WO2015008940A1 - 유기 전계 발광 소자 - Google Patents

유기 전계 발광 소자 Download PDF

Info

Publication number
WO2015008940A1
WO2015008940A1 PCT/KR2014/005433 KR2014005433W WO2015008940A1 WO 2015008940 A1 WO2015008940 A1 WO 2015008940A1 KR 2014005433 W KR2014005433 W KR 2014005433W WO 2015008940 A1 WO2015008940 A1 WO 2015008940A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
aryl
host
Prior art date
Application number
PCT/KR2014/005433
Other languages
English (en)
French (fr)
Inventor
김태형
박호철
백영미
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2015008940A1 publication Critical patent/WO2015008940A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Definitions

  • the present invention relates to an organic electroluminescent device comprising at least one organic material layer, and more particularly, to an organic electroluminescent device having improved performance and lifespan by mixing two different host materials as light emitting layer components. will be.
  • the material used as the organic material layer may be classified into a light emitting material, a hole injection material, a hole transport material, an electron transport material, an electron injection material and the like according to its function.
  • the light emitting material may be classified into blue, green, and red light emitting materials, and yellow and orange light emitting materials required to realize a better natural color according to the light emitting color.
  • a host / dopant system may be used as a light emitting material.
  • the dopant material may be divided into a fluorescent dopant using an organic material and a phosphorescent dopant using a metal complex compound containing heavy atoms such as Ir and Pt.
  • a metal complex compound containing heavy atoms such as Ir and Pt.
  • NPB hole blocking layer
  • BCP hole blocking layer
  • Alq 3 and the like are widely known as the hole blocking layer and the electron transport layer
  • anthracene derivatives have been reported as fluorescent dopant / host materials as light emitting materials.
  • phosphorescent materials having great advantages in terms of efficiency improvement among the light emitting materials include metal complex compounds including Ir such as Firpic, Ir (ppy) 3 , (acac) Ir (btp) 2, and the like. Green and red dopant materials are used, and CBP is a phosphorescent host material.
  • an object of the present invention is to provide an organic electroluminescent device having improved characteristics such as driving voltage, luminous efficiency and lifetime.
  • the present invention is an anode; cathode; And one or more organic material layers interposed between the anode and the cathode, wherein at least one of the one or more organic material layers includes different first and second hosts in a ratio of 1:99 to 99: 1.
  • the first host is a compound represented by the following Chemical Formula 1
  • the second host provides an organic EL device, wherein the triplet energy is a hole transport compound having 2.3 eV or more.
  • Y 1 to Y 4 are the same as or different from each other, and each independently N or CR 3 , wherein one of Y 1 and Y 2 , Y 2 and Y 3 , or Y 3 and Y 4 is represented by the following Chemical Formula 2 Combine with a compound to form a condensed ring,
  • Y 5 to Y 8 are the same as or different from each other, and each independently N or CR 4 ,
  • X 1 and X 2 are the same as or different from each other, and each independently, O, S, Se, N (Ar 1 ), C (Ar 2 ) (Ar 3 ) and Si (Ar 4 ) (Ar 5 ) Selected from the group, wherein at least one of X 1 and X 2 is N (Ar 1 ),
  • R 1 to R 4 and Ar 1 to Ar 5 are the same as or different from each other, and each independently hydrogen, deuterium, a halogen group, a cyano group, a nitro group, an amino group, a substituted or unsubstituted C 1 -C 40 alkyl group , A substituted or unsubstituted C 2 ⁇ C 40 alkenyl group, a substituted or unsubstituted C 2 ⁇ C 40 Alkynyl group, a substituted or unsubstituted C 3 ⁇ C 40 Cycloalkyl group, a substituted or unsubstituted nuclear atom A heterocycloalkyl group of 3 to 40, a substituted or unsubstituted C 6 -C 60 aryl group, a substituted or unsubstituted heteroaryl group of 5 to 60 nuclear atoms, a substituted or unsubstituted C 1 -C 40 Alkyloxy group, substituted or unsubstituted C 6
  • a group, an alkyl boron group, an aryl boron group, an aryl phosphine group, an aryl phosphine oxide group, and an aryl amine group are substituted, they are each independently deuterium, halogen, cyano group, nitro group, amino group, C 1 to C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 of the alkynyl group, C 3 ⁇ C 40 cycloalkyl group, a number of nuclear atoms of 3 to 40 heterocycloalkyl group, C 6 ⁇ C 40 aryl group, a nuclear Hetero
  • the organic material layer including the first host and the second host may be a light emitting layer.
  • the light emitting layer may include a dopant, and the dopant may be a metal complex compound.
  • the compound represented by Chemical Formula 1 of the present invention has excellent thermal stability and phosphorescence property, it may be used as a material of the organic material layer of the organic EL device.
  • an organic electroluminescent device having excellent light emission performance, low driving voltage, high efficiency, and long life compared to a conventional host material can be manufactured, and in particular, An organic electroluminescent device using a compound represented by 1 as a first host and a hole transport compound having a triplet energy of 2.3 eV or more as a second host can manufacture a full color display panel with greatly improved performance and lifespan.
  • the present invention is characterized in that at least one component of one or more layers of organic material layers interposed between the anode and the cathode of the organic electroluminescent device is mixed with each other in a specific composition.
  • the first host is a compound represented by the following formula (1)
  • the second host may be a hole transport compound having a triplet energy of 2.3 eV or more.
  • triplet energy refers to an electronic state in which a spin quantum number is 1 in a molecule, and means energy corresponding to the highest identifiable energy form in the phosphorescence spectrum.
  • triplet energy refers to an electronic state in which a spin quantum number is 1 in a molecule and corresponds to energy corresponding to the highest identifiable energy form in the phosphorescence spectrum.
  • the compound of Formula 1 which is used as the first host, has a condensed carbon ring or a condensed heterocyclic moiety, preferably a condensed heterocyclic moiety, connected to an indole-based skeleton, and the energy level is increased by various substituents. By adjusting it has a wide bandgap (sky blue ⁇ red). Therefore, when the compound represented by Chemical Formula 1 is used in the organic material layer of the organic electroluminescent device, the phosphorescence property may be improved, and the electron and / or hole transport ability and the light emission capability may be enhanced.
  • the compound represented by Formula 1 of the present invention exhibits excellent properties as a light emitting host material compared to conventional CBP due to an indole-based skeleton, it is more preferably used as a host material of the light emitting layer.
  • the compound represented by Formula 1 has various aromatic rings bonded to the indole-based skeleton as a substituent to significantly increase the molecular weight of the compound, thereby improving the glass transition temperature and thereby higher than the conventional CBP. May have thermal stability.
  • the entire molecule since the entire molecule has a bipolar (bipolar) nature of the various aromatic ring substituents to increase the binding force between the hole and the electron, it can exhibit excellent properties as a host material of the light emitting layer compared to the conventional CBP.
  • the substituent bonded to the indole-based backbone is a hole transport compound having a triplet energy of 2.3 eV or more.
  • the second host an organic EL device having excellent light emission performance, low driving voltage, high efficiency and long life can be manufactured.
  • energy transfer from the host to the dopant is important.
  • the host has triplet energy larger than the dopant, the energy transferred to the dopant can be prevented from being reversed to the host to have high luminous efficiency.
  • the role of the host is also important in terms of hole transport.
  • the second host according to the present invention has hole transporting properties and triplet energy is 2.3 eV or more, carrier transfer to the dopant is easy and is also easy from the viewpoint of confining energy.
  • the bandgap is equal to or greater than the compound of Formula 1 or higher in LUMO value, when mixed with the compound of Formula 1 in an appropriate ratio, the injected hole and the electron are balanced to balance the organic light emitting device. Can help improve overall performance, especially lifespan.
  • At least one of the one or more organic material layers includes the compound represented by Formula 1 as a first host.
  • Y 1 to Y 4 are the same as or different from each other, and each independently N or CR 3 . Wherein one of Y 1 and Y 2 , Y 2 and Y 3 , or Y 3 and Y 4 is combined with a compound represented by Formula 2 to form a condensed ring.
  • all of Y 1 to Y 4 which do not form a condensed ring are preferably CR 3 , and a plurality of R 3 may be identical to or different from each other.
  • Y 5 to Y 8 are the same as or different from each other, and each independently, N or CR 4 .
  • X 1 and X 2 are each independently O, S, Se, N (Ar 1 ), C (Ar 2 ) (Ar 3 ) and Si (Ar 4 ) (Ar 5 ), wherein at least one of X 1 and X 2 may be N (Ar 1 ).
  • X 1 and X 2 of the formula ( 1 ) is preferably each independently N (Ar 1 ) or S. That is, X 1 is N (Ar 1) a, or X 2 is S, X 1 is S, and may be X 2 is N (Ar 1), X 1 and X 2 are both more preferably N (Ar 1) Do.
  • each Ar 1 may be the same or different from each other.
  • R 1 to R 4 and Ar 1 to Ar 5 are the same as or different from each other, and each independently, hydrogen, deuterium, halogen, cyano, nitro, Amino group, substituted or unsubstituted C 1 to C 40 alkyl group, substituted or unsubstituted C 2 to C 40 alkenyl group, substituted or unsubstituted C 2 to C 40 alkynyl group, substituted or unsubstituted C 3 A cycloalkyl group of ⁇ C 40 , a substituted or unsubstituted heterocycloalkyl group of 3 to 40 nuclear atoms, a substituted or unsubstituted C 6 to C 60 aryl group, a substituted or unsubstituted heteroatom of 5 to 60 hetero atoms Aryl group, substituted or unsubstituted C 1 to C 40 alkyloxy group, substituted or unsubstituted C 6 to
  • a group, an alkyl boron group, an aryl boron group, an aryl phosphine group, an aryl phosphine oxide group and an arylamine group are each independently deuterium, halogen, cyano group, nitro group, amino group, C 1 -C 40 alkyl group, C 2- C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, nuclear atom 3 to 40 heterocycloalkyl group, C 6 to C 40 aryl group, nuclear atom 5 to 40 Heteroaryl group, C 1 ⁇ C 40 alkyloxy group, C 6
  • R 1 to R 4 of Formula 1 are each independently hydrogen, an aryl group of C 6 ⁇ C 60 (eg phenyl, naphthyl, bis Phenyl) or heteroaryl groups having 5 to 60 nuclear atoms (e.g., pyridine, pyrimidine, triazine, quinazoline).
  • aryl group of C 6 ⁇ C 60 eg phenyl, naphthyl, bis Phenyl
  • heteroaryl groups having 5 to 60 nuclear atoms e.g., pyridine, pyrimidine, triazine, quinazoline.
  • Ar 1 to Ar 5 are the same as or different from each other, and each independently from the group consisting of a C 6 ⁇ C 60 aryl group, a heteroaryl group of 5 to 60 nuclear atoms and an arylamine group of C 6 ⁇ C 60 It is preferred to be selected.
  • the compound represented by the formula (1) of the present invention can be more specified as a compound of any one of the compounds represented by the following formula (3).
  • X 1 , X 2, and R 1 to R 4 are the same as defined in Formula 1, respectively.
  • X 1 and X 2 of the formula ( 1 ) is preferably each independently N (Ar 1 ) or S. That is, it is preferable that X 1 is N (Ar 1 ) and X 2 is S, X 1 is S and X 2 is N (Ar 1 ), or both X 1 and X 2 are N (Ar 1 ).
  • R 1 to R 4 are the same as or different from each other, and each independently hydrogen, C 6 to C 60 aryl group (eg, phenyl, naphthyl, bisphenyl) or a hetero atom having 5 to 60 nuclear atoms; Preferred are aryl groups such as pyridine, pyrimidine, triazine, quinazoline.
  • aryl groups such as pyridine, pyrimidine, triazine, quinazoline.
  • Ar 1 is the same as or different from each other, each independently selected from the group consisting of a C 6 ⁇ C 60 aryl group, a heteroaryl group of 5 to 60 nuclear atoms, and an arylamine group of C 6 ⁇ C 60 desirable.
  • alkyl in the present invention is a monovalent substituent derived from a straight or branched chain saturated hydrocarbon having 1 to 40 carbon atoms, and examples thereof include methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, and iso-amyl. And hexyl.
  • alkenyl is a monovalent substituent derived from a C2-C40 straight or branched chain unsaturated hydrocarbon having one or more carbon-carbon double bonds. Examples thereof include vinyl and allyl. (allyl), isopropenyl, 2-butenyl, and the like.
  • Alkynyl in the present invention is a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having one or more carbon-carbon triple bonds. Examples thereof include ethynyl, 2-propynyl etc. are mentioned.
  • Aryl in the present invention means a monovalent substituent derived from an aromatic hydrocarbon having 6 to 60 carbon atoms combined with a single ring or two or more rings.
  • a form in which two or more rings are pendant or condensed with each other may also be included. Examples of such aryls include phenyl, naphthyl, phenanthryl, anthryl and the like.
  • Heteroaryl in the present invention means a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 40 nuclear atoms. At least one carbon in the ring, preferably 1 to 3 carbons, is substituted with a heteroatom such as N, O, S or Se.
  • a form in which two or more rings are simply attached or condensed with each other may be included, and is also construed to include a form condensed with an aryl group.
  • heteroaryl examples include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolinzinyl, indolyl ( polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carbazolyl, 2-furanyl, N-imidazolyl, 2-isoxazolyl , 2-pyridinyl, 2-pyrimidinyl, and the like.
  • 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolinzinyl, indolyl ( polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carbazolyl, 2-furany
  • aryloxy is a monovalent substituent represented by RO-, wherein R means aryl having 5 to 60 carbon atoms. Examples of such aryloxy include phenyloxy, naphthyloxy, diphenyloxy and the like.
  • alkyloxy is a monovalent substituent represented by R'O-, wherein R 'means 1 to 40 alkyl and has a linear, branched or cyclic structure.
  • R'O- monovalent substituent represented by R'O-, wherein R 'means 1 to 40 alkyl and has a linear, branched or cyclic structure.
  • alkyloxy include methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, pentoxy and the like.
  • Arylamine in the present invention means an amine substituted with aryl having 6 to 60 carbon atoms.
  • Cycloalkyl in the present invention means a monovalent substituent derived from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms.
  • Examples of such cycloalkyl include cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine and the like.
  • Heterocycloalkyl in the present invention means a monovalent substituent derived from a non-aromatic hydrocarbon having 3 to 40 nuclear atoms, wherein at least one carbon in the ring, preferably 1 to 3 carbons is N, O, Substituted with a hetero atom such as S or Se.
  • heterocycloalkyl include morpholine, piperazine and the like.
  • alkylsilyl means silyl substituted with alkyl having 1 to 40 carbon atoms
  • arylsilyl means silyl substituted with aryl having 5 to 40 carbon atoms
  • Condensed ring in the present invention means a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring or a combination thereof.
  • the compound represented by the formula (1) of the present invention described above may be further embodied as a compound represented by the following formula, for example, the following formulas C1 to C66.
  • the compound represented by the formula (1) of the present invention is not limited by those illustrated below.
  • R 1 to R 4 are as defined above, wherein a plurality of R 3 and R 4 may be the same or different from each other.
  • Ar 1 to Ar 5 is preferably as defined above, selected from the group consisting of an aryl amine of the C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, and a C 6 ⁇ C 60 of Do.
  • Ar 1 to Ar 5 may be the same or different from each other even if they are the same, and each independently, it is more preferably selected from the following substituent (functional group) groups (S1-S206).
  • At least one of the plurality of Ar 1 is a substituent having a structure including pyridine, pyrimidine, triazine, quinazoline.
  • the compound of formula 1 of the present invention can be synthesized in various ways with reference to the following synthesis examples. Detailed synthesis procedures for the compounds of the present invention will be described in detail in the synthesis examples described below.
  • the second host mixed with the first host described above may use a hole transport compound having a triplet energy of 2.3 eV or more.
  • Compounds usable as the second host include compounds having one or more electron donating groups such as carbazole, acridine, arylamine group, fluorene group and the like and having hole transporting properties.
  • the compound may include two or more kinds selected from the group consisting of an arylamine group, a carbazole group, a fluorene group, and an acridine.
  • the mixing ratio of the first host and the second host may range from 1:99 to 99: 1, and preferably, the ratio of the first host is high.
  • the use ratio of 1st host and 2nd host is 51-99: 1-49 weight ratio.
  • the 2nd host compound which concerns on this invention is specifically selected from the compound group which consists of the following structures. However, it is not limited thereto.
  • another aspect of the present invention relates to an organic electroluminescent device comprising the first host and the second host in at least one of the organic material layer.
  • the organic electroluminescent device comprises an anode, a cathode and at least one organic layer interposed between the anode and the cathode, at least one of the at least one organic layer
  • the first host and the second host described above are included in a ratio of 1:99 to 99: 1.
  • the first host and the second host are a hole transport compound having a compound represented by the following formula (1) and triplet energy of 2.3 eV or more, respectively.
  • the at least one organic material layer may be any one or more of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer, it is preferable that the organic material layer including the first host and the second host is a light emitting layer.
  • the light emitting layer of the organic electroluminescent device according to the present invention may include a dopant, which is a conventional metal complex compound known in the art, for example, a metal complex containing heavy atoms such as Ir, Pt, etc. It is preferable.
  • a dopant which is a conventional metal complex compound known in the art, for example, a metal complex containing heavy atoms such as Ir, Pt, etc. It is preferable.
  • the structure of the organic EL device according to the present invention is not particularly limited, and may be, for example, a structure in which a substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are sequentially stacked.
  • at least one of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer and the electron injection layer includes a compound represented by the formula (1) as a first host and a hole transport compound having a triplet energy of 2.3 eV or more as a second host can do.
  • the electron injection layer may be further stacked on the electron transport layer.
  • the structure of the organic electroluminescent device according to the present invention may be a structure in which an anode, one or more organic material layers and a cathode are sequentially stacked, and an insulating layer or an adhesive layer is inserted at an interface between the electrode and the organic material layer.
  • the organic electroluminescent device uses materials and methods known in the art, except that at least one layer (eg, the light emitting layer) of the organic material layer is formed to include the first host and the second host. To form another organic material layer and an electrode.
  • at least one layer eg, the light emitting layer
  • the organic material layer is formed to include the first host and the second host.
  • the organic material layer may be formed by a vacuum deposition method or a solution coating method.
  • the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
  • the substrate usable in the present invention is not particularly limited, and silicon wafers, quartz, glass plates, metal plates, plastic films, sheets, and the like may be used.
  • examples of the anode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole or polyaniline; And carbon black, but are not limited thereto.
  • metals such as vanadium, chromium, copper, zinc and gold or alloys thereof.
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb
  • Conductive polymers such as polythiophene, poly (3-methylthiophene
  • the negative electrode material may be a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, or lead or an alloy thereof; And multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like.
  • the organic electroluminescent device according to the present invention is driven by the mechanism of emitting light by the combination of holes and electrons in the light emitting layer, according to the type and mixing method of the host material in order to form a more efficient, stable light emitting device It may include all devices manufactured in three ways represented as follows.
  • the first method is a light emitting layer consisting of a single host and a dopant used for fine doping.
  • the light emitting layer is co-deposited to form a light emitting layer by simultaneously applying heat by placing a host in a first heat source and a dopant in a second heat source at a vacuum degree of 1 ⁇ 10 -06 torr or less. -deposition).
  • the mixing ratio of the co-deposited host material and the dopant material may be controlled by the rate of evaporation per second ( ⁇ / sec) in the first heat source and the second heat source generated by being heated by the heat source.
  • the ratio of the dopant to the second host is 1 to 30% by weight, preferably 5 to 20% by weight of the mixing ratio.
  • the second method is a co-deposition method in which a first host and a second host are positioned in a first heat source and a second heat source, respectively, and a dopant is placed in a third heat source to simultaneously apply heat to form a light emitting layer.
  • the first heat source may include a first host having high electron mobility and high electron injection efficiency.
  • a second host having high hole mobility and good hole injection efficiency is positioned to form a light emitting layer co-deposited at an appropriate ratio by adjusting the dopant of the third heat source and the evaporation rate per second.
  • the first host and the second host are not limited to the host including the characteristics described as the above examples, and the number of co-deposited hosts may be two or more depending on the characteristics of the light emitting layer.
  • the dopant is co-deposited at 1 to 30% by weight, most preferably 5 to 20% by weight relative to the first host and the second host.
  • the light emitting layer is formed by physically mixing the first host and the second host, which are used to form the light emitting layer, in advance in order to reduce the number of heat sources used and to simplify the formation process, and to position them in one heat source. .
  • the third type of light emitting layer will be described in more detail.
  • the host is mixed with the first heat source at a vacuum degree of 1 ⁇ 10 -06 or less, and the dopant is placed on the second heat source to simultaneously control the evaporation rate per second. It is a co-deposition method to form. This method reduces the mixing ratio error that occurs when using more than one host and can form the light emitting layer with a small number of heat sources.
  • the first host and the second host are physically mixed at a weight ratio of 1:99 to 99: 1 and are located in the first heat source, where the ratio of the dopant to the host (first host + second host) is 1 to 30.
  • the light emitting layer may be formed by co-depositing with the dopant in a mixing ratio of 5% by weight, preferably 5-20% by weight.
  • 6-bromo-1H-indole instead of 5-bromo-1H-indole, 6- (4,4,5,5-tetramethyl was carried out in the same manner as in ⁇ Step 1> of Preparation Example 1 -1,3,2-dioxaborolan-2-yl) -1H-indole was obtained.
  • 6- (2-nitrophenyl) -1H-indole instead of 5- (2-nitrophenyl) -1H-indole, 6- (2 -nitrophenyl) -1-phenyl-1H-indole was obtained.
  • a glass substrate coated with ITO (Indium tin oxide) having a thickness of 1500 ⁇ was washed with distilled water ultrasonically. After washing the distilled water, ultrasonic cleaning with a solvent such as isopropyl alcohol, acetone, methanol, dried and transferred to a UV OZONE cleaner (Power sonic 405, Hwasin Tech), and then wash the substrate using UV for 5 minutes The substrate was transferred to a vacuum evaporator.
  • ITO Indium tin oxide
  • M-MTDATA 60 nm) / TCTA (80 nm) / 10 using Com-1 synthesized in Synthesis Example 1 as the first host and Mat1 as the second host, respectively, on the prepared ITO transparent electrode.
  • Example 1 On the same prepared ITO transparent electrode, using the following Com-1 to Com-9 as the first host and Mat1 as the second host, m-MTDATA (60 nm) / TCTA (80 nm) / 70% first host + An organic EL device was fabricated by stacking 30% second host + 10% PD-1 (300 nm) / BCP (10 nm) / Alq 3 (30 nm) / LiF (1 nm) / Al (200 nm) in this order.
  • An organic EL device was manufactured in the same manner as in Example 1, except that 100% of the following CBP was used as a host material in forming the emission layer in Example 1.
  • An organic EL device was manufactured in the same manner as in Example 1, except that 100% of Com-1 was used as a host material in forming the emission layer in Example 1.
  • the organic EL device of Examples 1 to 18 using the compound represented by Chemical Formula 1 of the present invention as the first host material of the light emitting layer uses CBP or Com-1 as the sole host material. It was confirmed that the organic EL devices of Comparative Examples 1 and 2 exhibited superior performance in terms of current efficiency and driving voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 양극; 음극; 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 서로 상이한 제1 호스트 및 제2 호스트를 포함하는 유기 전계 발광 소자를 제공한다. 본 발명에 따른 유기 전계 발광 소자는 발광효율, 구동 전압, 수명 등의 제반특성이 향상될 수 있다.

Description

유기 전계 발광 소자
본 발명은 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자에 관한 것으로, 보다 상세하게는 발광층 성분으로 서로 상이한 2종의 호스트 물질을 혼용(混用)하여 성능 및 수명이 크게 향상된 유기전계 발광 소자에 관한 것이다.
1950년대 Bernanose의 유기 박막 발광 관측을 시점으로 하여, 1965년 안트라센 단결정을 이용한 청색 전기발광으로 이어진 유기 전계 발광(electroluminescent, EL) 소자(이하, 간단히 '유기 EL 소자'로 칭함)에 대한 연구가 이어져 오다가, 1987년 탕(Tang)에 의하여 정공층과 발광층의 기능층으로 나눈 적층구조의 유기 EL 소자가 제시되었다. 이후 고효율, 고수명의 유기 EL 소자를 만들기 위하여, 소자 내 각각의 특징적인 유기물 층을 도입하는 형태로 발전하여 왔으며, 이에 사용되는 특화된 물질의 개발로 이어졌다.
유기 전계 발광 소자는 두 전극 사이에 전압을 걸어 주면 양극에서는 정공이 유기물층으로 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이때, 유기물층으로 사용되는 물질은 그 기능에 따라, 발광 물질, 정공 주입 물질, 정공 수송 물질, 전자 수송 물질, 전자 주입 물질 등으로 분류될 수 있다.
발광 물질은 발광색에 따라 청색, 녹색, 적색 발광 물질과, 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 물질로 구분될 수 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 물질로서 호스트/도판트 계를 사용할 수 있다.
도판트 물질은 유기 물질을 사용하는 형광 도판트와 Ir, Pt 등의 중원자(heavy atoms)가 포함된 금속 착체 화합물을 사용하는 인광 도판트로 나눌 수 있다. 이때, 인광 재료의 개발은 이론적으로 형광에 비해 4배까지의 발광 효율을 향상시킬 수 있기 때문에, 인광 도판트 뿐만 아니라 인광 호스트 재료들에 대한 연구가 많이 진행되고 있다.
현재까지 정공 주입층, 정공 수송층. 정공 차단층, 전자 수송층으로는 NPB, BCP, Alq3 등이 널리 알려져 있으며, 발광 재료로는 안트라센 유도체들이 형광 도판트/호스트 재료로서 보고되고 있다. 특히, 발광 재료 중 효율 향상 측면에서 큰 장점을 가지고 있는 인광 재료들은 Firpic, Ir(ppy)3, (acac)Ir(btp)2 등과 같은 Ir을 포함하는 금속 착체 화합물이 청색(blue), 녹색(green), 적색(red) 도판트 재료로 사용되고 있으며, 현재까지는 CBP가 인광 호스트 재료로 높은 특성을 나타내고 있다.
그러나, 기존의 재료들은 발광 특성 측면에서는 유리한 면이 있으나, 유리전이온도가 낮아 열적 안정성이 매우 좋지 않기 때문에, OLED 소자에서의 수명 측면에서 만족할 만한 수준이 되지 못하는 실정이다. 따라서, 우수한 성능을 가지는 발광 물질을 포함하는 유기 전계 발광 소자의 개발이 요구되고 있다.
본 발명은 상기한 문제점을 해결하기 위해, 구동전압, 발광효율 및 수명 등의 특성이 향상된 유기 전계 발광 소자를 제공하는 것을 목적으로 한다.
또한 본 발명이 이루고자 하는 다른 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
본 발명은 양극; 음극; 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 서로 상이한 제 1호스트 및 제 2호스트를 1:99 내지 99:1의 비율로 포함하며, 상기 제 1호스트는 하기 화학식 1로 표시되는 화합물이고, 상기 제 2 호스트는 삼중항 에너지가 2.3 eV 이상인 정공수송성 화합물인 것을 특징으로 하는 유기 전계 발광 소자를 제공한다.
화학식 1
Figure PCTKR2014005433-appb-C000001
상기 화학식 1에서,
Y1 내지 Y4는 서로 동일하거나 또는 상이하며, 각각 독립적으로 N 또는 CR3이고, 여기서 Y1과 Y2, Y2와 Y3, 또는 Y3와 Y4 중 하나는 하기 화학식 2로 표시되는 화합물과 결합하여 축합 고리를 형성하며,
화학식 2
Figure PCTKR2014005433-appb-C000002
상기 화학식 2에서, 점선은 화학식 1의 화합물과 축합이 이루어지는 부위이며,
Y5 내지 Y8은 서로 동일하거나 또는 상이하며, 각각 독립적으로 N 또는 CR4이고,
X1 및 X2는 서로 동일하거나 또는 상이하며, 각각 독립적으로, O, S, Se, N(Ar1), C(Ar2)(Ar3) 및 Si(Ar4)(Ar5)로 이루어진 군에서 선택되고, 이때 X1 및 X2 중에서 적어도 하나는 N(Ar1)이며,
R1 내지 R4 및 Ar1 내지 Ar5는 서로 동일하거나 또는 상이하며, 각각 독립적으로, 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C2~C40의 알케닐기, 치환 또는 비치환된 C2~C40의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 치환 또는 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기, 치환 또는 비치환된 C6~C60의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 또는 비치환된 C1~C40의 알킬옥시기, 치환 또는 비치환된 C6~C60의 아릴옥시기, 치환 또는 비치환된 C1~C40의 알킬실릴기, 치환 또는 비치환된 C6~C60의 아릴실릴기, 치환 또는 비치환된 C1~C40의 알킬보론기, 치환 또는 비치환된 C6~C60의 아릴보론기, 치환 또는 비치환된 C6~C60의 아릴포스핀기, 치환 또는 비치환된 C6~C60의 아릴포스핀옥사이드기 및 치환 또는 비치환된 C6~C60의 아릴아민기로 이루어진 군에서 선택되고, 여기서, 상기 R1 내지 R4는 각각 인접한 기와 서로 결합하여 축합 고리를 형성할 수 있으며,
상기 R1 내지 R4 및 Ar1 내지 Ar5에서, 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기가 치환된 경우는, 각각 독립적으로, 중수소, 할로겐, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상으로 치환되는 것을 의미한다.
본 발명에 따른 바람직한 일례에 따르면, 상기 제1호스트와 제2호스트를 포함하는 유기물층은 발광층일 수 있다.
여기서, 상기 발광층은 도펀트를 포함하고, 상기 도펀트는 금속 착체 화합물인 것이 바람직하다.
본 발명의 화학식 1 로 표시되는 화합물은 열적 안정성 및 인광 특성이 우수하기 때문에, 유기 전계 발광 소자의 유기물층의 재료로 사용될 수 있다.
본 발명의 화학식 1로 표시되는 화합물을 호스트 재료로 사용할 경우, 종래 호스트 재료에 비해 우수한 발광 성능, 낮은 구동전압, 높은 효율 및 장수명을 갖는 유기 전계 발광 소자를 제조할 수 있고, 특히 본 발명의 화학식 1로 표시되는 화합물을 제 1호스트로, 삼중항 에너지가 2.3 eV 이상인 정공수송성 화합물을 제 2호스트로 함께 사용하는 유기 전계 발광 소자는 성능 및 수명이 크게 향상된 풀 칼라 디스플레이 패널을 제조할 수 있다.
이하, 본 발명을 상세히 설명한다.
본 발명은 유기 전계 발광소자의 양극과 음극 사이에 개재되는 1층 이상의 유기물층 중 적어도 하나의 성분으로, 서로 상이한 제1호스트와 제2호스트를 특정 조성으로 혼용(混用)하는 것을 특징으로 한다.
여기서, 제1호스트는 하기 화학식 1로 표시되는 화합물이며, 제2호스트는 삼중항 에너지가 2.3 eV 이상인 정공수송성 화합물을 사용할 수 있다.
본 발명에서 삼중항 에너지는 분자 내에서 스핀 양자수가 1이 되는 전자 상태를 말하며, 인광 스펙트럼 내 식별 가능한 최고 에너지 형태에 대응되는 에너지를 의미한다.
본 발명에서 삼중항 에너지는 분자 내에서 스핀 양자수가 1이 되는 전자 상태를 말하며 인광 스펙트럼 내 식별 가능한 최고 에너지 형태에 대응되는 에너지를 의미한다.
본 발명에서 제1호스트로 사용되는 상기 화학식 1의 화합물은, 인돌계 기본 골격에 축합 탄소고리 또는 축합 헤테로환 모이어티, 바람직하게는 축합 헤테로환 모이어티가 연결되고, 여러 치환체에 의해 에너지 레벨이 조절됨으로써 넓은 밴드갭 (sky blue ~ red)을 갖는다. 따라서, 화학식 1로 표시되는 화합물을 유기 전계 발광 소자의 유기물층에 사용할 경우 인광특성이 개선됨과 동시에 전자 및/또는 정공 수송 능력, 발광 능력을 높일 수 있다.
또한 본 발명의 화학식 1로 표시되는 화합물은 인돌(indole)계 기본골격으로 인해 종래의 CBP에 비해 발광 호스트 물질로서 우수한 특성을 나타내기 때문에, 발광층의 호스트(host) 물질로 사용되는 것이 더욱 바람직하다. 구체적으로, 상기 화학식 1로 표시되는 화합물은 인돌계 기본골격에 다양한 방향족 환(aromatic ring)이 치환체로 결합되어 화합물의 분자량이 유의적으로 증대됨으로써, 유리전이온도가 향상되고 이로 인해 종래 CBP보다 높은 열적 안정성을 가질 수 있다. 또한 다양한 방향족 환 치환체로 인해 분자 전체가 바이폴라(bipolar)한 성격을 가지면서 정공과 전자의 결합력을 높일 수 있기 때문에, 종래 CBP에 비해 발광층의 호스트 재료로서의 우수한 특성을 나타낼 수 있다.
특히 상기 화학식 1로 표시되는 화합물이 인돌계 기본 골격에 결합되는 치환체가 전자 흡수성이 큰 전자 끄는 작용기(electron withdrawing) 특성을 가진 N-type 물질일 경우, 삼중항 에너지가 2.3 eV 이상인 정공수송성 화합물을 제 2호스트로 사용하면 우수한 발광 성능, 낮은 구동전압, 높은 효율 및 장수명을 갖는 유기 전계 발광 소자를 제조할 수 있다. 고효율의 인광 발광을 얻기 위해서는 호스트에서 도펀트로의 에너지 전이가 중요한데, 호스트가 도펀트보다 큰 삼중항 에너지를 가져야 도펀트로 전이된 에너지가 호스트로 역전이되는 것을 막아 높은 발광 효율을 가질 수 있다. 또한 정공 수송성의 면에서도 호스트의 역할은 중요하다. 즉, 본 발명에 따른 제 2호스트는 정공 수송성을 가지고 삼중항 에너지가 2.3 eV 이상이므로 도펀트로의 캐리어 전이가 용이하면서 에너지를 가두어 두는 관점에서도 용이하다. 또한, 상기 화학식 1의 화합물보다 밴드갭이 동등 이상이거나 LUMO 값이 큰 재료이므로, 상기 화학식 1의 화합물과 적정 비율로 혼합하여 사용하는 경우, 주입되는 정공과 전자의 균형을 맞추어, 유기전계 발광소자의 제반 성능, 특히 수명 향상에 도움이 될 수 있다.
<제1호스트>
본 발명에 따른 유기 전계 발광소자에 있어서, 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 제1호스트로서 포함한다.
본 발명에 따라 화학식 1로 표시되는 화합물에 있어서, 상기 Y1 내지 Y4는 서로 동일하거나 또는 상이하며, 각각 독립적으로 N 또는 CR3이다. 여기서 Y1과 Y2, Y2와 Y3, 또는 Y3와 Y4 중 하나는 하기 화학식 2로 표시되는 화합물과 결합하여 축합 고리를 형성하게 된다.
이때 축합 고리를 형성하지 않는 Y1 내지 Y4는 모두 CR3인 것이 바람직하고, 이때 복수 개의 R3는 서로 동일하거나 상이할 수 있다.
또한, 상기 Y5 내지 Y8은 서로 동일하거나 또는 상이하며, 각각 독립적으로, N 또는 CR4이다. 여기서, Y5 내지 Y8은 모두 CR4인 것이 바람직하며, 이때, 복수개의 R4는 서로 동일하거나 상이할 수 있다.
본 발명에 따른 화학식 1로 표시되는 화합물에서, X1 및 X2는 각각 독립적으로 O, S, Se, N(Ar1), C(Ar2)(Ar3) 및 Si(Ar4)(Ar5)로부터 선택되고, 여기서 X1 및 X2 중에서 적어도 하나는 N(Ar1)일 수 있다.
한편, 유기 전계 발광 소자의 발광 효율, 구동 전압 및 수명 등의 특성을 고려할 때, 상기 화학식 1의 X1 및 X2는 각각 독립적으로, N(Ar1) 또는 S인 것이 바람직하다. 즉, X1이 N(Ar1)이고 X2가 S이거나, X1이 S이고 X2가 N (Ar1)일 수 있으며, X1 및 X2가 모두 N(Ar1)인 것이 보다 바람직하다. 여기서, 각각의 Ar1은 서로 동일하거나 또는 상이할 수 있다.
또한 본 발명에 따른 화학식 1로 표시되는 화합물에서, 상기 R1 내지 R4 및 Ar1 내지 Ar5는 서로 동일하거나 또는 상이하며, 각각 독립적으로, 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C2~C40의 알케닐기, 치환 또는 비치환된 C2~C40의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 치환 또는 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기, 치환 또는 비치환된 C6~C60의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 또는 비치환된 C1~C40의 알킬옥시기, 치환 또는 비치환된 C6~C60의 아릴옥시기, 치환 또는 비치환된 C1~C40의 알킬실릴기, 치환 또는 비치환된 C6~C60의 아릴실릴기, 치환 또는 비치환된 C1~C40의 알킬보론기, 치환 또는 비치환된 C6~C60의 아릴보론기, 치환 또는 비치환된 C6~C60의 아릴포스핀기, 치환 또는 비치환된 C6~C60의 아릴포스핀옥사이드기 및 치환 또는 비치환된 C6~C60의 아릴아민기로 이루어진 군에서 선택되고, 여기서, R1 내지 R4는 인접한 기와 결합하여 축합 고리를 형성할 수 있으며,
상기 R1 내지 R4 및 Ar1 내지 Ar5에서, 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는 각각 독립적으로, 중수소, 할로겐, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상으로 치환될 수 있다.
이때 화합물의 넓은 밴드갭(band-gap)과 열안정성을 고려할 때, 상기 화학식 1의 R1 내지 R4는 각각 독립적으로 수소, C6~C60의 아릴기(예: 페닐, 나프틸, 비스페닐) 또는 핵원자수 5 내지 60의 헤테로아릴기(예: 피리딘, 피리미딘, 트리아진, 퀴나졸린)인 것이 바람직하다.
또한 상기 Ar1 내지 Ar5는 서로 동일하거나 또는 상이하며, 각각 독립적으로 C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기 및 C6~C60의 아릴아민기로 구성된 군으로부터 선택되는 것이 바람직하다.
본 발명의 화학식 1로 표시되는 화합물은 하기 화학식 3 내지 화학식 8로 표시되는 화합물 중 어느 하나의 화합물로서 보다 구체화될 수 있다.
화학식 3
Figure PCTKR2014005433-appb-C000003
화학식 4
Figure PCTKR2014005433-appb-C000004
화학식 5
Figure PCTKR2014005433-appb-C000005
화학식 6
Figure PCTKR2014005433-appb-C000006
화학식 7
Figure PCTKR2014005433-appb-C000007
화학식 8
Figure PCTKR2014005433-appb-C000008
상기 화학식 3 내지 8에서, X1, X2 및 R1 내지 R4는 각각 화학식 1에서 정의한 바와 같다.
한편, 유기 전계 발광 소자의 발광 효율, 구동 전압 및 수명 등의 특성을 고려할 때, 상기 화학식 1의 X1 및 X2는 각각 독립적으로, N(Ar1) 또는 S인 것이 바람직하다. 즉, X1이 N(Ar1)이고 X2가 S이거나, X1이 S이고 X2가 N (Ar1)이거나, X1 및 X2가 모두 N(Ar1)인 것이 바람직하다.
또한 R1 내지 R4는 서로 동일하거나 또는 상이하며, 각각 독립적으로 각각 독립적으로 수소, C6~C60의 아릴기(예: 페닐, 나프틸, 비스페닐) 또는 핵원자수 5 내지 60의 헤테로아릴기(예: 피리딘, 피리미딘, 트리아진, 퀴나졸린)인 것이 바람직하다.
아울러, Ar1는 서로 동일하거나 또는 상이하며, 각각 독립적으로 C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기 및 C6~C60의 아릴아민기로 구성된 군으로부터 선택되는 것이 바람직하다.
한편, 본 발명에서의 "알킬"은 탄소수 1 내지 40의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기이며, 이의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등을 들 수 있다.
본 발명에서의 "알케닐(alkenyl)"은 탄소-탄소 이중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기이며, 이의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등을 들 수 있다.
본 발명에서의 "알키닐(alkynyl)"은 탄소-탄소 삼중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기이며, 이의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등을 들 수 있다.
본 발명에서의 "아릴"은 단독 고리 또는 2이상의 고리가 조합된 탄소수 6 내지 60의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴 등을 들 수 있다.
본 발명에서의 "헤테로아릴"은 핵원자수 5 내지 40의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있고, 나아가 아릴기와의 축합된 형태도 포함하는 것으로 해석한다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리, 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리, 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등을 들 수 있다.
본 발명에서의 "아릴옥시"는 RO-로 표시되는 1가의 치환기로 상기 R은 탄소수 5 내지 60의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등을 들 수 있다.
본 발명에서의 "알킬옥시"는 R'O-로 표시되는 1가의 치환기로 상기 R'는 1 내지 40개의 알킬을 의미하며, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함하는 것으로 해석한다. 이러한 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등을 들 수 있다.
본 발명에서의 "아릴아민"은 탄소수 6 내지 60의 아릴로 치환된 아민을 의미한다.
본 발명에서의 "시클로알킬"은 탄소수 3 내지 40의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 놀보닐(norbornyl), 아다만틴(adamantine) 등을 들 수 있다.
본 발명에서의 "헤테로시클로알킬"은 핵원자수 3 내지 40의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등을 들 수 있다.
본 발명에서의 "알킬실릴"은 탄소수 1 내지 40의 알킬로 치환된 실릴이고, "아릴실릴"은 탄소수 5 내지 40의 아릴로 치환된 실릴을 의미한다.
본 발명에서의 "축합 고리"는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.
이상에서 설명한 본 발명의 화학식 1로 표시되는 화합물은 하기 예시된 화학식, 예컨대 하기 화학식 C1 내지 C66으로 표시되는 화합물로 보다 구체화될 수 있다. 그러나 본 발명의 화학식 1로 표시되는 화합물이 하기 예시된 것들에 의해 한정되는 것은 아니다.
Figure PCTKR2014005433-appb-I000001
Figure PCTKR2014005433-appb-I000002
상기 화학식 C1 내지 C66에서, R1 내지 R4는 상기에서 정의한 바와 같으며, 이때 복수 개의 R3 및 R4는 서로 동일하거나 상이할 수 있다.
또한 Ar1 내지 Ar5는 상기에서 정의한 바와 같으며, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되는 것이 바람직하다.
상기 예시된 화학식에서, Ar1 내지 Ar5는 동일하게 표시되더라도 서로 동일하거나 또는 상이할 수 있으며, 각각 독립적으로, 하기 치환체(작용기) 그룹(S1-S206)으로부터 선택되는 것이 더욱 바람직하다.
Figure PCTKR2014005433-appb-I000003
Figure PCTKR2014005433-appb-I000004
Figure PCTKR2014005433-appb-I000005
Figure PCTKR2014005433-appb-I000006
더욱 바람직하게는 복수 개의 Ar1 중 적어도 하나는 피리딘, 피리미딘, 트리아진, 퀴나졸린을 포함하는 구조를 가지는 치환체이다.
본 발명의 화학식 1의 화합물은 하기 합성예를 참조하여 다양하게 합성할 수 있다. 본 발명의 화합물에 대한 상세한 합성 과정은 후술하는 합성예에서 구체적으로 기술하도록 한다.
<제2호스트>
본 발명에 따른 유기 전계 발광 소자에 있어서, 전술한 제1호스트와 혼용되는 제2호스트는 삼중항 에너지가 2.3 eV 이상인 정공수송성 화합물을 사용할 수 있다.
상기 제 2 호스트로 사용 가능한 화합물은 카바졸, 아크리딘, 아릴아민기, 플루오렌기 등과 같은 1종 이상의 전자 주개 작용기(electrown donating group)를 포함하여 정공 수송 특성을 갖는 화합물이다. 바람직하게는 아릴아민기, 카바졸기, 플루오렌기, 및 아크리딘으로 구성된 군에서 선택되는 2종 이상을 포함하는 화합물일 수 있다. 이러한 제2호스트 화합물을 전술한 제 1 호스트와 적정 비율로 혼합하여 사용할 경우 소자로 주입되는 정공과 전자의 균형을 맞추어 수명을 개선하는 효과가 있다.
본 발명에서 제 1 호스트와 제 2 호스트의 혼합 비율은 1:99 내지 99:1 범위일 수 있으며, 바람직하게는 제 1 호스트의 비율이 높은 것이 좋다. 일례로 제1호스트와 제2호스트의 사용 비율은 51~99 : 1~49 중량 비율이다.
본 발명에 따른 제 2 호스트 화합물은 구체적으로 하기 구조로 이루어진 화합물 군에서 선택되는 것이 바람직하다. 그러나 이에 한정되는 것은 아니다.
Figure PCTKR2014005433-appb-I000007
<유기 전계 발광 소자>
한편, 본 발명의 다른 측면은 전술한 제1호스트와 제2호스트를 유기물층 중 적어도 하나에 포함되는 유기 전계 발광 소자에 관한 것이다.
구체적으로, 본 발명에 따른 유기 전계 발광 소자는 양극(anode), 음극(cathode) 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 전술한 1호스트 및 제 2호스트를 1 : 99 내지 99 : 1의 비율로 포함한다.
이때 상기 제 1호스트 및 제 2호스트는 전술한 바와 같이, 각각 하기 화학식 1로 표시되는 화합물과 삼중항 에너지가 2.3 eV 이상인 정공수송성 화합물이다.
여기서, 상기 1층 이상의 유기물층은 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 중 어느 하나 이상일 수 있고, 제 1호스트 및 제 2호스트를 포함하는 유기물층은 발광층인 것이 바람직하다.
본 발명에 따른 유기 전계 발광 소자의 발광층은 도펀트를 포함할 수 있으며, 이러한 도펀트는 당 분야에 알려진 통상적인 금속 착체 화합물, 일례로 Ir, Pt 등의 중원자(heavy atoms)가 포함된 금속 착체인 것이 바람직하다.
본 발명에 따른 유기 전계 발광 소자의 구조는 특별히 한정되지 않으며, 예컨대 기판, 양극, 정공주입층, 정공수송층, 발광층, 전자수송층 및 음극이 순차적으로 적층된 구조일 수 있다. 이때, 상기 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 중 하나 이상은 상기 화학식 1로 표시되는 화합물을 제 1 호스트로 삼중항 에너지가 2.3 eV 이상인 정공수송성 화합물을 제 2 호스트로 포함할 수 있다.
한편, 상기 전자수송층 위에는 전자주입층이 추가로 적층될 수 있다. 또한, 본 발명에 따른 유기 전계 발광 소자의 구조는 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층될 뿐만 아니라, 전극과 유기물층 계면에 절연층 또는 접착층이 삽입된 구조일 수 있다.
본 발명에 따른 유기 전계 발광 소자는 상기 유기물층 중 1층 이상 (예컨대, 발광층)이 전술한 제1호스트와 제2호스트를 포함하도록 형성되는 것을 제외하고는, 당업계에 알려져 있는 재료 및 방법을 이용하여 다른 유기물층 및 전극을 형성하여 제조할 수 있다.
상기 유기물층은 진공 증착법이나 용액 도포법에 의하여 형성될 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이들에 한정되지 않는다.
본 발명에서 사용 가능한 기판으로는 특별히 한정되지 않으며, 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름 및 시트 등이 사용될 수 있다.
또, 양극 물질로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 또는 폴리아닐린과 같은 전도성 고분자; 및 카본블랙 등이 있는데, 이에 한정되지 않는다.
또, 음극 물질로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 또는 납과 같은 금속 또는 이들의 합금; 및 LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있는데, 이에 한정되지 않는다.
한편, 본 발명에 따른 유기 전계 발광 소자는 발광층 내에서 정공과 전자의 결합에 의해 빛을 내는 메커니즘에 의해 구동되므로, 보다 효율적이고, 안정한 발광소자를 구성하기 위해 호스트재료의 종류와 혼합방식에 따라 아래와 같이 대표되는 3가지 방식으로 제조된 모든 소자를 포함할 수 있다.
첫번째 방식으로는 단일 호스트와 미세도핑에 사용되는 도판트로 구성된 발광층이다.
상기 발광층을 보다 상세히 설명하면, 1 × 10-06 torr 이하의 진공도에서 제 1의 열원에 호스트를 위치시키고, 제 2의 열원에 도판트를 위치시켜 동시에 열을 가해 발광층을 형성하는 공증착(Co-deposition)방식이다. 이때 공증착되는 호스트재료와 도판트재료의 혼합비율은 열원에 의해 가열되어 발생되는 제 1열원, 제2열원에서의 초당 증발속도(Å/sec)로 조절될 수 있으며, 호스트(제1호스트+ 제2호스트) 대비 도펀트의 비율은 1~30 중량%, 바람직하게는 5~20 중량%의 혼합비율을 갖는다.
두번째 방식으로는 제 1 호스트와 제 2 호스트를 각각 제 1열원, 및 제 2 열원에 위치시키고, 제 3열원에 도판트를 위치시켜 동시에 열을 가해 발광층을 형성하는 공증착 방식이다.
이러한 두번째 방식의 발광층을 보다 상세히 설명하면, 1 × 10-06 torr 이하의 진공도에서, 일례로 제 1의 열원에는 전자이동도(Electron mobility)가 높고, 전자 주입효율이 좋은 제 1 호스트를 위치시키고, 제 2의 열원에는 정공이동도(Hole mobility)가 높고, 정공 주입효율이 좋은 제 2 호스트를 위치시켜, 제 3 열원의 도판트와 초당 증발속도를 조절하여 적정비율로 공증착하는 발광층을 형성시키는 방식을 말한다. 단, 제 1 호스트, 제 2 호스트는 상기의 예로서 설명한 특성들을 포함하는 호스트로만으로 한정되는 것은 아니며, 공증착되는 호스트의 개수는 발광층의 특성에 따라 2개 이상이 될 수 있다. 이때 도판트는 제 1 호스트 및 제 2 호스트 대비 1~30 중량%, 가장 바람직하게는 5~20 중량%로 공증착된다.
세번째 방식으로는 사용되는 열원의 개수를 줄이고, 형성과정을 간소화하기 위해 발광층 형성에 사용되는 제 1 호스트 및 제 2 호스트를 적정비율로, 물리적으로 미리 혼합하여 하나의 열원에 위치시켜 구성되는 발광층이다.
상기 세번째 방식의 발광층을 보다 상세히 설명하면, 1 × 10-06 이하의 진공도에서 제 1열원에 혼합된 호스트를 위치시키고, 제 2의 열원에 도판트를 위치시켜 동시에 초당 증발속도를 조절하며 발광층을 형성시키는 공증착 방식이다. 이러한 방식은 한 개 이상의 호스트를 사용시 발생하는 혼합비율 오차를 줄이고, 적은 수의 열원으로도 발광층을 형성할 수 있는 방법이다. 이때 제 1 호스트 및 제 2 호스트는 1 : 99 ~ 99 : 1의 중량 비율로 물리적으로 혼합되어 제 1열원에 위치되며, 여기서 호스트(제1호스트 + 제2호스트) 대비 도펀트의 비율은 1~30 중량%, 바람직하게는 5~20 중량%의 혼합비율로 도판트와 공증착되어 발광층을 형성될 수 있다.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[준비예 1] IC-1의 합성
<단계 1> 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole의 합성
Figure PCTKR2014005433-appb-I000008
질소 기류 하에서 5-bromo-1H-indole (25 g, 0.128 mol), 4,4,4',4',5,5, 5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (48.58 g, 0.191 mol), Pd(dppf)Cl2 (5.2 g, 5 mol), KOAc (37.55 g, 0.383 mol) 및 1,4-dioxane (500 ml)를 혼합하고 130℃에서 12시간 동안 교반하였다. 반응이 종결된 후 에틸아세테이트로 추출한 다음 MgSO4로 수분을 제거하고, 컬럼크로마토그래피 (Hexane:EA = 10:1 (v/v))로 정제하여 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (22.32 g, 수율 72%)을 얻었다.
1H-NMR: δ 1.24 (s, 12H), 6.45 (d, 1H), 7.27 (d, 1H), 7.42 (d, 1H), 7.52 (d, 1H), 7.95 (s, 1H), 8.21 (s, 1H)
<단계 2> 5-(2-nitrophenyl)-1H-indole의 합성
Figure PCTKR2014005433-appb-I000009
질소 기류 하에서 1-bromo-2-nitrobenzene (15.23 g, 75.41 mmol)과 상기 <단계 1>에서 얻은 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (22 g, 90.49 mmol), NaOH (9.05 g, 226.24 mmol) 및 THF/H2O(400 ml/200 ml)를 혼합한 다음, 40℃에서 Pd(PPh3)4(4.36 g, 5 mol%)를 넣고 80℃에서 12시간 동안 교반하였다.
반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 여과하였다. 얻어진 유기층에서 용매를 제거한 후 컬럼 크로마토그래피 (Hexane:EA = 3:1 (v/v))로 정제하여 5-(2-nitrophenyl)-1H-indole (11.32 g, 수율 63%)을 얻었다.
1H-NMR: δ 6.47 (d, 1H), 7.25 (d, 1H), 7.44 (d, 1H), 7.53 (d, 1H), 7.65 (t, 1H), 7.86 (t, 1H), 7.95 (s, 1H), 8.00 (d, 1H), 8.09 (t, 1H), 8.20 (s, 1H)
<단계 3> 5-(2-nitrophenyl)-1-phenyl-1H-indole의 합성
Figure PCTKR2014005433-appb-I000010
질소 기류 하에서 상기 <단계 2>에서 얻은 5-(2-nitrophenyl)-1H-indole (11 g, 46.17 mmol), iodobenzene (14.13 g, 69.26 mmol), Cu powder (0.29 g, 4.62 mmol), K2CO3 (6.38 g, 46.17 mmol), Na2SO4 (6.56 g, 46.17 mmol), nitrobenzene (200 ml)를 혼합하고 190℃에서 12시간 동안 교반하였다.
반응 종결 후 nitrobenzene을 제거하고 메틸렌클로라이드로 유기층을 분리하여 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼 크로마토그래피 (Hexane:MC = 3:1 (v/v))로 정제하여 5-(2-nitrophenyl)-1-phenyl-1H-indole (10.30 g, 수율 71%)을 얻었다.
1H-NMR: δ 6.48 (d, 1H), 7.26 (d, 1H), 7.45 (m, 3H), 7.55 (m, 4H), 7.63 (t, 1H), 7.84 (t, 1H), 7.93 (s, 1H), 8.01 (d, 1H), 8.11 (t, 1H)
<단계 4> IC-1의 합성
Figure PCTKR2014005433-appb-I000011
질소 기류 하에서 상기 <단계 3>에서 얻은 5-(2-nitrophenyl)-1-phenyl-1H-indole (5 g, 15.91 mmol), triphenylphosphine (10.43 g, 39.77 mmol) 및 1,2-dichlorobenzene (50 ml)를 혼합하고 12시간 동안 교반하였다.
반응 종료 후 1,2-dichlorobenzene를 제거하고 디클로로메탄으로 추출하였다. 얻어진 유기층에 대해 MgSO4로 물을 제거하고, 컬럼크로마토그래피 (Hexane:MC=3:1 (v/v))로 정제하여 IC-1 (2.38 g, 수율 53%)을 얻었다.
1H-NMR: δ 6.99 (d, 1H), 7.12 (t, 1H), 7.27 (t, 1H), 7.32 (d, 1H), 7.41 (t, 1H), 7.50 (d, 1H), 7.60 (m, 5H), 7.85 (d, 1H), 8.02 (d, 1H), 10.59 (s, 1H)
[준비예 2] IC-2의 합성
<단계 1> 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole의 합성
Figure PCTKR2014005433-appb-I000012
5-bromo-1H-indole 대신 6-bromo-1H-indole를 사용하는 것을 제외하고는, 상기 준비예 1의 <단계 1>과 동일한 과정을 수행하여 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole을 얻었다.
1H-NMR: δ 1.25 (s, 12H), 6.52 (d, 1H), 7.16 (d, 1H), 7.21 (d, 1H), 7.49 (d, 1H), 7.53 (s, 1H), 8.15 (s, 1H)
<단계 2> 6-(2-nitrophenyl)-1H-indole의 합성
Figure PCTKR2014005433-appb-I000013
5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole 대신 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole를 사용하는 것을 제외하고는, 상기 준비예 1의 <단계 2>와 동일한 과정을 수행하여 6-(2-nitrophenyl)-1H-indole을 얻었다.
1H-NMR: δ 6.57 (d, 1H), 7.07 (d, 1H), 7.24 (d, 1H), 7.35 (s, 1H), 7.43 (t, 1H), 7.50 (d, 1H), 7.58 (t, 1H), 7.66 (d, 1H), 7.78 (d, 1H), 8.19 (s, 1H)
<단계 3> 6-(2-nitrophenyl)-1-phenyl-1H-indole의 합성
Figure PCTKR2014005433-appb-I000014
5-(2-nitrophenyl)-1H-indole 대신 6-(2-nitrophenyl)-1H-indole를 사용하는 것을 제외하고는, 상기 준비예 1의 <단계 3>과 동일한 과정을 수행하여 6-(2-nitrophenyl)-1-phenyl-1H-indole을 얻었다.
1H-NMR: δ 6.81 (d, 1H), 7.12 (t, 1H), 7.22 (t, 1H), 7.35 (s, 1H), 7.43 (d, 1H), 7.51 (m, 3H), 7.56 (m, 2H), 7.62 (m, 2H), 7.85 (d, 1H), 8.02 (d, 1H)
<단계 4> IC-2의 합성
Figure PCTKR2014005433-appb-I000015
5-(2-nitrophenyl)-1-phenyl-1H-indole 대신 6-(2-nitrophenyl)-1-phenyl-1H-indole를 사용하는 것을 제외하고는, 상기 준비예 1의 <단계 4>과 동일한 과정을 수행하여 IC-2을 얻었다.
1H-NMR: δ 6.80 (d, 1H), 7.11 (t, 1H), 7.23 (t, 1H), 7.42 (d, 1H), 7.50 (m, 3H), 7.57 (m, 2H), 7.63 (m, 2H), 7.86 (d, 1H), 8.03 (d, 1H), 9.81 (s, 1H)
[합성예 1] Com-1의 합성
Figure PCTKR2014005433-appb-I000016
질소 기류 하에서 IC-1 (3 g, 10.63 mmol), 2-(3-chlorophenyl)-4,6-diphenyl-1,3,5-triazine (4.38 g, 12.75 mmol), Pd(OAc)2 (0.12 g, 5 mol%), NaO(t-bu) (2.04 g, 21.25 mmol), P(t-bu)3 (0.21 g, 1.06 mmol) 및 Toluene (100 ml)을 혼합하고 110℃에서 12시간 동안 교반하였다.
반응이 종결된 후 에틸아세테이트로 추출한 다음 MgSO4로 수분을 제거하고, 컬럼크로마토그래피 (Hexane:EA = 2:1 (v/v))로 정제하여 목적 화합물인 Com-1 (4.89 g, 수율 78 %)을 얻었다.
GC-Mass (이론치: 589.23 g/mol, 측정치: 589 g/mol)
[합성예 2] Com-2의 합성
Figure PCTKR2014005433-appb-I000017
2-(3-chlorophenyl)-4,6-diphenyl-1,3,5-triazine 대신 2-(3-chlorophenyl)-4,6-diphenylpyrimidine (4.36 g, 12.75 mmol)을 사용한 것을 제외하고는, 상기 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Com-2(4.68 g, 수율 75 %)를 얻었다.
GC-Mass (이론치: 588.23 g/mol, 측정치: 588 g/mol)
[합성예 3] Com-3의 합성
Figure PCTKR2014005433-appb-I000018
2-(3-chlorophenyl)-4,6-diphenyl-1,3,5-triazine 대신 2-(3-chlorophenyl)-4,6-diphenylpyridine (4.34 g, 12.75 mmol)을 사용한 것을 제외하고는, 상기 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Com-3(4.36 g, 수율 70 %)를 얻었다.
GC-Mass (이론치: 587.23 g/mol, 측정치: 587 g/mol)
[합성예 4] Com-4의 합성
Figure PCTKR2014005433-appb-I000019
2-(3-chlorophenyl)-4,6-diphenyl-1,3,5-triazine 대신 2-(3-chloro-5-methylphenyl)-4,6-diphenyl-1,3,5-triazine (4.55 g, 12.75 mmol)을 사용한 것을 제외하고는, 상기 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Com-4(4.81 g, 수율 75 %)를 얻었다.
GC-Mass (이론치: 603.24 g/mol, 측정치: 603 g/mol)
[합성예 5] Com-5의 합성
Figure PCTKR2014005433-appb-I000020
IC-1 대신 IC-2 (3 g, 10.63 mmol)를 사용한 것을 제외하고는, 상기 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Com-5(4.81 g, 수율 75 %)를 얻었다.
GC-Mass (이론치: 589.23 g/mol, 측정치: 589 g/mol)
[합성예 6] Com-6의 합성
Figure PCTKR2014005433-appb-I000021
2-(3-chlorophenyl)-4,6-diphenyl-1,3,5-triazine 대신 2-chloro-4,6-diphenyl-1,3,5-triazine (3.40 g, 12.75 mmol)을 사용한 것을 제외하고는, 상기 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Com-6(3.98 g, 수율 73 %)를 얻었다.
GC-Mass (이론치: 513.20 g/mol, 측정치: 513 g/mol)
[합성예 7] Com-7의 합성
Figure PCTKR2014005433-appb-I000022
2-(3-chlorophenyl)-4,6-diphenyl-1,3,5-triazine 대신 2-chloro-4,6-diphenylpyrimidine (3.40 g, 12.75 mmol)을 사용한 것을 제외하고는, 상기 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Com-7(3.81 g, 수율 70 %)를 얻었다.
GC-Mass (이론치: 512.20 g/mol, 측정치: 512 g/mol)
[합성예 8] Com-8의 합성
Figure PCTKR2014005433-appb-I000023
2-(3-chlorophenyl)-4,6-diphenyl-1,3,5-triazine 대신 2-chloro-4,6-diphenylpyridine (3.38 g, 12.75 mmol)을 사용한 것을 제외하고는, 상기 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Com-8(4.07 g, 수율 75 %)를 얻었다.
GC-Mass (이론치: 511.20 g/mol, 측정치: 511 g/mol)
[합성예 9] Com-9의 합성
Figure PCTKR2014005433-appb-I000024
IC-1 대신 IC-2 (3 g, 10.63 mmol)를 사용하고, 2-(3-chlorophenyl)-4,6-diphenyl-1,3,5-triazine 대신 2-chloro-4,6-diphenyl-1,3,5-triazine (3.38 g, 12.75 mmol)을 사용한 것을 제외하고는, 상기 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Com-9(3.92 g, 수율 72 %)를 얻었다.
GC-Mass (이론치: 513.20 g/mol, 측정치: 513 g/mol)
[실시예 1~9] 유기 EL 소자의 제조
ITO (Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, 합성예 1에서 합성된 Com-1을 제 1호스트로, 하기 Mat1을 각각 제 2호스트로 이용하여, m-MTDATA(60 nm) / TCTA(80 nm) / 10 % 제 1 호스트 + 90 % 제 2 호스트 + 10 % PD-1(300nm) / BCP(10 nm) / Alq3(30 nm) / LiF(1 nm) / Al(200 nm) 순으로 적층하여 유기 EL 소자를 제작하였다.
사용된 m-MTDATA, TCTA, PD-1, BCP, Com-1 및 Mat1 의 구조는 하기와 같다.
Figure PCTKR2014005433-appb-I000025
하기 표 1과 같이 제 1 호스트 및 제 2 호스트의 사용 비율을 조정하여 유기 EL 소자를 제작하였다. 실시예 1 내지 9 에서 각각 제조된 유기 EL 소자에 대하여, 전류밀도 10mA/㎠ 에서의 구동전압, 전류효율 및 발광 피크를 측정하였고, 그 결과를 하기 표 1에 나타내었다.
표 1
샘플 호스트 구동 전압 (V) 전류효율 (cd/A) 수명 T95(hrs)
실시예 1 10% Com-1 + 90% Mat1 5.50 42.8 140
실시예 2 20% Com-1 + 80% Mat1 5.60 42.6 145
실시예 3 30% Com-1 + 70% Mat1 5.50 42.5 140
실시예 4 40% Com-1 + 60% Mat1 5.60 43.1 150
실시예 5 50% Com-1 + 50% Mat1 5.50 43.2 170
실시예 6 60% Com-1 + 40% Mat1 5.35 43.7 180
실시예 7 70% Com-1 + 30% Mat1 5.35 45.5 200
실시예 8 80% Com-1 + 20% Mat1 5.30 45.0 160
실시예 9 90% Com-1 + 10% Mat1 5.35 44.5 155
[실시예 10~18] 유기 EL 소자의 제조
실시예 1과 같이 준비된 ITO 투명 전극 위에, 하기 Com-1 내지 Com-9 를 제 1호스트로, Mat1를 제 2호스트로 이용하여, m-MTDATA(60 nm) / TCTA(80 nm) / 70 % 제 1 호스트 + 30 % 제 2 호스트 + 10 % PD-1(300nm) / BCP(10 nm) / Alq3(30 nm) / LiF(1 nm) / Al(200 nm) 순으로 적층하여 유기 EL 소자를 제작하였다.
사용된 Com-1 내지 Com-9 의 구조는 하기와 같다.
Figure PCTKR2014005433-appb-I000026
실시예 10~18 에서 각각 제조된 유기 EL 소자에 대하여, 전류밀도 10mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하였고, 그 결과를 하기 표 2에 나타내었다.
표 2
샘플 호스트 구동 전압(V) 전류효율 (cd/A) 수명 T95(hr)
실시예 10 70% Com-1 + 30% Mat1 5.35 45.5 200
실시예 11 70% Com-2 + 30% Mat1 5.50 44.5 180
실시예 12 70% Com-3 + 30% Mat1 5.45 42.5 150
실시예 13 70% Com-4 + 30% Mat1 5.50 44.2 160
실시예 14 70% Com-5 + 30% Mat1 5.60 43.0 150
실시예 15 70% Com-6 + 30% Mat1 5.45 42.9 150
실시예 16 70% Com-7 + 30% Mat1 5.40 43.1 160
실시예 17 70% Com-8 + 30% Mat1 5.50 43.3 160
실시예 18 70% Com-9 + 30% Mat1 5.60 43.0 150
[비교예 1] 유기 EL 소자의 제조
실시예 1 에서 발광층 형성시 호스트 물질로서 하기 CBP를 100% 사용하는 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 유기 EL 소자를 제작하였다.
Figure PCTKR2014005433-appb-I000027
[비교예 2] 유기 EL 소자의 제조
실시예 1 에서 발광층 형성시 호스트 물질로서 Com-1을 100% 사용하는 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 유기 EL 소자를 제작하였다.
전술한 비교예 1~2에서 각각 제조된 유기 EL 소자에 대하여, 전류밀도 10mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하였고, 그 결과를 하기 표 3에 나타내었다.
표 3
샘플 호스트 구동 전압 (V) 전류효율 (cd/A) 수명 T95 (hr)
비교예 1 100% CBP 6.93 38.2 100
비교예 2 100% Com-1 6.55 41.0 120
상기 표 1 내지 3을 살펴보면, 본 발명의 화학식 1로 표시되는 화합물을 발광층의 제 1호스트 물질로 사용하는 실시예 1~18의 유기 EL 소자는 종래 CBP 또는 Com-1을 단독 호스트 물질로 사용하는 비교예 1~2의 유기 EL 소자보다 전류효율 및 구동전압 면에서 우수한 성능을 나타내는 것을 확인할 수 있었다.

Claims (10)

  1. 양극; 음극; 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 서로 상이한 제 1호스트 및 제 2호스트를 1 : 99 내지 99 : 1의 비율로 포함하며,
    상기 제 1호스트는 하기 화학식 1로 표시되는 화합물이고,
    상기 제 2 호스트는 삼중항 에너지가 2.3 eV 이상인 정공수송성 화합물인 것을 특징으로 하는 유기 전계 발광 소자:
    [화학식 1]
    Figure PCTKR2014005433-appb-I000028
    상기 화학식 1에서,
    Y1 내지 Y4는 서로 동일하거나 또는 상이하며, 각각 독립적으로 N 또는 CR3이고, 여기서 Y1과 Y2, Y2와 Y3, 또는 Y3와 Y4 중 하나는 하기 화학식 2로 표시되는 화합물과 결합하여 축합 고리를 형성하며,
    [화학식 2]
    Figure PCTKR2014005433-appb-I000029
    상기 화학식 2에서,
    점선은 화학식 1의 화합물과 축합이 이루어지는 부위이며,
    Y5 내지 Y8은 서로 동일하거나 또는 상이하며, 각각 독립적으로, N 또는 CR4이고,
    X1 및 X2는 서로 동일하거나 또는 상이하며, 각각 독립적으로 O, S, Se, N(Ar1), C(Ar2)(Ar3) 및 Si(Ar4)(Ar5)로 이루어진 군에서 선택되고, 이때 X1 및 X2 중 적어도 하나는 N(Ar1)이며,
    R1 내지 R4 및 Ar1 내지 Ar5는 서로 동일하거나 또는 상이하며, 각각 독립적으로, 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C2~C40의 알케닐기, 치환 또는 비치환된 C2~C40의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 치환 또는 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기, 치환 또는 비치환된 C6~C60의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 또는 비치환된 C1~C40의 알킬옥시기, 치환 또는 비치환된 C6~C60의 아릴옥시기, 치환 또는 비치환된 C1~C40의 알킬실릴기, 치환 또는 비치환된 C6~C60의 아릴실릴기, 치환 또는 비치환된 C1~C40의 알킬보론기, 치환 또는 비치환된 C6~C60의 아릴보론기, 치환 또는 비치환된 C6~C60의 아릴포스핀기, 치환 또는 비치환된 C6~C60의 아릴포스핀옥사이드기 및 치환 또는 비치환된 C6~C60의 아릴아민기로 이루어진 군에서 선택되고, 여기서, R1 내지 R4는 인접한 기와 결합하여 축합 고리를 형성할 수 있으며,
    상기 R1 내지 R4 및 Ar1 내지 Ar5에서, 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는 각각 독립적으로, 중수소, 할로겐, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상으로 치환될 수 있다.
  2. 제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 3 내지 화학식 8로 표시되는 화합물 중 어느 하나로 표시되는 것을 특징으로 하는 유기 전계 발광 소자.
    [화학식 3]
    Figure PCTKR2014005433-appb-I000030
    [화학식 4]
    Figure PCTKR2014005433-appb-I000031
    [화학식 5]
    Figure PCTKR2014005433-appb-I000032
    [화학식 6]
    Figure PCTKR2014005433-appb-I000033
    [화학식 7]
    Figure PCTKR2014005433-appb-I000034
    [화학식 8]
    Figure PCTKR2014005433-appb-I000035
    상기 화학식 3 내지 8에서, X1, X2 및 R1 내지 R4는 각각 제1항에서 정의한 바와 같다.
  3. 제1항에 있어서, 상기 X1 및 X2는 모두 N(Ar1)이며, 여기서 각각의 Ar1은 서로 동일하거나 또는 상이한 것을 특징으로 하는 화합물.
  4. 제1항에 있어서, 상기 화학식 2와 축합고리를 비형성하는 Y1 내지 Y4은 모두 CR3이며, Y5 내지 Y8은 모두 CR4이며,
    여기서 각각의 R3 및 R4는 서로 동일하거나 또는 상이한 것을 특징으로 하는 화합물.
  5. 제1항에 있어서, Ar1 내지 Ar5는 서로 동일하거나 또는 상이하며, 각각 독립적으로 C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기 및 C6~C60의 아릴아민기로 구성된 군으로부터 선택되며;
    상기 C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기 및 C6~C60의 아릴아민기는 각각 C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기로 구성된 군에서 선택된 하나 이상의 작용기로 치환되거나 또는 비치환되는 것을 특징으로 하는 화합물.
  6. 제1항에 있어서, R1 내지 R4는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, C6~C60의 아릴기, 및 핵원자수 5 내지 60의 헤테로아릴기로 구성된 군으로부터 선택되며,
    상기 C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기는 각각 C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기로 구성된 군에서 선택된 하나 이상의 작용기로 치환되거나 또는 비치환되는 것을 특징으로 하는 화합물.
  7. 제1항에 있어서, 상기 제 2 호스트로 사용되는 화합물은 아릴아민기, 카바졸기, 플루오렌기, 및 아크리딘으로 구성된 군에서 선택되는 2종 이상을 포함하는 것을 특징으로 하는 유기 전계 발광 소자.
  8. 제1항에 있어서, 상기 제 2 호스트로 사용되는 화합물은 하기 구조로 이루어진 화합물 군에서 선택되는 것을 특징으로 하는 유기 전계 발광 소자.
    Figure PCTKR2014005433-appb-I000036
  9. 제1항에 있어서, 상기 제1 호스트와 제2 호스트를 포함하는 유기물층은 발광층인 것을 특징으로 하는 유기 전계 발광 소자.
  10. 제9항에 있어서, 상기 발광층은 도펀트를 포함하고, 상기 도펀트는 금속 착체 화합물인 것을 특징으로 하는 유기 전계 발광 소자.
PCT/KR2014/005433 2013-07-16 2014-06-19 유기 전계 발광 소자 WO2015008940A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130083486A KR101506793B1 (ko) 2013-07-16 2013-07-16 유기 전계 발광 소자
KR10-2013-0083486 2013-07-16

Publications (1)

Publication Number Publication Date
WO2015008940A1 true WO2015008940A1 (ko) 2015-01-22

Family

ID=52346355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005433 WO2015008940A1 (ko) 2013-07-16 2014-06-19 유기 전계 발광 소자

Country Status (2)

Country Link
KR (1) KR101506793B1 (ko)
WO (1) WO2015008940A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217954B2 (en) 2013-11-13 2019-02-26 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102362839B1 (ko) 2015-10-28 2022-02-15 삼성디스플레이 주식회사 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치
KR102593530B1 (ko) 2016-01-25 2023-10-26 삼성디스플레이 주식회사 유기 발광 소자
KR20180000384A (ko) 2016-06-22 2018-01-03 삼성디스플레이 주식회사 유기 발광 소자
KR102084990B1 (ko) * 2017-04-17 2020-03-05 두산솔루스 주식회사 유기 전계 발광 소자
KR102507368B1 (ko) * 2017-12-14 2023-03-08 솔루스첨단소재 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2024010167A1 (ko) * 2022-07-07 2024-01-11 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144867A (ja) * 1997-11-05 1999-05-28 Toray Ind Inc 発光素子
KR20110083442A (ko) * 2010-01-14 2011-07-20 (주)씨에스엘쏠라 유기 광소자 및 이를 위한 유기 광합물
US20130075715A1 (en) * 2010-06-07 2013-03-28 Hodogaya Chemical Co., Ltd. Compound having acridan ring structure, and organic electroluminescent device
KR20130064001A (ko) * 2011-12-07 2013-06-17 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144867A (ja) * 1997-11-05 1999-05-28 Toray Ind Inc 発光素子
KR20110083442A (ko) * 2010-01-14 2011-07-20 (주)씨에스엘쏠라 유기 광소자 및 이를 위한 유기 광합물
US20130075715A1 (en) * 2010-06-07 2013-03-28 Hodogaya Chemical Co., Ltd. Compound having acridan ring structure, and organic electroluminescent device
KR20130064001A (ko) * 2011-12-07 2013-06-17 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217954B2 (en) 2013-11-13 2019-02-26 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device

Also Published As

Publication number Publication date
KR20150009259A (ko) 2015-01-26
KR101506793B1 (ko) 2015-03-27

Similar Documents

Publication Publication Date Title
WO2018038463A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014129869A1 (ko) 유기 전계 발광 소자
WO2020027389A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2020050623A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2013009079A1 (ko) 트리페닐렌계 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015084021A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2015012618A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2015037965A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2011139125A2 (ko) 페난스로카바졸 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015099486A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2015053524A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2011059271A2 (ko) 신규한 축합고리 화합물 및 이를 이용한 유기전자소자
WO2015008940A1 (ko) 유기 전계 발광 소자
WO2019009591A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2014196805A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2014098455A1 (ko) 신규 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019098695A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2014084612A1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2014092431A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014092481A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020060286A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
WO2016111515A1 (ko) 유기 전계 발광 소자
WO2020045822A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2014081206A1 (en) Novel organic electroluminescence compounds and organic electroluminescence device containing the same
WO2015099450A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/05/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14825673

Country of ref document: EP

Kind code of ref document: A1