I000016
본 발명에 있어서, 고리 형성 탄소란 포화 고리, 불포화 고리, 또는 방향 고리를 구성하는 탄소 원자를 의미한다. 고리 형성 원자란 헤테로 고리 (포화 고리, 불포화 고리, 및 방향 고리를 포함한다) 를 구성하는 탄소 원자 및 헤테로 원자를 의미한다.
또한, 치환 혹은 비치환의 이라고 하는 경우에 있어서의 치환기로는, 아릴기, 복소고리기, 알킬기 (직쇄 또는 분쇄의 알킬기, 시클로알킬기, 할로겐화알킬기), 알케닐기, 알키닐기, 알킬실릴기, 아릴실릴기, 알콕시기, 할로겐화알콕시기, 아르알킬기, 아릴옥시기, 할로겐 원자, 시아노기에 더하여, 하이드록실기, 니트로기, 카르복실기 중 어느 하나로 선택될 수 있다.
치환 혹은 비치환의 이라고 하는 경우에 있어서의 비치환 이란, 상기 치환기로 치환되어 있지 않고, 수소 원자가 결합하고 있는 것을 의미한다.
본 발명에 있어서, 수소 원자란, 중성자수가 상이한 동위체, 즉, 경수소 (protium), 중수소 (deuterium), 삼중수소 (tritium) 를 포함한다.
본 발명에 기재된 “알킬”, “알콕시” 및 그 외 “알킬”부분을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함한다.
본 발명에 따른 페난트롤린-안트라센 화합물은 하기와 같이 모식화하여 나타낼 수 있다.
Figure PCTKR2017012717-appb-I000017
여기서, 모이어티(Moiety)는 전하 특성을 부가시켜주는 역할을 하고 HOMO와 LUMO를 조절한다. 아민류를 포함하여 전자가 풍부할 경우에는 화합물들은 정공 특성을 부여하고, 질소를 포함하는 전자가 부족한 헤테로 아릴을 포함하는 화합물들은 전자 특성을 부여하여 전자 특성이 부여된다.
화학식 1 또는 화학식 2 의 페난트롤린은 코어(Core)는 N형 전하생성층에 도핑되는 알칼리 금속이나 알칼리 토금속과 결합하여 N형 전하생성층의 특성을 나타낸다. 결합(binding)시 갭 스테이트(gap state)를 형성하고 형성된 갭 스테이트에 의해, N형 전하생성층에서 전자수송층으로 전자의 전달을 원활하게 할 수 있다. 그리고 N형 전하생성층에 공증착된 알칼리 금속 또는 알칼리 토금속과 결합하여 알칼리 금속 또는 알칼리 토금속이 P형 전하생성층으로 확산되지 않으므로 수명이 향상될 수 있다.
모이어티 2(Moiety 2)는 다양한 전자 끌게나 전자 주게 특성을 가진 부분으로서 페난트롤린의 전하 이동도(carrier mobility)가 세밀하게 조절되어 페난트롤린이 가지고 있는 특성을 향상시킬 수 있다.
링커(linker)는 안트라센(Anthracene)의 풍부한 전자를 페난트롤린으로 도달하게 하는 통로 역할을 하고, 모이어티 1(moiety 1)의 치환기가 미세한 에너지준위(energy level) 조절을 통해서 HOMO(highest occupied molecular orbital)와 LUMO(lowest unoccupied molecular orbital)를 조절하여 고효율의 유기화합물을 제공할 수 있다.
안트라센(anthracene)은 전자가 풍부한 방향족 화합물로서 일정한 밴드갭(band gap)을 부여하여 HOMO와 LUMO의 틀을 잡아주는 역할을 한다.
또한 모이어티 3(moiety 3)의 전자끌게 모이어티의 치환으로 인하여 페난트롤린에 모인 전자를 끌어줌으로써 전자가 분자 내에서 넓게 퍼지도록 한다. 또한 분자의 반응 포인트를 막아줌으로써 분자의 안정성을 증대시키고 유리전이 온도를 증가시킨다. 안트라센은 화합물의 강한 회전장애를 일으켜 분자간 상호작용을 줄여주어 비정질(amorphous)성, 내열성, 고색순도의 특성들을 보여 준다.
모이어티 1(moiety 1)에 N형 또는 P형의 특성을 갖는 모이어티를 부가하였을 때 밴드갭 조절이 용이하여 좋은 특성을 내는 물질을 쉽게 찾아 낼 수 있다. 또한 하기에 기술된 방식으로 각각의 모이어티들에 헤테로아릴 또는 강력한 전자 끌게인 -F, -CN, -NO2, -POPh2, -CF3, -SO2Ph 등의 전자를 끄는 모이어티를 부가함으로써 페난트롤린의 강력한 전자끌게 성질을 완화하여 전자의 밀집을 분산시켜 주고 이로 인해 화학적 안정성을 증대함으로써 유기발광소자의 수명을 개선할 수 있다.
Figure PCTKR2017012717-appb-I000018
Figure PCTKR2017012717-appb-I000019
하기 게시된 화합물들은 링커 부분에 미세한 변화를 주어 밴드갭을 조절함으로써 세가지 화합물의 효율과 전압의 매우 큰 차이를 소자테스트를 통해 확인하였다.
Figure PCTKR2017012717-appb-I000020
본 발명에 따른 화합물은 열적 안정성이 우수한데, 유리전이온도는 158℃ 이상이며, 융용 온도가 330℃이상일 수 있다. 이로 인해 고효율의 유기발광소자의 구현이 가능하다.
도 1은 본 발명의 일 실시예에 따른 유기발광소자의 단면도이다. 도 1을 참조하면, 유기발광소자(1)는 탠덤형 구조로서 제1전극(양극, 110), 제2전극(음극, 120), 제1발광부(210), 제2발광부(220) 및 전하생성층(230)을 포함한다.
제1발광부(210), 제2발광부(220) 및 전하생성층(230)은 유기물층으로서 제1전극(110)과 제2전극(120) 사이에 위치하며, 전하생성층(230)은 제1발광부(210)와 제2발광부(220) 사이에 위치한다.
제1발광부(210)는 정공주입층(211), 제1정공수송층(212), 제1발광층(213), 제1전자수송층(214)으로 이루어져 있으며, 제2발광부(220)는 제2정공수송층(221), 제2발광층(222), 제2전자수송층(223) 및 전자주입층(224)으로 이루어져 있다.
전하생성층(230)은 N형 전하생성층(231)과 P형 전하생성층(232)로 이루어져 있다. N형 전하생성층(231)은 알칼리 금속으로 도핑되어 있을 수 있다.
본 발명에 따른 페난트롤린-안트라센 화합물은 제1전자수송층(212), 제2전자수송층(223) 및 전하생성층(230)에 포함되어 사용될 수 있으며, 특히 N형 전하생성층(231)에 사용될 수 있다.
설명한 유기발광소자(1)는 다양하게 변형가능하다. 일부 유기층은 생략되거나 추가될 수 있으며, 탠덤 형태가 아닐 수 있으며, 3개 이상의 발광층을 가지는 탠덤형태일 수도 있다.
이하에서는 화합물 1-4, 1-6, 1-10, 1-16, 1-39, 1-40, 1-71 및 1-86의 제조예 및 실시예 를 설명한다. 다만, 하기에 기재된 제조예 및 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것일 뿐이며, 이하에 기재된 제조예 및 실시예에 의해 본 발명을 제한하여 해석되어서는 안 된다.
[제조예]
1. 화합물 1-4
화합물 1-4로 표시된 2-(5-(10-phenylanthracen-9-yl)pyridin-3-yl)-1,10-phenanthroline을 아래와 같은 반응식을 통해 제조하였다.
Figure PCTKR2017012717-appb-I000021
둥근바닥 플라스크에 1-(5-bromopyridin-3-yl)ethanone (25 g, 83.9 mmol), (10-phenylanthracen-9-yl)boronic acid (16.8 g, 83.9 mmol), 테트라키스(트리페닐포스핀)팔라듐(0) (5 g, 4.3 mol), 탄산칼륨 (29 g), 톨루엔 200 mL, 에탄올 100 mL, 물 100 mL를 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 여과하여 크루드 상태의 생성물을 얻는다. 여과된 크루드를 MC에 가열하여 녹인 후 실리카겔에 감압 여과한 후 농축하여 재결정하여, 1-(5-(10-phenylanthracen-9-yl)pyridin-3-yl)ethanone을 23 g 수득하였다.
Figure PCTKR2017012717-appb-I000022
둥근바닥 플라스크에 1-(5-(10-phenylanthracen-9-yl)pyridin-3-yl)ethanone (20 g, 53.6 mmol), 8-aminoquinoline-7-carbaldehyde (10.2 g, 59 mmol)와 포타슘카보네이트 (9 g, 160 mmol)를 톨루엔 300 mL와 에탄올 200 mL에 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 농축하여 1리터의 물에 교반하여 씻어서 염기를 제거한 후 실리카겔 컬럼을 한 후 19 g의 2-(5-(10-phenylanthracen-9-yl)pyridin-3-yl)-1,10-phenanthroline을 수득하였다.
2. 화합물 1-6
화합물 1-6로 표시된 2-(3-(naphthalen-2-yl)-5-(10-phenylanthracen-9-yl)phenyl)-1,10-phenanthroline을 아래와 같은 반응들을 이용해 제조하였다.
(1) 중간체 A 9-(3-bromo-5-chlorophenyl)-10-phenylanthracene 합성
Figure PCTKR2017012717-appb-I000023
둥근바닥 플라스크에 1,3-다이브로모-5-클로로벤젠 (1,3-dibromo-5-chlorobenzene) (50 g, 167.7 mmol), (10-phenylanthracen-9-yl)boronic acid (54.4 g, 201.2 mmol), 테트라키스(트리페닐포스핀)팔라듐(0) (9.7 g, 8.4 mmol), 탄산칼륨 (92.4 g, 670 mmol), 에탄올 500 ml, 물 300 ml를 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 여과하여 크루드 상태의 생성물을 얻는다. 여과된 크루드를 MC에 가열하여 녹인 후 실리카겔에 감압 여과한 후 농축하여 재결정하여, 중간체 A 9-(3-bromo-5-chlorophenyl)-10-phenylanthracene를 58 g 수득하였다.
Figure PCTKR2017012717-appb-I000024
둥근바닥 플라스크에 중간체 A (20 g, 40.7 mmol), 2-Naphthylboronic acid (8.34 g, 48.8 mmol), 테트라키스(트리페닐포스핀)팔라듐(0) (2.35 g, 2 mmol), 탄산칼륨 (16.9 g, 122 mmol) 톨루엔 200 mL, 에탄올 100 mL, 물 100 mL를 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 여과하여 크루드 상태의 생성물을 얻는다. 여과된 크루드를 MC에 가열하여 녹인 후 실리카겔에 감압 여과한 후 농축하여 재결정하여, 18 g의 9-(3-chloro-5-(naphthalen-2-yl)phenyl)-10-phenylanthracene을 수득하였다.
Figure PCTKR2017012717-appb-I000025
둥근바닥 플라스크에 9-(3-chloro-5-(naphthalen-2-yl)phenyl)-10-phenylanthracene (18 g, 36.7 mmol), pinacoldiborane (11.2 g, 44.1 mmol), 팔라듐아세테이트 (0.41 g, 1.83 mmol), Sphos (1.51 g, 3.67 mmol)와 포타슘포스페이트 (23.4 g, 110 mmol)를 다이옥산 300 mL에 넣고 24시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 셀라이트/실리카/셀라이트 컬럼(50 g/50 g/50 g)을 제조한 후, 여과하고 1리터의 다이옥산 용액을 더 흘려준 후 농축하여 17.8 g의 4,4,5,5-tetramethyl-2-(3-(naphthalen-2-yl)-5-(10-phenylanthracen-9-yl)phenyl)-1,3,2-dioxaborolane을 수득하였다.
Figure PCTKR2017012717-appb-I000026
둥근바닥 플라스크에 4,4,5,5-tetramethyl-2-(3-(naphthalen-2-yl)-5-(10-phenylanthracen-9-yl)phenyl)-1,3,2-dioxaborolane (17.5 g, 30 mmol), 2-브로모-1,10-페난트롤린(2-bromo-1,10-phenanthroline) (9.33 g, 36 mmol), 테트라키스(트리페닐포스핀)팔라듐(0) (1.73g, 1.5 mmol), 탄산칼륨 (10.35 g, 75 mmol), 톨루엔 200 mL, 에탄올 100 mL, 물 100 mL를 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 여과하여 크루드 상태의 생성물을 얻었다. 여과된 크루드를 MC에 가열하여 녹인 후 실리카겔에 감압 여과한 후 농축하여 재결정하여, 14 g의 화합물을 수득하였다.
3. 화합물 1-10
화합물 1-10로 표시된 2-(5-(10-phenylanthracen-9-yl)-4'-(pyrimidin-2-yl)-[1,1'-biphenyl]-3-yl)-1,10-phenanthroline 을 아래와 같은 반응들을 이용해 제조하였다.
Figure PCTKR2017012717-appb-I000027
둥근바닥 플라스크에 중간체 A (35 g, 78.9 mmol), 2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidine (26.7 g, 94.7 mmol), 테트라키스(트리페닐포스핀)팔라듐(0) (4.56 g, 3.95 mmol), 탄산칼륨 (27 g, 197 mmol), 톨루엔 300 mL, 에탄올 150 mL, 물 150 mL를 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 여과하여 크루드 상태의 생성물을 얻었다. 여과된 크루드를 MC에 가열하여 녹인 후 실리카겔에 감압 여과한 후 농축하여 재결정하여, 33 g의 2-(3'-chloro-5'-(10-phenylanthracen-9-yl)-[1,1'-biphenyl]-4-yl)pyrimidine을 수득하였다.
Figure PCTKR2017012717-appb-I000028
둥근바닥 플라스크에 2-(3'-chloro-5'-(10-phenylanthracen-9-yl)-[1,1'-biphenyl]-4-yl)pyrimidine (30 g, 57.8 mmol), pinacoldiborane (17.6 g, 69.3 mmol), 팔라듐아세테이트 (0.65 g, 2.9 mmol), Sphos (2.38 g, 5.8 mmol)와 포타슘포스페이트 (36.8 g, 173 mmol)를 다이옥산 300 mL에 넣고 24시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 셀라이트/실리카/셀라이트 컬럼(50 g/50 g/50 g)을 제조 한 후, 여과하고 1리터의 다이옥산 용액을 더 흘려준 후 농축하여 31 g의 2-(3'-(10-phenylanthracen-9-yl)-5'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1'-biphenyl]-4-yl)pyrimidine을 수득하였다.
Figure PCTKR2017012717-appb-I000029
둥근바닥 플라스크에 2-(3'-(10-phenylanthracen-9-yl)-5'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1'-biphenyl]-4-yl)pyrimidine (30 g, 49.1 mmol), 2-브로모-1,10-페난트롤린(2-bromo-1,10-phenanthroline) (15.3 g, 59 mmol), 테트라키스(트리페닐포스핀)팔라듐(0) (2.84 g, 2.46 mmol), 탄산칼륨 (17 g, 123 mmol), 톨루엔 300 mL, 에탄올 150 mL, 물 150 mL를 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 여과하여 크루드 상태의 생성물을 얻었다. 여과된 크루드를 MC에 가열하여 녹인 후 실리카겔에 감압 여과한 후 농축하여 재결정하여, 24.6 g의 화합물을 수득하였다.
4. 화합물 1-16
화합물 1-16로 표시된 3-(3-(10-phenylanthracen-9-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)quinoline을 아래와 같은 반응들을 이용해 제조하였다.
Figure PCTKR2017012717-appb-I000030
둥근바닥 플라스크에 중간체 A (25 g, 56.3 mmol), 3-Quinolineboronic acid (11.7 g, 67.7 mmol), 테트라키스(트리페닐포스핀)팔라듐(0) (3.25 g, 2.8 mmol), 탄산칼륨 (31 g, 224.6 mmol) 톨루엔 200 mL, 에탄올 100 mL, 물 100 mL를 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 여과하여 크루드 상태의 생성물을 얻는다. 여과된 크루드를 MC에 가열하여 녹인 후 실리카겔에 감압 여과한 후 농축하여 재결정하여, 21 g의 3-(3-chloro-5-(10-phenylanthracen-9-yl)phenyl)quinoline을 수득하였다.
Figure PCTKR2017012717-appb-I000031
둥근바닥 플라스크에 3-(3-chloro-5-(10-phenylanthracen-9-yl)phenyl)quinoline (19.3 g, 39.2 mmol), pinacoldiborane (12 g, 47.1 mmol), 팔라듐아세테이트 (0.44 g, 1.96 mmol), Sphos (1.61 g, 3.92 mmol)와 포타슘포스페이트 (25 g, 118 mmol)를 다이옥산 300 mL에 넣고 24시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 셀라이트/실리카/셀라이트 컬럼(50 g/50 g/50 g)을 제조한 후, 여과하고 1리터의 다이옥산 용액을 더 흘려준 후 농축하여 20.2 g의 3-(3-(10-phenylanthracen-9-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)quinoline을 수득하였다.
Figure PCTKR2017012717-appb-I000032
둥근바닥 플라스크에 3-(3-(10-phenylanthracen-9-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)quinoline (20 g, 34.3 mmol), 2-브로모-1,10-페난트롤린(2-bromo-1,10-phenanthroline) (10.7 g, 41.3 mmol), 테트라키스(트리페닐포스핀)팔라듐(0) (1.98 g, 1.72 mmol), 탄산칼륨 (12 g, 86.96 mmol), 톨루엔 200 mL, 에탄올 100 mL, 물 100 mL를 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 여과하여 크루드 상태의 생성물을 얻었다. 여과된 크루드를 MC에 가열하여 녹인 후 실리카겔에 감압 여과한 후 농축하여 재결정하여, 16 g의 화합물을 수득하였다.
5. 화합물 1-39
화합물 1-39로 표시된 2-(3-([2,3'-bipyridin]-5-yl)-5-(10-phenylanthracen-9-yl)phenyl)-1,10-phenanthroline을 아래와 같은 반응들을 이용해 제조하였다.
Figure PCTKR2017012717-appb-I000033
둥근바닥 플라스크에 중간체 A (35 g, 78.9 mmol), 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3'-bipyridine (25 g, 88.6 mmol), 테트라키스(트리페닐포스핀)팔라듐(0) (4.25 g, 3.68 mmol), 탄산칼륨 (26 g, 188 mmol), 톨루엔 300 mL, 에탄올 150 mL, 물 150 mL를 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 여과하여 크루드 상태의 생성물을 얻었다. 여과된 크루드를 MC에 가열하여 녹인 후 실리카겔에 감압 여과한 후 농축하여 재결정하여, 26 g의 5-(3-chloro-5-(10-phenylanthracen-9-yl)phenyl)-2,3'-bipyridine을 수득하였다.
Figure PCTKR2017012717-appb-I000034
둥근바닥 플라스크에 5-(3-chloro-5-(10-phenylanthracen-9-yl)phenyl)-2,3'-bipyridine (25 g, 48.1 mmol), pinacoldiborane (13 g, 57.8 mmol), 팔라듐아세테이트 (2 g, 4.9 mmol), Sphos (0.5 g, 2.2 mmol)와 포타슘포스페이트 (27 g, 127 mmol)를 다이옥산 300 mL에 넣고 24시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 셀라이트/실리카/셀라이트 컬럼(50 g/50 g/50 g)을 제조 한 후, 여과하고 1리터의 다이옥산 용액을 더 흘려준 후 농축하여 25 g의 5-(3-(10-phenylanthracen-9-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-2,3'-bipyridine을 수득하였다.
Figure PCTKR2017012717-appb-I000035
둥근바닥 플라스크에 5-(3-(10-phenylanthracen-9-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-2,3'-bipyridine (25 g, 40.9 mmol), 2-브로모-1,10-페난트롤린(2-bromo-1,10-phenanthroline) (13 g, 50.2 mmol), 테트라키스(트리페닐포스핀)팔라듐(0) (2.4 g, 2.1 mmol), 탄산칼륨 (14.5 g, 105 mmol), 톨루엔 300 mL, 에탄올 150 mL, 물 150 mL를 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 여과하여 크루드 상태의 생성물을 얻었다. 여과된 크루드를 MC에 가열하여 녹인 후 실리카겔에 감압 여과한 후 농축하여 재결정하여, 17 g의 화합물을 수득하였다.
6. 화합물 1-40
화합물 1-40로 표시된 2-(6-(10-phenylanthracen-9-yl)pyridin-3-yl)-1,10-phenanthroline을 아래와 같은 반응들을 이용해 제조하였다.
Figure PCTKR2017012717-appb-I000036
둥근바닥 플라스크에 1-(6-bromopyridin-3-yl)ethanone (25 g, 83.9 mmol), (10-phenylanthracen-9-yl)boronic acid (16.8 g, 83.9 mmol), 테트라키스(트리페닐포스핀)팔라듐(0) (5 g, 4.3 mol), 탄산칼륨 (29 g), 톨루엔 200 mL, 에탄올 100 mL, 물 100 mL를 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 여과하여 크루드 상태의 생성물을 얻는다. 여과된 크루드를 MC에 가열하여 녹인 후 실리카겔에 감압 여과한 후 농축하여 재결정하여, 1-(6-(10-phenylanthracen-9-yl)pyridin-3-yl)ethanone을 24 g 수득하였다.
Figure PCTKR2017012717-appb-I000037
둥근바닥 플라스크에 1-(6-(10-phenylanthracen-9-yl)pyridin-3-yl)ethanone (20 g, 53.6 mmol), 8-aminoquinoline-7-carbaldehyde (10 g, 58.1 mmol)와 포타슘카보네이트 (9 g, 160 mmol)를 톨루엔 300 mL와 에탄올 200 mL에 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 농축하여 1리터의 물에 교반하여 씻어서 염기를 제거한 후 실리카겔 컬럼을 한 후 18 g의 화합물을 수득하였다.
7. 화합물 1-71
화합물 1-71로 표시된 2-(5-(10-(4-(pyrimidin-2-yl)phenyl)anthracen-9-yl)pyridin-3-yl)-1,10-phenanthroline을 아래와 같은 반응들을 이용해 제조하였다.
Figure PCTKR2017012717-appb-I000038
둥근바닥 플라스크에 1-(5-bromopyridin-3-yl)ethanone (16.8 g, 83.9 mmol), (10-(4-(pyrimidin-2-yl)phenyl)anthracen-9-yl)boronic acid (31.7 g, 83.9 mmol), 테트라키스(트리페닐포스핀)팔라듐(0) (5 g, 4.3 mmol), 탄산칼륨 (29 g), 톨루엔 200 mL, 에탄올 100 mL, 물 100 mL를 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 여과하여 크루드 상태의 생성물을 얻는다. 여과된 크루드를 MC에 가열하여 녹인 후 실리카겔에 감압 여과한 후 농축하여 재결정하여, 1-(5-(10-phenylanthracen-9-yl)pyridin-3-yl)ethanone을 23 g 수득하였다.
8. 화합물 1-86
화합물 1-86로 표시된 2-(4'-fluoro-5-(10-phenylanthracen-9-yl)-[1,1'-biphenyl]-3-yl)-1,10-phenanthroline을 아래와 같은 반응들을 이용해 제조하였다.
Figure PCTKR2017012717-appb-I000039
둥근바닥 플라스크에 중간체 A (15 g, 33.2 mmol), 4-Fluorophenylboronic acid (5.1 g, 36.5 mmol), 테트라키스(트리페닐포스핀)팔라듐(0) (1.92 g, 1.66 mmol), 탄산칼륨 (11.5 g, 83.3 mmol), 톨루엔 150 mL, 에탄올 75 mL, 물 75 mL를 넣고 12시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 여과하여 크루드 상태의 생성물을 얻었다. 여과된 크루드를 MC에 가열하여 녹인 후 실리카겔에 감압 여과한 후 농축하여 재결정하여, 13 g의 9-(5-chloro-4'-fluoro-[1,1'-biphenyl]-3-yl)-10-phenylanthracene을 수득하였다.
Figure PCTKR2017012717-appb-I000040
둥근바닥 플라스크에 9-(5-chloro-4'-fluoro-[1,1'-biphenyl]-3-yl)-10-phenylanthracene (13 g, 28.3 mmol), pinacoldiborane (8.64 g, 34.0 mmol), 팔라듐아세테이트 (0.31 g, 1.4 mmol), Sphos (1.16 g, 2.83 mmol)와 포타슘포스페이트 (18 g, 85 mmol)를 다이옥산 150 mL에 넣고 24시간 동안 환류 교반시켰다. 반응 종료 후 반응액을 셀라이트/실리카/셀라이트 컬럼(50 g/50 g/50 g)을 제조 한 후, 여과하고 1리터의 다이옥산 용액을 더 흘려준 후 농축하여 13 g의 2-(4'-fluoro-5-(10-phenylanthracen-9-yl)-[1,1'-biphenyl]-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane을 수득하였다.
Figure PCTKR2017012717-appb-I000041
합성한 화합물들의 NMR 데이터는 다음과 같다.
화합물 1H NMR(CDCl3) MS
화합물 1-4
Figure PCTKR2017012717-appb-I000042
1H δ1H NMR (500 MHz, CdCl3) δ 9.73-9.72 (1H, d), 9.18-9.16 (1H, q),8.86-8.86 (1H, d), 8.76-8.75 (1H, t), 8.41-8.38 (1H, q), 8.28-8.25 (1H, m), 8.20-8.19 (1H,q), 7.87-7.81 (2H, m), 7.75-7.73 (4H, m), 7.65-7.61 (3H, m), 7.59-7.56 (1H, m), 7.52-7.51 (2H, m), 7.40-7.35 (4H, m) 510.2
화합물 1-6
Figure PCTKR2017012717-appb-I000043
1H δ9.22 (1H, s), 9.01 (1H, s), 8.40 (2H, s), 8.36 (1H, s), 8.34-8.30 (1H, q), 8.19-8.17 (1H, q), 8.04-8.02 (1H, d), 7.96-7.93 (3H, m), 7.88-7.79 (5H, m), 7.75-7.72 (3H, m), 7.66- 7.57 (4H ,m), 7.51-7.47 (3H, m), 7.35-7.32 (4H, m) 635.2
화합물 1-10
Figure PCTKR2017012717-appb-I000044
1H δ9.09-9.08 (1H, d), 8.83-8.81 (3H, m), 8.56-8.54 (2H, m), 8.40 (1H, s), 8.33-8.32 (1H, q), 8.28-8.27 (1H, d), 8.14-8.13 (1H, d), 7.98-7.97 (2H, d), 7.88 (1H, s)), 7.81-7.58 (11H, m), 7.50-7.48 (1H, d), 7.35-7.29 (4H, m), 7.20-7.18 (1H, t) 663.3
화합물 1-16
Figure PCTKR2017012717-appb-I000045
1H δ9.47-9.46 (1H, d), 9.22-9.21 (1H,q), 9.01-9.00 (1H, t), 8.61-8.60 (1H, d), 8.36-8.34 (1H, d), 8.33-8.32 (1H, t), 8.28-8.26 (1H, q), 8.20-8.17 (2H, q), 8.00-7.99 (1H, t), 7.94-7.90 (3H, m), 7.85-7.80 (2H, q), 7.77-7.72 (3H, m), 7.66-7.51 (7H, m), 7.41-7.35 (4H, m) 636.3
화합물 1-39
Figure PCTKR2017012717-appb-I000046
1H δ9.28-9.27 (1H, q), 9.23-9.21 (2H, m), 8.92-8.91 (1H, t), 8.68-8.67 (1H, q), 8.42-8.40 (1H, m), 8.37-8.35 (1H, d), 8.30-8.27 (3H, m), 8.18-8.17 (1H, d), 7.91-7.87 (4H, m), 7.86-7.82 (2H, q), 7.76-7.73 (2H, m), 7.68-7.66 (1H, t), 7.65-7.62 (2H, m), 7.59-7.56 (1H, m), 7.53-7.51 (2H, m), 7.45-7.42 (1H, m), 7.40-7.36 (4H, m) 663.2
화합물 1-40
Figure PCTKR2017012717-appb-I000047
1H δ9.32-9.31 (1H, d), 9.09-9.07 (1H, d), 8.46-8.44 (1H, d), 8.34-8.32 (1H, d), 8.31-8.29 (1H, d), 7.94-7.86 (2H, q), 7.84-7.82 (1H, q), 7.74-7.70 (5H, m), 7.63-7.50 (4H, m), 7.46-7.44 (1H, d), 7.40-7.33 (5H, m) 510.2
화합물 1-71
Figure PCTKR2017012717-appb-I000048
1H δ9.71 (1H, s), 9.26 (1H, s), 8.65-8.60 (3H, m), 8.31-8.30 (1H, d), 8.27-8.25 (1H, t), 8.27-8.25 (1H, q), 8.14-8.12 (1H, d), 7.99-7.78 (6H, m), 7.69-7.62 (4H, m), 7.37-7.34 (5H, m), 7.28-7.26 (1H, t) 588.2
화합물 1-86
Figure PCTKR2017012717-appb-I000049
1H δ9.21-9.20 (1H, q), 8.79-8.78 (1H, t), 8.34-8.32 (1H, d), 8.28-8.26 (1H, q), 8.24-8.23 (1H, t), 8.17-8.15 (1H, d), 7.90-7.86 (2H, m), 7.85-7.80 (5H, m), 7.74-7.71 (2H, m), 7.65-7.61 (3H, m), 7.59-7.55 (1H, m), 7.53-7.50 (2H, m), 7.38-7.33 (4H, m), 7.20-7.15 (2H, m) 603.3
이하에는, 본 발명에 따른 제조예 1 내지 6으로 제조된 화합물의 유리전이온도와 융용온도를 측정하여 이하의 표 2에 나타내었다.
물질 Tg(oC) Tm(oC)
비교예 BPhen 64 220
제조예 1 화합물 1-4 158.2 330.1
제조예 2 화합물 1-6 179.4 334.5
제조예 3 화합물 1-10 196.0 -
제조예 4 화합물 1-39 191.6 371.6
제조예 5 화합물 1-40 162.9 364.9
제조예 6 화합물 1-71 178.8 357.6
표 2에 기재된 바와 같이 본 발명에 따른 제조예 1 내지 제조예 6의 화합물은, 비교예에 비해 유리전이온도 및 용융온도가 훨씬 높은 것을 알 수 있다. 따라서, 본 발명에 따른 페난트롤린-안트라센 화합물은 비교예에 비해 열적 안정성이 향상되었음을 알 수 있다.
이하에는 전하생성층에 각각 Bphen 및 본 발명에 따른 화합물을 사용하여 유기발광소자를 제조하여 실험하였다.
[유기발광소자의 제조 1: 단층 구조]
1. 비교예 1
발광면적이 2mm × 2mm크기가 되도록 ITO 기판을 패터닝한 후, 이소프로필 알코올과 UV 오존으로 각각 세정을 실시하였다. 이후, ITO기판을 진공 증착 장치의 기판 홀더에 장착하고 진공도가 1×10-7 torr가 되도록 압력을 설정하였다..
먼저, HAT-CN 화합물을 진공 증착하여 5nm 두께로 형성하였다. 이 화합물은 정공주입층으로 작용한다. 이 위에 정공수송층으로 NPB 물질을 35nm 두께로 형성하였다.
이후 CPB 물질을 호스트로, Ir 화합물을 도판트로 약 10% 질량비가 되도록 30nm의 두께로 공증착하여 노란색 발광층을 형성하였다.
이 발광층위에 TmPyPB 화합물을 25nm 두께로 전자수송층을 형성하였다. 이후 BPhen물질에 Li물질을 2% 질량비가 되도록 10nm 두께로 진공 증착하여 전하생성층을 형성하였다. 이후, Al을 100nm 두께로 증착시켜 음극을 형성하여 유기발광소자를 제작하였다.
Figure PCTKR2017012717-appb-I000050
2. 실시예 1
위에 전술한 비교예 1과 동일하게 구성하되, 전하생성층 물질만 화합물 1-40로 바꾸어 유기발광소자를 제작하였다.
PIN OLED의 경우 OLED 구조 내에 전하 수송층에 전기적 도핑을 통하여 저전압 고효율 구동을 실현한다. P 도핑 층에는 정공수송물질에 전자가 희박한 유기물질이나 금속 산화물을 도핑하고, N 도핑 층에는 전자수송물질에 일함수가 낮은 리튬이나 세슘 등의 알칼리 금속을 도핑하게 된다. 도핑된 층은 구동되는 동안 유기물질의 표면 저항을 줄여서 인접 층으로부터 전하 주입을 용이하게 한다. 도핑된 양극층 위에 버퍼층을 도입하여 에너지 밴딩에 의한 저전압 구현, 전하이동도가 높은 소재를 이용한 저전압 구동기술 등이 알려져 있으며 형광과 인광 소재를 적층구조로 제작하여 높은 효율을 얻고 있다.
이하에는 상기 실시예 1 및 비교예 1의 유기발광소자의 전류 밀도, 구동 전압, 전류 효율, 및 외부양자효율을 측정하여 이하의 표 3에 나타내었다.
물질 구동전류J(mA/cm2) 구동전압(Voltage) 전류효율(cd/A) 발광효율(lm/W)
비교예 1 BPhen 10 4.5 56.5 39.4
실시예 1 1-40 10 4.1 55.6 42.6
실시예 1의 구동 전압 및 발광효율이 비교예 1과 비교하여 향상된 것을 알 수 있다.
[유기발광소자의 제조 2: 2층 구조]
1. 비교예 2
발광면적이 2mm × 2mm크기가 되도록 ITO 기판을 패터닝한 후, 이소프로필 알코올과 UV 오존으로 각각 세정을 실시하였다. 이후, ITO기판을 진공 증착 장치의 기판 홀더에 장착하고 진공도가 1×10-7 torr가 되도록 압력을 잡았다.
먼저, HAT-CN 화합물을 진공 증착하여 5nm 두께로 형성하였다. 이 화합물은 제 1 정공주입층으로 작용한다. 이 위에 제 1 정공수송층으로 NPB 물질을 35nm 두께로 형성하였다.
이후 CPB 물질을 호스트로, Ir 화합물을 도판트로 약 10% 질량비가 되도록 30nm의 두께로 공증착하여 노란색 제 1 발광층을 형성하였다.
이 발광층위에 TmPyPB 화합물을 25nm 두께로 제 1 전자수송층을 형성하였다. 이후 BPhen물질에 Li물질을 2% 질량비가 되도록 10nm 두께로 공증착하여 N형 전하생성층을 형성하였다. 이후, P형 전하생성층으로 HAT-CN 화합물을 5nm 두께로 진공 증착하였다. 이물질은 제 2 정공주입층으로도 활용된다. 이 위에 제 2 정공수송층으로 NPB 물질을 35nm 두께로 형성하였다.
이후 CPB 물질을 호스트로, Ir 화합물을 도판트로 약 10% 질량비가 되도록 30nm의 두께로 공증착하여 노란색 제 2 발광층을 형성하였다. 이 발광층위에 TmPyPB 화합물을 25nm 두께로 제 2 전자수송층을 형성하였다. 이후 LiF 물질을 전자주입층으로 1nm 두께로 진공 증착하였다. 마지막으로 Al을 100nm 두께로 증착시켜 음극을 형성하여 유기 발광소자를 제작하였다.
2. 실시예 2
위에 전술한 비교예 2와 동일하게 구성하되, N형 전하생성층의 유기물질만 화합물 1-4로 바꾸어 유기발광소자를 제작하였다.
3. 실시예 3
위에 전술한 비교예 2와 동일하게 구성하되, N형 전하생성층의 유기물질만 화합물 1-6로 바꾸어 유기발광소자를 제작하였다.
4. 실시예 4
위에 전술한 비교예 2와 동일하게 구성하되, N형 전하생성층의 유기물질만 화합물 1-10로 바꾸어 유기발광소자를 제작하였다.
5. 실시예 5
위에 전술한 비교예 2와 동일하게 구성하되, N형 전하생성층의 유기물질만 화합물 1-39로 바꾸어 유기발광소자를 제작하였다.
6. 실시예 6
위에 전술한 비교예 2와 동일하게 구성하되, N형 전하생성층의 유기물질만 화합물 1-71로 바꾸어 유기발광소자를 제작하였다.
이하 표 4에는 상기 실시예 2 내지 5과 비교예 2의 유기발광소자의 전류 밀도, 구동 전압, 전류 효율, 및 외부양자효율을 측정하여 나타내었다.
물질 구동전류 (mA/ cm2 ) 구동전압 (Voltage) 전류효율(cd/A) 발광 효율 (lm/W) EQE ( % )
비교예 2 BPhen 10 9.40 107.8 36.0 35
실시예 2 1-4 10 8.44 121.8 45.3 37.5
실시예 3 1-6 10 8.60 121.2 44.3 40.4
실시예 4 1-10 10 8.56 122.8 45.1 40.6
실시예 5 1-39 10 8.81 123.3 44.0 39.7
실시예 6 1-71 10 8.56 122.8 45.1 40.6
표 4에 기재된 바와 같이, 유기발광소자에 영향을 미치는 구동 전압(V), 전류 효율(cd/A), 및 외부양자효율(QE)에 있어서, 실시예 2 내지 실시예 6은 비교예 2와 비교하였을 때 그 크기가 크게 향상된 것을 알 수 있다. 따라서 본 발명에 따른 페난트롤린-안트라센 화합물을 포함하는 유기발광소자는 종래 화합물을 포함하는 유기발광소자에 비해 수명이 개선되고, 효율을 향상시킬 수 있음을 알 수 있다.
본 발명은 반드시 이러한 실시예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (8)

  1. 하기 화학식 1 내지 화학식 2로 표시되는 페난트롤린(phenanthroline)-안트라센(anthracene) 화합물.
    [화학식 1]
    Figure PCTKR2017012717-appb-I000051
    [화학식 2]
    Figure PCTKR2017012717-appb-I000052
    상기 화학식 1 또는 화학식 2에서,
    X1, X2, X3 및 X4는 탄소 또는 질소이며, R1 내지 R6는 각각 독립적으로, 수소, 치환 또는 치환되지 않은 페닐, 알킬페닐, 비페닐, 알킬비페닐, 할로페닐, 알콕시페닐, 할로알콕시페닐, 시아노페닐, 실릴페닐, 나프틸, 알킬나프틸, 할로나프틸, 시아노나프틸, 실릴나프틸, 피리딜, 알킬피리딜, 할로피리딜, 시아노피리딜, 알콕시피리딜, 실릴피리딜, 피리미딜, 할로피리미딜, 시아노피리미딜, 알콕시피리미딜, 퀴놀리닐, 이소퀴놀리닐, 퀴녹살리닐, 피라지닐, 퀴나졸리닐, 나프틸리디닐, 벤조티오페닐, 벤조퓨라닐, 디벤조티오페닐, 아릴티아졸릴, 디벤조퓨라닐, 플루오레닐, 카바조일, 이미다졸릴, 카볼리닐, 페난쓰레닐, 터페닐, 터피리디닐, 트리페닐레닐, 플루오르안테닐 및 디아카플루오레닐 중에서 선택되는 페난트롤린-안트라센 화합물.
  2. 제1항에 있어서,
    하기 표시되는 화합물들 중에서 선택되는 페난트롤린-안트라센 화합물.
    Figure PCTKR2017012717-appb-I000053
    Figure PCTKR2017012717-appb-I000054
  3. 제1항 및 제2항 중 어느 한 항에 있어서,
    하기 표시되는 화합물들 중에서 선택되는 페난트롤린-안트라센 화합물.
    Figure PCTKR2017012717-appb-I000055
    Figure PCTKR2017012717-appb-I000056
    Figure PCTKR2017012717-appb-I000057
    Figure PCTKR2017012717-appb-I000058
    Figure PCTKR2017012717-appb-I000059
    Figure PCTKR2017012717-appb-I000060
    Figure PCTKR2017012717-appb-I000061
    Figure PCTKR2017012717-appb-I000062
    Figure PCTKR2017012717-appb-I000063
    Figure PCTKR2017012717-appb-I000064
  4. 제1전극;
    제2전극; 및
    상기 제1전극 및 상기 제2전극 사이에 위치하며 빛을 발광하는 유기물층을 포함하며,
    상기 유기물층은 복수의 층으로 이루어지며, 적어도 어느 하나의 층은 제1항 내지 제4항 중 어느 한 항에 따른 페난트롤린-안트라센 화합물을 포함하는 유기발광소자.
  5. 제4항에 있어서,
    상기 적어도 하나의 층은 전하생성층(Charge Generation Layer; CGL)을 포함하는 것을 특징으로 하는 유기발광소자.
  6. 제 5항에 있어서,
    상기 전하생성층(Charge Generation Layer; CGL)은 N형인 것을 특징으로 하는 유기발광소자.
  7. 제 6항에 있어서,
    상기 전하생성층은 알칼리금속 및 알칼리토금속 중 어느 하나가 도핑되어 있는 것을 특징으로 하며,
    상기 알칼리금속은 Li, Na, K, Rb 및 Cs 중에서 선택되는 적어도 어느 하나를 포함하고,
    상기 알칼리토금속은 Be, Mg, Ca, Sr 및 Ba 중에서 선택되는 적어도 어느 하나를 포함하는 것을 특징으로 하는 유기발광소자.
  8. 제1전극;
    제2전극; 및
    상기 제1전극과 상기 제2전극 사이에 위치하며 제1발광층을 포함하는 제1발광부;
    상기 제2전극과 상기 제1발광부 사이에 위치하며 제2발광층을 포함하는 제2발광부;
    상기 제1발광부와 상기 제2발광부 사이에 위치하는 전하생성층을 포함하며,
    상기 전하생성층은 제1항 내지 3항 중 어느 한 항에 따른 페난트롤린-안트라센 화합물을 포함하는 유기발광소자.
PCT/KR2017/012717 2017-11-10 2017-11-10 페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자 WO2019093547A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/012717 WO2019093547A1 (ko) 2017-11-10 2017-11-10 페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/012717 WO2019093547A1 (ko) 2017-11-10 2017-11-10 페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자

Publications (1)

Publication Number Publication Date
WO2019093547A1 true WO2019093547A1 (ko) 2019-05-16

Family

ID=66438445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012717 WO2019093547A1 (ko) 2017-11-10 2017-11-10 페난트롤린-안트라센 화합물 및 이를 포함하는 유기발광소자

Country Status (1)

Country Link
WO (1) WO2019093547A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111253393A (zh) * 2020-02-05 2020-06-09 北京大学 长寿命三线态激子限域材料及其在oled器件中的应用
JPWO2022181197A1 (ko) * 2021-02-24 2022-09-01

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100007143A (ko) * 2008-07-11 2010-01-22 주식회사 엘지화학 신규한 안트라센 유도체 및 이를 이용한 유기전자소자
US20150228921A1 (en) * 2014-02-12 2015-08-13 Sony Corporation Organic electroluminescent element, display apparatus, and manufacturing method of organic electroluminescent element
KR20150099750A (ko) * 2012-12-21 2015-09-01 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네선스 소자 및 전자 기기
KR20160150185A (ko) * 2015-06-18 2016-12-29 엘지디스플레이 주식회사 유기발광소자
KR20170116500A (ko) * 2016-04-11 2017-10-19 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100007143A (ko) * 2008-07-11 2010-01-22 주식회사 엘지화학 신규한 안트라센 유도체 및 이를 이용한 유기전자소자
KR20150099750A (ko) * 2012-12-21 2015-09-01 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네선스 소자 및 전자 기기
US20150228921A1 (en) * 2014-02-12 2015-08-13 Sony Corporation Organic electroluminescent element, display apparatus, and manufacturing method of organic electroluminescent element
KR20160150185A (ko) * 2015-06-18 2016-12-29 엘지디스플레이 주식회사 유기발광소자
KR20170116500A (ko) * 2016-04-11 2017-10-19 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111253393A (zh) * 2020-02-05 2020-06-09 北京大学 长寿命三线态激子限域材料及其在oled器件中的应用
CN111253393B (zh) * 2020-02-05 2022-01-25 北京大学 长寿命三线态激子限域材料及其在oled器件中的应用
JPWO2022181197A1 (ko) * 2021-02-24 2022-09-01
WO2022181197A1 (ja) * 2021-02-24 2022-09-01 東レ株式会社 有機el素子用材料、有機el素子、表示装置および照明装置
JP7231108B2 (ja) 2021-02-24 2023-03-01 東レ株式会社 有機el素子用材料、有機el素子、表示装置および照明装置

Similar Documents

Publication Publication Date Title
WO2020122460A1 (ko) 유기 광전자 소자용 화합물, 유기 광전자 소자 및 표시 장치
WO2020027389A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2011055934A9 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2020009519A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2014129869A1 (ko) 유기 전계 발광 소자
WO2019203550A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2011059271A2 (ko) 신규한 축합고리 화합물 및 이를 이용한 유기전자소자
WO2021080368A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2019098695A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2014175627A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2019240532A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017138755A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기전계발광소자
WO2014084612A1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2019221487A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022164086A1 (ko) 유기 금속 착물 및 이를 포함한 유기전계발광소자
WO2020060286A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
WO2015008940A1 (ko) 유기 전계 발광 소자
WO2020122327A1 (ko) 유기 전계 발광 소자 및 유기 전계 발광 소자용 스피로 화합물
WO2019013526A1 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
WO2016111515A1 (ko) 유기 전계 발광 소자
WO2020045822A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2014092481A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015099450A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015088249A1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2017171375A1 (ko) 화합물 및 이를 포함하는 유기 전자 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931699

Country of ref document: EP

Kind code of ref document: A1