WO2022179477A1 - 隐形眼镜材料及隐形眼镜镜片 - Google Patents

隐形眼镜材料及隐形眼镜镜片 Download PDF

Info

Publication number
WO2022179477A1
WO2022179477A1 PCT/CN2022/077140 CN2022077140W WO2022179477A1 WO 2022179477 A1 WO2022179477 A1 WO 2022179477A1 CN 2022077140 W CN2022077140 W CN 2022077140W WO 2022179477 A1 WO2022179477 A1 WO 2022179477A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact lens
weight
lens material
parts
formula
Prior art date
Application number
PCT/CN2022/077140
Other languages
English (en)
French (fr)
Inventor
叶玮安
李庭育
Original Assignee
晶硕光学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶硕光学股份有限公司 filed Critical 晶硕光学股份有限公司
Priority to JP2023525108A priority Critical patent/JP2023546617A/ja
Priority to CN202280006314.5A priority patent/CN116209702A/zh
Publication of WO2022179477A1 publication Critical patent/WO2022179477A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/10N-Vinyl-pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon

Definitions

  • the invention relates to a contact lens material, in particular to a contact lens material and a contact lens lens, which have the characteristics of high oxygen permeability, moisture content and surface wetness.
  • Hydrogel contact lenses refer to contact lenses made of hydrogel materials, such as poly-2-hydroxyethyl methacrylate (p-HEMA).
  • a cross-linking agent such as a compound such as ethylene glycol dimethacrylate (EGDMA), can be added to the poly-2-hydroxyethyl methacrylate to interlace its polymer chains to increase strength.
  • EGDMA ethylene glycol dimethacrylate
  • N-vinylpyrrolidone N-vinylpyrrolidone
  • DMA N,N-dimethylacrylamide
  • MAA methacrylic acid
  • the moisture content of the contact lens can be effectively increased (up to about 70-80%).
  • the higher the water content the lower the tension and toughness of the contact lens, so the control of the water content should be moderate, generally 45% to 60%.
  • the required oxygen permeability DK needs to be between 40-70, but no matter how the water content of water-gel contact lenses is increased, the oxygen permeability can only reach 15- between 35.
  • silicone hydrogel contact lenses can effectively improve the oxygen permeability (DK).
  • Silicone hydrogel contact lenses include hydrophilic silicon-containing polymer materials, and then add hydrophilic monomers, such as: NVP, DMA, MAA, etc. to copolymerize into silicone hydrogel contact lenses.
  • hydrophilic monomers such as: NVP, DMA, MAA, etc.
  • the surface of the silicone hydrogel material is hydrophobic, which easily leads to the growth of bacteria, resulting in problems such as eyeglasses inflammation. Therefore, the surface of the polysiloxane hydrogel material usually needs to be modified to improve the wettability of the material surface.
  • the technical problem to be solved by the present invention is to provide a contact lens material and a contact lens lens for the deficiencies of the prior art.
  • one of the technical solutions adopted in the present invention is to provide a contact lens material, which comprises: a hydrophilic monomer, a cross-linking agent, an initiator, and a siloxane monomer body. Based on the total weight of the contact lens material as 100 parts by weight, an amount of the siloxane monomer ranges from 5 parts by weight to 50 parts by weight. And, a chemical experimental formula of the siloxane monomer is represented by formula (I).
  • C represents a carbon atom
  • a is a positive number between 12 and 55
  • H represents a hydrogen atom
  • b is a positive number between 29 and 121
  • O represents an oxygen atom
  • c is a positive number between 4 and 17
  • N represents a nitrogen atom, d is a positive number between 0 and 5;
  • Si represents a silicon atom, and e is a positive number between 1 and 9.
  • the molecular weight of the siloxane monomers ranges from 400 to 1,200.
  • the main chain of the molecular structure of the siloxane monomer has repeating units of siloxane (siloxane repeat units) or alkoxysilyl groups (siloxy), and the main chain has another group consisting of the formula ( I-1) represents a first hydrophilic segment composed of the 1-aminoglycerol structural fragment modified by the substituent group, and the branched chain of the molecular structure of the siloxane monomer has another structure consisting of A second hydrophilic segment composed of polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • the molecular structure of the siloxane monomer further has a hydrophilic branch chain grafted on the main chain; wherein, the hydrophilic branch chain has x carbon atoms and y oxygen atoms, 0 ⁇ x+y ⁇ 10, and one end of the hydrophilic branch chain far from the main chain has at least one hydrophilic functional group, which is a hydroxyl functional group (-OH group) or an alkoxy functional group (-Oalkyl group).
  • a chemical structural bond line formula of the siloxane monomer is represented by formula (II-1) or formula (II-2 ) :
  • R 1 is H or methyl (-CH 3 );
  • X 1 is O or NR 8 ;
  • X 2 is CH-OR 9 or absent;
  • R 2 is methyl (-CH 3 ) or absent;
  • R 3 , R 4 , R 7 , R 8 and R 9 are independently of each other (the substituents may be the same or different) H or methyl (-CH 3 ) or
  • R 10 is H or methyl (-CH 3 );
  • R 5 and R 6 are independently (the substituents may be the same or different) alkyl, aryl, alkoxy, Aryloxy (aryloxy) or OSiR 11 R 12 R 13 ;
  • R 11 , R 12 and R 13 are independently (the substituents may be the same or different) alkyl (alkyl), aryl (aryl), alkoxy (alkoxy), aryloxy (aryloxy); wherein a, c and n are independent of each other (the value may be the same or different), and the value
  • At least one hydroxyl group is a substituent on the main chain, at least one oxygen or nitrogen, or both are used as backbone atoms, and the said The siloxane monomers are ionic or linear or branched monomers.
  • the hydrophilic monomer is at least one material selected from the following group of materials: N-vinylpyrrolidone (NVP), 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl Acrylamide (HEAA), Glyceryl methacrylate (GMA), Glyceryl monomethacrylate (GMMA), Methacrylic acid (MAA), Acrylic acid (AA), N,N-bis(methacrylamide) (DMA ), N,N-bis(methacrylamide), N-vinyl-N-methylacetamide, glycine vinyl carbonate, 2-methacryloyloxyethylphosphorylcholine, and 2-Hydroxy-butyl methacrylate; wherein, based on the total weight of the contact lens material being 100 parts by weight, an amount of the hydrophilic monomer ranges from 40 parts by weight to 90 parts by weight.
  • NRP N-vinylpyrrolidone
  • HEMA 2-hydroxyethyl methacrylate
  • the cross-linking agent is at least one material selected from the following group of materials: ethylene glycol dimethacrylate (EGDMA), diethylene glycol dimethacrylate (DEGDMA), triethylene glycol Dimethacrylate (TEGDMA), Tetraethylene Glycol Dimethacrylate (TTEGDMA), Allyl Methacrylate (AMA), Ethylene Glycol Diallyl Ether (EGDAE), Triethylene Glycol Diallyl Ether (TEGDAE), Tetraethylene Glycol Diallyl Ether (TTEGDAE), 1,3,5-Triallyl-1,3,5-Triazine-2,4,6(1H,3H,5H)-Tris Ketone, 1,1,1-Tris(methylolpropane)tris(methacrylate), Tris(methylolpropane)tris(acrylate), Pentaerythritol tetra(acrylate), Tetraethylene glycol diacrylate , ethylenebisacrylamide, 1,4-bis(acrylamide), 1,4
  • the initiator is at least one material selected from the following group of materials: bis(1-(2,4-difluorophenyl)-3-pyrrolyl)titanocene, phenylbis( 2,4,6-Trimethylbenzoyl) phosphine oxide, 2-hydroxy-2-methyl-1-phenyl-1-propanone, azobisisoheptonitrile, 2,2'azobisisobutyl Nitrile, 2,2'-azobis(2,4-dimethyl)valeronitrile, 2,2'-azobis(2methyl)propionitrile, 2,2'-azobis( 2-methyl) butyronitrile, and benzoyl peroxide; wherein, based on the total weight of the contact lens material is 100 parts by weight, an amount of the initiator is in the range of 0.01 parts by weight to 2 parts by weight between.
  • a contact lens lens which is prepared from the above-mentioned contact lens material.
  • the contact lens has: a water content between 45 wt % and 80 wt %; an oxygen permeability of not less than 40 bars; an elastic modulus of not more than 1.5 MPa; a dynamic contact angle of not more than 80 degrees; and A lubricity between 5 and 10.
  • the beneficial effect of the present invention is that the contact lens material of the present invention can be prepared into a silicone hydrogel contact lens, which has the advantages of low cost, mass production, and simple manufacturing process. Furthermore, the surface of the contact lens prepared by the contact lens material of the present invention can have better surface properties (such as hydrophilicity or wettability), therefore, the surface of the contact lens may not need any additional hydrophilicity Sexual coating. It is worth mentioning that, in the molecular structure of the siloxane monomer, the repeating unit of the siloxane or the alkoxysilyl group can improve the oxygen permeability (DK) of the contact lens. Furthermore, the first and second hydrophilic segments in the main chain and branch, respectively, enhance the surface hydrophilicity or wettability of the contact lens.
  • DK oxygen permeability
  • Embodiments of the present invention provide a material for contact lenses.
  • the contact lens material has a surface hydrophilic property, and the contact lens material can form a contact lens with high oxygen permeability and high water content.
  • the contact lens material of the embodiment of the present invention comprises: a silicone monomer, a hydrophilic monomer, a crosslinking agent, and an initiator.
  • an amount of the siloxane monomer is preferably in the range of 5 parts by weight to 50 parts by weight, and particularly preferably in the range of 20 parts by weight to 40 parts by weight between parts, but the present invention is not limited to this.
  • a chemical experimental formula of the siloxane monomer is represented by the following formula (I):
  • C represents a carbon atom
  • a represents the number of carbon atoms present in the siloxane monomer
  • a is preferably a positive number between 12 and 55, and particularly preferably between 17 and 32.
  • H represents a hydrogen atom
  • b represents the number of hydrogen atoms present in the siloxane monomer
  • b is preferably a positive number between 29 and 121, and more preferably between 38 and 71.
  • O represents an oxygen atom
  • c represents the number of oxygen atoms present in the siloxane monomer, c is preferably a positive number between 4 and 17, and more preferably between 6 and 14.
  • N represents a nitrogen atom
  • d represents the number of nitrogen atoms present in the siloxane monomer
  • d is preferably a positive number between 0 and 5, and more preferably between 0 and 3.
  • Si represents silicon atoms
  • e represents the number of silicon atoms present in the siloxane monomer
  • e is preferably a positive number between 1 and 9, and more preferably between 3 and 5.
  • a molecular weight of the siloxane monomer is preferably between 400 and 1,200, and more preferably between 500 and 700.
  • the main chain of the molecular structure of the siloxane monomer has siloxane repeat units or siloxy groups, and the main chain has siloxane repeat units or siloxy groups.
  • it has a first hydrophilic segment composed of a 1-aminoglycerol structural fragment modified by a substituent represented by formula (I-1), and the molecular structure of the siloxane monomer is
  • the branched chain also has a second hydrophilic segment composed of polyethylene glycol (PEG).
  • the molecular structure of the siloxane monomer further has a hydrophilic branch grafted on the main chain.
  • the hydrophilic branched chain has x carbon atoms and y oxygen atoms, wherein 0 ⁇ x+y ⁇ 10, and the end of the hydrophilic branched chain away from the main chain has at least one hydrophilic Aqueous functional groups, for example: hydroxyl functional groups (-OH groups) or alkoxy functional groups.
  • the contact lens material of the embodiment of the present invention can be prepared into a silicone hydrogel contact lens, which has the advantages of low cost, mass production, and simple manufacturing process. Furthermore, the surface of the contact lens prepared by the contact lens material of the embodiment of the present invention can have better surface properties (such as hydrophilicity or wettability), therefore, the surface of the contact lens may not need any additional Hydrophilic coating. It is worth mentioning that, in the molecular structure of the siloxane monomer, the repeating unit of the siloxane or the alkoxysilyl group can improve the oxygen permeability (DK) of the contact lens. Furthermore, the first and second hydrophilic segments in the main chain and branch, respectively, can enhance the surface hydrophilicity or wettability of the contact lens.
  • DK oxygen permeability
  • the chemical experimental formula of the siloxane monomer can be represented by the following formula (I-1), formula (I-2) and formula (I-3).
  • the siloxane monomer represented by the above formula (I-1) has a molecular weight of 583.9354, the siloxane monomer represented by the above formula (I-2) has a molecular weight of 672.0405, and the above formula The siloxane monomer represented by (I-3) has a molecular weight of 422.7365.
  • a skeletal formula of a siloxane monomer represented by a chemical experimental formula such as formula (I) is such as formula (II-1) or formula (II-2 ) express:
  • R 1 is H or methyl (-CH 3 );
  • X 1 is O or NR 8 ;
  • X 2 is CH-OR 9 or absent;
  • R 2 is methyl (-CH 3 ) or absent;
  • R 3 , R 4 , R 7 , R 8 and R 9 are H or methyl (-CH 3 ) or methyl (-CH 3 ) independently of each other (substituents may be the same or different).
  • R 10 is H or methyl (-CH 3 ); R 5 and R 6 are independent of each other (the substituents may be the same or different) and the carbon number is between 1 and 10 of alkyl (alkyl), aryl ( aryl), alkoxy (alkoxy), aryloxy (aryloxy) or OSiR 11 R 12 R 13 ; R 11 , R 12 and R 13 are independent of each other (the substituents may be the same or different) and the carbon number is between 1 to 10 alkyl, aryl, alkoxy, aryloxy; wherein a, c and n are independent of each other (the values may be the same or different), and A positive number ranging from 0 to 3 (preferably from 1 to 3); b is a positive number ranging from 0 to 8 (preferably from 1 to 8).
  • substituent of R 3 or R 7 is the second hydrophilic segment (hydrophilic segment) composed of polyethylene glycol (PEG).
  • X 1 and X 2 are backbone atoms or groups of the main chain, or hydrophilic branches.
  • At least one hydroxyl group is a substituent on the main chain, at least one oxygen or nitrogen, or both as backbone atoms, and the siloxane monomer can be an ionic or linear or branched monomer.
  • the hydrophilic monomer is at least one material selected from the following group of materials: N-vinyl pyrrolidone (NVP), 2-hydroxy methacrylate 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylamide (HEAA), glyceryl methacrylate (GMA), glycerol mono-meth acrylate, GMMA), methacrylic acid (MAA), acrylic acid (AA), N,N-di(methacrylamide) (N,N-di(methyl acrylamide), DMA), N, N-di(methyl methacryl-amide) (N,N-di(methyl meth acryl-amide)), N-vinyl-N-methyl acetamide (N-vinyl-N-methyl acetamide), glycine ethylene glycine vinyl carbonate, 2-methacryloyloxyethyl phosphorylcholine, and 2-hydroxy-butyl methacrylate.
  • NRP N-vinyl pyrroli
  • a dosage range of the hydrophilic monomer is preferably between 40 parts by weight to 90 parts by weight, and particularly preferably between 45 parts by weight between parts by weight and 85 parts by weight, but the present invention is not limited thereto.
  • the cross-linking agent is at least one material selected from the following group of materials: ethylene glycol di(methacrylate) (EGDMA), diethylene glycol Alcohol dimethacrylate (di(ethylene glycol)di(methacrylate), DEGDMA), triethylene glycol dimethacrylate (tri(ethylene glycol)di(methacrylate), TEGDMA), tetraethylene glycol dimethacrylate Ester (tetra(ethylene glycol)di(methacrylate), TTEGDMA), allyl methacrylate (allyl methacrylate, AMA), ethylene glycol di(allyl ether, EGDAE), triethylene glycol Diallyl ether (tri(ethylene glycol)di(allyl ether), TEGDAE), tetra(ethylene glycol)di(allyl ether), TTEGDAE), 1,3,5-triene Propyl-1,3,5-triazine-2,4,6(1H,3H,5H
  • an amount of the crosslinking agent is preferably in the range of 0.1 to 5 parts by weight, and more preferably 0.1 part by weight to 3 parts by weight, but the present invention is not limited thereto.
  • the initiator is a photoinitiator.
  • the initiator is at least one material selected from the group of materials: bis(1-(2,4-difluorophenyl)-3-pyrrolyl)diocene Titanium (bis(2,6-difluoro-3-(1-hydropyrro-1-yl)-phenyl)titanocene), phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (phenylbis-( 2,4,6-trimethylbenzoyl)-phosphine oxide) and 2-hydroxy-2-methyl-1-phenyl-1-propanone (2-hydroxy-2-methyl-1-phenyl-1-porpanone).
  • the initiator is at least one material selected from the group of materials: azobisisoheptanenitrile (2,2'-Azodi (2,4-dimethylvaleronitrile), ADVN ), 2,2'-azobisisobutyronitrile (2,2'-Azobis(2-methylpropionitrile), AIBN), 2,2'-azobis(2,4-dimethyl)valeronitrile (2 ,2'-Azobis(2,4-dimethyl)valeronitrile), 2,2'-azobis(2methyl)propionitrile (2,2'-Azobis(2methyl)propionitrile), 2,2'- Nitrogen bis(2-methyl)butyronitrile (2,2'-Azobis(2-methyl)butyronitrile), and benzoyl peroxide (benzoyl peroxide), but the present invention is not limited thereto.
  • a dosage range of the initiator is preferably between 0.01 part by weight and 2 parts by weight, and particularly preferably between 0.05 part by weight to 1 part by weight, but the present invention is not limited thereto.
  • the contact lens material further comprises a blocking ultraviolet light monomer, and the total weight of the contact lens material is 100 parts by weight , the amount of the UV-blocking monomer is in the range of 0.30 parts by weight to 1.80 parts by weight.
  • the UV-blocking monomer is at least one selected from the group consisting of a monomer having benzophenone and a material group consisting of benzotriazole.
  • the contact lens material further comprises a co-solvent, and based on the total weight of the contact lens material is 100 parts by weight, the amount of the co-solvent is 100 parts by weight. The amount used ranges from 3 parts by weight to 15 parts by weight.
  • the co-solvent is selected from glycerol (glycerol), 2-propanol (isopropyl alcohol), n-butanol (n-butanol), tert-butanol (t-butanol), tert-amyl alcohol (t-amyl alcohol) and at least one of the material group composed of n-hexanol.
  • the contact lens material further comprises a dye, and based on the total weight of the contact lens material is 100 parts by weight, the amount of the dye is 100 parts by weight.
  • the dosage ranges from 0.002 parts by weight to 0.050 parts by weight.
  • the dye is selected from reactive blue 19 (disodium,1-amino-9,10-dioxo-4-[3-(2-sulfonatooxyethylsulfonyl)anilino]anthracene-2-sulfonate), Sudan No.3 (1-[ 4-(Phenylazo)phenylazo]-2-naphthol, Sudan III), indigo (2,2'-Bis(2,3-dihydro-3-oxoindolylidene), Indigo) and quinoline yellow (disodium2-(1,3- At least one of the material group consisting of dioxo-2,3-dihydro-1H-inden-2-yl)quinolone-6,8-disulfonate, Quinoline yellow).
  • Embodiments of the present invention further provide a method for manufacturing a contact lens.
  • the manufacturing method of the contact lens comprises: injecting the contact lens material into a mold for manufacturing the contact lens, and performing a curing molding process on the contact lens material, thereby forming a dry semi-finished product of the contact lens.
  • the dry contact lens semi-finished product is soaked in a buffer solution until the dry contact lens semi-finished product swells (hydration procedure).
  • a buffer solution is filled in a packaging container, the contact lens is immersed in the buffer solution, and then a sealing process and a sterilization process are performed, thus completing the production of the contact lens product.
  • Embodiments of the present invention further provide a contact lens.
  • the contact lens lens is formed from the contact lens material of the above embodiments.
  • the contact lens of the embodiment of the present invention can have the characteristics of high oxygen permeability, moisture content, and surface wettability.
  • the contact lens prepared by the contact lens material of the present invention can have better physical and chemical properties. More specifically, the contact lens has: (a) a water content between 45 wt% and 80 wt%, and preferably between 65 wt% and 80 wt%; (b) not less than an oxygen permeability of 40barrers, and preferably between 40barrers and 60barrers; (c) an elastic modulus of not more than 1.5MPa, and preferably between 0.3MPa and 0.6MPa; (d) a dynamic contact angle not greater than 80 degrees, preferably not greater than 60 degrees, and more preferably not greater than 30 degrees; (e) a refractive index between 1.350 and 1.442 and (f) a lubricity between 5 and 10, and preferably between 6 and 9.
  • the preparation methods of Examples S1 to S11 include injecting a contact lens material into a mold for manufacturing a contact lens, and performing a curing molding process on the contact lens material, thereby forming a semi-finished dry sheet of the contact lens.
  • the semi-finished dry sheet of the contact lens is immersed in a buffer solution until the semi-finished dry sheet of the contact lens swells (hydration procedure).
  • a buffer solution is filled in a packaging container, the contact lens is immersed in the buffer solution, and then a sealing process (sealing temperature is about 125° C.) and a sterilization process (sterilization time is about 30 minutes) are performed. , which completes the production of contact lens products.
  • the contact lens material mainly includes: siloxane monomer, hydrophilic monomer, crosslinking agent, and initiator.
  • the preparation methods of Examples S1 to S11 are basically the same, and the difference is that the amount of each component in the contact lens materials of Examples S1 to S11 is different, and the siloxane monomers used are also different.
  • Examples S1 to S3 adopt the siloxane monomers having the above-mentioned chemical experimental formula (I-1) and corresponding to the first specific embodiment.
  • Examples S4 to S6 employ siloxane monomers having the above-mentioned chemical experimental formula (I-2) and corresponding to the second embodiment.
  • Examples S7 and S8 adopt the siloxane monomer having the above-mentioned chemical experimental formula (I-1) and corresponding to the first specific embodiment, and the above-mentioned chemical experimental formula (I-2) and corresponding to the second specific embodiment.
  • Example S9 adopts a siloxane monomer having the above-mentioned chemical experimental formula (I-1) and corresponding to the first embodiment, and a siloxane monomer having the above-mentioned chemical experimental formula (I-3) and corresponding to the third embodiment. siloxane monomer.
  • Example S10 adopts a siloxane monomer having the above-mentioned chemical experimental formula (I-2) and corresponding to the second embodiment, and a siloxane monomer having the above-mentioned chemical experimental formula (I-3) and corresponding to the third embodiment.
  • Example S11 adopts the siloxane monomer having the above-mentioned chemical experimental formula (I-3) and corresponding to the third specific embodiment.
  • the formulation compositions of Examples S1 to S11 are shown in Table 1 below.
  • the siloxane monomers used in Examples S1 to S11 also all have carbon atoms (C), hydrogen atoms (H), oxygen atoms (O), and silicon atoms (Si) in their chemical structures, but nitrogen atoms (N ) are different.
  • the siloxane monomer having the above-mentioned chemical experimental formula (I-3) and corresponding to the third embodiment does not have nitrogen atoms, which can be used as a combination of different nitrogen, oxygen, and silicon of the contact lens material of the embodiment of the present invention. formed the experimental control group.
  • the siloxane monomers used in Examples S1 to S11 can make the following physical and chemical properties of the contact lenses have good performance, which include: the water content of the lens body (water content, wt%), the oxygen permeability of the lens body ( oxygen permeability, DK), the elastic modulus of the lens body (elastic modulus, MPa), the dynamic contact angle of the lens surface (dynamic contact angle), and the lubricity of the lens surface.
  • the test methods for the physicochemical properties of the contact lenses are described below, and the test results are shown in Table 5 below.
  • Oxygen Transmission Rate (DK) of the Lens Body Measurement of Oxygen Transmission Rate was performed using the polarographic method described in ISO 9913-1, using an O2 permeameter instrument. The samples were immersed in pure water equilibrated for at least 12 hours for measurement, and then the oxygen permeability was measured in phosphate buffered saline at 35°C using an O2 permeameter model 201T instrument (purchased from Rheder Development). Oxygen permeability is recorded in Barrer units.
  • Elastic modulus (MPa) of the lens body The elastic modulus was measured by using a tensile testing machine Zwick Z0.5. Lens samples were cut to 2 mm wide. Use a micrometer to measure the thickness of the sample before the test begins. At the beginning of the test, the speed of movement of the extension of the sample, the length of the sample and the distance between the jaws were kept constant. Each sample was placed in buffered saline during the measurement. The modulus is recorded in MPa.
  • Dynamic contact angle (degrees) of the lens surface Dynamic contact angle measurements were performed using the captive bubble method. According to this method, a silicone hydrogel contact lens is properly sandwiched between two hard plastics, leaving the center portion of the lens relatively flat, and the lens is then dipped into a small jar containing a borate-buffered saline solution. Air bubbles are then appropriately introduced into the lens surface and remain on the surface. Photographs were then taken with a digital camera, and left and right contact angles were obtained from the plots using a calculator program, and the average value of the left and right contact angles was recorded.
  • Lubricity of the lens surface The lubricity of the lenses was scored blindly by 10 persons (from 1 to 10). The higher the score, the better the lubricity of the lens surface.
  • Table 2 shows the lens surface properties, such as dynamic contact angle and lubricity, of Examples S1 to S11. Among them, the lower the value of the dynamic contact angle, the better the hydrophilicity of the lens surface. On many surfaces with high hydrophilicity, the performance of the contact angle ranges from 0 degrees to 30 degrees.
  • the lubricity of the lens surface was scored blindly by 10 people (from 1 to 10), and the higher the score, the better the lubricity of the lens surface.
  • the test results of dynamic contact angle and lubricity are shown in Table 2, respectively.
  • siloxane monomers used in Examples S1 to S11 can make the following physical and chemical properties of the contact lenses have good performance, among which Examples S1 to S8 have better performance in the hydrophilicity or wettability of the lens surface . Further, in the chemical structures of the siloxane monomers of Examples S1 to S8, oxygen atoms can bond with water molecules through hydrogen bonds to improve the surface hydrophilicity of the contact lens material. Nitrogen atoms in the ionic state easily bond with water molecules through hydrogen bonds.
  • the chemical structures of the siloxane monomers of Examples S1 to S8 have more oxygen atoms and nitrogen atoms, which can make the surface of the lens more hydrophobic.
  • the lens surface of the contact lens maintains good hydrophilicity and lubricity. Thereby, the lens surfaces of the contact lenses made from the formulations of Examples S1 to S8 do not need to be coated with any hydrophilic coating.
  • the contact lens material of the embodiment of the present invention can be prepared into a silicone hydrogel contact lens, which has the advantages of low cost, mass production, and simple manufacturing process. Furthermore, the surface of the contact lens prepared by the contact lens material of the embodiment of the present invention can have better surface properties (such as hydrophilicity or wettability), therefore, the surface of the contact lens does not need any additional Hydrophilic coating. It is worth mentioning that, in the molecular structure of the siloxane monomer, the repeating unit of the siloxane or the alkoxysilyl group can improve the oxygen permeability (DK) of the contact lens. Furthermore, the first and second hydrophilic segments in the main chain and branch, respectively, can enhance the surface hydrophilicity or wettability of the contact lens.
  • DK oxygen permeability

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明公开一种隐形眼镜材料,其包含:一亲水性单体、一交联剂、一起始剂、及一硅氧烷单体。基于所述隐形眼镜材料的总重为100重量份,所述硅氧烷单体的一用量范围是介于5重量份至50重量份之间。并且,所述硅氧烷单体的一化学实验式为:C aH bO cN dSi e。其中,C代表碳原子,a是介于12至55之间的正数;H代表氢原子,b是介于29至121之间的正数;O代表氧原子,c是介于4至17之间的正数;N代表氮原子,d是介于0至5之间的正数;Si代表硅原子,e是介于1至9之间的正数。本发明的隐形眼镜材料可制备成硅水胶隐形眼镜,其具有低成本、量产性、及制程简单等优点。

Description

隐形眼镜材料及隐形眼镜镜片 技术领域
本发明涉及一种隐形眼镜材料,特别是涉及一种隐形眼镜材料及隐形眼镜镜片,其具有高的透氧率、含水率、及表面湿润的特性。
背景技术
水胶隐形眼镜(Hydrogel contact lenses),即是指水胶(Hydrogel)材质所制成的隐形眼镜,如聚甲基丙烯酸2-羟乙酯(p-HEMA)等。可将交联剂,如二甲基丙烯酸乙二醇酯(EGDMA)等化合物,添加至聚甲基丙烯酸2-羟乙酯,以使其高分子链交错结合以增加强度。
又,由于聚甲基丙烯酸2-羟乙酯的含水率较低(仅有约35-40%)。因此,为了增加含水率,于隐形眼镜材料中,除了p-HEMA外,还会加入一种以上的亲水性单体,藉以提高隐形眼镜的含水率,如N-乙烯基吡咯酮(NVP)、N,N-二甲基丙烯酰胺(DMA)、甲基丙烯酸(MAA)等。
在加入亲水性单体后,隐形眼镜的含水率可被有效提升(提升至约70-80%)。然而,含水量愈高,则隐形眼镜之张力及韧度均会降低,因此含水率控制要适中,一般常见为45%至60%。而,对于作为日抛隐形眼镜而言,其要求透氧率(DK)需要在40-70之间,但无论水胶隐形眼镜的含水率如何地被提升,其透氧率仅能达到15-35之间。
相对地,硅水胶隐形眼镜可有效提高透氧率(DK)。硅水胶隐形眼镜包含亲水性含硅聚合材料,再加入亲水性单体,如:NVP、DMA、MAA等共聚合成硅水胶隐形眼镜。然而,硅氧烷水凝胶材料的表面具有疏水性的特性,其容易导致细菌滋生,而造成眼镜发炎等问题。故,聚硅氧水凝胶材料的表面通常需进行修饰,以提升材料表面的湿润性。
因此,目前亟需一种新颖的硅氧烷水凝胶材料来解决上述问题。
发明内容
本发明所要解决的技术问题在于,针对现有技术的不足提供一种隐形眼镜 材料及隐形眼镜镜片。
为了解决上述的技术问题,本发明所采用的其中一技术方案是,提供一种隐形眼镜材料,其包含:一亲水性单体、一交联剂、一起始剂、及一硅氧烷单体。基于所述隐形眼镜材料的总重为100重量份,所述硅氧烷单体的一用量范围是介于5重量份至50重量份之间。并且,所述硅氧烷单体的一化学实验式如式(I)表示。
C aH bO cN dSi e                 式(I)。
其中,C代表碳原子,a是介于12至55之间的正数;H代表氢原子,b是介于29至121之间的正数;O代表氧原子,c是介于4至17之间的正数;N代表氮原子,d是介于0至5之间的正数;Si代表硅原子,e是介于1至9之间的正数。
优选地,所述硅氧烷单体的分子量范围为400至1,200之间。
优选地,所述硅氧烷单体的分子结构的主链上具有硅氧烷的重复单元(siloxane repeat units)或烷氧硅基(siloxy),并且所述主链上另具有由如式(I-1)表示的取代基修饰的胺基甘油(1-aminoglycerol)结构片段所组成的一第一亲水性链段,而所述硅氧烷单体之分子结构的支链上另具有由聚乙二醇(polyethylene glycol,PEG)所组成的一第二亲水性链段。
Figure PCTCN2022077140-appb-000001
优选地,所述硅氧烷单体之分子结构进一步具有接枝在所述主链上的亲水性支链;其中,所述亲水性支链具有x个碳原子以及y个氧原子,0≤x+y≤10,并且所述亲水性支链的远离所述主链的一末端具有至少一亲水性官能基,其为羟基官能基(-OH基)或烷氧基官能基(-Oalkyl基)。
优选地,所述硅氧烷单体的一化学结构键线式如式(II-1)或式(II-2 )表示:
Figure PCTCN2022077140-appb-000002
Figure PCTCN2022077140-appb-000003
优选地,R 1为H或甲基(-CH 3);X 1为O或NR 8;X 2为CH-OR 9或不存在;R 2为甲基(-CH 3)或不存在;R 3、R 4、R 7、R 8与R 9为彼此独立(取代基可以相同或不相同)的H或甲基(-CH 3)或
Figure PCTCN2022077140-appb-000004
R 10为H或甲基(-CH 3);R 5与R 6为彼此独立(取代基可以相同或不相同)的烷基(alkyl)、芳香基(aryl)、烷氧基(alkoxy)、芳氧基(aryloxy)或OSiR 11R 12R 13;R 11、R 12与R 13为彼此独立(取代基可以相同或不相同)的烷基(alkyl)、芳香基(aryl)、烷氧基(alkoxy)、芳氧基(aryloxy);其中a、c及n为彼此独立(数值可以相同或不相同),且数值范围介于0至3之间的正数;b数值范围介于0至8之间的正数。
优选地,在式(II-1)或式(II-2 )的键线式中,至少一个羟基是主链上的取代基,至少一个氧或氮,或两者作为骨架原子,并且所述硅氧烷单体为离子或线性或支链单体。
优选地,所述亲水性单体是选自以下材料群组中的至少一种材料:N-乙烯基吡咯烷酮(NVP)、甲基丙烯酸2-羟乙酯(HEMA)、2-羟乙基丙烯酰胺(HEAA)、甲基丙烯酸甘油酯(GMA)、单甲基丙烯酸甘油酯(GMMA)、甲基丙烯酸(MAA)、丙烯酸(AA)、N,N-二(甲基丙烯酰胺)(DMA)、N,N-二(甲基甲基丙烯酰胺)、N-乙烯基-N-甲基乙酰胺、甘氨酸乙烯基碳酸酯、2-甲基丙烯酰氧基乙基磷酰胆碱、及2-羟基-甲基丙烯酸丁酯;其中,基于所述隐形眼镜材料的总重为100重量份,所述亲水性单体的一用量范围是介于40重量份至90重量份之间。
优选地,所述交联剂是选自以下材料群组中的至少一种材料:乙二醇二甲基丙烯酸酯(EGDMA)、二乙二醇二甲基丙烯酸酯(DEGDMA)、三甘醇二甲基丙烯酸酯(TEGDMA)、四乙二醇二甲基丙烯酸酯(TTEGDMA)、甲基丙烯酸烯丙酯(AMA)、乙二醇二烯丙醚(EGDAE)、三甘醇二烯丙醚(TEGDAE)、四乙二醇二烯丙醚(TTEGDAE)、1,3,5-三烯丙基-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、1,1,1-三(羟甲基丙烷)三(甲基丙烯酸酯)、三(羟甲基丙烷)三(丙烯酸酯)、季戊四醇四(丙烯酸酯)、四乙二醇二丙烯酸酯、乙二丙烯酰胺、1,4-二(丙 烯酰胺)丁烯、及聚(乙二醇)二(丙烯酸酯);其中,基于所述隐形眼镜材料的总重为100重量份,所述交联剂的一用量范围是介于0.1重量份至5重量份之间。
优选地,所述起始剂是选自以下材料群组中的至少一种材料:双(1-(2,4-二氟苯基)-3-吡咯基)二茂钛、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、2-羟基-2-甲基-1-苯基-1-丙酮、偶氮二异庚腈、2,2’偶氮双异丁腈、2,2’-偶氮基双(2,4-二甲基)戊腈、2,2’-偶氮基双(2甲基)丙腈、2,2’-偶氮基双(2-甲基)丁腈、及过氧化苯甲酰;其中,基于所述隐形眼镜材料的总重为100重量份,所述起始剂的一用量范围是介于0.01重量份至2重量份之间。
为了解决上述的技术问题,本发明所采用的另外一技术方案是,提供一种隐形眼镜镜片,其是由如上所述的隐形眼镜材料制备而成。所述隐形眼镜具有:介于45wt%至80wt%之间的一含水量;不小于40barrers的一透氧率;不大于1.5MPa的一弹性模量;不大于80度的一动态接触角;及介于5至10之间的一润滑性。
本发明的有益效果在于,本发明的隐形眼镜材料可制备成硅水胶隐形眼镜,其具有低成本、量产性、及制程简单等优点。再者,通过本发明的隐形眼镜材料制备而成的隐形眼镜的表面能具有更好的表面特性(如:亲水性或湿润性),因此,该隐形眼镜的表面可不需要任何额外的亲水性涂层。值得一提的是,在所述硅氧烷单体的分子结构中,所述硅氧烷的重复单元或烷氧硅基能提升隐形眼镜的透氧率(DK)。再者,分别在所述主链及支链中的第一及第二亲水性链段提升隐形眼镜的表面亲水性或湿润性。
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明,然而所提供的详细说明仅用于提供参考与,并非用来对本发明加以限制。
具体实施方式
以下是通过特定的具体实施例来说明本发明所公开的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不悖离本发明的构思下进行各种修改与变更。以下的实施方式将 进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的保护范围。
应当可以理解的是,虽然本文中可能会使用到“第一”、“第二”等术语来描述各种组件或者特征化合物,但这些组件或者特征化合物不应受这些术语的限制。这些术语主要是用以区分一组件与另一组件,或者一特征化合物与另一特征化合物。另外,本文中所使用的术语“或”,应视实际情况可能包括相关联的列出项目中的任一个或者多个的组合。
在本文中,为了描述特定之数值范围,本文系采用「某一数值至另一数值」之用语,其应被解读为涵盖该数值范围内的任意数值以及由该数值范围内的任意数值界定出的较小数值范围,如同在说明书中明确记载的该任意数值和该较小数值范围。另外,为了简洁起见,本文中各聚合物或基团的结构有时会以键线式(skeletal formula)表示,而省略了实际结构内的碳原子、氢原子以及碳氢键。然而,当结构式中有明确绘示出特定原子或原子基团时,则结构式以绘示者为主。
[隐形眼镜材料]
本发明实施例提供一种隐形眼镜材料(material for contact lenses)。该隐形眼镜材料具有表面亲水性的特性,并且该隐形眼镜材料可形成具有高透氧率及高含水率之隐形眼镜。
本发明的实施例的隐形眼镜材料包含:一硅氧烷单体(silicone monomer)、一亲水性单体(hydrophilic monomer)、一交联剂(crosslinking agent)、及一起始剂(initiator)。
基于所述隐形眼镜材料的总重为100重量份,所述硅氧烷单体的一用量范围优选是介于5重量份至50重量份之间、且特优选是介于20重量份至40量份之间,但本发明不受限于此。
所述硅氧烷单体的一化学实验式如下式(I)表示:
C aH bO cN dSi e                 式(I)。
其中,C代表碳原子,a代表碳原子在硅氧烷单体中存在的数量,a优选是介于12至55之间的正数、且特优选是介于17至32之间。H代表氢原子,b代表氢原子在硅氧烷单体中存在的数量,b优选是介于29至121之间的正数、且更优选是介于38至71之间。O代表氧原子,c代表氧原子在硅氧烷单体中 存在的数量,c优选是介于4至17之间的正数、且更优选是介于6至14之间。N代表氮原子,d代表氮原子在硅氧烷单体中存在的数量,d优选是介于0至5之间的正数、且更优选是介于0至3之间。Si代表硅原子,e代表硅原子在硅氧烷单体中存在的数量,e优选是介于1至9之间的正数、且更优选是介于3至5之间。
在本发明的一些实施方式中,所述硅氧烷单体的一分子量优选是介于400至1,200之间、且更优选是介于500至700。
在本发明的一些实施方式中,所述硅氧烷单体之分子结构的主链上具有硅氧烷的重复单元(siloxane repeat units)或烷氧硅基(siloxy),并且所述主链上另具有由如式(I-1)表示的取代基修饰的胺基甘油(1-aminoglycerol)结构片段所组成的一第一亲水性链段,而所述硅氧烷单体之分子结构的支链上另具有由聚乙二醇(polyethylene glycol,PEG)所组成的一第二亲水性链段。
Figure PCTCN2022077140-appb-000005
在本发明的一些实施方式中,所述硅氧烷单体之分子结构进一步具有接枝在所述主链上的一亲水性支链(hydrophilic branch)。其中,所述亲水性支链具有x个碳原子及y个氧原子,其中0≤x+y≤10,并且所述亲水性支链的远离所述主链的一末端具有至少一亲水性官能基,例如:羟基官能基(-OH基)或烷氧基官能基。
根据上述配置,本发明实施例的隐形眼镜材料可制备成硅水胶隐形眼镜,其具有低成本、量产性、及制程简单等优点。再者,通过本发明实施例的隐形眼镜材料制备而成的隐形眼镜的表面能具有更好的表面特性(如:亲水性或湿润性),因此,该隐形眼镜的表面可不需要任何额外的亲水性涂层。值得一提的是,在所述硅氧烷单体的分子结构中,所述硅氧烷的重复单元或烷氧硅基能提升隐形眼镜的透氧率(DK)。再者,分别在所述主链及支链中的第一及第二亲水性链段能提升隐形眼镜的表面亲水性或湿润性。
在本发明的一些实施方式中,所述硅氧烷单体的化学实验式可以如下式(I-1)、式(I-2)及式(I-3)表示。
C 24H 53O 9NSi 3              式(I-1)。
C 28H 61O 11NSi 3                式(I-2)。
C 17H 38O 6Si 3               式(I-3)。
其中,以上述式(I-1)表示的硅氧烷单体具583.9354的分子量(molecular weight),以上述式(I-2)表示的硅氧烷单体具672.0405的分子量,并且以上述式(I-3)表示的硅氧烷单体具422.7365的分子量。
在本发明的一些实施方式中,化学实验式如式(I)表示的硅氧烷单体的一化学结构键线式(skeletal formula)系如式(II-1)或式(II-2 )表示:
Figure PCTCN2022077140-appb-000006
其中,R 1为H或甲基(-CH 3);X 1为O或NR 8;X 2为CH-OR 9或不存在;R 2为甲基(-CH 3)或不存在;R 3、R 4、R 7、R 8与R 9为彼此独立(取代基可以相同或不相同)的H或甲基(-CH 3)或
Figure PCTCN2022077140-appb-000007
R 10为H或甲基(-CH 3);R 5与R 6为彼此独立(取代基可以相同或不相同)且碳数介于1至10之间的烷基(alkyl)、芳香基(aryl)、烷氧基(alkoxy)、芳氧基(aryloxy)或OSiR 11R 12R 13;R 11、R 12与R 13为彼此独立(取代基可以相同或不相同)且碳数介于1至10之间的烷基(alkyl)、芳香基(aryl)、烷氧基(alkoxy)、芳氧基(aryloxy);其中a、c及n为彼此独立(数值可以相同或不相同)、且数值范围介于0至3之间的正数(优选介于1至3);b为数值范围介于0至8之间的正数(优选介于1至8)。
在上式(II-1)或式(II-2 )的键线式中,
Figure PCTCN2022077140-appb-000008
为硅氧烷的重复单元(siloxane repeat units)或烷氧硅基(siloxy)。
进一步地说,R 3或R 7之取代基
Figure PCTCN2022077140-appb-000009
为由聚乙二醇(polyethylene glycol,PEG)所组成的所述第二亲水性链段(hydrophilic segment)。
进一步地说,X 1与X 2为主链骨架原子或基团,或亲水性支链(hydrophilic branch)。
进一步地说,至少一个羟基是主链上的取代基,至少一个氧或氮,或两者 作为骨架原子,并且所述硅氧烷单体可以为离子或线性或支链单体。
在本发明的一第一具体实施方式中,化学实验式如式(I-1)表示的硅氧烷单体对应于式(II-1)中的取代基如下:R 1=CH 3;X 1=O;X 2=CH-OR 9;a=c=1;b=0;R 2=none;
Figure PCTCN2022077140-appb-000010
n=2;R 4=R 7=R 9=R 10=H;R 5=R 6=OSiR 11R 12R 13,R 11=R 12=R 13=CH 3
在本发明的一第二具体实施方式中,化学实验式如式(I-2)表示的硅氧烷单体对应于式(II-1)中的取代基如下:R 1=R 5=R 6=CH 3;X 1=O;X 2=CH-OR 9;a=c=1;b=2;R 2=none;
Figure PCTCN2022077140-appb-000011
n=2;R 4=R 9=R 10=H。
在本发明的一第三具体实施方式中,化学实验式如式(I-3)表示的硅氧烷单体对应于式(II-1)中的取代基如下:R 1=CH 3;X 1=O;X 2=CH-OR 9;a=b=0;c=1;R 5=R 6=OSiR 11R 12R 13,R 11=R 12=R 13=CH 3;R 7=R 9=H。
在本发明的一些实施方式中,所述亲水性单体是选自以下材料群组中的至少一种材料:N-乙烯基吡咯烷酮(N-vinyl pyrrolidone,NVP)、甲基丙烯酸2-羟乙酯(2-hydroxyethyl methacrylate,HEMA)、2-羟乙基丙烯酰胺(2-hydroxyethyl acrylamide,HEAA)、甲基丙烯酸甘油酯(glyceryl methacrylate,GMA)、单甲基丙烯酸甘油酯(glycerol mono-meth acrylate,GMMA)、甲基丙烯酸(methacrylic acid,MAA)、丙烯酸(acrylic acid,AA)、N,N-二(甲基丙烯酰胺)(N,N-di(methyl acrylamide),DMA)、N,N-二(甲基甲基丙烯酰胺)(N,N-di(methyl meth acryl-amide))、N-乙烯基-N-甲基乙酰胺(N-vinyl-N-methyl acetamide)、甘氨酸乙烯基碳酸酯(glycine vinyl carbonate)、2-甲基丙烯酰氧基乙基磷酰胆碱(2-methacryloyloxyethyl phosphorylcholine)、及2-羟基-甲基丙烯酸丁酯(2-hydroxy-butyl methacrylate)。
进一步地说,基于所述隐形眼镜材料的总重为100重量份,所述亲水性单体的一用量范围优选是介于40重量份至90重量份之间、且特优选是介于45重量份至85重量份之间,但本发明不受限于此。
在本发明的一些实施方式中,所述交联剂是选自以下材料群组中的至少一种材料:乙二醇二甲基丙烯酸酯(ethylene glycol di(methacrylate),EGDMA)、二乙二醇二甲基丙烯酸酯(di(ethylene glycol)di(methacrylate),DEGDMA)、 三甘醇二甲基丙烯酸酯(tri(ethylene glycol)di(methacrylate),TEGDMA)、四乙二醇二甲基丙烯酸酯(tetra(ethylene glycol)di(methacrylate),TTEGDMA)、甲基丙烯酸烯丙酯(allyl methacrylate,AMA)、乙二醇二烯丙醚(ethylene glycol di(allyl ether),EGDAE)、三甘醇二烯丙醚(tri(ethylene glycol)di(allyl ether),TEGDAE)、四乙二醇二烯丙醚(tetra(ethylene glycol)di(allyl ether),TTEGDAE)、1,3,5-三烯丙基-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮(1,3,5-Triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione)、1,1,1-三(羟甲基丙烷)三(甲基丙烯酸酯)(1,1,1-tri(methylolpropane)tri(methacrylate))、三(羟甲基丙烷)三(丙烯酸酯)(tri(methylolpropane)tri(acrylate))、季戊四醇四(丙烯酸酯)(pentaerythritol tetra(acrylate))、四乙二醇二丙烯酸酯(tetra(ethylene glycol)di(acrylate))、乙二丙烯酰胺(ethylene di(acrylamide))、1,4-二(丙烯酰胺)丁烯(butylene 1,4-di(acrylamide))、及聚(乙二醇)二(丙烯酸酯)(poly(ethylene glycol)di(acrylate))。
进一步地说,基于所述隐形眼镜材料的总重为100重量份,所述交联剂的一用量范围优选是介于0.1重量份至5重量份之间、且更优选是介于0.1重量份至3重量份之间,但本发明不受限于此。
在本发明的一些实施方式中,所述起始剂为一光起始剂。
在本发明的一些实施方式中,所述起始剂是选自以下材料群组中的至少一种材料:双(1-(2,4-二氟苯基)-3-吡咯基)二茂钛(bis(2,6-difluoro-3-(1-hydropyrro-1-yl)-phenyl)titanocene)、苯基双(2,4,6-三甲基苯甲酰基)氧化膦(phenylbis-(2,4,6-trimethylbenzoyl)-phosphine oxide)及2-羟基-2-甲基-1-苯基-1-丙酮(2-hydroxy-2-methyl-1-phenyl-1-porpanone)。
在本发明的一些实施方式中,所述起始剂是选自以下材料群组中的至少一种材料:偶氮二异庚腈(2,2’-Azodi(2,4-dimethylvaleronitrile),ADVN)、2,2’偶氮双异丁腈(2,2’-Azobis(2-methylpropionitrile),AIBN)、2,2’-偶氮基双(2,4-二甲基)戊腈(2,2’-Azobis(2,4-dimethyl)valeronitrile)、2,2’-偶氮基双(2甲基)丙腈(2,2’-Azobis(2methyl)propionitrile)、 2,2’-偶氮基双(2-甲基)丁腈(2,2’-Azobis(2-methyl)butyronitrile)、及过氧化苯甲酰(benzoyl peroxide),但本发明不受限于此。
进一步地说,基于所述隐形眼镜材料的总重为100重量份,所述起始剂的一用量范围优选是介于0.01重量份至2重量份之间、且特优选是介于0.05重量份至1重量份之间,但本发明不受限于此。
为了提升所述隐形眼镜材料的紫外光阻隔能力,在本发明的一些实施方式中,所述隐形眼镜材料进一步包含一阻隔紫外光单体,并且基于所述隐形眼镜材料的总重为100重量份,所述阻隔紫外光单体的用量范围为0.30重量份至1.80重量份之间。其中,所述阻隔紫外光单体是选自由一具有二苯基甲酮(benzophenone)的单体及一具有苯并三唑(benzotriazole)所组成的材料群组的至少其中之一。
为了提升所述隐形眼镜材料的溶解性,在本发明的一些实施方式中,所述隐形眼镜材料进一步包含一助溶剂,并且基于所述隐形眼镜材料的总重为100重量份,所述助溶剂的用量范围介于3重量份至15重量份之间。其中,所述助溶剂是选自由甘油(glycerol)、2-丙醇(isopropyl alcohol)、正丁醇(n-butanol)、叔丁醇(t-butanol)、叔戊醇(t-amyl alcohol)及正己醇(n-hexanol)所组成的材料群组的至少其中之一。
为了使所述隐形眼镜材料具有特定颜色,在本发明的多个实施方式中,所述隐形眼镜材料进一步包含一染料,并且基于所述隐形眼镜材料的总重为100重量份,所述染料的用量范围介于0.002重量份至0.050重量份之间。其中,所述染料是选自由活性蓝19(disodium,1-amino-9,10-dioxo-4-[3-(2-sulfonatooxyethylsulfonyl)anilino]anthracene-2-sulfonate)、苏丹三号(1-[4-(Phenylazo)phenylazo]-2-naphthol,Sudan III)、靛蓝(2,2'-Bis(2,3-dihydro-3-oxoindolylidene),Indigo)及喹啉黄(disodium2-(1,3-dioxo-2,3-dihydro-1H-inden-2-yl)quinolone-6,8-disul fonate,Quinoline yellow)所组成的材料群组的至少其中之一。
[隐形眼镜的制造方法]
本发明实施例另提供一种隐形眼镜的制造方法。所述隐形眼镜的制造方法包含:将所述隐形眼镜材料注入一用于制造隐形眼镜的模具,并且对所述隐形眼镜材料进行固化成型程序,从而形成一隐形眼镜的干片半成品。接着,将所 述隐形眼镜的干片半成品浸泡于一缓冲溶液中,直到所述隐形眼镜的干片半成品膨润(水化程序)。然后,将一缓冲溶液填充于一包装容器内,将所述隐形眼镜浸泡于缓冲溶液中,接着,进行一密封程序及一灭菌程序,如此即完成了隐形眼镜产品的制作。
[隐形眼镜镜片]
本发明实施例另提供一种隐形眼镜镜片。所述隐形眼镜镜片是由上述实施例的隐形眼镜材料所形成。根据上述实施例隐形眼镜材料的配方,本发明实施例的隐形眼镜镜片能具有高的透氧率、含水率、及表面湿润的特性。
通过本发明的隐形眼镜材料制备的隐形眼镜镜片能具有更好的物化特性。更具体地说,所述隐形眼镜镜片具有:(a)介于45wt%至80wt%之间的一含水量(water content)、且优选介于65wt%至80wt%之间;(b)不小于40barrers的一透氧率(oxygen permeability)、且优选介于40barrers至60barrers之间;(c)不大于1.5MPa的一弹性模量(elastic modulus)、且优选介于0.3MPa至0.6MPa之间;(d)不大于80度的一动态接触角(dynamic contact angle)、优选不大于60度、且更优选不大于30度;(e)介于1.350和1.442之间的一折射率(refractive index);及(f)介于5至10之间的一润滑性(lubricity)、且优选介于6至9之间。
[实验数据及测试结果]
以下,参照实施例S1至S11详细说明本发明之内容。然而,以下实施例仅作为帮助了解本发明,本发明的范围并不限于这些实施例。
实施例S1至S11的制备方式包含将一隐形眼镜材料注入一用于制造隐形眼镜的模具,并且对所述隐形眼镜材料进行一固化成型程序,从而形成一隐形眼镜的干片半成品。接着,将所述隐形眼镜的干片半成品浸泡于一缓冲溶液中,直到所述隐形眼镜的干片半成品膨润(水化程序)。然后,将一缓冲溶液填充于一包装容器内,将所述隐形眼镜浸泡于缓冲溶液中,接着,进行一密封程序(密封温度约125℃)及一灭菌程序(灭菌时间约30分钟),如此即完成了隐形眼镜产品的制作。
其中,所述隐形眼镜材料主要包含:硅氧烷单体、亲水性单体、交联剂、及起始剂。实施例S1至S11的制备方式大致相同,其不同之处在于,实施例S1至S11的隐形眼镜材料中的各成份之用量不同,且采用的硅氧烷单体也不 同。其中,实施例S1至S3采用的是具有上述化学实验式(I-1)并对应于第一具体实施方式的硅氧烷单体。实施例S4至S6采用的是具有上述化学实验式(I-2)并对应于第二具体实施方式的硅氧烷单体。实施例S7及S8采用的是具有上述化学实验式(I-1)并对应于第一具体实施方式的硅氧烷单体、及具有上述化学实验式(I-2)并对应于第二具体实施方式的硅氧烷单体。实施例S9采用的是具有上述化学实验式(I-1)并对应于第一具体实施方式的硅氧烷单体、及具有上述化学实验式(I-3)并对应于第三具体实施方式的硅氧烷单体。实施例S10采用的是具有上述化学实验式(I-2)并对应于第二具体实施方式的硅氧烷单体、及具有上述化学实验式(I-3)并对应于第三具体实施方式的硅氧烷单体。实施例S11采用的是具有上述化学实验式(I-3)并对应于第三具体实施方式的硅氧烷单体。实施例S1至S11的配方组成显示如下表1中。
实施例S1至S11所采用的硅氧烷单体在化学结构上同样皆具有碳原子(C)、氢原子(H)、氧原子(O)、及硅原子(Si),但是氮原子(N)的含量不同。具有上述化学实验式(I-3)并对应于第三具体实施方式的硅氧烷单体不具有氮原子,其可做为本发明实施例的隐形眼镜材料的不同氮、氧、及硅之组成的实验对照组。
实施例S1至S11所采用的硅氧烷单体皆能使隐形眼镜的以下物化特性具有好的表现,其包含:镜片本体的含水量(water content,wt%)、镜片本体的透氧率(oxygen permeability,DK)、镜片本体的弹性模量(elastic modulus,MPa)、镜片表面的动态接触角(dynamic contact angle)、及镜片表面的润滑性(lubricity)。隐形眼镜的物化特性的测试方法说明如下,并且测试结果显示于下表5中。
镜片本体的含水量(wt%):平衡含水量的测定方法为在镜片表面移动水后,称量镜片重量,得到水合镜片重量,将镜片放入烘箱中烘干,在干燥状态下称量镜片重量。水合重量减去干燥重量得到重量差。平衡水含量(wt%)=(重量差/水合重量)×100。
镜片本体的透氧率(DK):透氧率的测量是使用ISO 9913-1中描述的极谱法,使用O2渗透计仪器进行的。将样品浸入平衡至少12小时的纯水中进行测量,然后用O2渗透计201T型仪器(购自Rheder Development公司)在35℃的磷酸盐缓冲盐水中测量透氧率。氧气渗透率以Barrer为单位记录。
镜片本体的弹性模量(MPa):弹性模量通过使用拉伸试验机Zwick Z0.5测量。镜片样品被切割成2毫米宽。在测试开始之前使用千分尺测量样品的厚度。在测试开始时,样品的延伸部的移动速度、样品的长度和夹爪之间的距离保持恒定。在测量期间将每个样品置于缓冲盐水中。以MPa为单位记录模量。
镜片表面的动态接触角(度):动态接触角测量使用俘获气泡法(captive bubble method)进行。根据这种方法,将硅水凝胶隐形眼镜适当地夹在两个硬塑料之间,使镜片中心部分相对平坦,然后将镜片浸入装有硼酸盐缓冲盐水溶液的小罐中。然后将气泡适当地引入镜片表面并停留在表面上。然后用数码相机拍照,然后使用计算器程序从绘图中获得左右接触角,并记录左右接触角的平均值。
镜片表面的润滑性:镜片的润滑性由10个人(从1到10)盲目评分。分数越高,镜片表面的润滑性越好。
[表1]实施例S1至S11的隐形眼镜材料的配方。其中,隐形眼镜材料的总重为100重量份。
Figure PCTCN2022077140-appb-000012
Figure PCTCN2022077140-appb-000013
Figure PCTCN2022077140-appb-000014
[表2]实施例S1至S11的隐形眼镜的物化特性的测试结果。
Figure PCTCN2022077140-appb-000015
Figure PCTCN2022077140-appb-000016
[实验结果讨论]
表2示出了实施例S1至S11的镜片表面特性,例如动态接触角和润滑性。其中,动态接触角的数值越低,代表镜片表面的亲水性越好,在许多高亲水性的表面上,其接触角的表现自0度到30度。镜片表面的润滑性由10个人(从1到10)盲目评分,分数越高,镜片表面的润滑性越好。动态接触角和润滑性的测试结果分别如表2所示。
实施例S1至S11所采用的硅氧烷单体皆能使隐形眼镜的以下物化特性具有好的表现,其中又以实施例S1至S8在镜片表面的亲水性或湿润性具有更佳 的表现。进一步地说,在实施例S1至S8的硅氧烷单体的化学结构中,氧原子能通过氢键与水分子键藉以提升隐形眼镜材料的表面亲水性。氮原子在离子态容易通过氢键与水分子键结。
另,一般来说,硅原子的含量越多,则镜片表面会越疏水,然而,实施例S1至S8的硅氧烷单体的化学结构中具有较多的氧原子及氮原子,因此能使得隐形眼镜的镜片表面维持良好的亲水性及润滑性。藉此,由实施例S1至S8的配方制成的隐形眼镜的镜片表面可以不需要涂布任何的亲水性涂层。
[实施例的有益效果]
本发明的其中一有益效果在于,本发明实施例的隐形眼镜材料可制备成硅水胶隐形眼镜,其具有低成本、量产性、及制程简单等优点。再者,通过本发明实施例的隐形眼镜材料制备而成的隐形眼镜之表面能具有更好的表面特性(如:亲水性或湿润性),因此,该隐形眼镜的表面可不需要任何额外的亲水性涂层。值得一提的是,在所述硅氧烷单体的分子结构中,所述硅氧烷的重复单元或烷氧硅基能提升隐形眼镜的透氧率(DK)。再者,分别在所述主链及支链中的第一及第二亲水性链段能提升隐形眼镜的表面亲水性或湿润性。
以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的申请专利范围,所以凡是运用本发明说明书内容所做的等效技术变化,均包含于本发明的申请专利范围内。

Claims (10)

  1. 一种隐形眼镜材料,其特征在于,所述隐形眼镜材料包括:一亲水性单体、一交联剂、一起始剂、及一硅氧烷单体;
    其中,基于所述隐形眼镜材料的总重为100重量份,所述硅氧烷单体的一用量范围是介于5重量份至50重量份之间;并且,所述硅氧烷单体的一化学实验式如式(I)表示:
    C aH bO cN dSi e        式(I);
    其中,C代表碳原子,a是介于12至55之间的正数;
    其中,H代表氢原子,b是介于29至121之间的正数;
    其中,O代表氧原子,c是介于4至17之间的正数;
    其中,N代表氮原子,d是介于0至5之间的正数;
    其中,Si代表硅原子,e是介于1至9之间的正数。
  2. 根据权利要求1所述的隐形眼镜材料,其特征在于,所述硅氧烷单体的分子量是介于400至1,200之间。
  3. 根据权利要求1所述的隐形眼镜材料,其特征在于,所述硅氧烷单体的分子结构的主链上具有硅氧烷的重复单元(siloxane repeat units)或烷氧硅基(siloxy),并且所述主链上另具有由如式(I-1)表示的取代基修饰的胺基甘油(1-aminoglycerol)结构片段所组成的一第一亲水性链段,而所述硅氧烷单体的分子结构的支链上另具有由聚乙二醇(polyethylene glycol,PEG)组成的一第二亲水性链段;
    Figure PCTCN2022077140-appb-100001
    其中,R 2为甲基(-CH 3)或不存在;R 3、R 4为彼此独立的H或甲基(-CH 3)或
    Figure PCTCN2022077140-appb-100002
    R 10为H或甲基(-CH 3),并且n为数值范围介于0至3之间的正数。
  4. 根据权利要求3所述的隐形眼镜材料,其特征在于,所述硅氧烷单体的分子结构进一步具有接枝在所述主链上的亲水性支链;其中,所述亲水性支链具有x个碳原子及y个氧原子,0≤x+y≤10,且所述亲水性支链 的远离所述主链的末端具亲水性官能基,其为羟基官能基(-OH基)或烷氧基官能基。
  5. 根据权利要求1所述的隐形眼镜材料,其特征在于,所述硅氧烷单体的一化学结构键线式如式(II-1)或式(II-2)表示:
    Figure PCTCN2022077140-appb-100003
    其中,R 1为H或甲基(-CH 3);X 1为O或NR 8;X 2为CH-OR 9或不存在;R 2为甲基(-CH 3)或不存在;R 3、R 4、R 7、R 8与R 9为彼此独立的H或甲基(-CH 3)或
    Figure PCTCN2022077140-appb-100004
    R 10为H或甲基(-CH 3);R 5与R 6为彼此独立且碳数介于1至10之间的烷基(alkyl)、芳香基(aryl)、烷氧基(alkoxy)、芳氧基(aryloxy)或OSiR 11R 12R 13;R 11、R 12与R 13为彼此独立并且碳数介于1至10之间的烷基(alkyl)、芳香基(aryl)、烷氧基(alkoxy)、芳氧基(aryloxy);其中,a、c及n为彼此独立且数值范围介于0至3之间的正数;b为数值范围介于0至8之间的正数。
  6. 根据权利要求5所述的隐形眼镜材料,其特征在于,在式(II-1)或式(II-2)的键线式中,至少一个羟基是主链上的取代基,至少一个氧或氮,或两者作为骨架原子,并且所述硅氧烷单体为离子或线性或支链单体。
  7. 根据权利要求1所述的隐形眼镜材料,其特征在于,所述亲水性单体是选自以下材料群组中的至少一种材料:N-乙烯基吡咯烷酮(NVP)、甲基丙烯酸2-羟乙酯(HEMA)、2-羟乙基丙烯酰胺(HEAA)、甲基丙烯酸甘油酯(GMA)、单甲基丙烯酸甘油酯(GMMA)、甲基丙烯酸(MAA)、丙烯酸(AA)、N,N-二(甲基丙烯酰胺)(DMA)、N,N-二(甲基甲基丙烯酰胺)、N-乙烯基-N-甲基乙酰胺、甘氨酸乙烯基碳酸酯、2-甲基丙烯酰氧基乙基磷酰胆碱、及2-羟基-甲基丙烯酸丁酯;其中,基于所述隐形眼镜材料的总重为100重量份,所述亲水性单体的一用量范围是介于40重量份至90重量份之间。
  8. 根据权利要求1所述的隐形眼镜材料,其特征在于,所述交联剂是选自以 下材料群组中的至少一种材料:乙二醇二甲基丙烯酸酯(EGDMA)、二乙二醇二甲基丙烯酸酯(DEGDMA)、三甘醇二甲基丙烯酸酯(TEGDMA)、四乙二醇二甲基丙烯酸酯(TTEGDMA)、甲基丙烯酸烯丙酯(AMA)、乙二醇二烯丙醚(EGDAE)、三甘醇二烯丙醚(TEGDAE)、四乙二醇二烯丙醚(TTEGDAE)、1,3,5-三烯丙基-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、1,1,1-三(羟甲基丙烷)三(甲基丙烯酸酯)、三(羟甲基丙烷)三(丙烯酸酯)、季戊四醇四(丙烯酸酯)、四乙二醇二丙烯酸酯、乙二丙烯酰胺、1,4-二(丙烯酰胺)丁烯、及聚(乙二醇)二(丙烯酸酯);其中,基于所述隐形眼镜材料的总重为100重量份,所述交联剂的一用量范围是介于0.1重量份至5重量份之间。
  9. 根据权利要求1所述的隐形眼镜材料,其特征在于,所述起始剂是选自以下材料群组中的至少一种材料:双(1-(2,4-二氟苯基)-3-吡咯基)二茂钛、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、2-羟基-2-甲基-1-苯基-1-丙酮、偶氮二异庚腈、2,2’偶氮双异丁腈、2,2’-偶氮基双(2,4-二甲基)戊腈、2,2’-偶氮基双(2甲基)丙腈、2,2’-偶氮基双(2-甲基)丁腈、及过氧化苯甲酰;其中,基于所述隐形眼镜材料的总重为100重量份,所述起始剂的一用量范围是介于0.01重量份至2重量份之间。
  10. 一种隐形眼镜镜片,其是由权利要求1至9中任一项所述的隐形眼镜材料制备而成,其特征在于,所述隐形眼镜镜片具有:介于45wt%至80wt%之间的一含水量;不小于40barrers的一透氧率;不大于1.5MPa的一弹性模量;不大于80度的一动态接触角;及介于5至10之间的一润滑性。
PCT/CN2022/077140 2021-02-23 2022-02-21 隐形眼镜材料及隐形眼镜镜片 WO2022179477A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023525108A JP2023546617A (ja) 2021-02-23 2022-02-21 コンタクトレンズ材料及びコンタクトレンズ
CN202280006314.5A CN116209702A (zh) 2021-02-23 2022-02-21 隐形眼镜材料及隐形眼镜镜片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163152503P 2021-02-23 2021-02-23
US63/152,503 2021-02-23

Publications (1)

Publication Number Publication Date
WO2022179477A1 true WO2022179477A1 (zh) 2022-09-01

Family

ID=83006893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077140 WO2022179477A1 (zh) 2021-02-23 2022-02-21 隐形眼镜材料及隐形眼镜镜片

Country Status (4)

Country Link
US (1) US20220275129A1 (zh)
JP (1) JP2023546617A (zh)
CN (1) CN116209702A (zh)
WO (1) WO2022179477A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101516971A (zh) * 2006-09-27 2009-08-26 博士伦公司 侧基封端的低模量阳离子硅氧烷
US20100120939A1 (en) * 2008-11-13 2010-05-13 John Christopher Phelan Silicone hydrogel materials with chemically bound wetting agents
CN102558458A (zh) * 2011-11-18 2012-07-11 明基材料有限公司 隐形眼镜材料、隐形眼镜及隐形眼镜的制造方法
CN103224597A (zh) * 2013-03-28 2013-07-31 明基材料有限公司 隐形眼镜材料、隐形眼镜及制造方法
CN103224596A (zh) * 2013-03-18 2013-07-31 明基材料有限公司 隐形眼镜材料、隐形眼镜及其制造方法
CN103848946A (zh) * 2012-11-30 2014-06-11 晶硕光学股份有限公司 硅水胶组合物及以该组合物制备的硅水胶镜片
US20140371410A1 (en) * 2013-06-14 2014-12-18 Benq Materials Corporation Fluoro-Containing Ether Monomer For Fabricating Contact Lenses, Contact Lenses Materials And Contact Lenses Obtained Therefrom
CN105713153A (zh) * 2014-12-05 2016-06-29 晶硕光学股份有限公司 阻隔紫外光的硅水胶组合物及包含其的硅水胶镜片
CN107365404A (zh) * 2016-05-12 2017-11-21 詹前庆 一种硅水胶组合物及其制备的镜片

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101516971A (zh) * 2006-09-27 2009-08-26 博士伦公司 侧基封端的低模量阳离子硅氧烷
US20100120939A1 (en) * 2008-11-13 2010-05-13 John Christopher Phelan Silicone hydrogel materials with chemically bound wetting agents
CN102558458A (zh) * 2011-11-18 2012-07-11 明基材料有限公司 隐形眼镜材料、隐形眼镜及隐形眼镜的制造方法
CN103848946A (zh) * 2012-11-30 2014-06-11 晶硕光学股份有限公司 硅水胶组合物及以该组合物制备的硅水胶镜片
CN103224596A (zh) * 2013-03-18 2013-07-31 明基材料有限公司 隐形眼镜材料、隐形眼镜及其制造方法
CN103224597A (zh) * 2013-03-28 2013-07-31 明基材料有限公司 隐形眼镜材料、隐形眼镜及制造方法
US20140371410A1 (en) * 2013-06-14 2014-12-18 Benq Materials Corporation Fluoro-Containing Ether Monomer For Fabricating Contact Lenses, Contact Lenses Materials And Contact Lenses Obtained Therefrom
CN105713153A (zh) * 2014-12-05 2016-06-29 晶硕光学股份有限公司 阻隔紫外光的硅水胶组合物及包含其的硅水胶镜片
CN107365404A (zh) * 2016-05-12 2017-11-21 詹前庆 一种硅水胶组合物及其制备的镜片

Also Published As

Publication number Publication date
CN116209702A (zh) 2023-06-02
US20220275129A1 (en) 2022-09-01
TW202233704A (zh) 2022-09-01
JP2023546617A (ja) 2023-11-06

Similar Documents

Publication Publication Date Title
TWI753090B (zh) 用於隱形眼鏡的單體組合物、用於隱形眼鏡的聚合物及其製備方法、以及隱形眼鏡及其製造方法
TWI401263B (zh) 增進聚矽氧水膠潤濕性之共聚物、包含其之聚矽氧水膠組成物及由此製得之眼用物件
US10240034B2 (en) Silicone acrylamide copolymer
JP2016524178A (ja) 一級アミン含有シリコーンヒドロゲルコンタクトレンズ並びに関連する組成物及び方法
JP6807011B2 (ja) 表面にホスホリルコリン基含有親水性ポリマーを有するコンタクトレンズ
TWI813663B (zh) 含磷醯膽鹼基的聚矽氧烷單體
TW201836652A (zh) 眼用鏡片及其製造方法
AU2015241171B2 (en) Silicone acrylamide copolymer
US10160854B1 (en) Hydrogel materials
TWI841916B (zh) 隱形眼鏡材料及隱形眼鏡鏡片
WO2022179477A1 (zh) 隐形眼镜材料及隐形眼镜镜片
TWI813875B (zh) 隱形眼鏡用單體組合物、隱形眼鏡用聚合物及其製備方法、以及隱形眼鏡及其製造方法
TWI828345B (zh) 矽氧烷單體、隱形眼鏡組成物及隱形眼鏡
JPH11305172A (ja) 含水性ソフトコンタクトレンズ
WO2024065567A1 (zh) 硅氧烷单体、隐形眼镜组成物及隐形眼镜
TW202415711A (zh) 矽氧烷單體、隱形眼鏡組成物及隱形眼鏡
TW202342646A (zh) 高透氧矽水膠組成物、使用高透氧矽水膠組成物製作的隱形眼鏡及其製作方法
WO2022131120A1 (ja) コンタクトレンズ用モノマー組成物、コンタクトレンズ用重合体、並びにコンタクトレンズ及びその製造方法
JPH11311757A (ja) 含水性ソフトコンタクトレンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22758841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525108

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22758841

Country of ref document: EP

Kind code of ref document: A1