WO2022179303A1 - 一种基于电导率可控聚合物集流体的储能系统及其制备工艺 - Google Patents

一种基于电导率可控聚合物集流体的储能系统及其制备工艺 Download PDF

Info

Publication number
WO2022179303A1
WO2022179303A1 PCT/CN2021/143331 CN2021143331W WO2022179303A1 WO 2022179303 A1 WO2022179303 A1 WO 2022179303A1 CN 2021143331 W CN2021143331 W CN 2021143331W WO 2022179303 A1 WO2022179303 A1 WO 2022179303A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
polymer
storage system
current collector
material layer
Prior art date
Application number
PCT/CN2021/143331
Other languages
English (en)
French (fr)
Inventor
闫坤
朱夏纯
王俊华
孙伟
Original Assignee
烯晶碳能电子科技无锡有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烯晶碳能电子科技无锡有限公司 filed Critical 烯晶碳能电子科技无锡有限公司
Publication of WO2022179303A1 publication Critical patent/WO2022179303A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of energy storage systems, and in particular relates to an ETP energy storage system based on a conductivity-controllable polymer current collector.
  • Lithium-ion batteries have the advantage of high energy density, so they are widely used in modern life. However, at present, lithium-ion batteries still cannot meet the needs of users to pursue longer standby time. Therefore, the development of battery products with higher energy density has become a Urgent needs of industry.
  • solid-state lithium-ion batteries As a battery with the highest energy density in theory, solid-state lithium-ion batteries have good application prospects, but the current solid-state lithium-ion batteries usually use metals as current collectors, and many technical problems have arisen in practical applications, such as using aluminum or copper as collectors.
  • the volume resistivity of metal current collectors such as aluminum foil is 2.85*10 -8 ⁇ cm
  • the volume resistivity of the conductive primer layer is generally 1---5 ⁇ cm
  • the volume resistivity of the positive electrode active material layer is generally 20 ⁇ cm
  • the volume of the aluminum foil metal current collector is generally The internal resistivity is much lower than the volume resistance of the active material layer by 9 orders of magnitude. From a safety point of view, when a short circuit occurs, the excellent electrical conductivity of the negative electrode aluminum foil substrate will cause electrons to flow instantly to the short circuit point, and the energy is at the extreme point.
  • the present invention proposes an ETP energy storage system based on a conductivity-controllable polymer current collector.
  • an energy storage system characterized in that: the energy storage system includes at least one battery cell, and the at least one battery core includes a positive electrode, a diaphragm, an electrolyte, and a negative electrode, and the at least one battery cell above
  • the positive electrode active material layer and the negative electrode active material layer are respectively set on the inner sides of the two electrode sheets on the outermost side of the cell. Only the electrode sheet with the positive electrode material layer on the inner side is the total positive electrode sheet, and only the electrode sheet with the negative electrode material layer on the inner side is the total positive electrode sheet.
  • Negative electrode sheet the electrode sheet located between the two outermost electrode sheets is a bipolar electrode sheet, the two sides of the bipolar electrode sheet are respectively provided with a positive electrode active material layer and a negative electrode active material layer, and the two adjacent electrode sheets are opposite to each other.
  • the polarity of the active material layer disposed on the surface is opposite, the interior of the energy storage system is filled with electrolyte, the electrode sheet includes a current collector, and the current collector includes a polymer material.
  • the polymer material includes a conductive polymer and/or a conductive polymer
  • the conductive polymer includes at least one of polyaniline, polythiophene or polypyrrole.
  • the weight ratio of the polyaniline to the polypyrrole is 60:40, or 50:50.
  • the weight ratio of the polyaniline, polypyrrole and polythiophene is 50:40:10, or 50:30:20.
  • the non-conductive polymer material needs to be subjected to conductive treatment, that is, the conductive agent component is added to the polymer, mixed and dispersed, and a conductive polymer current collector film is made by a casting process.
  • the conductive agent is at least one or more of conductive carbon black SPli, conductive graphite KS-6, carbon nanotubes, nanocarbon fibers or graphene.
  • the electrolyte is a liquid electrolyte or a solid electrolyte.
  • the structure of the current collector is a two-dimensional film structure of conductive polymer, and the thickness of the two-dimensional film is 10-100um.
  • the volume electron conductivity of the polymer current collector is in the range of 1S/cm---10S/cm.
  • a composite conductive polymer made of a conductive polymer or a blend of a polymer and a conductive agent is used to replace the traditional foil as the current collector.
  • the structure of a conductive polymer is that its molecular structure contains a conjugated long-chain structure, and the delocalized ⁇ electrons on the double bond can migrate on the molecular chain to form a current, making the polymer structure inherently conductive.
  • conjugated polymer the longer the molecular chain, the more ⁇ electrons, and the lower the electron activation energy, that is, the electrons are more easily delocalized, and the better the conductivity of the polymer is.
  • the composite conductive polymer is a material formed by filling various conductive substances in the polymer matrix with different processing techniques. Among them, the filler material provides the conductive properties of the material, while the polymer matrix binds the conductive fillers together and provides the material's processability. The properties of the polymer material as the matrix have a very important influence on the mechanical strength, heat resistance and aging resistance of the composite conductive polymer material.
  • Conductive polymer such as one or a mixture of polyaniline, polythiophene, polypyrrole, etc., and an intrinsically non-conductive base polymer material, such as one or a mixture of PE, PP, PS, PVDF, PTFE, ETFE, etc.
  • Conductive treatment that is, adding the conductive agent components to the polymer, mixing and dispersing, and using the casting process to make a conductive polymer current collector film; the conductive agent is conductive carbon black, SPli, conductive graphite KS-6, carbon nanotubes, nano One or more mixtures of carbon fiber, graphene, etc.
  • An ETP energy storage system based on a polymer current collector with controllable conductivity the manufacturing process steps are: (1) crushing and fully mixing the polymer in a high-speed pulverizer; Disintegrate and mix thoroughly. If the polymer contains a conductive agent, add the conductive agent to the mixture for three-dimensional mixing, so that the polymer and the conductive agent are uniformly dispersed.
  • step (2) The mixture obtained in step (1) is melt-blended and extruded at a certain temperature (180-240°C), and then a conductive-conductivity-controllable polymer current collector is made by a casting process.
  • the active material film is pasted on the conductivity-controllable polymer current collector obtained in the step (2) of coating the carbon coating layer by dry method, or the active material slurry is directly coated by wet method. cloth on the conductivity-controllable polymer current collector obtained in step (2).
  • the active material film can be attached to the conductivity-controllable polymer current collector coated with the carbon-coated layer by dry lamination.
  • the active material slurry can be directly coated on the conductivity-controllable polymer current collector by a wet method.
  • the ETP energy storage system uses multiple electrode sheets, which are assembled into a battery cell by alternately stacking electrode sheets, separators, and electrolytes or solid electrolytes, and the outer shell of the battery core is assembled in the form of a shell.
  • the outer sides of the two outermost electrodes are not coated or laminated with a material layer. Since the current collector is conductive, the battery management system can be connected to the outermost electrode.
  • the inner side of the outermost electrode is coated with a single-sided electrode of the positive electrode material layer and the negative electrode material layer respectively; the inner battery core electrode sheet includes an internal current collector, a positive electrode material layer and a negative electrode material layer, and the positive electrode material layer and the negative electrode material layer are respectively coated and arranged on both sides of the inner current collector.
  • An inner diaphragm is arranged between the positive and negative material layers of the outermost single-sided electrode and the adjacent negative and positive material layers of the double-sided electrode, and an inner diaphragm is also arranged between the inner double-sided electrode and the immediately adjacent double-sided electrode.
  • the separators are placed in close contact with the material layers, and only one separator is required for each positive electrode material layer and the adjacent negative electrode material layer.
  • Each positive electrode material layer, diaphragm and negative electrode material layer constitute a small power supply unit, each power supply unit is filled with liquid independently, and the electrolyte between the power supply unit and the power supply unit cannot be liquid.
  • the ETP system is composed of multiple such power supply units connected in series.
  • the beneficial effects of the present invention are: (1) At present, there is no such design on the entire battery electrochemical system based on the electronic resistivity mechanism, only the firm and reliable design of the external passive system pack shell , and non-flammable liquid electrolyte, etc., as well as the system BMS battery management system for software-level monomer control, etc.; based on the short-circuit safety problem of lithium-ion batteries, the present invention combines the electronic conductivity design of the current collector to carry out active safety functions.
  • the design of the battery can prevent the out-of-control performance of lithium ion electrochemical behavior caused by battery short circuit, avoid fire and explosion and other disadvantages, and achieve the purpose of high-safety battery.
  • the present invention goes directly from the electrode to the pack system, eliminating the need for intermediate processes such as single cells and modules, and the interior is composed of several energy storage unit structures connected in series, and the resulting device voltage is independent.
  • the battery cell from the structural design level, can effectively reduce the cost of the energy storage system and increase the energy density.
  • the present invention uses polymers as current collectors, and the bipolar ETP (Electrode electrode to Pack system) design based on flexible polymer current collectors achieves low internal resistance, high controllable safety, low cost, high energy density and Power density of energy storage systems.
  • bipolar ETP Electrode electrode to Pack system
  • FIG. 1 is a diagram of an ETP energy storage system based on a conductivity-controllable polymer current collector according to the present invention.
  • FIG. 2 is a scanning electron microscope image of the conductivity-controllable polymer current collector when the weight ratio of aniline/polypyrrole is 60/40.
  • Figure 3 is a charge-discharge curve diagram of an ETP system based on a lithium iron phosphate-graphite single energy storage unit.
  • Figure 4 is a charge-discharge curve diagram of an ETP system based on five energy storage units of lithium iron phosphate-graphite.
  • Figure 5 is a diagram of the packaged ETP device.
  • an ETP energy storage system based on a polymer current collector with controllable conductivity includes a plurality of electrode sheets, which are assembled into a battery cell 100 by alternately stacking electrode sheets, separators and electrolytes. cover the casing.
  • the inner sides of the two outermost electrode sheets are respectively provided with a positive electrode active material layer and a negative electrode active material layer.
  • the terminals respectively have a positive terminal and a negative terminal, the outer layer negative electrode member 130 is connected to the negative terminal, the outer layer positive member 110 is connected to the positive terminal, and the cell series group 150 includes a plurality of overlapping inner cell electrode pieces.
  • An internal diaphragm 170 for blocking electrons from passing through is disposed between each of the inner cell pole pieces, and each adjacent two inner cell pole pieces form a power supply unit with each other, and a plurality of power supply units are connected in series.
  • Each inner cell pole piece includes an inner current collector 190, a positive electrode material layer N and a negative electrode material layer P, and the positive electrode material layer N and the negative electrode material layer P are respectively disposed on both sides of the inner current collector 190.
  • the specific setting method can be coated with Feasible methods such as coating, adhesion, coating or doping are not limited in the present invention.
  • the inner cell electrode pieces and the separator 170 can be closely attached, thereby reducing the space occupied by the plurality of inner cell electrode pieces, but the present invention is not limited to making the inner cell electrode pieces and the separator It is closely fitted, and the position between the inner cell electrode piece and the separator 170 can also be arranged according to the specific use environment, such as the frame spaced arrangement, etc.;
  • the separator 170 in order to make the inner cell electrode piece and the separator 170 closely fit, the positive electrode material layer P and the negative electrode material layer N are respectively combined with the corresponding inner separator 190 to further reduce the overall cell volume.
  • the separator 170 is one of cellulose paper, PP, PE, and ceramics, and its surface is a structure of irregularly stacked short fibers with different diameters and irregularities, showing holes of different sizes and shapes for ion shuttle.
  • the preferred conductivity range is 1S/cm---10S/cm, and the maximum value of the volume resistivity of the polymer current collector cannot be higher than that of the conductive primer layer. and the resistivity of the active carbon layer of the positive electrode material, otherwise the overall internal resistance of the battery will be affected, that is, the upper limit of the volume resistivity of the polymer current collector does not exceed 1 ⁇ cm, that is, the volume electronic conductivity is controlled above 1 S/cm, and the current collector cannot be made.
  • the resistivity and the active material layer and the conductive primer layer are too large in magnitude.
  • the present invention Strive to prevent the flow of electrons at the extreme speed at the short-circuit point, and bring about the uncontrolled release of lithium ions under the extremely large current density to induce the phenomenon of surface deposition and deposition of lithium, that is, the lower limit of the volume resistivity of the polymer current collector is preferably not less than 0.1 ⁇ cm , that is, the volume electron conductivity is controlled at 10 S/cm.
  • the current collector can adopt the following method A: a conductive polymer-based polymer current collector with controllable conductivity, in parts by weight, the polymer current collector includes 62 parts of polyaniline and 38 parts of polypyrrole.
  • the above-mentioned preparation method of a conductive polymer-based polymer current collector with controllable conductivity includes the following steps: S1. High-speed pulverization and adequate mixing of two polymer conductive materials.
  • the conductive polymer film prepared in S3 is cooled at room temperature and cut into shape to obtain a conductive polymer-based polymer current collector with controllable conductivity.
  • the conductivity properties of the above-described conductive polymer-based conductivity-controllable polymer current collectors were evaluated. The details are as follows: the resistivity of the prepared current collector was tested by the four-probe method, and the current collectors prepared with other conductive polymer weight ratios were also tested.
  • Table 1 The conductance changes of different ratios of polyaniline, polypyrrole and polythiophene.
  • volume resistivity and volume resistivity of the conductive current collectors prepared within the range of the ratio are all within the required range of 0.1 ⁇ 1 ⁇ cm.
  • weight ratio of polyaniline/polypyrrole 60/40, the lowest resistivity.
  • Figure 2 is a scanning electron microscope image of a polymer current collector with controllable conductivity when the weight ratio of polyaniline/polypyrrole is 60/40.
  • the rod-shaped structure in the figure is polyaniline, and the agglomerated material at the top of the rod-shaped polyaniline is polypyrrole.
  • the present invention can adopt the method B to obtain the polymer current collector, which is specifically as follows: the lithium iron phosphate-graphite (that is, the positive electrode material is lithium iron phosphate, and the negative electrode material is graphite)
  • ETP system based on the conductivity-controllable polymer current collector is composed of two Polar electrode, polycellulose separator, lithium hexafluorophosphate electrolyte and shell.
  • the preferred bipolar electrode current collector is a conductivity-controllable polymer current collector, which is composed of an intrinsically non-conductive polymer and a conductive agent, wherein, in parts by weight, the polymer is 60 parts and the conductive agent is 40 parts.
  • the intrinsically non-conductive polymer is a mixture of three polymers, 26 parts of polyethylene, 22 parts of polypropylene, and 12 parts of polytetrafluoroethylene.
  • the conductive agent is a mixture of various conductive agents, including 30 parts of conductive carbon black, 5 parts of carbon nanotubes, and 5 parts of SP Li.
  • the method includes the following steps: S1. Crush and mix well.
  • the conductive polymer film prepared in S4 is cooled at room temperature and cut into shape to obtain a conductive polymer-based polymer current collector with controllable conductivity.
  • the conductivity properties of the above-described intrinsically non-conductive polymer-based conductivity-controllable polymer current collectors were evaluated. The details are as follows: the resistivity of the current collector prepared by S5 was tested by the four-probe method, and the current collectors prepared with other polymer/conducting agent weight ratios were also tested.
  • Table 2 The relationship between the conductivity of the three polymers and the different proportions of the conductive agent.
  • An ETP battery is prepared on the basis of the current collectors obtained by the method B, and the steps are as follows: S6, taking 6 sheets of the current collectors prepared in step S5, attaching the positive electrode material layer to one side of the 4 sheets of the prepared current collectors, and the negative electrode The material layer is attached to the other side to obtain 4 internal bipolar electrodes of the ETP system. Paste the positive electrode material layer on one side of the current collector, and the negative electrode material layer on the last side of the current collector to obtain one outermost positive electrode and one negative electrode of the ETP system, and specify that the outermost electrode has a material layer as the inner side. .
  • S6 stack the outermost single-sided electrode, diaphragm, and internal bipolar electrode prepared in S6 in the manner of positive electrode material layer-diaphragm-negative electrode material layer, the single-sided electrode is in the outermost layer, and the material-containing layer faces Inside.
  • Each positive electrode material layer and the adjacent negative electrode material layer form a power supply unit, the positive electrode material layer and the adjacent negative electrode material layer are separated by a diaphragm, the diaphragm is close to the material layer, and there is only one diaphragm inside each power supply unit. Constitutes a cell with five power supply units connected in series.
  • the present invention adopts the ETP process to encapsulate a plurality of independent series-connected batteries in a case package, and adjusts the series-connected number of internal battery energy storage units to increase the working voltage to tens or hundreds of volts;
  • the ETP process can greatly improve the working voltage, while also effectively reducing the weight and volume of the energy storage device monomer, and improving the energy density and power density of the energy storage device.
  • the series connection is carried out along the direction of the power line, and the obtained ETP device has the advantage of obviously low internal resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明公开了一种基于电导率可控聚合物集流体的ETP储能系统,包括由电极片、隔膜和电解质交替的叠片组装成的电芯,位于最外侧的两片单面电极片的内侧面分别设有正极活性材料层与负极活性材料层,相邻两片电极片相对的面涂覆的活性材料极性相反,所述电极片内部填充液态或固态电解质,所述集流体为聚合物集流体。本发明结合集流体的电子电导率设计,进行具有主动安全功能的设计,杜绝电池短路等带来的锂离子电化学行为失控表现,避免了起火爆炸等弊端,实现了高安全电池的目的。

Description

一种基于电导率可控聚合物集流体的储能系统及其制备工艺 技术领域
本发明属于储能系统技术领域,具体涉及一种基于电导率可控聚合物集流体的ETP储能系统。
背景技术
锂离子电池具有能量密度高的优点,因此在现代生活中得到广泛的应用,但是目前锂离子的电池仍然满足不了用户追求更长待机时间的需求,因此,开发能量密度更高的电池产品,成为工业界的急迫需求。
固态锂离子电池作为理论上能量密度最高的电池,具有良好的应用前景,但是目前的固态锂离子电池通常采用金属作为集流体,其在实际应用出现了许多技术问题,例如以铝或铜作为集流体,一旦电池发生内短路,引起局部电流密度变大,整个电池会通过短路点进行放电,导致这些区域枝晶生长的趋势更强,大量的能量短时间内通过短路点进行释放(最多会有70%的能量在60s内释放),引起温度快速升高,导致正负极活性物质分解和电解液燃烧,严重的情况下会导致电池起火和爆炸。
技术问题
出现上述情况的原因是当出现短路现象时(或针刺模拟短路时效),铝或铜集流体的金属高电子导电性使得电子快速瞬间流通,在短路点位置锂离子流立刻以极大的电流密度进行锂离子的嵌入脱出,以负极采用石墨为例,极端快速锂离子的释放会出现锂枝晶问题,正极未出现快速离子传递导致晶体结构破坏,以上都会加剧电池电芯本体失效,进而出现热失控和自燃爆炸现象。
同时金属集流体如铝箔的体积电阻率为2.85*10 -8Ωcm,导电底涂层的体积电阻率一般1---5Ωcm,正极电极活性材料层体积电阻率一般为20Ωcm,铝箔金属集流体体积内阻率远低于活性材料层的体积电阻内阻率9个数量级,从安全角度出发,当发生短路时负极电极铝箔基材的优异导电性会使得电子瞬间流过到短路点,能量在极快在施加在短路点,造成锂离子的不均匀局部沉积,即出现锂离子的失控脱嵌锂过程,导致析锂枝晶现象,引起热失控,导致爆炸或自燃。
技术解决方案
为解决以上问题,本发明提出了一种基于电导率可控聚合物集流体的ETP储能系统。
为实现以上目的的技术解决方案如下:一种储能系统,其特征在于:上述储能系统包括至少一个电芯,所述至少一个电芯包括正电极、隔膜、电解质和负电极,上述至少一个电芯位于最外侧的两片电极片的内侧面分别设置正极活性材料层和负极活性材料层,仅内侧设置正极材料层的电极片为总正极片,仅内侧设置负极材料层的电极片为总负极片,位于最外侧的两片电极片之间的电极片是双极性电极片,双极性电极片的两侧面分别设置正极活性材料层与负极活性材料层,相邻两片电极片相对的面设置的活性材料层极性相反,所述储能系统内部填充电解质,所述电极片包括集流体,集流体包括聚合物材料。
进一步改进,优选所述聚合物材料包括导电聚合物和/或导电聚合物,所述导电聚合物包括聚苯胺、聚噻吩或聚吡咯中的至少一种。
进一步改进,优选所述聚苯胺和聚吡咯的重量比为60:40,或是50:50。
进一步改进,优选所述聚苯胺、聚吡咯和聚噻吩的重量比为50:40:10,或是50:30:20。
进一步改进,优选所述非导电的聚合物材质需进行导电化处理,即将导电剂成分加入至聚合物,进行混合分散,采用流延工艺制作成导电聚合物集流体膜。
进一步改进,优选所述导电剂为导电炭黑SPli、导电石墨KS-6、碳纳米管、纳米碳纤维或石墨烯中的至少一种或多种。
进一步改进,优选所述电解质为的液态电解质或固态电解质。
进一步改进,优选所述集流体的结构为导电聚合物二维薄膜结构,该二维薄膜的厚度为10-100um。
进一步改进,优选所述聚合物集流体体积电子电导率范围为1S/cm---10S/cm。
所述聚合物集流体采用导电高分子聚合物或聚合物与导电剂共混物制成的复合导电高分子替代传统箔材作为集流体使用。(1)导电高分子聚合物其结构为其分子结构含有共轭的长链结构,双键上离域的π电子可以在分子链上迁移形成电流,使得高分子结构本身固有导电性。在这类共轭高分子中,分子链越长,π电子数越多,电子活化能越低,即电子更容易离域,则高分子的导电性越好。(2)复合型导电高分子是将各种导电性物质以不同的加工工艺填充在聚合物基体中构成的材料。其中,填充材料提供了材料的导电性能,而聚合物基体则是将导电填料粘合在一起并提供材料的加工性能。作为基体的高分子材料的性能对于复合型导电高分子材料的机械强度、耐热性、耐老化性都有十分重要的影响。
导电聚合物:如聚苯胺、聚噻吩、聚吡咯等中的一种或者混合物,本征不导电的基体聚合物材质,如PE、PP、PS、PVDF、PTFE、ETFE中的一种或混合物进行导电化处理,即将导电剂成分加入至聚合物,进行混合分散,采用流延工艺制作成导电聚合物集流体膜;导电剂为导电炭黑、SPli、导电石墨KS-6、碳纳米管、纳米碳纤维、石墨烯等中的一种或多种混合物。
一种基于电导率可控聚合物集流体的ETP储能系统,其制造工艺步骤为:(1)将聚合物在高速粉碎机中进行破碎并进行充分混合;将聚合物在高速粉碎机中进行破碎并进行充分混合,如果聚合物中含有导电剂,则将导电剂加入到混合物中进行三维混料,使得聚合物与导电剂分散均匀。
(2)将步骤(1)得到的混合物在一定温度(180~240)下进行熔融共混挤出,随后采用流延工艺制成电导率可控聚合物集流体。
(3)采用干法贴合的方式将活性物质膜贴合在涂覆涂炭层的步骤(2)得到的电导率可控聚合物集流体上,或者采用湿法方式直接将活性物质浆料涂布在步骤(2)得到的电导率可控聚合物集流体上。
(4)ETP储能系统电导率可控聚合物集流体基电极的制备可以采用干法贴合的方式将活性物质膜贴合在涂覆涂炭层的电导率可控聚合物集流体上,也可以采用湿法方式直接将活性物质浆料涂布在电导率可控聚合物集流体上。
(5)ETP储能系统采用多片电极片,以电极片、隔膜和电解液或固态电解质交替的叠片组装方式组装成电芯,电芯外部包覆外壳的形式组装。最外侧两片电极外侧不做料层涂布或贴合,由于集流体导电,可以在最外层电极外侧连接电池管理系统。最外层电极内侧面分别涂覆正极料层与负极料层的单面电极;内部电芯极片包括内部集流体、正极料层和负极料层,正极料层和负极料层分别涂覆设置在内部集流体的两侧表面。最外侧单面电极的正、负料层与紧邻的双面电极负、正料层之间设置有内部隔膜,同时内部双面电极与其紧邻的双面电极之间也设有内部隔膜。隔膜通过紧密贴合料层的方式放置,且每个正极料层与相邻的负极料层只需要一个隔膜。每个正极料层、隔膜与负极料层构成了一个小的供电单元,每个供电单元内都是独立注液,且供电单元和供电单元间电解液不能串液。ETP系统是由多个这样的供电单元串联组成的。
有益效果
与现有技术相比,本发明的有益效果是:(1)目前未有这种从电子电阻率机制上进行整个电池电化学体系上层面的设计,仅有外部被动系统pack外壳的牢固可靠设计,和不可燃液体电解液等,还有系统BMS电池管理系统进行软件级别的单体管控等;基于锂离子电池短路安全隐患问题,本发明结合集流体的电子电导率设计,进行具有主动安全功能的设计,杜绝电池短路等带来的锂离子电化学行为失控表现,避免了起火爆炸等弊端,实现了高安全电池的目的。
(2)与传统储能系统相比,本发明从电极直接到pack系统,省去单体cell,模组等中间过程,内部由若干个储能单元结构串联而成,形成的器件电压是单独电芯的若干倍数,从结构设计层面,可有效地将储能系统成本降低、能量密度提升。
(3)本发明使用聚合物做集流体,基于柔性聚合物集流体的双极性ETP(Electrode电极到Pack系统)设计,获得低内阻,高可控安全性,低成本,高能量密度和功率密度的储能系统。
附图说明
图1为本发明基于电导率可控聚合物集流体的ETP储能系统图。
图2为苯胺/聚吡咯重量比为60/40时电导率可控聚合物集流体的扫描电镜图。
图3为基于磷酸铁锂-石墨单个储能单元的ETP系统充放电曲线图。
图4为基于磷酸铁锂-石墨五个储能单元的ETP系统充放电曲线图。
图5为封装好的ETP器件图。
本发明的最佳实施方式
下面结合附图对本发明作进一步的详细描述。
结合图1,一种基于电导率可控聚合物集流体的ETP储能系统,包括多片电极片,以电极片、隔膜和电解质交替的叠片组装方式组装成电芯100,电芯外部包覆外壳。最外侧两片电极片的内侧面分别设正极活性材料层与负极活性材料层,例如最外层外层负极件130、外层正极件110和电芯串联组150,电芯串联组150的两端分别具有正极端和负极端,外层负极件130与负极端连接,外层正极件110与正极端连接,电芯串联组150包括多个重叠设置的内部电芯极片,每相邻两个内部电芯极片之间设置有用于阻隔电子通过的内部隔膜170,且每相邻两个内部电芯极片相互构成一个供电单元,多个供电单元串联在一起。
每个内部电芯极片包括内部集流体190、正极材料层N和负极材料层P,正极材料层N和负极材料层P分别设置在内部集流体190的两侧表面,具体设置方式可采用涂覆、粘附、镀膜或掺杂等可行方式,本发明不做限制。
为了减小整个电池的体积,可使内部电芯极片与隔膜170之间紧密贴合,从而缩小多个内部电芯极片的占用空间,但是本发明不限于使内部电芯极片与隔膜紧密贴合,还可根据具体使用环境,布置内部电芯极片与隔膜170之间的位置,例如框架间隔排列之类的;每个正极料层与相邻的负极料层之间设置有内部隔膜170,为了使内部电芯极片与隔膜170之间紧密贴合,正极料层P和负极料层N分别与对应的内部隔膜190相结合,进一步缩减整体电芯的体积。隔膜170为纤维素纸,PP,PE,陶瓷中的一种,其表面是由直径不等且不规范的短纤维无规则堆砌的结构,呈现出不同尺寸与形状的孔洞以便离子穿梭。
为得到隔膜基体的聚合物集流体可控电子电导率的合适范围,优选电导率范围为1S/cm---10S/cm,聚合物集流体体积电阻率的最大值不能高于导电底涂层和正极材料活性炭层的电阻率,不然电池整体的内阻会受影响,即聚合物集流体体积电阻率上限不超过1Ωcm,即体积电子电导率控制在1 S/cm以上,不能使得集流体的电阻率和活性材料层、导电底涂层有太大数量级级别的悬殊,不然短路时,无法进行电流的缓慢流通,及电场电力线强度的均匀调节,起不到短路安全功能调节的作用,本发明力求达到阻止电子在短路点处的极端速度的流动,带来锂离子的极大电流密度下的失控性释放引发表面沉积析锂现象,即优选聚合物集流体体积电阻率下限不低于0.1Ωcm,即体积电子电导率控制在10 S/cm。
集流体可采用以下方法A:基于导电高分子的电导率可控聚合物集流体,按重量份计,所述聚合物集流体包括聚苯胺62份、聚吡咯38份。
以上所述基于导电高分子聚合物的电导率可控聚合物集流体的制备方法,所述方法包括以下步骤:S1、将两种高分子导电材料进行高速粉碎并充分混合。
S2、在一定温度下(240℃)及转速下对S1所述混合物进行加热共混。
S3、将S2制得的混合物充分混炼均匀在220℃下结合流延工艺加工导电高分子膜。
S4、将S3制得的导电高分子膜室温冷却分切成型,得到基于导电聚合物的导电率可控聚合物集流体。
对上所述基于导电聚合物的导电率可控聚合物集流体电导率性能进行评价。具体如下:采用四探针法对所制备集流体体电阻率进行测试,同时还对其他导电聚合物重量比制备的集流体进行了测试。
表1 不同聚苯胺、聚吡咯和聚噻吩配比电导变化。
重量比 体电阻率(Ωcm) 体电导率(S/cm)
聚苯胺/聚吡咯=60/40 0.36 2.78
聚苯胺/聚吡咯=50/50 0.51 1.96
聚苯胺/聚吡咯/聚噻吩=50/40/10 0.61 1.64
聚苯胺/聚吡咯/聚噻吩=50/30/20 0.58 1.72
由上表1可以看出,在配比范围内所制备的导电集流体的体电阻率,体电阻率均在要求范围内0.1~1Ωcm,当聚苯胺/聚吡咯重量比为60/40时体电阻率最低。
图2为聚苯胺/聚吡咯重量比为60/40时电导率可控聚合物集流体的扫描电镜图,图中棒状结构为聚苯胺,在棒状聚苯胺顶端团聚状物质为聚吡咯。
同时本发明可采用方法B制得聚合物集流体,具体如下:基于电导率可控聚合物集流体的磷酸铁锂-石墨(即正极材料为磷酸铁锂,负极材料为石墨)ETP系统由双极性电极,聚纤维素隔膜,六氟磷酸锂电解液以及外壳构成。
优选的双极性电极集流体为电导率可控聚合物集流体,由本征不导电聚合物与导电剂组成,其中按重量份计,所述聚合物60份、导电剂40份。
优选的,所述本征不导电聚合物为三种聚合物的混合物,聚乙烯26份,聚丙烯22份,聚四氟乙烯12份。
优选的,所述导电剂为多种导电剂的混合物,导电炭黑30份,碳纳米管5份,SP Li 5份。
基于电导率可控聚合物集流体的磷酸铁锂-石墨(即正极材料为磷酸铁锂,负极材料为石墨)ETP系统,所述方法包括以下步骤:S1、将两种高分子聚合物进行高速粉碎并充分混合。
S2、将导电剂加入S1所述混合物中三维混料机进行充分混合。
S3、在一定温度下(180℃)及转速下对S2所述混合物进行加热共混。
S4、将S3制得的混合物充分混炼均匀在170℃下结合流延工艺加工为40μ的导电高分子膜。
S5、将S4制得的导电高分子膜室温冷却分切成型,得到基于导电聚合物的导电率可控聚合物集流体。
对上所述基于本征不导电聚合物的导电率可控聚合物集流体电导率性能进行评价。具体如下:采用四探针法对S5所制备集流体体电阻率进行测试,同时还对其他聚合物/导电剂重量比制备的集流体进行了测试。表中所述聚合物均为重量比聚乙烯/聚丙烯22份/聚四氟乙烯=13/11/6,导电剂为导电炭黑/碳纳米管/SP Li =6/1/1。
表2 三种聚合物和导电剂不同配比导电率关系。
重量比 膜厚(μm) 体电阻率(Ωcm) 体电导率(S/cm)
聚合物/导电剂=80/20 40 4.63 0.22
聚合物/导电剂=70/30 40 1.45 0.69
聚合物/导电剂=60/40 40 0.47 2.12
聚合物/导电剂=50/50 40 0.46 2.17
由上表2可以看出,当聚合物集流体中导电剂的含量逐步提升时,其体电阻率减小,当聚合物/导电剂重量比为50/50时,体电阻率减小量不明显。
在方法B制得制得的集流体基础上制备ETP电池,步骤如下:S6、取步骤S5的6张所制得集流体,将正极料层贴合于4张所制得集流体一面,负极料层贴合于另一面,得到4张ETP系统内部双极性电极。将正极料层贴合于集流体一面,负极料层贴合于最后一张集流体得一面,得到ETP系统最外层正、负电极各一张,且规定最外层电极有料层得为内侧。
S6、将S6所制得最外层单面电极、隔膜、内部双极性电极按照正极料层-隔膜-负极料层的方式进行叠放,单面电极在最外层,含料层的朝内。每个正极料层与相邻的负极料层组成一个供电单元,正极料层与相邻负极料层之间用隔膜分开,隔膜紧贴料层,且每个供电单元内部只有一张隔膜,最终组成含有五个供电单元串联的电芯。
S7、将S6所得电芯在180℃下底侧封边,采用有凹口的封边机对电芯顶部进行顶封从而在顶部预留出注液孔,随后置于160℃烘箱中真空烘烤8h,注液,采用聚四氟乙烯塞堵住注液孔,180℃热封,静置12h。
S8、将S7所得电芯最外层正极外侧引出正极极耳,最外层负极外侧引出负极极耳,每个双极性电极上引出可以进行电位及温度监测线,套上保护壳即得到ETP系统。
对上所述基于电导率可控聚合物集流体的ETP储能系统进行评价,具体如下:对ETP系统进行电化学性能测试,如图3和图4所示,单个磷酸铁锂/石墨电池电压为3.2V, 5个ETP储能单元=3.2*5V=16.0V,即电压提升相应倍数,容量不变将5个磷酸铁锂-石墨供电单元内部串联的ETP系统工作电压窗口达到了16V,与单只磷酸铁锂-石墨(图3)比较电压窗口提升了5倍。因为是内部串联结构,省去了很多结构件,使得5个磷酸铁锂-石墨供电单元内部串联的ETP系统相较于五个磷酸铁锂电池串联表现出的能量密度要大很多。
同时,由于ETP这种双极性电极与集流体导电的特性,只要连接到电池管理系统与温度监测系统就可以做到对单个电极的电位与温度监控,传统电池只能对单个电池做到监控而不能监控到电极。这样做有利于及时发现电池内部情况,避免危害发生。
ETP系统用1C(40mA)电流充电至100% 荷电状态(16V)时的温度与电极电位如下表所示。
电极序号 温度(℃) 电极电位(V)
28 16.01
29 12.80
30 9.62
28 6.41
28 3.21
28 0
如图5所示,本发明采用ETP工艺将多个独立串联电池封装在一个外壳包装中,调整内部电池储能单元的串联数量,使其的工作电压提升至几十或者几百伏;与传统外串联型模块系统相比,ETP工艺在大幅度提高工作电压的同时,还有效减少储能器件单体的重量和体积,提高储能器件的能量密度和功率密度。其串联方式沿着电力线方向进行,得到的ETP器件具有明显低内阻的优势。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
本发明的实施方式
如上所述。
工业实用性
具备很好的工业实用性。
序列表自由内容
无。

Claims (10)

  1. 一种储能系统,其特征在于,上述储能系统包括至少一个电芯,所述至少一个电芯包括正电极、隔膜、电解质和负电极,上述至少一个电芯位于最外侧的两片电极片的内侧面分别设置正极活性材料层和负极活性材料层,仅内侧设置正极材料层的电极片为总正极片,仅内侧设置负极材料层的电极片为总负极片,位于最外侧的两片电极片之间的电极片是双极性电极片,双极性电极片的两侧面分别设置正极活性材料层与负极活性材料层,相邻两片电极片相对的面设置的活性材料层极性相反,所述储能系统内部填充电解质,所述电极片包括集流体,集流体包括聚合物材料。
  2. 根据权利要求1所述的储能系统,其特征在于,所述聚合物材料包括导电聚合物和/或非导电聚合物,所述导电聚合物包括聚苯胺、聚噻吩或聚吡咯中的至少一种。
  3. 根据权利要求2所述的储能系统,其特征在于,所述聚苯胺和聚吡咯的重量比为60:40,或是50:50。
  4. 根据权利要求2所述的储能系统,其特征在于,所述聚苯胺、聚吡咯和聚噻吩的重量比为50:40:10,或是50:30:20。
  5. 根据权利要求2所述的储能系统,其特征在于,所述非导电的聚合物材质需进行导电化处理,即将导电剂成分加入至聚合物,进行混合分散,采用流延工艺制作成导电聚合物集流体膜。
  6. 根据权利要求4所述的储能系统,其特征在于,所述导电剂为导电炭黑SPli、导电石墨KS-6、碳纳米管、纳米碳纤维或石墨烯中的一种或多种。
  7. 根据权利要求1所述的储能系统,其特征在于,所述电解质为的液态电解质或固态电解质。
  8. 根据权利要求1所述的储能系统,其特征在于,所述集流体的结构为导电聚合物二维薄膜结构,该二维薄膜的厚度为10-100um。
  9. 根据权利要求1所述的储能系统,其特征在于,所述聚合物集流体体积电子电导率范围为1S/cm---10S/cm。
  10. 如权利要求1-9中任一项所述的储能系统,其制造工艺具体步骤如下:
    (1)将聚合物在高速粉碎机中进行破碎并进行充分混合,如果聚合物中含有导电剂,则将导电剂加入到混合物中进行三维混料,使得聚合物与导电剂分散均匀;
    (2)将步骤(1)得到的混合物在一定温度(180~240)下进行熔融共混挤出,随后采用流延工艺制成电导率可控聚合物集流体;
    (3)采用干法贴合的方式将活性物质膜贴合在涂覆涂炭层的步骤(2)得到的电导率可控聚合物集流体上,或者采用湿法方式直接将活性物质浆料涂布在步骤(2)得到的电导率可控聚合物集流体上;
    (3)储能系统采用多片电极片,以电极片、隔膜和电解液或固态电解质交替的叠片组装方式组装成电芯,电芯外部包覆外壳的形式组装;最外侧两片电极外侧不做料层涂布或贴合,由于集流体导电,在最外层电极外侧连接电池管理系统;最外层电极内侧面分别涂覆正极料层与负极料层的单面电极;隔膜通过紧密贴合料层的方式放置,且每个正极料层与相邻的负极料层只需要一个隔膜;
    每个正极料层、隔膜与负极料层构成了一个小的供电单元,供电单元和供电单元间电解液不能串液,储能系统是由多个这样的供电单元串联组成的。
PCT/CN2021/143331 2021-02-26 2021-12-30 一种基于电导率可控聚合物集流体的储能系统及其制备工艺 WO2022179303A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110217340.XA CN113036148B (zh) 2021-02-26 2021-02-26 一种基于电导率可控聚合物集流体的储能系统及其制备工艺
CN202110217340.X 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022179303A1 true WO2022179303A1 (zh) 2022-09-01

Family

ID=76462314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143331 WO2022179303A1 (zh) 2021-02-26 2021-12-30 一种基于电导率可控聚合物集流体的储能系统及其制备工艺

Country Status (2)

Country Link
CN (1) CN113036148B (zh)
WO (1) WO2022179303A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115863532A (zh) * 2022-12-22 2023-03-28 烯晶碳能电子科技无锡有限公司 一种双极性电极的制造工艺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036148B (zh) * 2021-02-26 2022-04-26 烯晶碳能电子科技无锡有限公司 一种基于电导率可控聚合物集流体的储能系统及其制备工艺
CN113540471A (zh) * 2021-07-13 2021-10-22 四川大学 三维多孔集流体材料及其制备方法和应用
CN114113839A (zh) * 2021-11-16 2022-03-01 武汉昊诚锂电科技股份有限公司 一种锂亚电池集流结构集流能力的测评方法
CN114069022A (zh) * 2021-11-17 2022-02-18 鄂尔多斯市紫荆创新研究院 单节高电压薄膜锂电池
CN114188672B (zh) * 2022-02-17 2022-05-13 天津普兰能源科技有限公司 一种全固态储能器及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100192364A1 (en) * 2009-02-02 2010-08-05 Konica Minolta Holdings, Inc. Process for manufacturing secondary battery
CN106469825A (zh) * 2015-08-21 2017-03-01 北京好风光储能技术有限公司 一种高功率大容量锂离子电池及其制备方法
CN108400017A (zh) * 2018-02-11 2018-08-14 烯晶碳能电子科技无锡有限公司 一种内部串联工艺的储能器件
CN110350147A (zh) * 2019-06-06 2019-10-18 西安交通大学 一种集成型纤维膜电池组件
CN111785925A (zh) * 2020-08-11 2020-10-16 天津市捷威动力工业有限公司 极片及应用、含有该极片的低温升高安全性锂离子电池
CN113036148A (zh) * 2021-02-26 2021-06-25 烯晶碳能电子科技无锡有限公司 一种基于电导率可控聚合物集流体的储能系统及其制备工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979438B (zh) * 2010-11-25 2012-08-08 武汉大学 一种导电聚吡咯的制备方法
CN108774459A (zh) * 2018-06-05 2018-11-09 桑德集团有限公司 一种涂层及其制备方法、电池电极

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100192364A1 (en) * 2009-02-02 2010-08-05 Konica Minolta Holdings, Inc. Process for manufacturing secondary battery
CN106469825A (zh) * 2015-08-21 2017-03-01 北京好风光储能技术有限公司 一种高功率大容量锂离子电池及其制备方法
CN108400017A (zh) * 2018-02-11 2018-08-14 烯晶碳能电子科技无锡有限公司 一种内部串联工艺的储能器件
CN110350147A (zh) * 2019-06-06 2019-10-18 西安交通大学 一种集成型纤维膜电池组件
CN111785925A (zh) * 2020-08-11 2020-10-16 天津市捷威动力工业有限公司 极片及应用、含有该极片的低温升高安全性锂离子电池
CN113036148A (zh) * 2021-02-26 2021-06-25 烯晶碳能电子科技无锡有限公司 一种基于电导率可控聚合物集流体的储能系统及其制备工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115863532A (zh) * 2022-12-22 2023-03-28 烯晶碳能电子科技无锡有限公司 一种双极性电极的制造工艺
CN115863532B (zh) * 2022-12-22 2024-03-29 烯晶碳能电子科技无锡有限公司 一种双极性电极的制造工艺

Also Published As

Publication number Publication date
CN113036148A (zh) 2021-06-25
CN113036148B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2022179303A1 (zh) 一种基于电导率可控聚合物集流体的储能系统及其制备工艺
CN105958008B (zh) 一种锂离子电池用复合正极片、制备方法及锂离子电池
WO2022037092A1 (zh) 一种集流体、极片和电池
CN111785925B (zh) 极片及应用、含有该极片的低温升高安全性锂离子电池
US9698399B2 (en) Organic-inorganic composite layer for lithium battery and electrode module
CN106328992A (zh) 一种锂离子电池和该锂离子电池的制备方法
CN109980290B (zh) 一种混合固液电解质锂蓄电池
CN104282878B (zh) 高性能钛酸锂动力电池
CN104078246A (zh) 一种锂离子电池电容器
WO2022057189A1 (zh) 一种固态电池、电池模组、电池包及其相关的装置
CN110247009A (zh) 一种防过充隔膜及其制备方法和锂离子电池
CN114824260A (zh) 一种安全锂离子电池
CN109167099B (zh) 一种高安全的电池及其制备方法
CN116014361A (zh) 一种锂电池隔膜、锂电池及制备方法
CN117334830A (zh) 一种正极片及锂离子电池
CN113113603A (zh) 一种锂离子电池电极片、其制备方法和锂离子电池
JP5515257B2 (ja) 双極型二次電池
CN110380057A (zh) 一种耐过充锂离子电池
US11588182B2 (en) Method and system for a battery electrode having a solvent level to facilitate peeling
CN115692701A (zh) 一种正极极片及其制备方法和应用
CN115036458B (zh) 一种锂离子电池
CN113948710A (zh) 一种正极集流体、正极片和锂离子电池
US20220416305A1 (en) Battery Pack and Battery Cell
CN113013393A (zh) 一种正极材料及制备方法和用途
CN218101315U (zh) 新型储能器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927727

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21927727

Country of ref document: EP

Kind code of ref document: A1