WO2015088249A1 - 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자 - Google Patents

유기발광 화합물 및 이를 이용한 유기 전계 발광 소자 Download PDF

Info

Publication number
WO2015088249A1
WO2015088249A1 PCT/KR2014/012152 KR2014012152W WO2015088249A1 WO 2015088249 A1 WO2015088249 A1 WO 2015088249A1 KR 2014012152 W KR2014012152 W KR 2014012152W WO 2015088249 A1 WO2015088249 A1 WO 2015088249A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
aryl
compound
Prior art date
Application number
PCT/KR2014/012152
Other languages
English (en)
French (fr)
Inventor
최태진
연규만
김동연
김지이
이주형
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2015088249A1 publication Critical patent/WO2015088249A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to a novel organic light emitting compound and an organic electroluminescent device using the same, and more particularly, by including a novel organic light emitting compound having excellent light emitting ability, hole transporting ability, and electron transporting ability, and the compound in at least one organic material layer.
  • the present invention relates to an organic EL device having improved luminous efficiency, driving voltage, and lifetime.
  • the organic electroluminescent device when a voltage is applied between two electrodes, holes are injected into the organic material layer from the anode and electrons from the cathode. When the injected holes and electrons meet, excitons are formed, and when the excitons fall to the ground, they shine.
  • the material used as the organic material layer may be classified into a light emitting material, a hole injection material, a hole transport material, an electron transport material, an electron injection material and the like according to its function.
  • the structure of the device used in the OLED is an anode, a hole transporting layer, a light emitting layer, an electron transporting layer, a cathode (cathode), such a thin film layer is formed by resistance heating thermal deposition in a high vacuum state.
  • the hole transport layer and the electron transport layer are materials that facilitate the transport of holes and electrons to improve the efficiency of the device and increase the life of the device.
  • Lamination of common organic electroluminescent devices in order of anode / hole injection layer (HIL) / hole transport layer (HTL) / light emitting layer (EML) / hole blocking layer (HBL) / electron transport layer (ETL) / electron injection layer (EIL) / cathode Structure is shown.
  • ITO indium tin oxide
  • HOMO Morecular Orbital
  • LUMO LocationUnoccupied Molecular Orbitar
  • the moved holes and electrons recombine electrons and holes in the emission layer through the hole transport layer and the electron transport layer, respectively, to form electron exciton pairs to form molecular excitons.
  • the carrier which has not been recombined is a non-recombinable current directed to the opposite electrode and becomes a current component which does not contribute to light emission.
  • a fluorescent material is usually used, singlet excitons contribute to light emission (however, when a phosphorescent material is used, triplet excitons contribute to light emission).
  • the singlet excitons generated by the current excitation in this way are in the same excited state in principle with the singlet excitons generated by the photoexcitation.
  • singlet excitons are returned to the ground state through the emission or non-emission process (heat emission) by energy radiation.
  • the emitted light emits light from the surface of the glass substrate via the organic thin film and the transparent electrode, and is observed as EL light emission in our eyes.
  • Most of the materials used in the hole injection layer and / or the hole transport layer of the organic EL device are aromatic amines or carbazole derivatives.
  • the material originally reported by Kodak was a material-(TAPC) in which triphenylamine (TPA) was bonded to cyclohexyl.
  • the most widely used hole transport material has been introduced from the research group at Kyushu University as the aforementioned triphenylamine dimer (TPD) and widely used worldwide. However, they showed insufficient characteristics in terms of durability including lifetime.
  • TPD triphenylamine dimer
  • Tg glass transition temperature
  • the molecular motion becomes active and the film structure of the hole transport layer is changed or crystallization is caused by the aggregation of molecules. happenss.
  • the thin film structure change is fatal in the device and causes an increase in driving voltage and a decrease in luminescence brightness due to poor contact or unevenness of the thin film itself at the electrode interface.
  • the electroluminescent device using a hole injection layer or a hole transport layer including a carbazole derivative known until now has a lot of difficulties in practical use due to the high driving voltage, low efficiency and short lifespan.
  • An object of the present invention is to provide a novel compound that can be used as a light emitting layer material, a hole transporting layer material, a hole injection layer material having excellent hole injection ability, hole transporting ability, light emitting ability and the like.
  • Another object of the present invention is to provide an organic electroluminescent device including the novel compound having a low driving voltage, high luminous efficiency, and an improved lifetime.
  • the present invention provides a compound represented by the following formula (1).
  • Ar is a C 6 to C 50 aromatic ring substituted with one or more R 1 or a hetero aromatic ring system having 5 to 60 nuclear atoms, and includes phenyl, biphenyl, terphenyl, naphthalene, triphenylene, phenanthrene, fluorene , Crezen, dibenzothiophene, dibenzofuran, benzofuran, benzothiophene, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole , Pyridine, pyridazine, pyrimidine, pyrazine, triazine, indole, benzimidazole, indazole, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naph
  • R 1 is hydrogen, deuterium, substituted or unsubstituted C 1 to C 40 alkylamine group, substituted or unsubstituted C 6 to C 40 arylamine group, substituted or unsubstituted C 1 to C 40 heteroalkyl An amine group and a substituted or unsubstituted hetero arylamine group having 5 to 40 nuclear atoms;
  • R is hydrogen, deuterium, halogen, cyano, substituted or unsubstituted C 1 -C 40 alkyl group, substituted or unsubstituted C 2 -C 40 alkenyl group, substituted or unsubstituted C 2 -C 40 alky A substituted or unsubstituted C 6 -C 40 aryl group, a substituted or unsubstituted C 6 -C 40 heteroaryl group, a substituted or unsubstituted C 6 -C 40 aryloxy group, substituted or unsubstituted A substituted C 1 to C 40 alkyloxy group, a substituted or unsubstituted C 6 to C 40 arylamine group, a substituted or unsubstituted C 3 to C 40 cycloalkyl group, a substituted or unsubstituted nuclear atom 3 To 40 heterocycloalkyl groups, substituted or unsubstituted C 1 to C 40 alkylsilyl
  • p is the same as or different from each other, and each independently 0 to 4,
  • the present invention is an organic electroluminescent device comprising an anode, a cathode, and at least one organic layer interposed between the anode and the cathode, wherein at least one of the at least one organic layer comprises the compound.
  • an organic electroluminescent device comprising an anode, a cathode, and at least one organic layer interposed between the anode and the cathode, wherein at least one of the at least one organic layer comprises the compound.
  • the organic material layer of at least one layer containing the compound is selected from the group consisting of a hole transport layer, a hole injection layer and a light emitting layer.
  • a hole transport layer Preferably it is a hole transport layer and / or a light emitting layer, More preferably, it is used as a hole transport layer material.
  • the compound according to the present invention has excellent heat resistance, hole injection ability, hole transporting ability, light emitting ability, and the like, it can be used as an organic material layer material of the organic electroluminescent device, preferably a hole injection layer material, a hole transport layer material, or a light emitting layer material. .
  • the organic EL device including the compound according to the present invention in the hole injection layer, the hole transport layer, and / or the light emitting layer may greatly improve aspects such as light emission performance, driving voltage, lifespan, efficiency, and the like. Can be applied effectively.
  • the novel organic light emitting compound according to the present invention has a structure represented by Chemical Formula 1 in which various substituents, particularly N-containing heterocycles, aromatic rings, etc. are connected to 2,9'-bi (9H-carbazole) -based nuclei.
  • the compound represented by Chemical Formula 1 is a structure having high triplet energy and fast hole transporting ability, and improves phosphorescence characteristics of the device, and at the same time improves hole injection / transporting ability, luminous efficiency, driving voltage, lifetime characteristics, durability, and the like. It can improve and also the electron transport ability etc. can be improved according to the kind of substituents introduce
  • Ar is a C 6 ⁇ C 50 aromatic ring group or 5 to 60 heteroaromatic ring system substituted with one or more R 1 .
  • aromatic ring system or heteroaromatic ring system as Ar include phenyl, biphenyl, terphenyl, naphthalene, triphenylene, phenanthrene, fluorene, cryzen, dibenzothiophene, dibenzofuran, benzo Furan, benzothiophene, carbazole, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, Triazine, indole, benzimidazole, indazole, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, x
  • R 1 is hydrogen, deuterium, substituted or unsubstituted C 1 ⁇ C 40 alkylamine group, substituted or unsubstituted C 6 ⁇ C 40 arylamine group, substituted or unsubstituted C 1 ⁇ C 40 Heteroalkylamine group, a substituted or unsubstituted heteroaryl group having 5 to 40 nuclear atoms.
  • Ar are a substituted or unsubstituted C 6 ⁇ C 40 aryl group, a substituted or unsubstituted heteroaryl group having 5 to 40 nuclear atoms, and more preferably phenyl or bi Phenyl.
  • R 1 may be hydrogen, a substituted or unsubstituted C 1 ⁇ C 7 alkylamine group, a substituted or unsubstituted C 6 ⁇ C 7 arylamine group. It is preferable considering the high triplet energy and the deposition property of the compound.
  • R is hydrogen, deuterium, halogen, cyano, substituted or unsubstituted C 1 ⁇ C 40 alkyl group, substituted or unsubstituted C 2 ⁇ C 40 alkenyl group, Substituted or unsubstituted C 2 to C 40 alkynyl group, substituted or unsubstituted C 6 to C 40 aryl group, substituted or unsubstituted heteroaryl group having 5 to 40 nuclear atoms, substituted or unsubstituted C 6 to C 40 aryloxy group, substituted or unsubstituted C 1 to C 40 alkyloxy group, substituted or unsubstituted C 6 to C 40 arylamine group, substituted or unsubstituted C 3 to C 40 A cycloalkyl group, a substituted or unsubstituted heterocycloalkyl group having 3 to 40 nuclear atoms, a substituted or unsub
  • R may have different preferred substituents, respectively, depending on the structure of formula.
  • R is hydrogen, substituted or unsubstituted C 6 ⁇ C 40 aryl group (e.g., phenyl group), substituted or unsubstituted heteroaryl group having 5 to 40 nuclear atoms, substituted or unsubstituted C 6 ⁇ It is preferably selected from the group consisting of C 40 arylamine groups.
  • p is the same as or different from each other, and each independently 0 to 4,
  • Compound represented by the formula (1) of the present invention can be more specific to any one of the compounds represented by the formula (2) to formula (5).
  • Ar, and b are as defined in Formula 1, respectively;
  • n 1 or 2;
  • R a to R b are the same as or different from each other, and each independently a C 5-30 heteroaryl group or a C 6-30 aryl group containing at least one hetero atom of S, N, O, P, and Si; ,
  • the aryl group or heteroaryl group may be unsubstituted or substituted with an alkyl group of C 1-30 , wherein R a and R b may optionally combine with adjacent substituents to form a ring;
  • R 2 to R 11 are the same as or different from each other, and each independently hydrogen, deuterium, a halogen, a substituted or unsubstituted C 1 to C 40 alkyl group, a substituted or unsubstituted C 2 to C 40 alkenyl group, substituted Or unsubstituted C 2 to C 40 alkynyl group, substituted or unsubstituted C 6 to C 40 aryl group, substituted or unsubstituted heteroaryl group having 5 to 40 nuclear atoms, substituted or unsubstituted C 6 Aryloxy group of -C 40 , substituted or unsubstituted C 6 -C 40 arylamine group, substituted or unsubstituted C 1 -C 40 alkyloxy group, substituted or unsubstituted C 3 -C 40 cyclo An alkyl group and a substituted or unsubstituted heterocycloalkyl group having 3 to 40 nuclear atoms, or a group
  • the alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, aryloxy group, alkyloxy group, cycloalkyl group and heterocycloalkyl group having 3 to 40 nuclear atoms are each independently Deuterium, halogen, cyano group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 6 ⁇ C 40 aryl group, nuclear atoms of 5 to 40 Heteroaryl group, C 6 ⁇ C 40 arylamine group, C 6 ⁇ C 40 aryloxy group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 40 arylamine group, C 6 ⁇ C 40 One or more substituents selected from the group consisting of an arylalkyl group, a C 3 to C 40 cycloalkyl group, a C 3 to C 40 heterocycloalkyl group,
  • substituents when a plurality of substituents are introduced, these substituents are the same or different from each other. Preferably it may be substituted with one or more substituents selected from the group consisting of C 1 ⁇ C 3 alkyl group, C 6 ⁇ C 8 aryl group, a heteroaryl group of 5 to 6 nuclear atoms.
  • Ar is preferably a substituted or unsubstituted C 6 ⁇ C 40 aryl group, a substituted or unsubstituted heteroaryl group having 5 to 40 nuclear atoms.
  • the C 6 to C 40 aryl group, the nuclear group of 5 to 40 heteroaryl groups are each independently C 1 ⁇ C 3 alkyl group, C 6 ⁇ C 8 aryl group, nuclear atoms of 5 to 6 heteroaryl It may be unsubstituted or substituted with one or more substituents selected from the group consisting of groups.
  • R a and R b are each independently a C 5-30 heteroaryl group or C 6-30 aryl group containing one or more hetero atoms of S, N, O, P, and Si, wherein the aryl group Or the heteroaryl group may be unsubstituted or substituted with a C 1-30 alkyl group.
  • R a and R b may include a phenyl group, a biphenyl group, a fluorenyl group, a naphthyl group, a pyridyl group, a pyrimidinyl group, and a qui It may be a quinolyl group, carbazolyl group and the like.
  • Ar is phenyl or biphenyl
  • b is 1 or 2
  • R 3 from the group consisting of carbazole, dibenzothiophene, dibenzofuran and hydrogen It is preferred to be selected, and R 2 and R 4 are preferably hydrogen or phenyl.
  • Ar is phenyl or dibenzofuran
  • b is 0 to 2
  • R 9 is preferably hydrogen or an arylamine group having 6 to 40 carbon atoms.
  • the compound represented by the formula (1) of the present invention described above may be further embodied by the formulas illustrated below. However, the compound represented by the formula (1) of the present invention is not limited by those illustrated below.
  • unsubstituted alkyl is a straight or branched chain saturated hydrocarbon of 1 to 40 (10) carbon atoms, examples of which are methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl, Hexyl and the like.
  • Unsubstituted aryl means an aromatic moiety having 6 to 40 (8) carbon atoms, singly or in combination of two or more rings. Two or more rings may be attached in a simple or condensed form with one another.
  • Unsubstituted heteroaryl means a monoheterocyclic or polyheterocyclic aromatic moiety having 5 to 40 (8) nucleoatoms, wherein at least one carbon in the ring, preferably 1 to 3 carbons is N, Substituted by heteroatoms such as O and S. It is understood that two or more rings may be attached in a simple or condensed form with each other, and further include condensed forms with aliphatic rings or aromatic rings.
  • Condensed ring means a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring or a combined form thereof.
  • the compound represented by Formula 1 according to the present invention may be synthesized according to a general synthetic method. Detailed synthesis procedures for the compounds of the present invention will be described in detail in the synthesis examples described below.
  • organic electroluminescent device comprising the compound represented by the formula (1) according to the present invention.
  • the organic electroluminescent device includes an anode; Cathode; And one or more organic material layers interposed between the anode and the cathode, wherein at least one of the one or more organic material layers comprises a compound represented by Chemical Formula 1, preferably Chemical Formulas 2 to 5. It is done.
  • the compound represented by Formula 1 may include one kind or two or more kinds.
  • the at least one organic material layer may be any one or more of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer, wherein at least one organic material layer may include a compound represented by the formula (1).
  • the organic material layer including the compound of Formula 1 may be a light emitting layer, a hole transport layer and / or an electron transport layer, more preferably a hole transport layer material.
  • the compound may be a phosphorescent auxiliary layer.
  • the light emitting layer of the organic electroluminescent device according to the present invention may contain a host material, wherein any one of the compounds represented by Formula 1 may be used as the host material.
  • a host material such as any one of the compounds represented by Chemical Formula 1
  • organic electroluminescence having excellent efficiency (light emitting efficiency and power efficiency), lifetime, luminance, driving voltage, etc., because the bonding force between holes and electrons in the light emitting layer is increased.
  • An element can be provided.
  • the compound represented by Chemical Formula 1 may be included in the organic light emitting device as a blue, green and / or red phosphorescent host, a fluorescent host, or a dopant material. It can also be used as a dopant material.
  • the compound represented by Chemical Formula 1 of the present invention When the compound represented by Chemical Formula 1 of the present invention is used as a green or red phosphorescent light emitting layer in implementing a phosphorescent device, the compound restricts the injection of triplet excitons into the hole-related layer, By having a delta Est ( ⁇ 0.5 eV) characteristic below a certain level, the triplet excitons are shifted to the singlet level, which is then transferred to the singlet level of the light emitting layer to participate in the generation of excitons and consequently to the triplet level of the light emitting layer. Transition to increase the efficiency of the phosphorescent layer.
  • it may preferably include a hole blocking function by exhibiting a high LUMO value.
  • the compound represented by Formula 1 of the present invention is used to increase the efficiency of the fluorescent blue device.
  • the compound has a hole mobility of more than a certain level (higher than Hole Mobility of NPB), the triplet energy level is higher than the blue fluorescent light emitting layer, preventing the triplet excitons from entering, and limiting in the light emitting layer TTA (The main role is to increase the efficiency by converting triplet excitons to singlet excitons through TTF).
  • it may preferably be accompanied by the effect of improving the interfacial properties between the hole-related layer and the light emitting layer, and more preferably exhibits a high LUMO value and may also include a hole blocking function.
  • the organic EL device structure of the present invention is not particularly limited, but may be a structure in which one or more organic layers are laminated between the electrodes.
  • Non-limiting examples thereof include (i) an anode, a light emitting layer, a cathode; (ii) an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a cathode; Or (iii) an anode, a hole injection layer, a hole transport layer, a light emitting layer, or a cathode.
  • the organic EL device according to the present invention may not only have a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked, but an insulating layer or an adhesive layer may be inserted at an interface between an electrode and an organic material layer.
  • the organic EL device according to the present invention forms an organic material layer and an electrode using materials and methods known in the art, except that at least one layer of the organic material layer is formed to include the compound represented by Formula 1 of the present invention. It can be manufactured by.
  • the organic material layer including the compound represented by Chemical Formula 1 may be formed by a vacuum deposition method or a solution coating method.
  • the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
  • the substrate usable in the present invention is not particularly limited, and a silicon wafer, quartz, glass plate, metal plate, plastic film or sheet can be used.
  • examples of the anode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline; Or carbon black, but is not limited thereto.
  • metals such as vanadium, chromium, copper, zinc and gold or alloys thereof.
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb
  • Conductive polymers such as polythiophene, poly (3-methylthiophene
  • the negative electrode material may be a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, or lead or an alloy thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, but are not limited to these.
  • the hole injection layer, the hole transport layer and the electron transport layer is not particularly limited, and conventional materials known in the art may be used.
  • N-([1,1'-biphenyl] -4-yl) -N- (4-bromophenyl)-[1,1'-biphenyl] -4-amine (13.8 g, 29 mmol), 9H-2,9 '-bicarbazole (8.0 g, 24 mmol), CuI (0.4 g, 2.0 mmol), 1,2-diaminocyclohexane (0.3 g, 2.4 mmol), K 3 PO 4- H 2 O (10.6 g, 50 mmol) and Toluene 150 mL was added to a 500 mL round flask. The reaction was heated to reflux and stirred under nitrogen atmosphere for 24 hours.
  • a glass substrate coated with ITO (Indium tin oxide) to a thickness of 1500 ⁇ was washed with distilled water ultrasonically. After washing the distilled water, ultrasonic cleaning with a solvent such as isopropyl alcohol, acetone, methanol, dried, transferred to a UV OZONE cleaner (Power sonic 405, Hwashin Tech), and then the substrate using UV for 5 minutes The substrate was cleaned and transferred to a vacuum evaporator.
  • ITO Indium tin oxide
  • An organic EL device was manufactured in the same manner as in Example 1, except that the compounds synthesized in Synthesis Examples 2 to 10 were used instead of the compound cpd1 in Example 1.
  • a green organic electroluminescent device was manufactured in the same manner as in Example 1, except that Compound cpd1 was not used in Example 1.
  • Example 1 Luminous material Driving voltage (V) Emission Peak (nm) Current efficiency (cd / A)
  • V Emission Peak
  • cd / A Current efficiency
  • Example 1 Cpd1 9.65 519 41.7
  • Example 2 Cpd2 6.80 521 41.9
  • Example 3 Cpd3 6.80 520 41.5
  • Example 4 Cpd4 6.85 521 42.0
  • Example 5 Cpd5 6.80 518 41.9
  • Example 6 Cpd6 6.85 520 41.5
  • Example 7 Cpd7 6.90 519 41.8
  • Example 8 Cpd8 6.85 519 41.5
  • Example 9 Cpd9 6.80 521 41.9
  • Example 10 Cpd10 6.90 520 41.8 Comparative Example 1 - 6.93 516 38.2
  • the driving voltage was similar to that of the green organic electroluminescent device of Comparative Example 1, it was found that the luminous efficiency and the current efficiency can be further improved compared to the green organic electroluminescent device of Comparative Example 1.
  • a glass substrate coated with ITO Indium tin oxide
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol, etc.
  • UV OZONE cleaner Powersonic 405, Hwasin Tech
  • a red organic EL device was manufactured in the same manner as in Example 11, except for using the compounds synthesized in Synthesis Examples 2 to 10 instead of the compound cpd1 in Example 11.
  • a red organic electroluminescent device was manufactured in the same manner as in Example 11, except that Compound cpd1 was not used in Example 11.
  • Example 11 Cpd1 5.10 10.9
  • Example 12 Cpd2 5.15 11.1
  • Example 13 Cpd3 5.20 10.6
  • Example 14 Cpd4 5.20 11.2
  • Example 15 Cpd5 5.15 11.1
  • Example 16 Cpd6 5.10 10.8
  • Example 17 Cpd7 5.15 11.2
  • Example 18 Cpd8 5.20 11.0
  • Example 19 Cpd9 5.30 11.3
  • Example 20 Cpd10 5.25 10.8 Comparative Example 2 - 5.25 8.2
  • red organic electroluminescent devices of Examples 11 to 20 using the compound represented by Formula 1 according to the present invention as a light emitting auxiliary layer material using only conventional CBP as a material of the light emitting layer without a light emitting auxiliary layer
  • the driving voltage was similar to that of the red organic electroluminescent device of Comparative Example 2, it was found that the current efficiency can be further improved compared to the red organic electroluminescent device of Comparative Example 2.
  • a glass substrate coated with ITO Indium tin oxide
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol, etc.
  • UV OZONE cleaner Powersonic 405, Hwasin Tech
  • the BCP used was as described in Example 1, and the structures of NPB and ADN are as follows.
  • a blue organic EL device was manufactured in the same manner as in Example 21, except that the compound synthesized in Synthesis Examples 2 to 10 was used instead of the compound cpd1.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 21, except that Compound cpd1 was not used in Example 21.
  • the light emitting device and the driving voltage were similar, it was found that the current efficiency can be further improved compared to the organic EL device of Comparative Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것이다. 본 발명에 따른 화합물은 유기 전계 발광 소자의 유기물층, 바람직하게는 발광층, 정공수송층, 전자 저지층 또는 발광 보조층에 사용됨에 따라 유기 전계 발광 소자의 발광효율, 구동 전압, 수명 등을 향상시킬 수 있다.

Description

유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
본 발명은 신규의 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자에 관한 것으로, 보다 상세하게는 발광능, 정공 수송능, 전자 수송능이 우수한 신규의 유기발광 화합물, 및 상기 화합물을 하나 이상의 유기물층에 포함함으로써 발광효율, 구동 전압, 수명 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.
1950년대 Bernanose의 유기 박막 발광 관측을 시점으로 하여, 1965년 안트라센 단결정을 이용한 청색 전기발광으로 이어진 유기 전계 발광 (electroluminescent, EL) 소자(이하, 간단히 '유기 EL 소자'로 칭함)에 대한 연구가 이어져 오다가, 1987년 탕(Tang)에 의하여 정공층과 발광층의 기능층으로 나눈 적층구조의 유기 EL 소자가 제시되었다. 이후, 유기 EL 소자의 효율 및 수명을 향상시키기 위하여, 소자 내 특징적인 유기물층을 도입하는 형태로 발전하여 왔으며, 또한 이에 사용되는 특화된 물질의 개발로 이어졌다.
유기 전계 발광 소자는 두 전극 사이에 전압을 걸어 주면 양극에서는 정공이, 음극에서는 전자가 각각 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥 상태로 떨어질 때 빛이 나게 된다. 유기물층으로 사용되는 물질은 그 기능에 따라 발광 물질, 정공 주입 물질, 정공 수송 물질, 전자 수송 물질, 전자 주입 물질 등으로 분류될 수 있다.
OLED에 사용되는 소자의 구조는 양극(anode), 정공 수송층, 발광층, 전자 수송층, 음극(cathode)이 있는데, 이러한 박막층 등은 고진공 상태에서 저항 가열식 열증착에 의하여 형성된다. 정공 수송층과 전자 수송층은 정공과 전자의 수송을 용이하게 하여 소자의 효율을 개선시키며 장치의 수명을 증가시키는 재료이다. 양극/정공주입층 (HIL)/정공수송층 (HTL)/발광층 (EML)/정공차단층 (HBL)/전자수송층 (ETL)/전자주입층 (EIL)/음극 순으로 일반적인 유기전계발광 소자의 적층된 구조를 나타낸다.
이러한 구조의 유기 전계 발광소자에 전기장이 가해지면 양극인 ITO(Indium- Tin Oxide) 전극에서 유기층의 HOMO(Highest Occupied Morecular Orbital) 준위로 정공이 주입되고, 음극에서는 유기층의 LUMO (LowestUnoccupied Molecular Orbitar) 준위로 전자가 주입된다. 주입된 전자와 정공은 전계 구배(전압 차이)를 구동력으로 하여 인접 분자 사이에서 전자 교환(산화, 환원)을 일으키며, 캐리어들은 반대 전극으로 이동하여 간다. 이동되어진 정공과 전자는 각각 정공수송층과 전자수송층을 거쳐 발광층에서 전자와 정공이 재결합하여 전자·정공쌍을 만들어 분자 여기자(exciton)를 형성하게 된다. 한편 재결합하지 않은 캐리어는 반대편 전극으로 향하는 비재결합성의 전류로서 발광에는 기여하지 않는 전류 성분이 된다. 여기서, 전류로 생성된 여기자에는 일중항 여기자(singlet exiton)와 삼중항 여기자(triplet exiton)가 존재한다. 보통 형광 재료를 사용한 경우에는 일중항 여기자가 발광에 기여하게 된다(다만, 인광 재료를 사용한 경우에는 삼중항 여기자가 발광에 기여한다).
이와 같이 전류 여기로 생성된 일중항 여기자는 광 여기로 생성된 일중항 여기자와 원리적으로는 같은 여기 상태이다. 결국 일중항 여기자는 에너지 방사에 의해 발광 또는 비발광 과정(열방출)을 거쳐 기저상태로 돌아오게 된다. 발광된 빛은 유기 박막, 투명 전극을 거쳐 유리 기판 표면에서 빛을 방사하여 우리들의 눈에 EL 발광으로 관측된다. 유기 전계 발광소자의 정공주입층 및/또는 정공수송층에 사용되는 물질의 대부분은 방향족 아민이나 카바졸 유도체이다. 코닥사가 초기에 보고한 재료는 트리페닐아민(TPA)을 시클로헥실로 결합한 재료-(TAPC)이었다. 그 후 가장 많이 활용된 정공 수송 재료는 앞에서 설명한 트리페닐아민 이량체 (TPD)로서 규슈대학의 연구 그룹으로부터 소개되어 세계적으로 널리 사용되었다. 그러나 수명을 포함한 내구성의 면에서는 불충분한 특성을 나타내었다. 구동 전류의 줄 열(Joule Heat)에 의해 소자 온도가 상승하고 정공 수송층의 유리 전이 온도 (Tg)에 근접하면 분자 운동이 활발하여 분자 간의 응집 현상에 의해 정공 수송층의 막 구조가 변화되거나 또는 결정화가 일어난다. 박막 구조 변화는 소자에서 치명적이고, 전극 계면에서 접촉 불량 또는 박막 자체의 불균일화에 의해 구동 전압의 증가와 발광 휘도의 저하를 일으킨다. 또한 이제까지 알려진 카바졸 유도체를 포함하는 정공주입층 또는 정공수송층을 이용한 전계발광소자의 경우 높은 구동전압, 낮은 효율 및 짧은 수명으로 인해 실용화하는 데에 많은 어려움이 있었다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허공보 제10-2010-0108701호
본 발명은 정공 주입능, 정공 수송능, 발광능 등이 모두 우수하여 발광층 재료, 정공 수송층 재료, 정공 주입층 재료로 사용될 수 있는 신규 화합물을 제공하는 것을 목적으로 한다.
또한 본 발명은 상기 신규 화합물을 포함하여 구동전압이 낮고, 발광 효율이 높으며, 수명이 향상된 유기 전계 발광 소자를 제공하는 것을 또 다른 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.
화학식 1
Figure PCTKR2014012152-appb-C000001
상기 화학식 1에서,
Ar은 하나 이상의 R1로 치환되는 C6~C50의 방향족 고리 또는 핵원자수 5 내지 60개의 헤테로 방향족 고리계로서, 페닐, 바이페닐, 테르페닐, 나프탈렌, 트리페닐렌, 펜안트렌, 플루오렌, 크리젠, 디벤조티오펜, 디벤조푸란, 벤조푸란, 벤조티오펜, 피라졸, 이미다졸, 트리아졸, 옥사졸, 티아졸, 옥사디아졸, 옥사트리아졸, 디옥사졸, 티아디아졸, 피리딘, 피리다진, 피리미딘, 피라진, 트리아진, 인돌, 벤즈이미다졸, 인다졸, 벤즈옥사졸, 벤즈이속사졸, 벤조티아졸, 퀴놀린, 이소퀴놀린, 신놀린, 퀴나졸린, 퀴녹살린, 나프티리딘, 프탈라진, 프테리딘, 크산텐, 페노티아진, 페녹사진, 벤조푸로피리딘, 푸로디피리딘, 벤조티에노피리딘 및 티에노디피리딘으로 이루어진 군 중에서 선택되며,
R1은 수소, 중수소, 치환 또는 비치환된 C1~C40의 알킬아민기, 치환 또는 비치환된 C6~C40의 아릴아민기, 치환 또는 비치환된 C1 ~C40의 헤테로 알킬아민기, 및 치환 또는 비치환된 핵원자수 5 내지 40의 헤테로 아릴아민기로 이루어진 군에서 선택되며;
R은 수소, 중수소, 할로겐, 시아노, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C2~C40의 알케닐기, 치환 또는 비치환된 C2~C40의 알키닐기, 치환 또는 비치환된 C6~C40의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 40의 헤테로아릴기, 치환 또는 비치환된 C6~C40의 아릴옥시기, 치환 또는 비치환된 C1~C40의 알킬옥시기, 치환 또는 비치환된 C6~C40의 아릴아민기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 치환 또는 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기, 치환 또는 비치환된 C1~C40의 알킬실릴기, 치환 또는 비치환된 C1~C40의 알킬보론기, 및 치환 또는 비치환된 C6~C40의 아릴보론기, 치환 또는 비치환된 C6~C40의 아릴포스핀기, 치환 또는 비치환된 C6~C40의 아릴포스핀옥사이드기 및 치환 또는 비치환된 C6~C40의 아릴실릴기로 이루어진 군에서 선택되고,
상기 R 및 R1에서, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C1~C40의 알킬아민기, C1 ~C40의 헤테로 알킬아민기, 핵원자수 5 내지 40의 헤테로아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 치환될 수 있으며,
a는 1~5이고; b는 0~5이고;
p는 서로 동일하거나 또는 상이하며, 각각 독립적으로 0 내지 4이며,
q는 0 내지 3이다.
또한, 본 발명은 양극, 음극, 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화합물을 포함하는 것이 특징인 유기 전계 발광 소자를 제공한다.
여기서, 상기 화합물을 포함하는 1층 이상의 유기물층은 정공 수송층, 정공 주입층 및 발광층으로 이루어진 군에서 선택된다. 바람직하게는 정공 수송층 및/또는 발광층이며, 보다 바람직하게는 정공수송층 재료로 사용된다.
본 발명에 따른 화합물은 내열성, 정공 주입능, 정공 수송능, 발광능 등이 우수하기 때문에, 유기 전계 발광 소자의 유기물층 재료, 바람직하게는 정공 주입층 재료, 정공 수송층 재료 또는 발광층 재료로 사용될 수 있다.
또한, 본 발명에 따른 화합물을 정공 주입층, 정공 수송층 및/또는 발광층에 포함하는 유기 EL 소자는 발광 성능, 구동전압, 수명, 효율 등의 측면이 크게 향상될 수 있고, 나아가 풀 칼라 디스플레이 패널 등에 효과적으로 적용될 수 있다.
이하, 본 발명에 대해 설명한다.
<신규화합물>
본 발명에 따른 신규 유기발광 화합물은 2,9'-bi(9H-carbazole)계 모핵에 다양한 치환체, 특히 N-함유 헤테로환, 방향족 고리 등이 연결된 상기 화학식 1로 표시되는 구조를 가진다.
상기 화학식 1로 표시되는 화합물은 높은 삼중항 에너지와 빠른 정공 수송 능력을 갖는 구조로서, 소자의 인광 특성을 향상시킴과 동시에, 정공 주입/수송 능력, 발광 효율, 구동 전압, 수명 특성, 내구성 등을 향상시킬 수 있고, 또한 도입되는 치환체의 종류에 따라 전자 수송 능력 등도 향상시킬 수 있다. 따라서, 상기 화학식 1의 화합물은 유기 전계 발광 소자의 유기물층 재료, 바람직하게는 발광층 재료(인광 호스트 재료), 정공 수송층 재료 및 정공 주입층 재료, 보다 바람직하게는 정공 수송층 재료로 사용될 수 있다. 아울러, 상기 화학식 1의 화합물은 선택적으로 적절한 치환체를 도입함으로써, 전자 수송층 재료 등으로도 사용될 수 있다.
본 발명의 화학식 1로 표시되는 화합물에서, Ar은 하나 이상의 R1로 치환되는 C6~C50의 방향족 고리기 또는 핵원자수 5 내지 60개의 헤테로 방향족 고리계이다.
상기 Ar로서 방향족 고리계 또는 헤테로 방향족 고리계의 보다 구체적인 예로는, 페닐, 바이페닐, 테르페닐, 나프탈렌, 트리페닐렌, 펜안트렌, 플루오렌, 크리젠, 디벤조티오펜, 디벤조푸란, 벤조푸란, 벤조티오펜, 카바졸, 피라졸, 이미다졸, 트리아졸, 옥사졸, 티아졸, 옥사디아졸, 옥사트리아졸, 디옥사졸, 티아디아졸, 피리딘, 피리다진, 피리미딘, 피라진, 트리아진, 인돌, 벤즈이미다졸, 인다졸, 벤즈옥사졸, 벤즈이속사졸, 벤조티아졸, 퀴놀린, 이소퀴놀린, 신놀린, 퀴나졸린, 퀴녹살린, 나프티리딘, 프탈라진, 프테리딘, 크산텐, 페노티아진, 페녹사진, 벤조푸로피리딘, 푸로디피리딘, 벤조티에노피리딘 및 티에노디피리딘으로 이루어진 군 중에서 선택된다.
여기서, 상기 R1은 수소, 중수소, 치환 또는 비치환된 C1~C40의 알킬아민기, 치환 또는 비치환된 C6~C40의 아릴아민기, 치환 또는 비치환된 C1~C40의 헤테로 알킬아민기, 치환 또는 비치환된 핵원자수 5 내지 40의 헤테로 아릴아민기로 이루어진 군에서 선택된다.
본 발명에서, 상기 Ar의 바람직한 예로는, 치환 또는 비치환된 C6~C40의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 40의 헤테로아릴기 등이며, 보다 바람직하게는 페닐 또는 바이페닐이다. 또한 R1의 바람직한 예로는 수소, 치환 또는 비치환된 C1~C7의 알킬아민기, 치환 또는 비치환된 C6~C7의 아릴아민기일 수 있다. 높은 삼중항 에너지와 화합물의 증착성을 고려할 때 바람직하다.
또한 본 발명의 화학식 1로 표시되는 화합물에서, R은 수소, 중수소, 할로겐, 시아노, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C2~C40의 알케닐기, 치환 또는 비치환된 C2~C40의 알키닐기, 치환 또는 비치환된 C6~C40의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 40의 헤테로아릴기, 치환 또는 비치환된 C6~C40의 아릴옥시기, 치환 또는 비치환된 C1~C40의 알킬옥시기, 치환 또는 비치환된 C6~C40의 아릴아민기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 치환 또는 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기, 치환 또는 비치환된 C1~C40의 알킬실릴기, 치환 또는 비치환된 C1~C40의 알킬보론기, 및 치환 또는 비치환된 C6~C40의 아릴보론기, 치환 또는 비치환된 C6~C40의 아릴포스핀기, 치환 또는 비치환된 C6~C40의 아릴포스핀옥사이드기 및 치환 또는 비치환된 C6~C40의 아릴실릴기로 이루어진 군에서 선택된다.
상기 R 및 R1에서, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C1~C40의 알킬아민기, C1~C40의 헤테로 알킬아민기, 핵원자수 5 내지 40의 헤테로아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 치환될 수 있다. 이때 복수 개의 치환기가 도입되는 경우, 이들 치환기는 서로 동일하거나 또는 상이할 수 있다.
본 발명에서, R은 화학식의 구조에 따라 바람직한 치환기가 각각 상이할 수 있다. 일례로, R은 수소, 치환 또는 비치환된 C6~C40의 아릴기 (예, 페닐기), 치환 또는 비치환된 핵원자수 5 내지 40의 헤테로아릴기, 치환 또는 비치환된 C6~C40의 아릴아민기로 구성된 군에서 선택되는 것이 바람직하다.
상기 a는 1~5이고; b는 0~5이고;
p는 서로 동일하거나 또는 상이하며, 각각 독립적으로 0 내지 4이며,
q는 0 내지 3이다.
본 발명에서, a =1, b= 0~1, p = 0~1, n = 0~1인 경우, 화합물의 증착성을 고려할 때 바람직하다.
본 발명의 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 화학식 5로 표시되는 화합물 중 어느 하나로 보다 구체화될 수 있다.
화학식 2
Figure PCTKR2014012152-appb-C000002
화학식 3
Figure PCTKR2014012152-appb-C000003
화학식 4
Figure PCTKR2014012152-appb-C000004
화학식 5
Figure PCTKR2014012152-appb-C000005
상기 화학식 2 내지 화학식 5에서,
Ar, 및 b는 각각 화학식 1에서 정의된 바와 같으며;
m은 1 또는 2이며;
Ra 내지 Rb는 서로 동일하거나 또는 상이하며, 각각 독립적으로 S, N, O, P 및 Si 중 하나 이상의 헤테로 원자를 함유하는 C5-30의 헤테로아릴기 또는 C6-30의 아릴기이며, 상기 아릴기 또는 헤테로아릴기는 C1-30의 알킬기로 치환되거나 또는 비치환될 수 있으며, 여기서 Ra 및 Rb는 인접하는 치환기와 임의적으로 서로 결합하여 고리를 형성할 수 있고;
R2 내지 R11 는 서로 같거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C2~C40의 알케닐기, 치환 또는 비치환된 C2~C40의 알키닐기, 치환 또는 비치환된 C6~C40의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 40의 헤테로아릴기, 치환 또는 비치환된 C6~C40의 아릴옥시기, 치환 또는 비치환된 C6~C40의 아릴아민기, 치환 또는 비치환된 C1~C40의 알킬옥시기, 치환 또는 비치환된 C3~C40의 시클로알킬기 및 치환 또는 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기로 이루어진 군에서 선택되거나, 또는 이들이 인접하는 기와 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리 또는 축합 헤테로방향족 고리를 형성하는 기일 수 있다.
상기 화학식 2 내지 화학식 5에서, 전술한 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기 및 핵원자수 3 내지 40의 헤테로시클로알킬기는, 각각 독립적으로 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴아민기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C6~C40의 아릴알킬기, C3~C40의 시클로알킬기, C3~C40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, 및 C6~C40의 아릴실릴기로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 치환될 수 있다. 이때 복수 개의 치환기가 도입되는 경우, 이들 치환기는 서로 동일하거나 상이하다. 바람직하게는 C1~C3의 알킬기, C6~C8 아릴기, 핵원자수 5 내지 6의 헤테로아릴기로 구성된 군으로부터 선택되는 하나 이상의 치환기로 치환될 수 있다.
본 발명의 바람직한 일례에 따르면, 상기 Ar은 치환 또는 비치환된 C6~C40의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 40의 헤테로아릴기인 것이 바람직하다.
여기서, 상기 C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기는 각각 독립적으로 C1~C3의 알킬기, C6~C8 아릴기, 핵원자수 5 내지 6의 헤테로아릴기로 구성된 군으로부터 선택되는 하나 이상의 치환기로 치환되거나 또는 비치환될 수 있다.
또한 Ra 및 Rb는 각각 독립적으로 S, N, O, P 및 Si 중 하나 이상의 헤테로 원자를 함유하는 C5-30의 헤테로아릴기 또는 C6-30의 아릴기가 바람직하며, 이때 상기 아릴기 또는 헤테로아릴기는 C1-30의 알킬기로 치환되거나 또는 비치환될 수 있다.
일례로, 상기 Ra 및 Rb의 구체적인 예로는, 페닐기, 바이페닐기, 플루오레닐기(fluorenyl group), 나프틸기(naphthyl group), 피리딜기(pyridyl group), 피리미딘일기(pyrimidinyl group), 퀴놀릴기(quinolyl group), 카바졸릴기(carbazolyl group) 등일 수 있다.
본 발명의 바람직한 일례를 구체적으로 들면, 상기 화학식 2에서, Ar은 페닐 또는 바이페닐이고, b는 1 또는 2이며, R3은 카바졸, 디벤조티오펜, 디벤조푸란 및 수소로 이루어진 군으로부터 선택되는 것이 바람직하고, R2 및 R4는 수소, 또는 페닐인 것이 바람직하다.
또한 상기 화학식 4에서, Ar은 페닐 또는 디벤조푸란이고, b는 0 내지 2이고, R9는 수소, 또는 C6~C40의 아릴아민기인 것이 바람직하다.
이상에서 설명한 본 발명의 화학식 1로 표시되는 화합물은 하기 예시된 화학식들로 보다 구체화될 수 있다. 그러나 본 발명의 화학식 1로 표시되는 화합물이 하기 예시된 것들에 의해 한정되는 것은 아니다.
Figure PCTKR2014012152-appb-I000001
Figure PCTKR2014012152-appb-I000002
본 발명에서 사용된 "비치환된 알킬"은 탄소수 1 내지 40(10)의 직쇄 또는 측쇄의 포화 탄화수소이며, 이의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등을 포함한다.
"비치환된 아릴"은 단독 고리 혹은 2 이상의 고리가 조합된, 탄소수 6 내지 40(8)의 방향족 부위를 의미한다. 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태로 부착될 수 있다.
"비치환된 헤테로아릴"은 핵원자수 5 내지 40(8)의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 부위를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S와 같은 헤테로원자로 치환된다. 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태로 부착될 수 있고, 나아가 지방족고리 또는 방향족 고리와의 축합된 형태도 포함하는 것으로 해석한다.
"축합 고리"는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.
본 발명에 따른 화학식 1로 표시되는 화합물은 일반적인 합성방법에 따라 합성될 수 있다. 본 발명의 화합물에 대한 상세한 합성 과정은 후술하는 합성예에서 구체적으로 기술하도록 한다.
<유기 전계 발광 소자>
한편, 본 발명의 다른 측면은 상기한 본 발명에 따른 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자(유기 EL 소자)에 관한 것이다.
보다 구체적으로, 본 발명에 따른 유기 전계 발광소자는 양극(anode); 음극(cathode); 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물, 바람직하게는 화학식 2 내지 화학식 5를 포함하는 것을 특징으로 한다. 이때, 상기 화학식 1로 표시되는 화합물은 1종 또는 2종 이상이 포함될 수 있다.
상기 1층 이상의 유기물층은 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층 중 어느 하나 이상일 수 있고, 이중에서 적어도 하나의 유기물층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 바람직하게는 상기 화학식 1의 화합물을 포함하는 유기물층은 발광층, 정공수송층 및/또는 전자수송층일 수 있으며, 보다 바람직하게는 정공수송층 재료일 수 있다. 아울러, 정공 수송층과 발광층 사이에, 상기 화학식 1로 표시되는 화합물로 구성되는 발광 보조층을 포함하는 것도 바람직하다. 이때 상기 화합물은 인광 발광 보조층일 수 있다.
본 발명에 따른 유기 전계 발광 소자의 발광층은 호스트 재료를 함유할 수 있는데, 이때 호스트 재료로 상기 화학식 1로 표시되는 화합물 중 어느 하나를 사용할 수 있다. 이와 같이 발광층이 상기 화학식 1로 표시되는 화합물 중 어느 하나를 함유할 경우, 발광층에서 정공과 전자의 결합력이 높아지기 때문에 효율(발광효율 및 전력효율), 수명, 휘도 및 구동전압 등이 우수한 유기 전계 발광 소자를 제공할 수 있다. 상기 화학식 1로 표시되는 화합물은 청색, 녹색 및/또는 적색의 인광 호스트, 형광 호스트, 또는 도펀트 재료로서 유기 발광 소자에 포함될 수 있다. 또한 도펀트 재료로 이용될 수 있다.
본 발명의 화학식 1로 표시되는 화합물이 인광소자를 구현하는데 있어서 녹색, 적색 인광 발광층으로 사용되는 경우, 상기 화합물은 삼중항 엑시톤이 정공층(Hole-related Layer)으로 주입되는 것을 제한함과 동시에, 일정수준 이하의 delta Est (< 0.5 eV) 특성을 구비함으로써 삼중항 엑시톤을 일중항 레벨로 이동시키며, 이는 다시 발광층의 일중항 레벨로 전이되어 엑시톤 생성에 참여시키고, 결과적으로 발광층의 삼중항 레벨로 전이되어 인광 발광층의 효율을 증가시키는 역할을 한다. 또한, 바람직하게는 높은 LUMO값을 나타내어 정공 저지 기능도 포함할 수 있다.
또한, 본 발명의 화학식 1로 표시되는 화합물은 형광 청색소자의 효율을 높이기 위해 사용된다. 이때 화합물은 일정 수준 이상의 정공 이동도(Hole mobility)를 가지며(higher than Hole Mobility of NPB), 삼중항 에너지 준위가 청색 형광 발광층 보다 높아서, 삼중항 여기자가 유입되는 것을 막고, 발광층 안에 제한시켜 TTA(TTF)를 통해 삼중항 여기자가 일중항 여기자로 변환하도록 하여 효율을 높이는 역할이 주된 역할이다. 또한, 바람직하게는 정공층(Hole-related layer)와 발광층 간의 계면 특성 향상효과도 동반 수반할 수 있으며, 더 바람직하게는 높은 LUMO값을 나타내어 정공 저지 기능도 포함할 수 있다.
본 발명의 유기 EL 소자 구조는 특별히 한정되지 않으나, 전극간에 유기물층이 1층 또는 2층 이상 적층된 구조일 수 있다. 이의 비제한적인 예를 들면 (i) 양극, 발광층, 음극; (ii) 양극, 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 음극; 또는 (iii) 양극, 정공주입층, 정공수송층, 발광층, 음극 등의 구조를 들 수 있다.
또한, 본 발명에 따른 유기 EL 소자는 전술한 바와 같이 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조뿐만 아니라, 전극과 유기물층 계면에 절연층 또는 접착층이 삽입될 수 있다.
본 발명에 따른 유기 EL 소자는 유기물층 중 1층 이상을 본 발명의 화학식 1로 표시되는 화합물을 포함하도록 형성하는 것을 제외하고는, 당 기술 분야에 알려져 있는 재료 및 방법을 이용하여 유기물층 및 전극을 형성함으로써 제조될 수 있다.
상기 화학식 1로 표시되는 화합물을 포함하는 유기물층은 진공증착법이나 용액 도포법에 의하여 형성될 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열전사법 등이 있으나, 이들에만 한정되지 않는다.
본 발명에서 사용 가능한 기판으로는 특별히 한정되지 않으며, 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름이나 시트 등이 사용될 수 있다.
또, 양극 물질로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자; 또는 카본블랙 등이 있으나, 이들에만 한정되는 것은 아니다.
또 음극 물질로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 또는 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은아니다.
또한, 정공 주입층, 정공 수송층 및 전자 수송층은 특별히 한정되는 것은 아니며, 당 업계에 알려진 통상의 물질이 사용될 수 있다.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[합성예 1] Cpd 1 (N-(4-(9H-[2,9'-bicarbazol]-9-yl)phenyl)-N-([1,1'-biphenyl]-4-yl)-[1,1'-biphenyl]-4-amine)의 합성
Figure PCTKR2014012152-appb-I000003
<단계 1> 2-bromo-9-tosyl-9H-carbazole의 합성
KOH (2.7 g, 48 mmol)에 Acetone 200 mL을 넣고 녹인 다음, 2-bromo-9H-carbazole (9.8g, 40 mmol)를 투입하였다. TsCl (8.4 g, 44 mmol)를 용액에 첨가하고 혼합물을 3시간 동안 환류시킨 후 냉각시켰다. 이를 교반하면서 냉수 1L를 부었다. 30분 동안 교반 후, 필터 하여 미정제 생성물을 얻었다. CH2Cl2/EtOH로부터 재결정화 후 2-bromo-9-tosyl-9H-carbazole 9.8g을 얻었다.
<단계 2> 9-tosyl-9H-2,9'-bicarbazole의 합성
2-bromo-9-tosyl-9H-carbazole (9.6 g, 24 mmol), carbazole (4.8 g, 29 mmol), CuI (0.4 g, 2.0 mmol), 1,2-diaminocyclohexane (0.3 g, 2.4 mmol), K3PO4-H2O (10.6 g, 50 mmol) 및 Toluene 150 mL 을 500 mL 둥근 플라스크에 첨가하였다. 반응물을 환류로 가열하고, 24시간 동안 질소 분위기 하에서 교반하였다. TLC로 반응이 종결되는 것을 확인한 후 상온으로 식혔다. 반응 종료 후 증류수를 넣고 에틸아세테이트로 추출하였다. 얻어진 유기층을 Na2SO4 로 건조시키고 감압 증류한 다음 컬럼 크로마토그래피로 정제하여 화합물, 9-tosyl-9H-2,9'-bicarbazole 10g을 얻었다.
<단계 3> 9H-2,9'-bicarbazole의 합성
9-tosyl-9H-2,9'-bicarbazole (10.0 g, 21 mmol), NaOH (8.0 g, 200 mmol), THF 80 mL, MeOH 40 mL, 물 40 mL를 500 mL 둥근 플라스크에 첨가하였다. 반응물을 12시간 동안 환류로 가열하였다. TLC로 반응이 종결되는 것을 확인한 후 상온으로 식혔다. 반응 종료 후 증류수를 넣고 에틸아세테이트로 추출하였다. 얻어진 유기층을 Na2SO4 로 건조시키고 감압 증류한 다음 컬럼 크로마토그래피로 정제하여 화합물, 9H-2,9'-bicarbazole 8g을 얻었다.
<단계 4> 9-(dibenzo[b,d]thiophen-4-yl)-9H-2,9'-bicarbazole의 합성
N-([1,1'-biphenyl]-4-yl)-N-(4-bromophenyl)-[1,1'-biphenyl]-4-amine (13.8 g, 29 mmol), 9H-2,9'-bicarbazole (8.0 g, 24 mmol), CuI (0.4 g, 2.0 mmol), 1,2-diaminocyclohexane (0.3 g, 2.4 mmol), K3PO4-H2O (10.6 g, 50 mmol) 및 Toluene 150 mL 을 500 mL 둥근 플라스크에 첨가하였다. 반응물을 환류로 가열하고, 24시간 동안 질소 분위기 하에서 교반하였다. TLC로 반응이 종결되는 것을 확인한 후 상온으로 식혔다. 반응 종료 후 증류수를 넣고 에틸아세테이트로 추출하였다. 얻어진 유기층을 Na2SO4 로 건조시키고 감압 증류한 다음 컬럼 크로마토그래피로 정제하여 표제 화합물 Cpd1( 12g, 수율68%). HRMS [M]+: 727.298을 얻었다.
[합성예 2] Cpd 2 (N,N-di([1,1'-biphenyl]-4-yl)-4'-(9H-[2,9'-bicarbazol]-9-yl)-[1,1'-biphenyl]-4-amine)의 합성
N-([1,1'-biphenyl]-4-yl)-N-(4-bromophenyl)-[1,1'-biphenyl]-4-amine 대신 N,N-di([1,1'-biphenyl]-4-yl)-4'-bromo-[1,1'-biphenyl]-4-amine 를 사용하는 것을 제외하고는, 상기 합성예 1과 동일한 과정을 수행하여 표제 화합물 Cpd 2 (수율 71%) HRMS [M]+: 803.330을 얻었다.
[합성예 3] Cpd 3 (N-(4'-(9H-[2,9'-bicarbazol]-9-yl)-[1,1'-biphenyl]-4-yl)-N-([1,1'-biphenyl]-4-yl)-9,9-dimethyl-9H-fluoren-2-amine)의 합성
N-([1,1'-biphenyl]-4-yl)-N-(4-bromophenyl)-[1,1'-biphenyl]-4-amine 대신 N-([1,1'-biphenyl]-4-yl)-N-(4'-bromo-[1,1'-biphenyl]-4-yl)-9,9-dimethyl-9H-fluoren-2-amine를 사용하는 것을 제외하고는, 상기 합성예 1과 동일한 과정을 수행하여 표제 화합물 Cpd 3 (수율 68%) HRMS [M]+: 843.361을 얻었다.
[합성예 4] Cpd 4 (N-(4'-(9H-[2,9'-bicarbazol]-9-yl)-[1,1'-biphenyl]-4-yl)-N-phenylnaphthalen-1-amine)의 합성
N-([1,1'-biphenyl]-4-yl)-N-(4-bromophenyl)-[1,1'-biphenyl]-4-amine 대신 N-(4'-bromo-[1,1'-biphenyl]-4-yl)-N-phenylnaphthalen-1-amine를 사용하는 것을 제외하고는, 상기 합성예 1과 동일한 과정을 수행하여 표제 화합물 Cpd 4 (수율 74%) HRMS [M]+: 701.283을 얻었다.
[합성예 5] Cpd 5 (N-([1,1'-biphenyl]-4-yl)-N-(4-(9-phenyl-9H-[2,9'-bicarbazol]-3'-yl)phenyl)-[1,1'-biphenyl]-4-amine)의 합성
Figure PCTKR2014012152-appb-I000004
<단계 1> 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole의 합성
3-bromo-9H-carbazole (21.7g, 88.17mmol), Bis(pinacolato)diboron (27.0g, 106.3mmol), KOAc(26.0g, 264.9mmol) 및 Pd(dppf)Cl2(3.6g, 4.4mmol)을 톨루엔 1L에 녹인 다음 혼합물을 5시간 동안 환류 교반하였다. TLC로 반응이 종결되는 것을 확인한 후 상온으로 식혔다. 반응 종료 후 증류수를 넣고 에틸아세테이트로 추출하였다. 얻어진 유기층을 Na2SO4 로 건조시키고 감압 증류한 다음 컬럼 크로마토그래피로 정제하여 화합물 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (22.0g, 수율 85%)을 얻었다.
<단계 2> N-(4-(9H-carbazol-3-yl)phenyl)-N-([1,1'-biphenyl]-4-yl)-[1,1'-biphenyl]-4-amine의 합성
화합물 N-([1,1'-biphenyl]-4-yl)-N-(4-bromophenyl)-[1,1'-biphenyl]-4-amine (8.4g, 17.60mmol), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (6.2g, 21.12mmol) 및 Pd(PPh3)4 (1.0g, 0.88mmol)을 플라스크에 넣고 2N Na2CO3 포화 수용액 52.8㎖와 1,4-Dioxane 200 ㎖를 넣어 녹인 후 13시간 동안 가열 교반하였다. 반응 종료 후 증류수를 넣고 에틸아세테이트로 추출하였다. 얻어진 유기층을 Na2SO4로 건조시키고 감압 증류한 다음 컬럼 크로마토그래피로 정제하여 화합물 N-(4-(9H-carbazol-3-yl)phenyl)-N-([1,1'-biphenyl]-4-yl)-[1,1'-biphenyl]-4-amine (8.4g, 수율 85%)을 얻었다.
<단계 3> N-([1,1'-biphenyl]-4-yl)-N-(4-(9-phenyl-9H-[2,9'-bicarbazol]-3'-yl)phenyl)-[1,1'-biphenyl]-4-amine의 합성
N-(4-(9H-carbazol-3-yl)phenyl)-N-([1,1'-biphenyl]-4-yl)-[1,1'-biphenyl]-4-amine (8.2 g, 14.5 mmol), 2-bromo-9-phenyl-9H-carbazole (3.8 g, 12 mmol), CuI (0.2 g, 1.0 mmol), 1,2-diaminocyclohexane (0.15 g, 1.2 mmol), K3PO4-H2O (5.3 g, 25 mmol) 및 Toluene 150 mL 을 500 mL 둥근 플라스크에 첨가하였다. 반응물을 환류로 가열하고, 24시간 동안 질소 분위기 하에서 교반하였다. TLC로 반응이 종결되는 것을 확인한 후 상온으로 식혔다. 반응 종료 후 증류수를 넣고 에틸아세테이트로 추출하였다. 얻어진 유기층을 Na2SO4 로 건조시키고 감압 증류한 다음 컬럼 크로마토그래피로 정제하여 표제 화합물 Cpd 5 (7.7g, 수율 80%) HRMS [M]+: 803.330을 얻었다.
[합성예 6] Cpd 6 (N-([1,1'-biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-[2,9'-bicarbazol]-3'-yl)phenyl)-9H-fluoren-2-amine)의 합성
N-([1,1'-biphenyl]-4-yl)-N-(4-bromophenyl)-[1,1'-biphenyl]-4-amine 대신 N-([1,1'-biphenyl]-4-yl)-N-(4'-bromo-[1,1'-biphenyl]-4-yl)-9,9-dimethyl-9H-fluoren-2-amine를 사용하는 것을 제외하고는, 상기 합성예 5과 동일한 과정을 수행하여 표제 화합물 Cpd 6 (수율 76%) HRMS [M]+: 843.361을 얻었다.
[합성예 7] Cpd 7 (N-([1,1'-biphenyl]-4-yl)-N-(4-(9-([1,1':3',1''-terphenyl]-5'-yl)-9H-[2,9'-bicarbazol]-3'-yl)phenyl)-[1,1'-biphenyl]-4-amine)의 합성
Figure PCTKR2014012152-appb-I000005
<단계 1> 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole의 합성
3-bromo-9H-carbazole (21.7g, 88.17mmol), Bis(pinacolato)diboron (27.0g, 106.3mmol), KOAc(26.0g, 264.9mmol) 및 Pd(dppf)Cl2(3.6g, 4.4mmol)을 톨루엔 1L에 녹인 다음 혼합물을 5시간 동안 환류 교반하였다. TLC로 반응이 종결되는 것을 확인한 후 상온으로 식혔다. 반응 종료 후 증류수를 넣고 에틸아세테이트로 추출하였다. 얻어진 유기층을 Na2SO4 로 건조시키고 감압 증류한 다음 컬럼 크로마토그래피로 정제하여 화합물 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (22.0g, 수율 85%)을 얻었다.
<단계 2> N-(4-(9H-carbazol-3-yl)phenyl)-N-([1,1'-biphenyl]-4-yl)-[1,1'-biphenyl]-4-amine의 합성
화합물 N-([1,1'-biphenyl]-4-yl)-N-(4-bromophenyl)-[1,1'-biphenyl]-4-amine (8.4g, 17.60mmol), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (6.2g, 21.12mmol) 및 Pd(PPh3)4 (1.0g, 0.88mmol)을 플라스크에 넣고 2N Na2CO3 포화 수용액 52.8㎖와 1,4-Dioxane 200 ㎖를 넣어 녹인 후 13시간 동안 가열 교반하였다. 반응 종료 후 증류수를 넣고 에틸아세테이트로 추출하였다. 얻어진 유기층을 Na2SO4로 건조시키고 감압 증류한 다음 컬럼 크로마토그래피로 정제하여 화합물 N-(4-(9H-carbazol-3-yl)phenyl)-N-([1,1'-biphenyl]-4-yl)-[1,1'-biphenyl]-4-amine (8.4g, 수율 85%)을 얻었다.
<단계 3> N-([1,1'-biphenyl]-4-yl)-N-(4-(9-tosyl-9H-[2,9'-bicarbazol]-3'-yl)phenyl)-[1,1'-biphenyl]-4-amine의 합성
N-(4-(9H-carbazol-3-yl)phenyl)-N-([1,1'-biphenyl]-4-yl)-[1,1'-biphenyl]-4-amine (8.2 g, 14.5 mmol), 9-tosyl-9H-2,9'-bicarbazole (4.8 g, 12 mmol), CuI (0.2 g, 1.0 mmol), 1,2-diaminocyclohexane (0.15 g, 1.2 mmol), K3PO4-H2O (5.3 g, 25 mmol) 및 Toluene 150 mL 을 500 mL 둥근 플라스크에 첨가하였다. 반응물을 환류로 가열하고, 24시간 동안 질소 분위기 하에서 교반하였다. TLC로 반응이 종결되는 것을 확인한 후 상온으로 식혔다. 반응 종료 후 증류수를 넣고 에틸아세테이트로 추출하였다. 얻어진 유기층을 Na2SO4 로 건조시키고 감압 증류한 다음 컬럼 크로마토그래피로 정제하여 화합물 N-([1,1'-biphenyl]-4-yl)-N-(4-(9-tosyl-9H-[2,9'-bicarbazol]-3'-yl)phenyl)-[1,1'-biphenyl]-4-amine (9.0g, 수율 85%)을 얻었다.
<단계 4> N-(4-(9H-[2,9'-bicarbazol]-3'-yl)phenyl)-N-([1,1'-biphenyl]-4-yl)-[1,1'-biphenyl]-4-amine의 합성
N-([1,1'-biphenyl]-4-yl)-N-(4-(9-tosyl-9H-[2,9'-bicarbazol]-3'-yl)phenyl)-[1,1'-biphenyl]-4-amine (8.8 g, 10 mmol), NaOH (4.0 g, 100 mmol), THF 80 mL, MeOH 40 mL, 물 40 mL를 500 mL 둥근 플라스크에 첨가하였다. 반응물을 12시간 동안 환류로 가열하였다. TLC로 반응이 종결되는 것을 확인한 후 상온으로 식혔다. 반응 종료 후 증류수를 넣고 에틸아세테이트로 추출하였다. 얻어진 유기층을 Na2SO4 로 건조시키고 감압 증류한 다음 컬럼 크로마토그래피로 정제하여 화합물 N-(4-(9H-[2,9'-bicarbazol]-3'-yl)phenyl)-N-([1,1'-biphenyl]-4-yl)-[1,1'-biphenyl]-4-amine (5.8g, 수율 80%)을 얻었다.
<단계 5> N-([1,1'-biphenyl]-4-yl)-N-(4-(9-([1,1':3',1''-terphenyl]-5'-yl)-9H-[2,9'-bicarbazol]-3'-yl)phenyl)-[1,1'-biphenyl]-4-amine의 합성
5'-bromo-1,1':3',1''-terphenyl (3.0 g, 9.6 mmol), N-([1,1'-biphenyl]-4-yl)-N-(4-bromophenyl)-[1,1'-biphenyl]-4-amine (5.8 g, 8 mmol), CuI (0.14 g, 0.7 mmol), 1,2-diaminocyclohexane (0.1 g, 0.8 mmol), K3PO4-H2O (3.5 g, 16.7 mmol) 및 Toluene 150 mL 을 500 mL 둥근 플라스크에 첨가하였다. 반응물을 환류로 가열하고, 24시간 동안 질소 분위기 하에서 교반하였다. TLC로 반응이 종결되는 것을 확인한 후 상온으로 식혔다. 반응 종료 후 증류수를 넣고 에틸아세테이트로 추출하였다. 얻어진 유기층을 Na2SO4 로 건조시키고 감압 증류한 다음 컬럼 크로마토그래피로 정제하여 표제 화합물 Cpd7(5.3g, 수율69%). HRMS [M]+: 955.392을 얻었다.
[합성예 8] Cpd 8 (N-([1,1'-biphenyl]-4-yl)-N-(4-(9-(dibenzo[b,d]furan-2-yl)-9H-[2,9'-bicarbazol]-3'-yl)phenyl)-[1,1'-biphenyl]-4-amine)의 합성
5'-bromo-1,1':3',1''-terphenyl 대신 2-bromodibenzo[b,d]furan 를 사용하는 것을 제외하고는, 상기 합성예 7과 동일한 과정을 수행하여 표제 화합물 Cpd 8 (수율 76%) HRMS [M]+: 893.340을 얻었다.
[합성예 9] Cpd 9 (N-phenyl-N-(4-(9-phenyl-9H-[2,9'-bicarbazol]-3'-yl)phenyl)naphthalen-1-amine)의 합성
N-([1,1'-biphenyl]-4-yl)-N-(4-bromophenyl)-[1,1'-biphenyl]-4-amine 대신 N-(4-bromophenyl)-N-phenylnaphthalen-1-amine를 사용하는 것을 제외하고는, 상기 합성예 5과 동일한 과정을 수행하여 표제 화합물 Cpd 9 (수율 80%) HRMS [M]+: 701.283을 얻었다.
[합성예 10] Cpd 10 (4'-(3'-(4-(diphenylamino)phenyl)-9H-[2,9'-bicarbazol]-9-yl)-N,N-diphenyl-[1,1'-biphenyl]-4-amine)의 합성
5'-bromo-1,1':3',1''-terphenyl, N-([1,1'-biphenyl]-4-yl)-N-(4-bromophenyl)-[1,1'-biphenyl]-4-amine 대신 4'-bromo-N,N-diphenyl-[1,1'-biphenyl]-4-amine, 4-bromo-N,N-diphenylanilin를 사용하는 것을 제외하고는, 상기 합성예 7과 동일한 과정을 수행하여 표제 화합물 Cpd 10 (수율 70%) HRMS [M]+: 894.372을 얻었다.
[실시예 1] 녹색 유기 전계 발광 소자의 제조
합성예 1에서 합성된 화합물 cpd1을 통상적으로 알려진 방법으로 고순도 승화 정제를 한 후, 하기와 같이 녹색 유기 전계 발광 소자를 제조하였다.
ITO (Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고, 건조시킨 후, UV OZONE 세정기(Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, m-MTDATA (60 nm)/TCTA (80 nm)/화합물 cpd1(40nm)/CBP + 10 % Ir(ppy)3 (300nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제조하였다.
사용된 m-MTDATA, TCTA, Ir(ppy)3, CBP 및 BCP의 구조는 하기와 같다.
Figure PCTKR2014012152-appb-I000006
Figure PCTKR2014012152-appb-I000007
[실시예 2 ~ 10] 녹색 유기 전계 발광 소자의 제조
실시예 1에서 화합물 cpd1 대신 합성예 2 내지 10 에서 각각 합성된 화합물을 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 유기 EL 소자를 제조하였다.
[비교예 1] 녹색 유기 전계 발광 소자의 제조
실시예 1에서 화합물 cpd1을 사용하지 않은 것을 제외하고는, 실시예 1과 동일하게 수행하여 녹색 유기 전계 발광 소자를 제조하였다.
[평가예 1]
실시예 1 내지 10, 및 비교예 1에서 각각 제조된 유기 전계 발광 소자에 대하여, 전류밀도 10 mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하고, 그 결과를 하기 표 1에 나타내었다.
표 1
발광 재료 구동 전압 (V) 발광 피크(nm) 전류효율 (cd/A)
실시예 1 Cpd1 9.65 519 41.7
실시예 2 Cpd2 6.80 521 41.9
실시예 3 Cpd3 6.80 520 41.5
실시예 4 Cpd4 6.85 521 42.0
실시예 5 Cpd5 6.80 518 41.9
실시예 6 Cpd6 6.85 520 41.5
실시예 7 Cpd7 6.90 519 41.8
실시예 8 Cpd8 6.85 519 41.5
실시예 9 Cpd9 6.80 521 41.9
실시예 10 Cpd10 6.90 520 41.8
비교예 1 - 6.93 516 38.2
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 화학식 1로 표시되는 화합물을 발광 보조층 재료로 사용한 실시예 1~10의 녹색 유기 전계 발광 소자는, 발광 보조층 없이 종래 CBP만을 발광층의 재료로 사용한 비교예 1의 녹색 유기 전계 발광 소자와 구동전압이 유사하였으나, 비교예 1의 녹색 유기 전계 발광 소자에 비해 발광 효율 및 전류효율이 더 향상될 수 있다는 것을 알 수 있었다.
[실시예 11] 적색 유기 전계 발광 소자의 제조
합성예 1에서 합성된 화합물 cpd1을 통상적으로 알려진 방법으로 고순도 승화 정제를 한 후, 하기와 같이 적색 유기 전계 발광 소자를 제조하였다.
먼저, ITO (Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Powersonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, m-MTDATA (60 nm)/TCTA (80 nm)/합성예 1의 화합물 cpd1(40nm)/CBP + 10 % (piq)2Ir(acac) (300nm)/BCP (10 nm)/Alq3(30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제조하였다.
사용된 m-MTDATA, TCTA, CBP 및 BCP의 구조는 실시예 1에 기재된 바와 같고, (piq)2Ir(acac)는 하기와 같다.
Figure PCTKR2014012152-appb-I000008
[실시예 12 ~ 20] 적색 유기 전계 발광 소자의 제조
실시예 11에서 화합물 cpd1 대신 합성예 2 내지 10 에서 각각 합성된 화합물을 사용하는 것을 제외하고는, 실시예 11와 동일하게 수행하여 적색 유기 EL 소자를 제조하였다.
[비교예 2] 적색 유기 전계 발광 소자의 제작
실시예 11에서 화합물 cpd1을 사용하지 않은 것을 제외하고는, 실시예 11과 동일하게 수행하여 적색 유기 전계 발광 소자를 제조하였다.
[평가예 2]
실시예 11 ~ 20 및 비교예 2에서 제작한 각각의 적색 유기 전계 발광 소자에 대하여 전류밀도 10 mA/㎠에서의 구동전압 및 전류효율을 측정하고, 그 결과를 하기 표 2에 나타내었다.
표 2
발광 재료 구동 전압 (V) 전류효율 (cd/A)
실시예 11 Cpd1 5.10 10.9
실시예 12 Cpd2 5.15 11.1
실시예 13 Cpd3 5.20 10.6
실시예 14 Cpd4 5.20 11.2
실시예 15 Cpd5 5.15 11.1
실시예 16 Cpd6 5.10 10.8
실시예 17 Cpd7 5.15 11.2
실시예 18 Cpd8 5.20 11.0
실시예 19 Cpd9 5.30 11.3
실시예 20 Cpd10 5.25 10.8
비교예 2 - 5.25 8.2
상기 표 2에 나타낸 바와 같이, 본 발명에 따른 화학식 1로 표시되는 화합물을 발광 보조층 재료로 사용한 실시예 11~20의 적색 유기 전계 발광 소자는, 발광 보조층 없이 종래 CBP만을 발광층의 재료로 사용한 비교예 2의 적색 유기 전계 발광 소자와 구동전압이 유사하였으나, 비교예 2의 적색 유기 전계 발광 소자에 비해 전류효율이 더 향상될 수 있다는 것을 알 수 있었다.
[실시예 21] 청색 유기 전계 발광 소자의 제조
합성예 1에서 합성된 화합물 cpd1을 통상적으로 알려진 방법으로 고순도 승화 정제를 한 후, 하기와 같이 청색 유기 전계 발광 소자를 제조하였다.
먼저, ITO (Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Powersonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, DS-205 (두산社) (80 nm)/NPB (15nm)/ 합성예 1의 화합물 C 1(15nm)/ADN + 5 % DS-405 (두산社) (300nm)/BCP (10nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제조하였다.
사용된 BCP는 실시예 1에 기재된 바와 같고, NPB 및 ADN의 구조는 하기와 같다.
Figure PCTKR2014012152-appb-I000009
Figure PCTKR2014012152-appb-I000010
[실시예 22 ~ 30] 청색 유기 전계 발광 소자의 제조
화합물 cpd1 대신 합성예 2 내지 10 에서 각각 합성된 화합물을 사용하는 것을 제외하고는, 실시예 21과 동일하게 수행하여 청색 유기 EL 소자를 제조하였다.
[비교예 3] 청색 유기 전계 발광 소자의 제작
실시예 21에서 화합물 cpd1을 사용하지 않은 것을 제외하고는, 실시예 21과 동일하게 수행하여 청색 유기 전계 발광 소자를 제조하였다.
[평가예 3]
실시예 21 ~ 30 및 비교예 3 에서 제작한 각각의 청색 유기 전계 발광 소자에 대하여 전류밀도 10 mA/㎠에서의 구동전압 및 전류효율을 측정하고, 그 결과를 하기 표 3에 나타내었다.
표 3
발광 재료 구동 전압 (V) 전류효율 (cd/A)
실시예 21 Cpd1 5.58 7.1
실시예 22 Cpd2 5.55 6.8
실시예 23 Cpd3 5.62 7.2
실시예 24 Cpd4 5.50 6.7
실시예 25 Cpd5 5.60 6.9
실시예 26 Cpd6 5.55 6.6
실시예 27 Cpd7 5.60 6.8
실시예 28 Cpd8 5.51 6.0
실시예 29 Cpd9 5.50 6.4
실시예 30 Cpd10 5.65 7.1
비교예 3 - 5.6 4.8
상기 표 3에 나타낸 바와 같이, 본 발명에 따른 화학식 1로 표시되는 화합물을 발광 보조층 재료로 사용한 실시예 21~30의 청색 유기 전계 발광 소자는, 발광 보조층 없이 종래 비교예 3의 청색 유기 전계 발광 소자와 구동전압이 유사하였으나, 비교예 3의 유기 전계 발광 소자에 비해 전류 효율이 더 향상될 수 있다는 것을 알 수 있었다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 발명의 범주에 속하는 것은 당연하다.

Claims (9)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2014012152-appb-I000011
    상기 화학식 1에서,
    Ar은 하나 이상의 R1로 치환되는 C6~C50의 방향족 고리 또는 핵원자수 5 내지 60개의 헤테로 방향족 고리계로서, 페닐, 바이페닐, 테르페닐, 나프탈렌, 트리페닐렌, 펜안트렌, 플루오렌, 크리젠, 디벤조티오펜, 디벤조푸란, 벤조푸란, 벤조티오펜, 피라졸, 이미다졸, 트리아졸, 옥사졸, 티아졸, 옥사디아졸, 옥사트리아졸, 디옥사졸, 티아디아졸, 피리딘, 피리다진, 피리미딘, 피라진, 트리아진, 인돌, 벤즈이미다졸, 인다졸, 벤즈옥사졸, 벤즈이속사졸, 벤조티아졸, 퀴놀린, 이소퀴놀린, 신놀린, 퀴나졸린, 퀴녹살린, 나프티리딘, 프탈라진, 프테리딘, 크산텐, 페노티아진, 페녹사진, 벤조푸로피리딘, 푸로디피리딘, 벤조티에노피리딘 및 티에노디피리딘으로 이루어진 군 중에서 선택되며;
    R1은 수소, 중수소, 치환 또는 비치환된 C1~C40의 알킬아민기, 치환 또는 비치환된 C6~C40의 아릴아민기, 치환 또는 비치환된 C1~C40의 헤테로 알킬아민기, 및 치환 또는 비치환된 핵원자수 5 내지 40의 헤테로 아릴아민기로 이루어진 군에서 선택되며,
    R은 수소, 중수소, 할로겐, 시아노, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C2~C40의 알케닐기, 치환 또는 비치환된 C2~C40의 알키닐기, 치환 또는 비치환된 C6~C40의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 40의 헤테로아릴기, 치환 또는 비치환된 C6~C40의 아릴옥시기, 치환 또는 비치환된 C1~C40의 알킬옥시기, 치환 또는 비치환된 C6~C40의 아릴아민기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 치환 또는 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기, 치환 또는 비치환된 C1~C40의 알킬실릴기, 치환 또는 비치환된 C1~C40의 알킬보론기, 및 치환 또는 비치환된 C6~C40의 아릴보론기, 치환 또는 비치환된 C6~C40의 아릴포스핀기, 치환 또는 비치환된 C6~C40의 아릴포스핀옥사이드기 및 치환 또는 비치환된 C6~C40의 아릴실릴기로 이루어진 군에서 선택되며,
    상기 R 및 R1에서, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C1~C40의 알킬아민기, C1~C40의 헤테로 알킬아민기, 핵원자수 5 내지 40의 헤테로아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 치환될 수 있으며,
    a는 1~5이고; b는 0~5이고;
    p는 서로 동일하거나 또는 상이하며, 각각 독립적으로 0 내지 4이며,
    q는 0 내지 3이다.
  2. 제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 화학식 5 중 어느 하나로 표시되는 화합물인 것을 특징으로 하는 화합물:
    [화학식 2]
    Figure PCTKR2014012152-appb-I000012
    [화학식 3]
    Figure PCTKR2014012152-appb-I000013
    [화학식 4]
    Figure PCTKR2014012152-appb-I000014
    [화학식 5]
    Figure PCTKR2014012152-appb-I000015
    상기 화학식 2 내지 화학식 5에서,
    Ar, 및 b는 각각 제1항에서 정의된 바와 같으며,
    m은 1 또는 2이며
    Ra 내지 Rb는 서로 같거나 또는 상이하며, 각각 독립적으로 S, N, O, P 및 Si 중 하나 이상의 헤테로 원자를 함유하는 C5-30의 헤테로아릴기 또는 C6-30의 아릴기이며, 상기 아릴기 또는 헤테로아릴기는 C1-30의 알킬기로 치환되거나 또는 비치환될 수 있으며, 여기서 Ra 및 Rb는 인접하는 치환기와 임의적으로 서로 결합하여 고리를 형성할 수 있고;
    R2 내지 R11 는 서로 같거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C2~C40의 알케닐기, 치환 또는 비치환된 C2~C40의 알키닐기, 치환 또는 비치환된 C6~C40의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 40의 헤테로아릴기, 치환 또는 비치환된 C6~C40의 아릴아민기, 치환 또는 비치환된 C6~C40의 아릴옥시기, 치환 또는 비치환된 C1~C40의 알킬옥시기, 치환 또는 비치환된 C3~C40의 시클로알킬기 및 치환 또는 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기로 이루어진 군에서 선택되나, 또는 이들이 인접하는 기와 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리 또는 축합 헤테로 방향족 고리를 형성하는 기일 수 있으며,
    상기 C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴아민기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C3~C40의 시클로알킬기 및 핵원자수 3 내지 40의 헤테로시클로알킬기는, 각각 독립적으로 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C6~C40의 아릴알킬기, C3~C40의 시클로알킬기, C3~C40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, 및 C6~C40의 아릴실릴기로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 치환될 수 있다.
  3. 제1항에 있어서, 상기 Ar은 치환 또는 비치환된 C6~C40의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 40의 헤테로아릴기이며,
    상기 R1은 수소, 치환 또는 비치환된 C1~C7의 알킬아민기, 및 치환 또는 비치환된 C6~C7의 아릴아민기로 구성된 군으로부터 선택되며,
    상기 R은 수소, 치환 또는 비치환된 C6~C40의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 40의 헤테로아릴기, 및 치환 또는 비치환된 C6~C40의 아릴아민기로 구성된 군으로부터 선택되는 것을 특징으로 하는 화합물.
  4. 제2항에 있어서, 상기 화학식 2로 표시되는 화합물은 Ar이 페닐 또는 바이페닐이고, b는 1 또는 2이며, R3은 수소, 카바졸, 디벤조티오펜, 및 디벤조푸란으로 구성된 군으로부터 선택되는 것을 특징으로 하는 화합물.
  5. 제2항에 있어서, 상기 화학식 4로 표시되는 화합물은 Ar이 페닐 또는 디벤조푸란이고, b는 0 내지 2이고, R9는 수소 또는 C6~C40의 아릴아민기인 것을 특징으로 하는 화합물.
  6. 제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화합물로 이루어진 군에서 선택되는 것을 특징으로 하는 화합물:
    Figure PCTKR2014012152-appb-I000016
    Figure PCTKR2014012152-appb-I000017
  7. 양극, 음극, 및 상기 양극과 음극 사이에 개재된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서,
    상기 1층 이상의 유기물층 중에서 적어도 하나는 제1항 내지 제6항 중 어느 한 항에 따른 화합물을 포함하는 것을 특징으로 하는 유기 전계 발광 소자.
  8. 제 7 항에 있어서, 상기 화합물을 포함하는 유기물층은 발광층, 전자 수송층 및 정공 수송층으로 구성된 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 유기 전계 발광 소자.
  9. 제7항에 있어서, 상기 유기 전계 발광소자는 정공 수송층과 발광층 사이에 상기 화학식 1로 표시되는 화합물로 구성되는 발광보조층을 포함하는 것을 특징으로 하는 유기 전계 발광 소자.
PCT/KR2014/012152 2013-12-11 2014-12-10 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자 WO2015088249A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130154090A KR101708090B1 (ko) 2013-12-11 2013-12-11 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR10-2013-0154090 2013-12-11

Publications (1)

Publication Number Publication Date
WO2015088249A1 true WO2015088249A1 (ko) 2015-06-18

Family

ID=53371477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012152 WO2015088249A1 (ko) 2013-12-11 2014-12-10 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자

Country Status (2)

Country Link
KR (1) KR101708090B1 (ko)
WO (1) WO2015088249A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993805A (zh) * 2018-10-02 2020-04-10 乐金显示有限公司 有机电致发光装置
US20200343457A1 (en) * 2019-04-29 2020-10-29 Universal Display Corporation Organic electroluminescent materials and devices
CN111909076A (zh) * 2020-07-07 2020-11-10 中山大学 一种单/双咔唑空穴传输材料及其制备方法和应用
CN112687823A (zh) * 2020-12-27 2021-04-20 浙江华显光电科技有限公司 一种组合物及包含其的有机电致发光元件
WO2022206389A1 (zh) * 2021-03-31 2022-10-06 陕西莱特光电材料股份有限公司 含氮化合物及包含其的电子元件和电子装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7066979B2 (ja) * 2016-06-02 2022-05-16 東ソー株式会社 ジ置換ベンゼンを有するカルバゾール化合物及びその用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110079402A (ko) * 2009-12-31 2011-07-07 (주)씨에스엘쏠라 유기 광소자 및 이를 위한 유기 광합물
KR20130077471A (ko) * 2011-12-29 2013-07-09 제일모직주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013165192A1 (en) * 2012-05-02 2013-11-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
KR20130127563A (ko) * 2012-05-02 2013-11-25 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072812B1 (ko) 2009-03-30 2011-10-14 덕산하이메탈(주) 카바졸과 플루오렌이 결합하여 고리를 형성하는 비대칭 구조를 갖는 화합물 및 이를 이용한 유기전자소자, 그 단말

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110079402A (ko) * 2009-12-31 2011-07-07 (주)씨에스엘쏠라 유기 광소자 및 이를 위한 유기 광합물
KR20130077471A (ko) * 2011-12-29 2013-07-09 제일모직주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013165192A1 (en) * 2012-05-02 2013-11-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
KR20130127563A (ko) * 2012-05-02 2013-11-25 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANG, WEI ET AL.: "High-triplet-energy tri-carbazole derivatives as host materials for efficient solution-processed blue phosphorescent devices", J. MATER. CHEM., vol. 21, 2011, pages 4918 - 4926 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993805A (zh) * 2018-10-02 2020-04-10 乐金显示有限公司 有机电致发光装置
CN110993805B (zh) * 2018-10-02 2022-03-25 乐金显示有限公司 有机电致发光装置
US20200343457A1 (en) * 2019-04-29 2020-10-29 Universal Display Corporation Organic electroluminescent materials and devices
CN111909076A (zh) * 2020-07-07 2020-11-10 中山大学 一种单/双咔唑空穴传输材料及其制备方法和应用
CN111909076B (zh) * 2020-07-07 2023-04-07 中山大学 一种单/双咔唑空穴传输材料及其制备方法和应用
CN112687823A (zh) * 2020-12-27 2021-04-20 浙江华显光电科技有限公司 一种组合物及包含其的有机电致发光元件
WO2022206389A1 (zh) * 2021-03-31 2022-10-06 陕西莱特光电材料股份有限公司 含氮化合物及包含其的电子元件和电子装置

Also Published As

Publication number Publication date
KR101708090B1 (ko) 2017-02-17
KR20150068182A (ko) 2015-06-19

Similar Documents

Publication Publication Date Title
WO2019164331A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020027389A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2015009102A1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2011059271A2 (ko) 신규한 축합고리 화합물 및 이를 이용한 유기전자소자
WO2011081429A2 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015012618A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2014129869A1 (ko) 유기 전계 발광 소자
WO2012050347A1 (en) Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2014084612A1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2014175627A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2020130511A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2015088249A1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2017138755A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기전계발광소자
WO2019172649A1 (ko) 다중고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020149666A1 (ko) 유기 발광 소자
WO2015099438A1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2020040514A1 (ko) 유기 발광 소자
WO2017142304A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014092431A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014092481A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015008940A1 (ko) 유기 전계 발광 소자
WO2019088751A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2015099450A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019022546A1 (ko) 지연 형광 재료 및 이를 포함하는 유기 발광 소자
WO2017142308A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/09/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14869716

Country of ref document: EP

Kind code of ref document: A1