WO2022173013A1 - 車両駆動装置 - Google Patents

車両駆動装置 Download PDF

Info

Publication number
WO2022173013A1
WO2022173013A1 PCT/JP2022/005462 JP2022005462W WO2022173013A1 WO 2022173013 A1 WO2022173013 A1 WO 2022173013A1 JP 2022005462 W JP2022005462 W JP 2022005462W WO 2022173013 A1 WO2022173013 A1 WO 2022173013A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover member
cooling water
switching element
power switching
axial direction
Prior art date
Application number
PCT/JP2022/005462
Other languages
English (en)
French (fr)
Inventor
豊 堀田
裕也 水野
良太 佐藤
寛里 井原
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Priority to US18/034,794 priority Critical patent/US20230412042A1/en
Priority to CN202280008543.0A priority patent/CN116686195A/zh
Priority to EP22752835.3A priority patent/EP4228141A4/en
Priority to JP2022580689A priority patent/JPWO2022173013A1/ja
Publication of WO2022173013A1 publication Critical patent/WO2022173013A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/27Devices for sensing current, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/09Machines characterised by wiring elements other than wires, e.g. bus rings, for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2211/00Specific aspects not provided for in the other groups of this subclass relating to measuring or protective devices or electric components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present disclosure relates to a vehicle drive system.
  • the present disclosure provides a configuration including a housing member for a rotating electrical machine and a cover member, and disposes a power switching element and a smoothing capacitor between the cover member and the rotating electrical machine in the axial direction, while maintaining the axial size of the vehicle drive device.
  • the purpose is to efficiently reduce
  • a rotating electric machine having a rotor and a stator; an accommodation member forming an accommodation chamber in which the rotating electric machine is accommodated; a cover member axially coupled to one end side of the housing member, facing the rotating electrical machine in the axial direction, and having a support portion that rotatably supports the rotor; a power switching element electrically connected to the stator coil; a smoothing capacitor electrically connected to the power switching element, The power switching element and the smoothing capacitor are fixed to the cover member and arranged axially between the cover member and the rotating electric machine, A vehicle drive is provided in which the smoothing capacitor radially overlaps the power switching element.
  • the vehicle drive system in a configuration including a housing member for a rotating electrical machine and a cover member, while a power switching element and a smoothing capacitor are arranged between the cover member and the rotating electrical machine in the axial direction, the vehicle drive system is configured in the axial direction. can be efficiently reduced.
  • FIG. 1 is a schematic diagram of an example of an electric circuit including a rotating electrical machine according to Example 1;
  • FIG. 1 is a skeleton diagram of a vehicle drive system including a rotating electrical machine according to Example 1.
  • FIG. 1 is a cross-sectional view schematically showing a main part of a vehicle drive system according to Embodiment 1;
  • FIG. 11 is another cross-sectional view schematically showing the cooling channel structure; It is the perspective view which looked the cover member from the X2 side. It is a schematic sectional drawing explaining the layer structure of the mold resin part by a modification.
  • FIG. 3 is a diagram schematically showing an example of coil sides forming a stator coil;
  • FIG. 3 is a diagram schematically showing an example of coil sides forming a stator coil;
  • FIG. 5 is an explanatory diagram of a comparative example
  • 3B is an enlarged view of a Q1 portion of FIG. 3A
  • FIG. 2 is a perspective view of the motor driving device according to Embodiment 1 as viewed from the X1 side
  • FIG. 4 is a perspective view of the power module and the capacitor module arranged on the cover member according to Example 1, viewed from the X2 side
  • FIG. FIG. 4 is an explanatory diagram for explaining the configuration of the power module and the capacitor module according to the first embodiment, and the ease of assembly
  • FIG. 4 is an explanatory diagram of an electric circuit formed by the block assembly according to Example 1
  • 4 is a schematic diagram showing an example of an electrical connection method between the rotating electric machine and the block assembly according to the first embodiment
  • FIG. 3 is a perspective view of a power bus bar in the wiring portion of the motor drive device according to the first embodiment, viewed from the X1 side;
  • 1 is a plan view schematically showing a control board according to Example 1;
  • FIG. FIG. 11 is a cross-sectional view schematically showing a main part of a vehicle drive system according to a modification;
  • 1 is a schematic perspective view illustrating a rotating electrical machine in which only six block assemblies according to Example 1 are arranged along the circumferential direction;
  • FIG. 1 is a schematic perspective view illustrating a rotating electrical machine in which only three block assemblies according to Example 1 are arranged along the circumferential direction;
  • FIG. 3 is a schematic explanatory diagram of a wiring structure of a vehicle drive system according to a comparative example; 1 is a schematic explanatory diagram of an example of a wiring structure that can be implemented in a rotating electric machine according to Embodiment 1; FIG. 4 is a schematic explanatory diagram of another example of a wiring structure that can be implemented in the rotating electric machine according to Embodiment 1; FIG. 4 is an equivalent electrical circuit diagram illustrating another example of a wiring structure that can be implemented in the rotating electric machine according to Embodiment 1.
  • FIG. FIG. 3 is a schematic explanatory diagram of specifications that can be realized by the rotary electric machine according to the first embodiment;
  • FIG. 11 is a perspective view showing the vehicle drive device according to the second embodiment from the X1 side; FIG.
  • FIG. 11 is a perspective view showing the vehicle drive device according to the second embodiment from the X2 side;
  • FIG. 11 is a perspective view showing the pipe member according to Example 2 from the X1 side;
  • FIG. 11 is a perspective view showing the pipe member according to Example 2 from the X2 side;
  • FIG. 10 is a cross-sectional view of a main part of a vehicle drive system according to Embodiment 2;
  • FIG. 11 is a cross-sectional view of a main part of a vehicle drive system according to another embodiment;
  • FIG. 11 is a cross-sectional view of a main part of a vehicle drive system according to still another embodiment;
  • FIG. 11 is a cross-sectional view schematically showing a main part of a vehicle drive system according to Embodiment 3;
  • FIG. 11 is a schematic cross-sectional view for explaining a sub-assembled state in which a motor driving device is attached to a cover member according to Embodiment 3;
  • FIG. 10 is an explanatory diagram showing a cooling channel structure suitable for the cover member according to Example 3, and is a plan view viewed in the axial direction;
  • FIG. 11 is an explanatory diagram showing a motor drive device applied to the vehicle drive device of Embodiment 3;
  • FIG. 11 is an explanatory diagram showing the positional relationship between the cooling channel structure and the motor driving device of the third embodiment;
  • FIG. 10 is a cross-sectional view schematically showing the layout of the essential parts of a motor drive device according to a first modified example;
  • FIG. 11 is a cross-sectional view schematically showing the layout of the essential parts of a motor drive device according to a second modified example;
  • FIG. 11 is a cross-sectional view schematically showing the layout of the main parts of a motor drive device according to a third modified example;
  • FIG. 4 is an explanatory diagram of terms related to layout;
  • FIG. 1 is a schematic diagram of an example of an electric circuit 200 including a rotating electrical machine 1 of this embodiment.
  • FIG. 1 also shows a control device 500 .
  • dotted arrows associated with the control device 500 represent the exchange of information (signals and data).
  • the rotating electric machine 1 is driven through control of the inverter INV by the control device 500 .
  • the rotating electrical machine 1 is electrically connected to the power source Va via the inverter INV.
  • the inverter INV for example, has power switching elements (for example, MOSFET: Metal-Oxide-Semiconductor Field Effect Transistor, IGBT: Insulated Gate Bipolar Transistor, etc.) on the high potential side and the low potential side of the power supply Va for each phase.
  • a high potential side power switching element and a low potential side power switching element form upper and lower arms.
  • the inverter INV may have a plurality of sets of upper and lower arms for each phase.
  • Each power switching element may be PWM (Pulse Width Modulation) driven so as to generate a desired rotational torque under the control of control device 500 .
  • the power supply Va is, for example, a battery with a relatively high rated voltage, such as a lithium ion battery or a fuel cell.
  • a smoothing capacitor C is electrically connected in parallel to the inverter INV between the high potential side and the low potential side of the power source Va.
  • a plurality of sets of smoothing capacitors C may be electrically connected in parallel between the high potential side and the low potential side of the power source Va.
  • a DC/DC converter may be provided between the power source Va and the inverter INV.
  • FIG. 2 is a skeleton diagram of a vehicle drive system 100 including the rotating electric machine 1. As shown in FIG. In FIG. 2, the X direction and the X1 and X2 sides along the X direction are defined. The X direction is parallel to the direction of the first axis A1 (hereinafter also referred to as "axial direction").
  • the vehicle drive system 100 includes a rotating electrical machine 1 that serves as a drive source for the wheels, and a drive transmission mechanism 7 provided in a power transmission path that connects the rotating electrical machine 1 and the wheels W.
  • the drive transmission mechanism 7 includes an input member 3 , a counter gear mechanism 4 , a differential gear mechanism 5 , and left and right output members 61 and 62 .
  • the input member 3 has an input shaft 31 and an input gear 32 .
  • the input shaft 31 is a rotating member that rotates around the first axis A1.
  • the input gear 32 is a gear that transmits rotational torque (driving force) from the rotary electric machine 1 to the counter gear mechanism 4 .
  • the input gear 32 is connected to the input shaft 31 of the input member 3 so as to rotate together with the input shaft 31 of the input member 3 .
  • the counter gear mechanism 4 is arranged between the input member 3 and the differential gear mechanism 5 in the power transmission path.
  • the counter gear mechanism 4 has a counter shaft 41 , a first counter gear 42 and a second counter gear 43 .
  • the counter shaft 41 is a rotating member that rotates around the second axis A2.
  • the second axis A2 extends parallel to the first axis A1.
  • the first counter gear 42 is an input element of the counter gear mechanism 4 .
  • the first counter gear 42 meshes with the input gear 32 of the input member 3 .
  • the first counter gear 42 is connected to the counter shaft 41 so as to rotate together with the counter shaft 41 .
  • the second counter gear 43 is an output element of the counter gear mechanism 4.
  • the second counter gear 43 is formed to have a smaller diameter than the first counter gear 42 .
  • the second counter gear 43 is connected to the counter shaft 41 so as to rotate together with the counter shaft 41 .
  • the differential gear mechanism 5 is arranged on the third axis A3 as its rotation axis.
  • a third axis A3 extends parallel to the first axis A1.
  • the differential gear mechanism 5 distributes the driving force transmitted from the rotary electric machine 1 side to the left and right output members 61 and 62 .
  • the differential gear mechanism 5 has a differential input gear 51 that meshes with the second counter gear 43 of the counter gear mechanism 4 .
  • the differential gear mechanism 5 also includes a differential case 52, in which a pinion shaft, pinion gears, left and right side gears, and the like are accommodated.
  • the left and right side gears are connected to the left and right output members 61 and 62 so as to rotate together.
  • the left and right output members 61 and 62 are drivingly connected to the left and right wheels W, respectively.
  • the left and right output members 61 and 62 transmit the driving force distributed by the differential gear mechanism 5 to the wheels W, respectively.
  • the left and right output members 61 and 62 may be composed of two or more members.
  • the rotating electric machine 1 drives the wheels W via the drive transmission mechanism 7.
  • the rotating electric machine 1 may be arranged inside a wheel as a wheel-in motor.
  • the vehicle drive system 100 may be configured without the drive transmission mechanism 7 .
  • a plurality of rotating electric machines 1 may be provided by sharing part or all of the drive transmission mechanism 7 .
  • Vehicle drive device 10 includes rotating electric machine 1 , case 2 , and motor drive device 8 described above.
  • FIG. 3A is a cross-sectional view schematically showing a main part of the vehicle drive system 10 of this embodiment.
  • FIG. 3A is a cross-sectional view taken along a plane passing through the first axis A1, which is the rotation axis of the rotating electrical machine 1, and shows a part of the rotating electrical machine 1 on one axial end side (X1 side).
  • the axial direction refers to the direction in which the first axis A1, which is the rotation axis of the rotating electric machine 1, extends
  • the radial direction refers to the radial direction about the first axis A1.
  • FIG. 3A is another cross-sectional view (cross-sectional view taken along a line different from that of FIG. 3A) of the vehicle drive device 10 schematically showing the cooling channel structure.
  • FIG. 3B is another cross-sectional view (cross-sectional view taken along a line different from that of FIG. 3A) of the vehicle drive device 10 schematically showing the cooling channel structure.
  • FIG. 3C is a perspective view of the cover member 252 viewed from the X2 side.
  • FIG. 3D is a schematic cross-sectional view illustrating the layered structure of a mold resin portion 2523A according to a modification.
  • FIG. 4 is a diagram schematically showing an example of the coil sides 121 forming the stator coil 322. As shown in FIG.
  • the vehicle drive system 10 is mounted on the vehicle as part of the vehicle drive system 100, and as described above, generates driving force for driving the vehicle forward or backward.
  • the vehicle may take any form, for example, it may be a four-wheeled automobile, a bus, a truck, a two-wheeled vehicle, a construction machine, or the like.
  • the vehicle drive system 10 may be mounted on a vehicle together with another drive source (for example, an internal combustion engine).
  • the rotating electric machine 1 has a rotor 310 and a stator 320 .
  • FIG. 3A shows a part of the rotating electric machine 1 on one axial end side (X1 side).
  • the rotating electric machine 1 is of the inner rotor type, and the stator 320 is provided so as to surround the radially outer side of the rotor 310 . That is, the rotor 310 is arranged radially inside the stator 320 .
  • the rotor 310 has a rotor core 312 and a shaft portion 314 .
  • the rotor core 312 may be made of, for example, an annular magnetic layered steel plate.
  • a permanent magnet 325 may be embedded inside the rotor core 312 .
  • permanent magnets 325 may be attached to the outer peripheral surface of rotor core 312 . Note that the arrangement of the permanent magnets 325 and the like are arbitrary.
  • Rotor core 312 is fixed to the outer peripheral surface of shaft portion 314 and rotates together with shaft portion 314 .
  • the shaft portion 314 defines the first axis A1, which is the rotation axis of the rotating electric machine 1.
  • the shaft portion 314 is rotatably supported by a cover member 252 (described later) of the case 2 via a bearing 240 on the X1 side of the portion where the rotor core 312 is fixed.
  • the shaft portion 314 is rotatably supported by the case 2 via a bearing corresponding to the bearing 240 on the other axial end side (X2 side) of the rotary electric machine 1 . In this manner, the shaft portion 314 may be rotatably supported by the case 2 at both ends in the axial direction.
  • the shaft portion 314 is, for example, in the form of a hollow tube and has a hollow interior 314A.
  • Hollow interior 314 A may extend the full axial length of shaft portion 314 .
  • the hollow interior 314A can function as an axial oil passage.
  • the shaft portion 314 may be formed with an oil hole for discharging oil to the coil end portion 322A of the stator 320 or the like.
  • the shaft portion 314 is provided with a detected portion 3141 related to a rotation angle sensor 900 for acquiring rotation angle information of the rotor 310 on the X1 side of the portion where the rotor core 312 is fixed.
  • the rotation angle sensor 900 may be, for example, a rotary encoder using sensor elements such as Hall elements and magnetoresistive elements.
  • the detected portion 3141 is provided adjacent to the bearing 240 from the X2 side in the axial direction. Note that when the sensor element of the rotation angle sensor 900 is a Hall element, the detected portion 3141 may be realized by a permanent magnet provided on the outer peripheral portion of the shaft portion 314 .
  • the permanent magnet is arranged so that the magnetic pole of the outer peripheral portion of the shaft portion 314 changes periodically along the circumferential direction, and the sensor element of the rotation angle sensor 900 faces the detected portion 3141 in the radial direction.
  • a plurality of them may be arranged at equal pitches around the first axis A1.
  • the detected portion 3141 may have a ring-shaped configuration attached to the shaft portion 314 or may be formed integrally with the shaft portion 314 .
  • the stator 320 includes a stator core 321 and stator coils 322 .
  • the stator core 321 may be made of, for example, an annular magnetic layered steel plate. Teeth (not shown) protruding radially inward are radially formed on the inner peripheral portion of the stator core 321 .
  • the stator coil 322 may be in the form of, for example, a conductor having a rectangular cross section or a circular cross section with an insulating coating. Stator coil 322 is wound around teeth (not shown) of stator core 321 . It should be noted that the stator coils 322 may be electrically connected by Y-connection or by ⁇ -connection in a parallel relationship of one or more, for example.
  • the stator coil 322 has a coil end portion 322A that is a portion protruding axially outward from the slot of the stator core 321 .
  • the stator coil 322 may be realized by assembling a plurality of coil sides 121 as shown in FIG.
  • the coil side 121 includes slot insertion portions 1211 and 1214 inserted into two slots, transition portions 1215A and 1215B, and end portions 1210 and 1218.
  • transition portions 1215A and 1215B and end portions 1210 and 1218 form coil end portion 322A.
  • stator coil 322 may be formed of a coil of another form, for example, may be formed of a coil of a form other than the cassette coil.
  • the coil end portion 322A is a portion of the stator coil 322, and is a portion extending along the circumferential direction on both sides of the stator core 321 in the axial direction. It refers to a portion extending along one axial end side (X1 side).
  • the case 2 may be made of, for example, aluminum.
  • the case 2 can be formed by casting or the like.
  • Case 2 includes a motor case 250 and a cover member 252 .
  • the case 2 accommodates the rotary electric machine 1 and the motor drive device 8 .
  • the case 2 may further accommodate the drive transmission mechanism 7 as schematically shown in FIG.
  • the motor case 250 forms a motor housing chamber SP1 that houses the rotating electric machine 1.
  • the motor accommodation chamber SP1 may be an oil-tight space containing oil for cooling and/or lubricating the rotating electric machine 1 (and/or the drive transmission mechanism 7).
  • the motor case 250 has a peripheral wall portion that surrounds the radially outer side of the rotary electric machine 1 .
  • Motor case 250 may be realized by combining a plurality of members. Also, the motor case 250 may be integrated with another case member that accommodates the drive transmission mechanism 7 on the other axial end side (X2 side).
  • the cover member 252 is coupled to one axial end side (X1 side) of the motor case 250 .
  • the cover member 252 is in the form of a cover that covers one axial end side (X1 side) of the motor housing chamber SP1.
  • the cover member 252 may cover the opening of the motor case 250 on one axial end side (X1 side) in such a manner as to completely or substantially completely close it.
  • the cover member 252 forms an inverter housing room SP2 that houses the motor drive device 8.
  • a part of the inverter housing room SP2 may be formed by the motor case 250 , and conversely, a part of the motor housing room SP1 may be formed by the cover member 252 .
  • the cover member 252 supports the motor drive device 8.
  • the motor drive device 8 may be attached to the cover member 252 in the form of a module, which will be described later.
  • the cover member 252 and the motor case 250 can be connected after a part or the whole of the motor drive device 8 is assembled to the cover member 252, and the assembling property of the motor drive device 8 is improved.
  • a bearing 240 that rotatably supports the rotor 310 is provided on the cover member 252 . That is, the cover member 252 has a bearing support portion 2524 that supports the bearing 240 . Note that the bearing support portion 2524 refers to the entire axial range of the cover member 252 where the bearing 240 is provided.
  • the bearing 240 is provided radially outward at the X1 side end of the shaft portion 314, as shown in FIG. 3A. Specifically, the bearing 240 is supported by the cover member 252 at the radially outer side of the outer race, and supported by the outer peripheral surface of the shaft portion 314 at the radially inner side of the inner race. In a modified example, the bearing 240 may be supported by the cover member 252 at the radially inner side of the inner race and supported by the inner peripheral surface of the shaft portion 314 at the radially outer side of the outer race.
  • the cover member 252 includes annular bottom portions 2521 and 2521A centered on the first axis A1, and the other axial end (X2) from the inner peripheral edge of the bottom portion 2521.
  • the bottom portion 2521 and the peripheral wall portion 2522 define an inverter housing chamber SP2.
  • a cylindrical portion 25211 protruding toward the other axial end side (X2 side) is formed in the center portion (a portion centered on the first axis A1) of the bottom portion 2521 on the other axial end side (X2 side).
  • a bearing support portion 2524 is set in the shaped portion 25211 .
  • the cylindrical portion 25211 is formed concentrically around the first axis A1.
  • a first cooling water passage 25281 and a second cooling water passage 25282, which will be described later, may be formed in the bottom portions 2521 and 2521A, respectively.
  • the inverter housing room SP2 may be a space, but is preferably sealed with a resin containing a filler having relatively high heat conductivity. That is, the cover member 252 preferably has a heat conductive mold resin portion 2523 .
  • the mold resin portion 2523 has a function of sealing and supporting the motor driving device 8, which will be described later, a function of protecting the motor driving device 8 from oil in the motor housing chamber SP1, and a function of protecting the motor driving device 8 from the motor driving device 8. of heat to the cover member 252 .
  • FIG. 3A shows perspectively elements (such as a block assembly 90 to be described later) that are sealed in the mold resin portion 2523 .
  • the formation range of the mold resin portion 2523 is not limited to the range shown in FIG. 3A and the like, and may extend from the bottom portion 2521 side only to the X1 side, or may extend to the X2 side.
  • the mold resin portion 2523A of the modified vehicle drive device 10A shown in FIG. 3D may have a layered structure made of a plurality of resin materials.
  • the mold resin portion 2523A has a layered structure including a first resin layer 25231 and a second resin layer 25232 and having layers in the axial direction.
  • the first resin layer 25231 is preferably arranged closer to the rotating electric machine 1 than the second resin layer 25232 in the axial direction (that is, on the X2 side), and has higher thermal conductivity than the second resin layer 25232. is low.
  • the first resin layer 25231 may be made of a resin material with relatively high heat insulation (for example, foamed resin material), and the second resin layer 25232 may be made of a resin material with relatively high thermal conductivity (for example, metal filler). etc.).
  • a mold resin portion 2523A it is possible to efficiently transmit heat from the motor drive device 8 to the cover member 252 while suppressing heat reception from the coil end portion 322A of the motor drive device 8 .
  • the cooling of the coil end portion 322A may be realized by another cooling system (for example, an oil passage and/or a cooling water passage within the motor case 250).
  • the molded resin portion 2523 also has a function of fixing the motor driving device 8 including the capacitor module 82 and the like, which will be described later, to the cover member 252 .
  • the mold resin portion 2523 may be formed so as to seal the entire capacitor module 82 .
  • the cover member 252 is preferably made of a material with relatively high heat conductivity (eg, aluminum) and has a cooling water channel 2528 inside. Water flows through the cooling water passage 2528 as cooling water.
  • the water may be water containing LLC (Long Life Coolant), for example.
  • the cooling water flowing through cooling water passage 2528 can be maintained at a relatively low temperature by radiating heat from a radiator (not shown) mounted on the vehicle.
  • the cover member 252 can have a function of cooling the motor drive device 8 arranged adjacently in the axial direction.
  • the heat from the motor driving device 8 is taken away by the cooling water through the cover member 252, and the cooling of the motor driving device 8 is promoted.
  • a cooling function can be further facilitated by the mold resin portion 2523 described above.
  • another coolant for example, oil
  • the cooling water passage 2528 may have any shape when viewed in the axial direction, such as an annular shape, a spiral shape, or meandering radially outward and inward. However, it may be in a form extending along the circumferential direction. Fins or the like may be formed in the cooling water passage 2528 . When the cover member 252 is manufactured using a core or the like, the degree of freedom of the shape of the cooling water passage 2528 can be increased.
  • the cooling water passage 2528 has a first cooling water passage 25281 and a second cooling water passage 25282 as shown in FIG. 3B.
  • the first cooling water passage 25281 has an annular shape when viewed in the axial direction, and faces the power module 80 (described later) when viewed in the axial direction. Thereby, the power module 80 can be cooled over the entire circumference of the first cooling water passage 25281 .
  • the second cooling water passage 25282 has an annular shape when viewed in the axial direction, and faces the capacitor module 82 (described later) when viewed in the axial direction. Thereby, the condenser module 82 can be cooled over the entire circumference of the second cooling water passage 25282 .
  • the first cooling water passage 25281 and the second cooling water passage 25282 communicate with each other through a radial connecting passage 25283 (see FIG. 3A).
  • the first cooling water passage 25281 is preferably arranged on the upstream side (closer to the discharge side of the water pump (not shown)) than the second cooling water passage 25282 . That is, an inlet portion (an inlet portion formed in the cover member 252 ) (not shown) to the cooling water passage 2528 is preferably connected to the first cooling water passage 25281 .
  • the sub-modules 800 power semiconductor chips 801 and 802) (described later) of the power module 80, which tend to be heated to a higher temperature than the capacitor module 82, are placed in the first cooling water passage on the upstream side of the second cooling water passage 25282.
  • the cooling water (relatively fresh cooling water) in the 25281 can be used for efficient cooling.
  • the motor drive device 8 includes the above-described inverter INV, smoothing capacitor C, control device 500, and the like. Details of the elements of motor drive 8 are described below with reference to FIGS.
  • the motor drive device 8 is arranged between the cover member 252 and the rotating electric machine 1 in the axial direction, as shown in FIG. 3A. That is, the motor drive device 8 is arranged in the inverter accommodation room SP2.
  • the motor driving device 8 is arranged between the cover member 252 and the rotating electric machine 1, so when the motor driving device 8' is mounted outside the motor case 250' (See FIG. 5), the size of the vehicle drive system 10 as a whole can be reduced.
  • the bearing support portion 2524 is provided on the cover member 252, and the motor drive device 8 is arranged between the cover member 252 and the rotary electric machine 1 in the axial direction. It is possible to reduce the physical size in the axial direction. Specifically, when the motor drive device 8 is provided on the X1 side of the cover member 252 in the axial direction, a separate cover member is required to cover the X1 side of the motor drive device 8, and the shaft of the vehicle drive device 10 is required. It is easy to cause an increase in physique in the direction.
  • the cover member 252 can function as a cover on the X1 side not only for the rotating electric machine 1 but also for the motor drive device 8, so that the size of the vehicle drive device 10 in the axial direction can be reduced. reduction can be achieved.
  • the bearing support portion 2524 of the cover member 252 is arranged radially inward of the motor drive device 8 (power module 80, capacitor module 82, etc., which will be described later) when viewed in the axial direction. It overlaps the motor drive 8 when viewed in the direction.
  • the axial dimension of the cover member 252 (the dimension from the bearing support portion 2524 to the X2 side) is reduced, and the motor drive device 8 is arranged between the cover member 252 and the rotary electric machine 1 in the axial direction. can.
  • the axial size of the vehicle drive system 10 can be further effectively reduced.
  • no bracket having a bearing support corresponding to the bearing support 2524 is provided between the motor drive device 8 and the rotary electric machine 1 in the axial direction.
  • the number of parts can be reduced and the distance in the axial direction between the motor drive device 8 and the rotary electric machine 1 can be shortened, compared to a configuration in which such a bracket is provided. It is possible to reduce the size of the driving device 10 in the axial direction. Further, since there is no wall portion (bracket) separating the motor driving device 8 and the rotating electrical machine 1 in the axial direction, the wiring length between the motor driving device 8 and the rotating electrical machine 1 can be shortened. Wiring efficiency between the drive device 8 and the rotary electric machine 1 can be improved.
  • the cover member 252 when the cooling water passage 2528 is formed in the cover member 252 , the cover member 252 can be thermally connected (connected so as to be heat conductive) to the motor driving device 8 . That is, the motor driving device 8 can be cooled by the cooling water in the cooling water passage 2528 via the cover member 252 . Since the cooling water can stably flow through the cooling water passage 2528, the cooling of the motor driving device 8 can be stabilized. Also, if the flow rate of the cooling water can be controlled, it is possible to optimize the cooling according to the state of the motor drive device 8 .
  • the motor drive device 8 can be moved by the cover member 252 (the cover member 252 having the cooling water passage 2528).
  • the mold resin portion 2523 described above may be thermally connected to the stator coil 322 of the rotary electric machine 1 .
  • the coil end portion 322A is caused to flow through the mold resin portion 2523 and the cover member 252 into the cooling water in the cooling water passage 2528. can be cooled by
  • FIG. 6 a specific example of the motor driving device 8 will be described with reference to FIGS. 6 to 13.
  • FIG. 6 a specific example of the motor driving device 8 will be described with reference to FIGS. 6 to 13.
  • FIG. 6 is an enlarged view of part Q1 in FIG. 3A.
  • FIG. 7 is a perspective view of the motor driving device 8 viewed from the X1 side.
  • FIG. 8 is a perspective view of the power module 80 and the capacitor module 82 arranged on the cover member 252 as seen from the X2 side.
  • FIG. 9 is an explanatory diagram for explaining the configuration of the power module 80 and the capacitor module 82 as well as the ease of assembly.
  • FIG. 10 is an illustration of an electrical circuit formed by the block assembly 90.
  • FIG. 11 is a schematic diagram showing an example of an electrical connection method between the rotating electric machine 1 and the block assembly 90.
  • FIG. 12 is a perspective view of the power bus bar 886 of the wiring portion 88 of the motor drive device 8 as viewed from the X1 side.
  • FIG. 13 is a plan view schematically showing the control board 84. As shown in FIG.
  • the motor drive device 8 includes a power module 80, a capacitor module 82, a control board 84, and a wiring section 88. 7, illustration of the control board 84 and part of the wiring section 88 (the lead wire 888, the relay bus bar 889, etc.) is omitted.
  • the power modules 80 and the capacitor modules 82 form a plurality of sets (12 sets in the example shown in FIG. 7) and are arranged along the circumferential direction.
  • the number of sets of power modules 80 and capacitor modules 82 is changed according to the specifications of the rotating electric machine 1 . Basically, as the number of pairs of power modules 80 and capacitor modules 82 increases, the output of the rotating electrical machine 1 increases. Therefore, when designing the rotating electrical machine 1, a plurality of variations with different numbers of sets of the power modules 80 and the capacitor modules 82 can be set.
  • the power modules 80 and the capacitor modules 82 are preferably arranged at equal pitches along the circumferential direction for each set.
  • the number of sets of power modules 80 and capacitor modules 82 is 12, and the 12 sets are arranged at a pitch of 30 degrees. Thereby, the temperature distribution along the circumferential direction caused by the heat from the power module 80 and the capacitor module 82 can be made uniform.
  • different pitches may be utilized.
  • the power modules 80 and capacitor modules 82 are preferably in the form of integrated assemblies in each of the multiple sets. That is, each set of power modules 80 and capacitor modules 82 form an integrated block assembly 90 .
  • FIG. 9 schematically shows a method of forming a set of block assemblies 90 .
  • the power module 80 and the capacitor module 82 can be attached to the cover member 252 in a sub-assembled state (see FIG. 8). This improves the ease of assembly.
  • the assembling method can include a step of assembling the motor driving device 8 to the cover member 252 and a step of assembling the cover member 252 with the motor driving device 8 assembled to the motor case 250 .
  • the process of assembling the motor driving device 8 to the cover member 252 can assemble the power module 80 and the capacitor module 82 to the cover member 252 in a sub-assembled state, so workability is improved.
  • the step of assembling the motor drive device 8 to the cover member 252 may include the step of forming the mold resin portion 2523 described above. As a result, the motor driving device 8 and the cover member 252 are firmly coupled, so that the workability of the process of assembling the cover member 252 with the motor driving device 8 assembled to the motor case 250 is improved.
  • the power module 80 has the same configuration, and the capacitor module 82 has the same configuration (electrical characteristics, shape, etc.). Thereby, replacement and maintenance for each block assembly 90 are possible, and versatility can be enhanced.
  • the power module 80 includes a sub-module 800 and a heat dissipation member 810 .
  • the submodule 800 has the same configuration (electrical characteristics, shape, etc.), and the heat dissipation member 810 has the same configuration (material, shape, etc.).
  • the same electrical characteristics means that there is no significant difference in electrical characteristics, and is a concept that ignores slight differences due to individual differences.
  • the electrical characteristics are arbitrary, but for example, the electrical characteristics of the capacitor module 82 may be the rated capacity and the like, and the electrical characteristics of the sub-module 800 (power semiconductor chips 801 and 802) may be the gate threshold voltage etc.
  • having the same shape means that there is no significant difference in shape, and is a concept that ignores slight differences due to individual differences (for example, dimensional differences within allowable tolerances).
  • the 12 block assemblies 90 For example, among the 12 block assemblies 90, four U-phase block assemblies 90 are arranged adjacent to each other in the circumferential direction, and four V-phase block assemblies 90 are arranged circumferentially.
  • the four block assemblies 90 for the W phase may be arranged adjacent to each other in the direction as a group, and may be arranged as a group adjacent to each other in the circumferential direction. In this case, the number of relay bus bars 889, which will be described later, can be reduced.
  • one or two of the U-phase block assemblies 90, the V-phase block assemblies 90, and the W-phase block assemblies 90 are periodically arranged along the circumferential direction. may
  • Each of the sub-modules 800 forms upper and lower arms related to one phase of the inverter INV (see FIG. 1). As a result, each upper and lower arm can be sub-moduleed, and the wiring efficiency is improved. Specifically, among the 12 sets of power modules 80, each of sub-modules 800 in four sets of power modules 80 forms a U-phase upper and lower arm, and in the other four sets of power modules 80, sub-modules 800 Each forms an upper and lower arm for the V phase, and in the power modules 80 in the other four sets, each of the sub-modules 800 forms an upper and lower arm for the W phase.
  • the submodule 800 has a pair of power semiconductor chips 801 and 802 .
  • the pair of power semiconductor chips 801 and 802 is composed of the power semiconductor chip 801 forming the upper arm on the high potential side (see P in FIG. 10) and the lower arm on the low potential side (see N in FIG. 10). and a power semiconductor chip 802 forming a Power semiconductor chips 801 and 802 each include the power switching element described above.
  • the power semiconductor chip 801 and the power semiconductor chip 802 are preferably integrated with a heat dissipation member 810 as shown in FIG.
  • the power module 80 described above integrally includes the heat dissipation member 810 , and the heat of the pair of power semiconductor chips 801 and 802 can be efficiently dissipated through the heat dissipation member 810 .
  • the ease of assembly can be improved.
  • the power semiconductor chip 801 and the power semiconductor chip 802 have bus bars 881, 882, 883, and 884 as part of the wiring portion 88, as shown in FIG.
  • a bus bar 881 integrated with the power semiconductor chip 801 electrically connects the power semiconductor chip 801 and the capacitor module 82 (for example, the capacitor bus bar 821 in FIG. 9).
  • the bus bar 883 integrated with the power semiconductor chip 801 protrudes toward the connecting surface 8104 on the radially inner side of the heat radiating member 810, and the power semiconductor chip 801 and the stator coil 322 of the corresponding phase in the rotating electric machine 1 (for example, end 1210 or 1218) of the coil side 121 shown in FIG. 4 are electrically connected.
  • a bus bar 882 integrated with the power semiconductor chip 802 electrically connects the power semiconductor chip 802 and the capacitor module 82 (eg, capacitor bus bar 822 in FIG. 9).
  • the bus bar 884 integrated with the power semiconductor chip 802 protrudes toward the connecting surface 8104 on the radially inner side of the heat radiating member 810, and the power semiconductor chip 802 and the stator coil 322 of the corresponding phase in the rotating electrical machine 1 (Fig. 4) are electrically connected to the ends 1210 or 1218) of the coil side 121 shown in FIG.
  • the pair of power semiconductor chips 801 and 802 are bonded to the circumferential side surfaces 8101 and 8102 of the heat dissipation member 810 .
  • the power semiconductor chip 801 is bonded to the side surface (surface) 8102 on one side in the circumferential direction of the heat dissipation member 810
  • the power semiconductor chip 802 is bonded to the side surface (surface) 8101 on the other side in the circumferential direction of the heat dissipation member 810 .
  • Any bonding method may be used, and an adhesive material or the like with relatively high heat conductivity may be used.
  • the heat dissipation member 810 can efficiently receive heat from the pair of power semiconductor chips 801 and 802 through the circumferential side surfaces. Moreover, the space between the heat radiating members 810 adjacent in the circumferential direction can be efficiently used to dispose the pair of power semiconductor chips 801 and 802 .
  • the power semiconductor chips 801 and 802 of the upper and lower arms can be connected via the busbars 883 and 884 and the relay busbar 889 on the inner side in the radial direction. power semiconductor chips 801, 802 can be efficiently electrically connected to each other.
  • the power semiconductor chips 801 and 802 of the upper and lower arms can be efficiently electrically connected to the capacitor module 82 (and the power source Va) on the radially outer side (on the side of the connecting surface 8103 on the radially outer side of the heat dissipation member 810).
  • the heat radiating member 810 is made of a material with relatively high heat conductivity (for example, aluminum).
  • the heat dissipation member 810 is in the form of a solid block. Thereby, the heat capacity of the heat dissipation member 810 can be efficiently increased.
  • the heat dissipation member 810 has the function of efficiently receiving heat from the submodule 800 and efficiently transmitting the received heat to the cover member 252 (and cooling water in the cooling water passage 2528).
  • the pair of power semiconductor chips 801 and 802 of the heat dissipation member 810 are joined to the side surfaces in the circumferential direction, so the surface in the axial direction (for example, the surface on the X1 side) is free.
  • the heat radiating member 810 can be arranged in a manner to be axially close to or in contact with the cover member 252 (and thus the cooling water passage 2528).
  • the heat of the pair of power semiconductor chips 801 and 802 can be efficiently transferred to the cover member 252 (and accordingly the cooling water in the cooling water passage 2528 ) through the heat dissipation member 810 .
  • the surface of the heat dissipation member 810 on the other side in the axial direction (X2 side) may be used for cooling elements on the control board 84 or the like.
  • the heat radiating member 810 abuts the cover member 252 in the axial direction. Thereby, the heat of the heat radiating member 810 can be efficiently transferred to the cover member 252 (and accordingly the cooling water in the cooling water passage 2528). Also, the heat dissipation member 810 overlaps the cooling water passage 2528 when viewed in the axial direction. As a result, the heat of the heat radiating member 810 can be more efficiently transmitted to the cover member 252 (and accordingly the cooling water in the cooling water passage 2528).
  • the heat radiating member 810 preferably has a form in which the circumferential width becomes smaller toward the inner side in the radial direction when viewed in the axial direction. That is, in the heat dissipation member 810, preferably, the distance L1 between the side surfaces in the circumferential direction where the pair of power semiconductor chips 801 and 802 are joined is such that the side closer to the first axis A1 in the radial direction is closer to the first axis A1 than the first axis A1. smaller than the far side.
  • the heat dissipation member 810 layout can be established relatively easily.
  • the pair of power semiconductor chips 801 and 802 are arranged on the side surfaces in the circumferential direction, it is possible to easily secure the radially inner arrangement space (the arrangement space for the heat dissipation member 810).
  • the distance L1 may be constant or the like (see FIG. 11).
  • the capacitor module 82 is in the form of a module forming a smoothing capacitor C (see FIG. 1).
  • the capacitor module 82 may have a form in which capacitor elements forming the smoothing capacitor C and capacitor bus bars 821 and 822 (see FIG. 9) of the wiring section 88 are sealed with resin.
  • the ends of the capacitor bus bars 821 and 822 exposed from the sealing resin form the high potential side terminal of the capacitor element and the low potential side terminal of the capacitor element, respectively.
  • Capacitor busbars 821 and 822 are connected to submodule 800 and to power busbar 886 (see FIGS. 3A, 6, and 12).
  • the capacitor module 82 is a smoothing capacitor C electrically connected in parallel between the high and low potential sides of the corresponding set of sub-modules 800, as shown in FIG. to form
  • the capacitor module 82 is arranged radially outside the power module 80 .
  • the circumferential range in which they can be arranged is widened, and the size of the capacitor modules 82 can be easily increased.
  • the capacitor module 82 having a relatively large size can be realized. As a result, it becomes easy to cope with the increase in output of the rotary electric machine 1 .
  • the axial extension range of the capacitor module 82 overlaps the axial extension range of the power module 80, as shown in FIG.
  • the sub-module 800 of the power module 80 overlaps the capacitor module 82 when viewed in the radial direction.
  • the capacitor module 82 and the sub-module 800 can be arranged between the cover member 252 and the rotary electric machine 1 in the axial direction while minimizing the size of the vehicle drive device 10 in the axial direction.
  • the capacitor module 82 is arranged so that the distances from each of the power semiconductor chips 801 and 802 are equal.
  • the capacitor bus bar 821 (see FIG. 9) connected to each of the power semiconductor chips 801 and 802 can be shared.
  • the capacitor module 82 is thermally connected with the cover member 252 .
  • capacitor module 82 may be thermally connected to cover member 252 via heat dissipation member 810 .
  • the capacitor module 82 is radially connected to a connecting surface 8103 (connecting surface 8103 connecting two side surfaces 8101 and 8102 to which the pair of power semiconductor chips 801 and 802 are fixed) (see FIG. 9) on the radially outer side of the heat dissipation member 810. can be thermally connected to the heat radiating member 810 by facing the .
  • the heat dissipation member 810 may have a radially outer protrusion (not shown) that is close to the capacitor module 82 .
  • the capacitor module 82 may be directly thermally connected to the cover member 252 without the heat dissipation member 810 or in addition to the thermal connection via the heat dissipation member 810 .
  • the capacitor module 82 axially extends farther from the rotating electric machine 1 than the submodule 800 (that is, the X1 side), and is axially close to or abuts the cover member 252 .
  • the capacitor module 82 axially abuts the cover member 252 in the same manner as the heat dissipation member 810 .
  • the heat of the capacitor module 82 can be efficiently transferred to the cover member 252 (and accordingly the cooling water in the cooling water passage 2528).
  • the capacitor module 82 may radially contact the peripheral wall portion 2522 of the cover member 252 .
  • the capacitor module 82 may be thermally connected to the cover member 252 via the mold resin portion 2523 instead of or in addition to these thermal connection methods.
  • the heat of the capacitor module 82 is efficiently transferred to the cover member 252 (and the cooling water in the cooling water passage 2528), and the capacitor module 82 can be efficiently cooled.
  • the extension range of the capacitor module 82, the heat dissipation member 810, and the sub-module 800 overlap each other in the axial direction.
  • the heat transfer performance to the cover member 252 via the heat dissipation member 810 can be enhanced while minimizing the mounting space in the direction.
  • the capacitor module 82 preferably has an X2-side end extending to the X2 side from the coil end portion 322A. That is, the capacitor module 82 overlaps the coil end portion 322A when viewed in the radial direction. Thereby, the axial clearance between the capacitor module 82 and the rotating electric machine 1 can be minimized. As a result, it is possible to reduce the axial size of the vehicle drive device 10 while ensuring the necessary size of the capacitor module 82 in the axial direction.
  • the capacitor module 82 is preferably arranged radially outside the coil end portion 322A when viewed in the axial direction. This makes it possible to realize a layout in which the capacitor module 82 overlaps the coil end portion 322A when viewed in the radial direction.
  • the capacitor module 82 may be arranged so as to overlap the back yoke portion of the stator core 321 when viewed in the axial direction.
  • the capacitor module 82 can be arranged relatively radially inward, the radial size of the motor case 250 is increased due to the arrangement of the capacitor module 82 radially outward of the power module 80. Possibility or increment thereof can be reduced.
  • the control board 84 forms part or the whole of the control device 500 (see FIG. 1).
  • the control board 84 may be formed of, for example, a multilayer printed circuit board.
  • the control board 84 is arranged such that the normal direction to the board surface is along the axial direction. As a result, the control board 84 can be arranged using a slight gap in the axial direction.
  • the control board 84 may be arranged between the rotating electric machine 1 and the power module 80 in the axial direction, as shown in FIG. More specifically, the control board 84 may be arranged between the coil end portion 322A of the rotating electric machine 1 and the power module 80 in the axial direction.
  • control board 84 can extend radially outward to a radial position where it overlaps with the coil end portion 322A when viewed in the axial direction, the area of the control board 84 (circuit portion forming range) can be maximized. be able to.
  • the control board 84 preferably overlaps the capacitor module 82 when viewed in the radial direction.
  • the X2 side end portion of the capacitor module 82 extends from the coil end portion 322A to the X2 side and overlaps the submodule 800 when viewed in the radial direction.
  • the coil end portion 322A of the rotating electric machine 1 and the power module 80 (or the sub-module 800 of the power module 80) must be aligned in the axial direction. ).
  • the control board 84 is preferably in the form of an annular ring having a central hole 84a through which the shaft portion 314 (see also FIG. 3A) of the rotor 310 passes.
  • the control board 84 can be arranged in the vicinity of any of the plurality of power modules 80 arranged along the circumferential direction.
  • electrical connection between the power semiconductor chips 801 and 802 (for example, gate terminals of power switching elements) forming the submodule 800 of the power module 80 and the drive circuit 846 (see FIG. 13) of the control board 84 is established. (not shown) is facilitated.
  • the control board 84 has an annular low pressure area 841 around the central hole 84a and an annular high pressure area 842 radially outside the low pressure area 841.
  • the high voltage region 842 and the low voltage region 841 are electrically insulated via an annular insulating region 843 .
  • a low-voltage circuit and a high-voltage circuit can coexist in each of the two annular regions (the low-voltage region 841 and the high-voltage region 842).
  • circuit units and elements that handle high voltage related to the power source Va are arranged in the high voltage area 842 of the control board 84.
  • the high voltage region 842 may be provided with a drive circuit 846 for driving the power semiconductor chips 801 and 802 as a high voltage electronic component.
  • a microcomputer (abbreviation of microcomputer) 502 for realizing the control device 500, a power supply circuit 503, and the like may be provided as low-voltage electronic components.
  • the control board 84 may be mounted with an electronic component for an electric oil pump that circulates oil in the motor housing chamber SP1.
  • control board 84 has through holes 845 in the low voltage region 841 through which the lead wires 888 (elements of the wiring portion 88) that electrically connect the stator coil 322 and the power semiconductor chips 801 and 802 are passed ( See Figure 6).
  • lead wires 888 may be realized by ends 1210, 1218, for example in the case of coil leg 121 shown in FIG. In the example shown in FIG.
  • the lead wire 888 is bent radially inward from the coil end portion 322A and pulled out radially inward, and is bent axially on the X1 side of the rotor core 312 and extends axially. do.
  • the lead wire 888 axially penetrates the control board 84 in the axially extending section.
  • the control board 84 has three through holes 845 corresponding to the three-phase stator coils 322 .
  • the X1-side end of the lead wire 888 may be joined to the relay bus bar 889 as shown in FIG. In this case, the bus bars 883 and 884 from the power module 80 described above are joined to the relay bus bar 889 .
  • the relay bus bar 889 may be provided for each phase, and two or more lead wires 888 may be joined to a common relay bus bar 889 for each phase.
  • control board 84 is provided with the current sensor 902 around the through hole 845 by utilizing the structure in which the lead wire 888 passes through the through hole 845 .
  • current sensor 902 can readily detect current through lead 888 .
  • Current sensor 902 may be, for example, a Hall sensor or the like.
  • the current sensor 902 is electrically connected to a microcomputer 502 (see FIG. 13) associated with the control device 500 via wiring inside the control board 84 (not shown).
  • a microcomputer 502 see FIG. 13
  • the wiring between the current sensor 902 and the control device 500 can be easily realized by wiring in the control board 84, and the wiring length between the current sensor 902 and the control device 500 can be shortened. .
  • the control board 84 is provided with a rotation angle sensor 900 .
  • the rotation angle sensor 900 faces the detected portion 3141 (the detected portion 3141 provided on the shaft portion 314 described above, see FIG. 6) in the radial direction.
  • the rotation angle sensor 900 is provided at a position around the central hole 84a (that is, at the edge of the opening).
  • the rotation angle sensor 900 may be formed integrally with the control board 84 and function as a magnetic pole position sensor. As a result, the wiring between the rotation angle sensor 900 and the control device 500 can be easily realized by wiring in the control board 84, and the wiring length between the rotation angle sensor 900 and the control device 500 can be shortened. can be done.
  • the wiring section 88 includes the capacitor bus bars 821, 822 described above, the bus bars 881, 882, 883, 884 described above, the power bus bar 886, the lead wire 888 described above, and the relay bus bar 889 described above.
  • the power bus bar 886 has an annular shape, as shown in FIG. 12, and extends around the first axis A1, as shown in FIG. 6 (and FIG. 3A).
  • the power bus bar 886 extends circumferentially between the cover member 252 and the sub-module 800 in the axial direction so as to be adjacent to the sub-module 800 from the X1 side.
  • the power bus bar 886 is arranged radially inside the capacitor module 82 when viewed in the axial direction, and overlaps the capacitor module 82 when viewed in the radial direction. Thereby, the wiring length between the power bus bar 886 and each block assembly 90 can be efficiently reduced.
  • the power supply bus bar 886 is electrically connected to a high potential side power supply bus bar 8861 electrically connected to the high potential side of the power supply Va (see FIG. 1) and to the low potential side of the power supply Va (see FIG. 1). and a low-potential-side power bus bar 8862 connected to the power supply.
  • the high side power bus bar 8861 and the low side power bus bar 8862 may be arranged radially offset from each other, as shown in FIG. 7, and/or may be axially offset from each other. may be placed
  • the high potential side power bus bar 8861 may be joined to the X1 side end of the capacitor bus bar 821
  • the low potential side power bus bar 8862 may be joined to the X1 side end of the capacitor bus bar 822 .
  • the power bus bar 886 is preferably arranged closer to the cover member 252 than the submodule 800 (power semiconductor chips 801 and 802).
  • the power bus bar 886 may be radially arranged between the capacitor bus bar 822 and the heat dissipation member 810 and closer to the X1 side than the submodule 800, as shown in FIG. 3A.
  • the power bus bar 886 can be efficiently arranged by utilizing the space that can be a dead space, and the heat from the power bus bar 886 can be efficiently transmitted to the cover member 252 (that is, the power bus bar 886 can be efficiently can be cooled to
  • the power bus bar 886B is provided in the annular groove 2529 formed in the cover member 252 .
  • the annular groove 2529 has an annular shape around the first axis A1 when viewed in the axial direction, and is recessed toward the X1 side.
  • the power bus bar 886B may extend radially between the first cooling water passage 25281B and the second cooling water passage 25282B when viewed in the axial direction.
  • the space between the first cooling water passage 25281B and the second cooling water passage 25282B of the cooling water passage 2528B in the radial direction can be used to efficiently arrange the power bus bar 886B, and the power bus bar 886B can be arranged in the first cooling water passage. 25281B and the second cooling water passage 25282B enable efficient cooling.
  • FIG. 14A part of the effects of this embodiment will be described with reference to FIGS. 14A to 18.
  • FIG. 14A part of the effects of this embodiment will be described with reference to FIGS. 14A to 18.
  • FIG. 14A is a schematic perspective view illustrating a rotating electric machine 1A in which only six block assemblies 90 are arranged along the circumferential direction, and FIG. It is a schematic perspective view explaining rotating electric machine 1B arranged. Since FIGS. 14A and 14B are diagrams for explaining the arrangement of the block assembly 90, the illustration of some elements may be simplified or omitted.
  • the block assemblies 90 have the same configuration for each block assembly 90 and can be mounted in an arbitrary number, so that the rotating electric machine 1 with various specifications can be realized. For example, by arranging six as shown in FIG. 14A or three as shown in FIG. As a result, it is possible to efficiently increase the variations of the rotary electric machine while achieving common use of parts.
  • FIG. 15 is a schematic explanatory diagram of a wiring structure of a vehicle drive device 10' according to a comparative example
  • FIG. 16 is a schematic explanatory diagram of an example of a wiring structure that can be realized in the rotary electric machine 1 according to this embodiment
  • 17A and 17B are schematic explanatory diagrams of another example of the wiring structure that can be realized in the rotating electric machine 1 according to this embodiment
  • FIG. 2 is a schematic explanatory diagram of specifications
  • the vehicle drive device 10' has a configuration in which a power module PM' including the above-described inverter INV, smoothing capacitor C, control device 500, etc. (not shown) is arranged outside the motor case 250'.
  • a power module PM' including the above-described inverter INV, smoothing capacitor C, control device 500, etc. (not shown) is arranged outside the motor case 250'.
  • the wiring structure is such that the lead wires (power lines) from the rotary electric machine M' are pulled out to the power module PM' through the partition wall of the motor case 250'.
  • the wiring length of the lead wire from the rotary electric machine M' tends to be long, and the degree of freedom of the wiring route is not high.
  • the motor drive device 8 is adjacent to the rotary electric machine 1 in the axial direction without the partition wall (see FIG. 3A).
  • block assemblies 90 for each phase (labeled “U,” “V,” and “W” in FIG. 16 to indicate phase differences) can be placed in close proximity to the stator coils 322 . (See Figure 3A).
  • the wiring length of the lead wire 888 can be minimized.
  • the wiring length can be short, the electrical characteristics are good, the required reliability can be easily secured, and the routing of the wiring is easy, and the degree of freedom in the layout of the peripheral members can be increased. .
  • an efficient wiring structure can be realized.
  • various numbers of block assemblies 90 can be arranged on the relay bus bar 889 (FIG. 11) for each phase.
  • the degree of freedom in the number of block assemblies 90 that can be arranged in the rotary electric machine 1 can be increased.
  • the block assemblies 90 of each phase can be arranged in the immediate vicinity of the coil end portions 322A of the stator coils 322, as schematically shown in FIGS. 17A and 17B.
  • the stator coils 322 are connected in parallel for each phase, compared to the case where the stator coils 322 are connected in series (see FIG. 16), the current required to output the same output, and the current flowing through the stator coils 322 is can be reduced. For example, when three wires are connected in parallel as shown in FIGS.
  • the degree of freedom in the number of block assemblies 90 that can be arranged in one rotating electric machine 1 is high. Three can be arranged for each phase. In this case, it is possible to independently energize the stator coils 322-1 to 322-3 connected in parallel, and it is possible to enhance redundancy such as a fail-safe function.
  • first embodiment another embodiment different from the vehicle drive system 10 according to the above-described embodiment (hereinafter referred to as “first embodiment” for distinction). Therefore, the vehicle drive system 10C according to the second embodiment will be described.
  • first embodiment different from the vehicle drive system 10 according to the above-described embodiment (hereinafter referred to as “first embodiment” for distinction). Therefore, the vehicle drive system 10C according to the second embodiment will be described.
  • the same reference numerals may be given to components that may be the same as those of the first embodiment, and the description thereof may be omitted.
  • FIG. 19 is a perspective view showing the vehicle drive system 10C of this embodiment from the X1 side
  • FIG. 20 is a perspective view showing the vehicle drive system 10C from the X2 side
  • FIG. 22 is a perspective view showing the pipe member 70 from the X2 side.
  • FIG. 23 is a cross-sectional view of the essential parts of the vehicle drive system 10C of this embodiment, and is a cross-sectional view corresponding to FIG.
  • FIG. 24 is a cross-sectional view of a main part of a vehicle drive system 8C' according to another embodiment.
  • FIG. 25 is a cross-sectional view of a main part of a vehicle drive system 8C'' according to still another embodiment.
  • a vehicle drive device 10C of the present embodiment differs from the vehicle drive device 10 of the first embodiment described above in that the motor drive device 8 is replaced with a motor drive device 8C.
  • a motor drive device 8C of this embodiment differs from the motor drive device 8 of the first embodiment described above in that the power module 80 is replaced with a power module 80C and a pipe member 70 is provided.
  • the power module 80C differs from the power module 80 according to the first embodiment described above in that the heat dissipation member 810 is replaced with a heat dissipation member 810C.
  • the heat radiating member 810C differs in shape from the heat radiating member 810 according to the first embodiment described above, but has the same basic function. Specifically, while the heat radiating member 810 according to the first embodiment described above is in the form of a solid block (metal block), the heat radiating member 810C according to the present embodiment is in the form of a hollow and has a hollow interior. pipe member 70 passes through. Further, the heat radiating member 810C has a heat conductive molded resin portion 811C (see FIG. 20) inside the hollow.
  • the material of the mold resin portion 811C may be the same as that of the mold resin portion 2523 described above. Further, the mold resin portion 811C may be formed in the same process as the mold resin portion 2523. 19, illustration of the mold resin portion 811C is omitted, and FIG. 20 shows a portion of the tube member 70 (insertion portion 73, which will be described later) sealed with the mold resin portion 811C.
  • the pipe member 70 is arranged between the cover member 252 and the rotating electric machine 1 in the axial direction.
  • the pipe member 70 communicates with the cooling water passage 2528 of the cover member 252 . Therefore, the cooling water flowing through the cooling water passage 2528 flows through the flow path of the pipe member 70 . Since the pipe member 70 passes through the hollow interior of the heat radiating member 810C, the cooling water passing through the inside of the pipe member 70 can efficiently receive heat from the heat radiating member 810C. That is, the heat radiating member 810C can efficiently radiate heat through the cooling water passing through the pipe member 70. As shown in FIG. As a result, the capacitor module 82 and the sub-module 800 (power semiconductor chips 801, 802) can be efficiently cooled through the heat radiation member 810C.
  • the pipe member 70 may communicate with the same cooling water supply source without passing through the cooling water passage 2528 .
  • the pipe member 70 preferably communicates with the first cooling water passage 25281 of the cooling water passages 2528 of the cover member 252 .
  • the sub-modules 800 power semiconductor chips 801 and 802
  • the capacitor module 82 can be efficiently cooled by the cooling water in the first cooling water passage 25281 on the upstream side of the second cooling water passage 25282.
  • the pipe member 70 extends along the circumferential direction as a whole, and has an inlet portion 71 and an outlet portion that are adjacent to each other in the circumferential direction at predetermined circumferential positions. 72.
  • the inlet portion 71 and the outlet portion 72 communicate with the cooling water passage 2528 of the cover member 252 .
  • the pipe member 70 may be attached to the cover member 252 in such a manner that the inlet portion 71 and the outlet portion 72 protrude into the cooling water passage 2528 .
  • the pipe member 70 is continuous from the inlet portion 71 to the outlet portion 72 and includes an insertion portion 73 and a transition portion 74 .
  • Each insertion portion 73 extends in the axial direction in a U-shape and is inserted into the hollow interior of the heat dissipation member 810C (see dotted line in FIG. 23).
  • the transition portion 74 extends in the circumferential direction and connects between the insertion portions 73 adjacent in the circumferential direction. According to such a pipe member 70, it is relatively easy to manufacture, and since it is realized in one piece, it is easy to assemble.
  • transition portion 74 may be omitted, and each insertion portion 73 may communicate with the cooling water passage 2528 in such a manner that each has an inlet portion 71 and an outlet portion 72 .
  • the pipe member 70 forms the cooling water passage in the heat radiating member 810C, but it is not limited to this.
  • a motor drive device 8C' shown in a schematic cross-sectional view in FIG. 24 the power module 80 according to the first embodiment is replaced with a power module 80C', and the power module 80C' is replaced by a heat dissipation member 810C'.
  • a cooling water channel 815 is formed.
  • the heat radiating member 810C' may be formed of two pieces, and the portion other than the cooling water passage 815 may be solid.
  • the cooling water channel 815 communicates with the cooling water channel 2528 of the cover member 252 as shown in FIG. With such a motor driving device 8C' as well, it is possible to obtain the same effects as those of the above-described second embodiment with a reduced number of parts by not using the tube member 70.
  • a heat radiating member 89 may be provided between the block assembly 90 and the rotating electric machine 1 in the axial direction, as schematically shown in FIG. 25 in cross-sectional view.
  • the heat radiating member 89 has heat radiating properties and is made of, for example, aluminum.
  • the heat radiating member 89 has an annular shape having a central hole 89a through which the shaft portion 314 of the rotor 310 passes, and may be fixed to the shaft portion 314 by press fitting, for example. According to such a configuration, the heat radiation member 89 can protect the control board 84 against the heat from the rotary electric machine 1 .
  • the heat dissipation member 89 shields electromagnetic waves to protect the control board 84, and can improve the reliability of the control realized through the control board 84.
  • a vehicle drive system 10D according to yet another embodiment (hereinafter referred to as "third embodiment" for distinction) will be described.
  • the same reference numerals may be attached to components that may be the same as those of the above-described first embodiment (including components that differ only in arrangement and size), and description thereof may be omitted. Also, in FIG. 26 and the like, some of the components shown in FIG. is omitted in some cases.
  • FIG. 26 is a cross-sectional view schematically showing a main part of the vehicle drive system 10D according to the third embodiment.
  • a vehicle drive system 10D according to the third embodiment mainly differs from the vehicle drive system 10 according to the first embodiment described above in that the capacitor module 82 is arranged on the X1 side of the control board 84D.
  • the capacitor module 82 overlaps the control board 84D and the coil end portion 322A when viewed in the radial direction. As can be seen, it does not overlap the control board 84D or the coil end portion 322A.
  • the control board 84D can extend radially outward to a position overlapping the capacitor module 82 when viewed in the axial direction or to a position radially outward beyond the capacitor module 82. .
  • the degree of freedom in the arrangement and size of the control board 84D can be increased.
  • the X2-side end of the capacitor module 82 may be arranged so as to overlap the coil end portion 322A when viewed in the radial direction, as in the first embodiment described above. In this case, instead of increasing the diameter of the control board 84D, it is possible to increase the size of the capacitor module 82 in the axial direction (increase the capacity).
  • the capacitor module 82 is arranged outside the coil end portion 322A in the radial direction so as not to overlap the coil end portion 322A when viewed in the axial direction.
  • the capacitor module 82 may be arranged radially inward so as to overlap the coil end portion 322A when viewed in the axial direction. In this case, it is possible to reduce the physical size of the cover member 252D in the radial direction.
  • vehicle drive system 10D differs from the vehicle drive system 10 according to the first embodiment described above in that the cover member 252 is replaced with a cover member 252D.
  • the capacitor module 82 is disposed on the X1 side of the control board 84D. also extends to the X1 side. That is, the capacitor module 82 extends from the heat radiation member 89 of the power module 80 to the X1 side. Therefore, the cover member 252D has a stepped portion 2526D on the surface on the X2 side in accordance with the stepped portion on the X1 side of the power module 80 and the capacitor module 82 . That is, the X2-side surface of the cover member 252D is such that the radially outer surface portion (the surface portion axially facing the capacitor module 82) is the radially inner surface portion (the surface axially facing the power module 80).
  • the cover member 252D can approach or abut both the power module 80 and the capacitor module 82 in the axial direction, so that the thermal connection to both the power module 80 and the capacitor module 82 can be effectively maintained. .
  • a cooling water passage 2528D having the same function as the cooling water passage 2528 according to the first embodiment is formed in the cover member 252D.
  • the cooling water passage 2528D has a first cooling water passage 25281D and a second cooling water passage 25282D.
  • the condenser module 82 is, as shown in FIG. overlap. That is, due to the step 2526D of the cover member 252D described above, the capacitor module 82 faces the first cooling water passage 25281D in the radial direction. As a result, the cooling performance for the capacitor module 82 can be slightly improved by the first cooling water passage 25281D.
  • a power bus bar 886D is arranged between the first cooling water passage 25281D and the capacitor module 82 in the radial direction. That is, the power bus bar 886D is arranged near the step 2526D of the cover member 252D.
  • the space between the first cooling water passage 25281D and the second cooling water passage 25282D in the radial direction can be used to efficiently arrange the power bus bar 886D, and the power bus bar 886D can be arranged between the first cooling water passage 25281D and the second cooling water passage 25281D. It can be efficiently cooled by the cooling water passage 25282D.
  • FIG. 27 is a schematic cross-sectional view for explaining a sub-assembled state in which the motor driving device 8 is attached to the cover member 252 according to this embodiment.
  • the cover member 252D has a bearing support portion 2524D similar to the bearing support portion 2524 according to the first embodiment described above.
  • the bearing support portion 2524D is set at the cylindrical portion 25211D.
  • the cylindrical portion 25211D projects in the X direction X2 side in a manner that it extends to a position that overlaps the control board 84D when viewed in the radial direction or a position that exceeds the control board 84D in the X direction X2 side. do.
  • the power module 80, the capacitor module 82, and the control board 84D located radially outside the cylindrical portion 25211D can be completely sealed with the mold resin portion 2523D.
  • the motor driving device 8D and the control board 84D can be covered with the mold resin portion 2523D having no step on the X2 side. This makes it easy to integrate the motor driving device 8 and the control board 84D with the cover member 252D by means of the molded resin portion 2523D.
  • the mold resin portion 2523D may have a layered structure as described above with reference to FIG. 3D.
  • FIG. 28 is an explanatory diagram showing a cooling channel structure suitable for the cover member 252D according to this embodiment, and is a plan view viewed in the axial direction.
  • the cooling channel structure formed by the cover member 252D is shown transparently.
  • the first cooling water passage 25281D has an annular shape when viewed in the axial direction, and faces the power module 80 when viewed in the axial direction.
  • the second cooling water passage 25282D has an annular shape when viewed in the axial direction, and faces the capacitor module 82 when viewed in the axial direction.
  • the first cooling water passage 25281D and the second cooling water passage 25282D communicate with each other through a radial connecting passage 25283D.
  • the first cooling water passage 25281D is preferably arranged on the upstream side (closer to the discharge side of the water pump (not shown)) than the second cooling water passage 25282D.
  • the cooling water channel 2528D further has an inlet water channel portion (an inlet water channel portion formed in the cover member 252) 25288D to the first cooling water channel 25281D. It is radially connected to the cooling water passage 25281D.
  • the sub-modules 800 power semiconductor chips 801 and 802, see FIG. 29
  • the sub-modules 800 are placed in the first cooling on the upstream side of the second cooling water passage 25282D. It can be efficiently cooled by the cooling water in the water passage 25281D.
  • the first cooling water passage 25281D and the second cooling water passage 25282D are axially offset, the first cooling water passage 25281D located radially inside the second cooling water passage 25282D is relatively easy to form the inlet channel portion 25288D. That is, as shown in FIG. 28, the inlet water passage portion 25288D can extend radially outward in a manner that straddles the second cooling water passage 25282D in the axial direction.
  • the end of the inlet water channel portion 25288D may be connected to a supply pipe of a cooling water channel (not shown).
  • the cooling water channel 2528D further has an outlet water channel portion 25289D (an outlet water channel portion formed in the cover member 252) from the second cooling water channel 25282D.
  • the water channel portion 25289D is arranged side by side with the inlet water channel portion 25288D to the first cooling water channel 25281D.
  • FIG. 29 is an explanatory diagram showing the motor drive device 8D applied to the vehicle drive device 10D of this embodiment, and is a plan view of the motor drive device 8D viewed in the axial direction from the X2 side. It should be noted that the motor drive device 8D described below can be similarly applied to the above-described first embodiment in a mode in which it is replaced with the motor drive device 8 of the vehicle drive device 10 according to the above-described first embodiment.
  • a motor driving device 8D according to the present embodiment differs from the motor driving device 8 according to the first embodiment described above in the manner in which the plurality of block assemblies 90 are arranged in the circumferential direction. Specifically, in this embodiment, a plurality of block assemblies 90 are provided for each phase of the rotating electrical machine 1, and a plurality of block assemblies 90 related to the same phase are adjacent to each other along the circumferential direction of the rotating electrical machine. The points of arrangement and the like may be the same as those of the motor driving device 8 according to the above-described embodiment.
  • the distance between the block assemblies 90 of different phases adjacent in the circumferential direction is greater than the distance in the circumferential direction between the block assemblies 90 of the same phase that are adjacent in the circumferential direction.
  • the motor drive device 8 according to the above-described embodiment the plurality of block assemblies 90 are arranged at regular intervals along the circumferential direction regardless of the difference between the phases, whereas in the present embodiment
  • the circumferential distance between block assemblies 90 of different phases adjacent in the circumferential direction is greater than the distance in the circumferential direction between block assemblies 90 of the same phase adjacent in the circumferential direction.
  • each U-phase block assemblies 90 (denoted as “90(U)” in FIG. 29 for distinction) out of twelve block assemblies 90 are
  • the four block assemblies 90 for the V phase (in FIG. 29, denoted as "90(V)” for distinction) are arranged adjacent to each other in the circumferential direction as a group, and W
  • the four phase block assemblies 90 (in FIG. 29, denoted as "90(W)” for distinction) are arranged adjacent to each other in the circumferential direction.
  • the four U-phase block assemblies 90 (U) are circumferentially spaced apart by a distance d1
  • one U-phase block assembly 90 is located at one end in the circumferential direction.
  • one of the V-phase circumferential end block assemblies 90 (V) are circumferentially separated by a distance d2 that is significantly greater than the distance d1.
  • d2 is significantly greater than the distance d1.
  • the intermediate bus bar 889D is arranged using the space (the space between the block assemblies 90) separated by such a relatively large distance d2.
  • Relay bus bar 889D has the same function as relay bus bar 889 described above, and is a bus bar for electrically connecting rotating electrical machine 1 and power module 80 (the middle point of the upper and lower arms) for each phase.
  • a U-phase relay bus bar 889D (in FIG. 29, denoted as "889D(U)” for distinction) is connected to one U-phase circumferential end block assembly 90(U). and one block assembly 90(V) at the V-phase circumferential end (the space of distance d2).
  • a V-phase relay bus bar 889D (in FIG. 29, denoted as "889D(V)” for distinction) includes a V-phase circumferential end block assembly 90(V), a W-phase It extends in the radial direction using the circumferential space (space of distance d2) between one block assembly 90(W) at the circumferential end of the .
  • a W-phase relay bus bar 889D (in FIG. 29, denoted as "889D(W)" for distinction) includes a W-phase circumferential end block assembly 90(W), a W-phase It extends in the radial direction using the circumferential space (space of distance d2) between one block assembly 90(W) at the circumferential end of the .
  • the U-phase relay bus bar 889D(U) has an arcuate portion 8891D extending in the radial direction radially inside the four block assemblies 90(U) for the U-phase and a radially extending portion 8891D. and a connecting end 8893D.
  • the radial portion 8892D continues from one end of the arcuate portion 8891D, passes through a space of distance d2, and radially outwards to the radial positions of the capacitor modules 82 of the four block assemblies 90(U) for the U phase. Extend.
  • the connection end 8893D continues from the radial outer end of the radial portion 8892D and extends axially radially outward of the control board 84D.
  • connection end portion 8893D when the connection end portion 8893D extends to the X2 side of the control board 84D, it is bent radially inward and joined to the coil end portion 322A.
  • a part of the connection end portion 8893D (a part of the side connected to the coil end portion 322A) may be realized by another lead drawn out from the rotary electric machine 1 side.
  • a circumferential space can be formed between the block assemblies 90 related to different phases adjacent in the circumferential direction.
  • the relay bus bar 889D can be efficiently arranged by utilizing the space while appropriately ensuring the insulation distance between the different phases adjacent in the circumferential direction.
  • FIG. 30 is an explanatory diagram showing the positional relationship between the cooling water passage structure and the motor driving device 8D of this embodiment, and is a plan view of the motor driving device 8D viewed in the axial direction from the X1 side.
  • the cooling channel structure of the present embodiment described above with reference to FIG. 28 is illustrated by a dotted line superimposed on the motor driving device 8D shown in FIG.
  • inlet channel portions 25288D are formed between block assemblies 90 related to different phases adjacent in the circumferential direction when viewed in the axial direction.
  • the inlet channel portion 25288D includes one block assembly 90 (U) at the circumferential end for the U phase and one block assembly 90 (W) at the circumferential end for the W phase. ) (space of distance d2) in the radial direction.
  • the capacitor module 82 overlaps the first cooling water passage 25281D when viewed in the radial direction. Therefore, if the inlet water passage portion 25288D extends radially at the axial position of the first cooling water passage 25281D, it may interfere with the capacitor module .
  • the circumferential end block assembly 90 (U) for the U phase and the block assembly 90 (W) for the W phase at the circumferential end Since the space (the space of the distance d2) is used, the inlet water channel portion 25288D can be formed in the shortest route without causing interference with the capacitor module 82.
  • FIG. 31 is a cross-sectional view schematically showing the layout of the essential parts of the motor driving device 8E according to the first modified example.
  • FIG. 31 (and also in FIGS. 32 and 33 described later), only a portion on one side of the first axis A1 and on the X direction X1 side of the vehicle drive device including the motor drive device 8E is schematically shown. .
  • the motor driving device 8E according to the first modified example differs from the motor driving device 8 according to the first embodiment described above in that the control board 84 is realized by two control boards 84E-1 and 84E-2.
  • the control boards 84E-1 and 84E-2 are preferably arranged radially inward of the coil end portion 322A when viewed in the axial direction.
  • the heat radiation member 810 see FIG. 9) of the power module 80 and the coil end portion 322A can be brought close to each other in the axial direction to cool the coil end portion 322A via the heat radiation member 810.
  • FIG. 32 is a cross-sectional view schematically showing the layout of the essential parts of the motor drive device 8F according to the second modified example.
  • the motor drive device 8F according to the second modified example differs from the motor drive device 8 according to the first embodiment described above in that the capacitor module 82 overlaps the coil end portion 322A when viewed in the axial direction. In this case, when viewed in the radial direction, the capacitor module 82 does not overlap the coil end portion 322A and extends toward the X1 side of the coil end portion 322A. In this case, the radial size of the capacitor module 82 can be made relatively large, or the radial size of the cover member 252 can be reduced by arranging the capacitor module 82 radially inward. It becomes possible.
  • control board 84 is realized by two control boards 84F-1 and 84-2F in the motor driving device 8 according to the first embodiment described above. Points are different. However, the control boards 84F-1 and 84-2F may be integrated into one board.
  • FIG. 33 is a cross-sectional view schematically showing the layout of the main parts of the motor drive device 8G according to the third modified example.
  • the motor driving device 8G according to the third modification differs from the motor driving device 8 according to the first embodiment described above in the radial relationship between the power module 80 and the capacitor module 82.
  • the power module 80 is arranged radially outside the capacitor module 82 when viewed in the axial direction.
  • the power module 80 may overlap the coil end portion 322A when viewed in the axial direction. That is, the power module 80 may extend to the X1 side of the coil end portion 322A. Note that the power module 80 overlaps the capacitor module 82 when viewed in the radial direction.
  • control board 84G is arranged radially outward of the power module 80 in FIG. 33, other arrangements may be realized.
  • the size (particularly the size in the circumferential direction) of the heat dissipation member 810 of the power module 80 can be easily reduced. can be increased. Thereby, the heat dissipation property of the power module 80 via the heat dissipation member 810 can be efficiently improved.
  • the capacitor module 82 may radially face the heat dissipation member 810 of the power module 80 from the radially inner side. That is, the capacitor module 82 radially faces the radially inner connecting surface 8104 of the heat dissipation member 810 (the connecting surface 8104 connecting the two side surfaces to which the pair of power semiconductor chips 801 and 802 are fixed). It can be thermally connected to the heat dissipation member 810 . At this time, the capacitor module 82 may come into contact with the radially inner surface of the heat dissipation member 810 . This configuration also allows the capacitor module 82 to be efficiently cooled via the heat radiation member 810 .
  • the bearing support portion 2524 is arranged radially inside the power module 80 when viewed in the axial direction, and , overlaps the capacitor module 82 . Therefore, it is possible to obtain the same effects as those of the first embodiment described above (for example, reduction in the size of the vehicle drive system in the axial direction).
  • element C when viewed in the Y direction, element C is arranged on the Z1 side of element B in the Z direction, as in the positional relationship indicated by arrow 2900. It is a concept including a relationship in which at least part of the element C is positioned on the Z1 side with respect to the straight line that is in contact with the element B on the Z1 side.
  • the Y direction and the Z direction are orthogonal, and the positional relationship of each element is the relationship when viewed in a direction perpendicular to the YZ plane.
  • the extension range of the element D in the Y direction (coordinate range in the Y direction) is at least A part of the concept includes the relationship between the extension range of the element B in the Y direction and the extension range of the element C in the Y direction. In other words, a relationship that allows at least one straight line parallel to the Z direction through element D to pass between elements B and C in the Y direction (without passing through either element B or element C). It is a concept that includes
  • the element E overlaps the element F, as in the positional relationship indicated by the arrow 2902, at least one of the straight lines passing through the element E and parallel to the Y direction is the element F It is a concept that includes a relationship that passes through .
  • a straight line passing through an element is a concept excluding a straight line in contact with the element.
  • the cover member 252 includes the cooling water passage 2528 as a cooler in the above-described first embodiment (the same applies to the second embodiment, etc.), the present invention is not limited to this.
  • the cover member 252 may be provided with air cooling fins as another cooler instead of or in addition to the cooling water passages 2528 .
  • the capacitor module 82 is arranged radially outside the coil end portion 322A, but this is not the only option. That is, the capacitor module 82 may overlap the coil end portion 322A when viewed in the axial direction. In this case, it is possible to reduce the physical size of the cover member 252D in the radial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

ロータ及びステータを有する回転電機と、回転電機が収容される収容室を形成する収容部材と、軸方向で収容部材の一端側に結合され、回転電機に軸方向に対向し、ロータを回転可能に支持する支持部を有するカバー部材と、ステータのコイルに電気的に接続されるパワースイッチング素子と、パワースイッチング素子に電気的に接続される平滑コンデンサとを含み、パワースイッチング素子及び平滑コンデンサは、カバー部材に固定されるとともに、軸方向でカバー部材と回転電機との間に配置され、平滑コンデンサは、径方向に見て、パワースイッチング素子とオーバラップする、車両駆動装置が開示される。

Description

車両駆動装置
 本開示は、車両駆動装置に関する。
 回転電機が収容される収容室を形成する収容部材と、軸方向で収容部材の一端側の開口を覆うカバー部材とを備える構成において、軸方向でカバー部材と回転電機の間にパワースイッチング素子及び平滑コンデンサを配置する構造が知られている(例えば、特許文献1参照)。
特開2014-138489号公報
 しかしながら、上記のような従来技術では、パワースイッチング素子と平滑コンデンサとが軸方向に視てオーバラップする配置であるため、車両駆動装置の軸方向の体格を効率的に低減できない。
 そこで、本開示は、回転電機の収容部材とカバー部材とを備える構成において、軸方向でカバー部材と回転電機の間にパワースイッチング素子及び平滑コンデンサを配置しつつ、車両駆動装置の軸方向の体格を効率的に低減することを目的とする。
 本開示の一局面によれば、ロータ及びステータを有する回転電機と、
 前記回転電機が収容される収容室を形成する収容部材と、
 軸方向で前記収容部材の一端側に結合され、前記回転電機に軸方向に対向し、前記ロータを回転可能に支持する支持部を有するカバー部材と、
 前記ステータのコイルに電気的に接続されるパワースイッチング素子と、
 前記パワースイッチング素子に電気的に接続される平滑コンデンサとを含み、
 前記パワースイッチング素子及び前記平滑コンデンサは、前記カバー部材に固定されるとともに、軸方向で前記カバー部材と前記回転電機との間に配置され、
 前記平滑コンデンサは、径方向に見て、前記パワースイッチング素子とオーバラップする、車両駆動装置が提供される。
 本開示によれば、回転電機の収容部材とカバー部材とを備える構成において、軸方向でカバー部材と回転電機の間にパワースイッチング素子及び平滑コンデンサを配置しつつ、車両駆動装置の軸方向の体格を効率的に低減することが可能となる。
実施例1による回転電機を含む電気回路の一例の概略図である。 実施例1による回転電機を含む車両用駆動システムのスケルトン図である。 実施例1による車両駆動装置の要部を概略的に示す断面図である。 冷却水路構造を概略的に示す他の断面図である。 カバー部材をX2側から視た斜視図である。 変形例によるモールド樹脂部の層構造を説明する概略的な断面図である。 ステータコイルを形成するコイル辺の一例を概略的に示す図である。 比較例の説明図である。 図3AのQ1部の拡大図である。 実施例1によるモータ駆動装置をX1側から視た斜視図である。 実施例1によるカバー部材に配置されたパワーモジュール及びコンデンサモジュールをX2側から視た斜視図である。 実施例1によるパワーモジュール及びコンデンサモジュールの構成とともに組み付け性を説明するための説明図である。 実施例1によるブロック組立体により形成される電気回路の説明図である。 実施例1による回転電機とブロック組立体との間の電気的な接続方法の一例を示す概略図である。 実施例1によるモータ駆動装置の配線部のうちの電源用バスバーをX1側から視た斜視図である。 実施例1による制御基板を概略的に示す平面図である。 変形例による車両駆動装置の要部を概略的に示す断面図である。 実施例1によるブロック組立体を6つだけ周方向に沿って配置した回転電機を説明する概略的な斜視図である。 実施例1によるブロック組立体を3つだけ周方向に沿って配置した回転電機を説明する概略的な斜視図である。 比較例による車両駆動装置の配線構造の概略的な説明図である。 実施例1による回転電機で実現可能な配線構造の一例の概略的な説明図である。 実施例1による回転電機で実現可能な配線構造の他の一例の概略的な説明図である。 実施例1による回転電機で実現可能な配線構造の他の一例を説明する等価の電気回路図である。 実施例1による回転電機で実現可能な仕様の概略的な説明図である。 実施例2による車両駆動装置をX1側から示す斜視図である。 実施例2による車両駆動装置をX2側から示す斜視図である。 実施例2による管部材をX1側から示す斜視図である。 実施例2による管部材をX2側から示す斜視図である。 実施例2による車両駆動装置の要部の断面図である。 他の実施例による車両駆動装置の要部の断面図である。 更なる他の実施例による車両駆動装置の要部の断面図である。 実施例3による車両駆動装置の要部を概略的に示す断面図である。 実施例3によるカバー部材にモータ駆動装置を組み付けたサブアセンブリした状態を説明する概略的な断面図である。 実施例3によるカバー部材に好適な冷却水路構造を示す説明図であり、軸方向に視た平面図である。 実施例3の車両駆動装置に適用されるモータ駆動装置を示す説明図である。 実施例3の冷却水路構造とモータ駆動装置との位置関係を示す説明図である。 第1変形例によるモータ駆動装置の要部のレイアウトを概略的に示す断面図である。 第2変形例によるモータ駆動装置の要部のレイアウトを概略的に示す断面図である。 第3変形例によるモータ駆動装置の要部のレイアウトを概略的に示す断面図である。 レイアウト関連の用語の説明図である。
 以下、添付図面を参照しながら各実施例について詳細に説明する。なお、図面の寸法比率はあくまでも一例であり、これに限定されるものではなく、また、図面内の形状等は、説明の都合上、部分的に誇張している場合がある。
 以下では、本実施例の車両駆動装置10の電気系(制御系)、及び、本実施例の車両駆動装置10を含む駆動システム全体を概説してから、本実施例の車両駆動装置10の詳細について説明する。
 [車両駆動装置の電気系]
 図1は、本実施例の回転電機1を含む電気回路200の一例の概略図である。図1には、制御装置500についても併せて示される。図1において、制御装置500に対応付けられた点線矢印は、情報(信号やデータ)のやり取りを表す。
 回転電機1は、制御装置500によるインバータINVの制御を介して駆動される。図1に示す電気回路200では、回転電機1は、電源VaにインバータINVを介して電気的に接続される。なお、インバータINVは、例えば、相ごとに、電源Vaの高電位側と低電位側とにそれぞれパワースイッチング素子(例えばMOSFET:Metal-Oxide-Semiconductor Field Effect TransistorやIGBT:Insulated Gate Bipolar Transistor等)を備え、高電位側のパワースイッチング素子と低電位側のパワースイッチング素子とが上下アームを形成する。なお、インバータINVは、相ごとに、複数組の上下アームを備えてもよい。各パワースイッチング素子は、制御装置500による制御下で、所望の回転トルクが発生するようにPWM(Pulse Width Modulation)駆動されてよい。なお、電源Vaは、例えば比較的定格電圧の高いバッテリであり、例えばリチウムイオンバッテリや燃料電池等であってよい。
 本実施例では、図1に示す電気回路200のように、電源Vaの高電位側と低電位側の間には、インバータINVに対して並列に、平滑コンデンサCが電気的に接続される。なお、平滑コンデンサCは、複数組、互いに並列に、電源Vaの高電位側と低電位側の間に電気的に接続されてもよい。また、電源VaとインバータINVとの間にDC/DCコンバータが設けられてもよい。
 [駆動システム全体]
 図2は、回転電機1を含む車両用駆動システム100のスケルトン図である。図2には、X方向と、X方向に沿ったX1側とX2側が定義されている。X方向は、第1軸A1の方向(以下、「軸方向」とも称する)に平行である。
 図2に示す例では、車両用駆動システム100は、車輪の駆動源となる回転電機1と、回転電機1と車輪Wとを結ぶ動力伝達経路に設けられた駆動伝達機構7と、を備える。駆動伝達機構7は、入力部材3と、カウンタギヤ機構4と、差動歯車機構5と、左右の出力部材61、62と、を備える。
 入力部材3は、入力軸31と、入力ギヤ32とを有する。入力軸31は、第1軸A1まわりに回転する回転部材である。入力ギヤ32は、回転電機1からの回転トルク(駆動力)をカウンタギヤ機構4に伝達するギヤである。入力ギヤ32は、入力部材3の入力軸31と一体的に回転するように、入力部材3の入力軸31に連結される。
 カウンタギヤ機構4は、動力伝達経路において、入力部材3と差動歯車機構5との間に配置される。カウンタギヤ機構4は、カウンタ軸41と、第1カウンタギヤ42と、第2カウンタギヤ43とを有する。
 カウンタ軸41は、第2軸A2まわりに回転する回転部材である。第2軸A2は、第1軸A1に平行に延在する。第1カウンタギヤ42は、カウンタギヤ機構4の入力要素である。第1カウンタギヤ42は、入力部材3の入力ギヤ32と噛み合う。第1カウンタギヤ42は、カウンタ軸41と一体的に回転するように、カウンタ軸41に連結される。
 第2カウンタギヤ43は、カウンタギヤ機構4の出力要素である。本実施例では、一例として、第2カウンタギヤ43は、第1カウンタギヤ42よりも小径に形成される。第2カウンタギヤ43は、カウンタ軸41と一体的に回転するように、カウンタ軸41に連結される。
 差動歯車機構5は、その回転軸心としての第3軸A3上に配置される。第3軸A3は、第1軸A1に平行に延在する。差動歯車機構5は、回転電機1の側から伝達される駆動力を、左右の出力部材61、62に分配する。差動歯車機構5は、差動入力ギヤ51を備え、差動入力ギヤ51は、カウンタギヤ機構4の第2カウンタギヤ43と噛み合う。また、差動歯車機構5は、差動ケース52を備え、差動ケース52内には、ピニオンシャフトや、ピニオンギヤ、左右のサイドギヤ等が収容される。左右のサイドギヤは、それぞれ、左右の出力部材61、62と一体的に回転するように連結される。
 左右の出力部材61、62のそれぞれは、左右の車輪Wに駆動連結される。左右の出力部材61、62のそれぞれは、差動歯車機構5によって分配された駆動力を車輪Wに伝達する。なお、左右の出力部材61、62は、2つ以上の部材により構成されてもよい。
 このようにして回転電機1は、駆動伝達機構7を介して車輪Wを駆動する。ただし、他の実施例では、回転電機1は、ホイールインモータとして、車輪内に配置されてもよい。この場合、車両用駆動システム100は、駆動伝達機構7を含まない構成であってよい。また、他の実施例では、駆動伝達機構7の一部又は全部を共用化して複数の回転電機1が設けられてもよい。
 [車両駆動装置の詳細]
 車両駆動装置10は、上述した回転電機1と、ケース2と、モータ駆動装置8とを含む。
 図3Aは、本実施例の車両駆動装置10の要部を概略的に示す断面図である。図3Aでは、回転電機1の回転軸である第1軸A1を通る平面で切断された断面図で、回転電機1の軸方向一端側(X1側)の一部が示されている。以下の説明において、特に言及しない限り、軸方向とは、回転電機1の回転軸である第1軸A1が延在する方向を指し、径方向とは、第1軸A1を中心とした径方向を指す。従って、径方向外側とは、第1軸A1から離れる側を指し、径方向内側とは、第1軸A1に向かう側を指す。また、周方向とは、第1軸A1まわりの回転方向に対応する。また、図3Aには、図2と同様、X方向と、X方向に沿ったX1側とX2側が定義されている。以下の説明において、X1側とX2側の各用語は、相対的な位置関係を表すために用いられる場合がある。図3Bは、冷却水路構造を概略的に示す車両駆動装置10の他の断面図(図3Aとは異なるラインで切断した断面図)である。図3Cは、カバー部材252をX2側から視た斜視図である。図3Dは、変形例によるモールド樹脂部2523Aの層構造を説明する概略的な断面図である。図4は、ステータコイル322を形成するコイル辺121の一例を概略的に示す図である。
 車両駆動装置10は、車両用駆動システム100の一部として車両に搭載され、上述したように、車両を前進又は後退させる駆動力を生成する。なお、車両は、任意の形態であり、例えば4輪の自動車であってもよいし、バス、トラック、二輪車や建設機械等であってもよい。なお、車両駆動装置10は、他の駆動源(例えば内燃機関)とともに車両に搭載されてもよい。
 回転電機1は、ロータ310及びステータ320を有する。図3Aには、回転電機1の軸方向一端側(X1側)の一部が示されている。回転電機1は、インナロータタイプであり、ステータ320がロータ310の径方向外側を囲繞するように設けられる。すなわち、ロータ310は、ステータ320の径方向内側に配置される。
 ロータ310は、ロータコア312と、シャフト部314とを備える。
 ロータコア312は、例えば円環状の磁性体の積層鋼板からなってよい。ロータコア312の内部には、永久磁石325が埋め込まれてよい。あるいは、永久磁石325は、ロータコア312の外周面に取り付けられてもよい。なお、永久磁石325の配列等は任意である。ロータコア312は、シャフト部314の外周面に固定され、シャフト部314と一体となって回転する。
 シャフト部314は、回転電機1の回転軸である第1軸A1を画成する。シャフト部314は、ロータコア312が固定される部分よりもX1側において、ケース2のカバー部材252(後述)にベアリング240を介して回転可能に支持される。なお、シャフト部314は、回転電機1の軸方向他端側(X2側)において、ベアリング240に対応するベアリングを介してケース2に回転可能に支持される。このようにして、シャフト部314が軸方向両端で回転可能にケース2に支持されてよい。
 シャフト部314は、例えば中空管の形態であり、中空内部314Aを有する。中空内部314Aは、シャフト部314の軸方向の全長にわたり延在してよい。中空内部314Aは、軸心油路として機能することができる。この場合、シャフト部314は、ステータ320のコイルエンド部322A等に油を吐出する油孔が形成されてよい。
 シャフト部314は、ロータコア312が固定される部分よりもX1側に、ロータ310の回転角度情報を取得する回転角センサ900に係る被検出部3141が設けられる。回転角センサ900は、例えば、ホール素子や磁気抵抗型素子のようなセンサ素子を用いるロータリーエンコーダであってよい。本実施例では、被検出部3141は、軸方向で、ベアリング240にX2側から隣接して設けられる。なお、回転角センサ900のセンサ素子がホール素子である場合、被検出部3141は、シャフト部314の外周部に設けられる永久磁石により実現されてよい。この場合、永久磁石は、シャフト部314の外周部の磁極が周方向に沿って周期的に変化するように配置され、回転角センサ900のセンサ素子は、径方向に被検出部3141に対向する態様で、第1軸A1まわりに、等ピッチで複数配置されてよい。なお、被検出部3141は、シャフト部314に取り付けられるリング状の形態であってもよいし、シャフト部314に一体的に形成されてもよい。
 ステータ320は、ステータコア321と、ステータコイル322とを備える。
 ステータコア321は、例えば円環状の磁性体の積層鋼板からなってよい。ステータコア321の内周部には、径方向内側に突出するティース(図示せず)が放射状に形成される。
 ステータコイル322は、例えば断面平角状又は断面円形状の導体に絶縁被膜が付与された形態であってよい。ステータコイル322は、ステータコア321のティース(図示せず)まわりに巻装される。なお、ステータコイル322は、例えば、1つ以上の並列関係で、Y結線で電気的に接続されてもよいし、Δ結線で電気的に接続されてもよい。
 ステータコイル322は、ステータコア321のスロットから軸方向外側に突出する部分であるコイルエンド部322Aを有する。例えば、ステータコイル322は、図4に示すようなコイル辺121を複数、ステータコア321に組み付けることで実現されてもよい。図4に示す例では、コイル辺121は、2つのスロットに挿入されるスロット挿入部1211、1214と、渡り部1215A、1215Bと、端部1210、1218とを含む。この場合、渡り部1215A、1215Bや端部1210、1218がコイルエンド部322Aを形成する。なお、ステータコイル322は、他の形態のコイルにより形成されてもよく、例えば、カセットコイルの形態以外のコイルにより形成されてもよい。以下の説明において、コイルエンド部322Aとは、特に言及しない限り、ステータコイル322の一部であって、ステータコア321の軸方向両側のそれぞれで周方向に沿って延在する部分のうちの、リード側である軸方向一端側(X1側)に沿って延在する部分を指す。
 ケース2は、例えばアルミ等により形成されてよい。ケース2は、鋳造等により形成できる。ケース2は、モータケース250と、カバー部材252とを含む。ケース2は、回転電機1及びモータ駆動装置8を収容する。また、図2に示した車両用駆動システム100の場合、ケース2は、図2に模式的に示すように、駆動伝達機構7を更に収容してもよい。
 モータケース250は、回転電機1を収容するモータ収容室SP1を形成する。なお、モータ収容室SP1は、回転電機1(及び/又は駆動伝達機構7)を冷却及び/又は潤滑するための油を含む油密空間であってよい。モータケース250は、回転電機1の径方向外側を囲繞する周壁部を有する形態である。モータケース250は、複数の部材を結合して実現されてもよい。また、モータケース250は、軸方向他端側(X2側)で、駆動伝達機構7を収容する他のケース部材に一体化されてよい。
 カバー部材252は、モータケース250の軸方向一端側(X1側)に結合される。カバー部材252は、モータ収容室SP1における軸方向一端側(X1側)を覆うカバーの形態である。この場合、カバー部材252は、モータケース250の軸方向一端側(X1側)の開口部を完全に又は略完全に閉塞する態様で覆ってもよい。
 カバー部材252は、モータ駆動装置8を収容するインバータ収容室SP2を形成する。なお、インバータ収容室SP2の一部は、モータケース250により形成されてもよいし、逆に、モータ収容室SP1の一部は、カバー部材252により形成されてもよい。
 カバー部材252は、モータ駆動装置8を支持する。例えばモータ駆動装置8は、後述するモジュールの形態で、カバー部材252に取り付けられてもよい。これにより、カバー部材252にモータ駆動装置8の一部又は全体を組み付けてから、カバー部材252とモータケース250とを結合でき、モータ駆動装置8の組み付け性が向上する。
 カバー部材252には、ロータ310を回転可能に支持するベアリング240が設けられる。すなわち、カバー部材252は、ベアリング240を支持するベアリング支持部2524を有する。なお、ベアリング支持部2524とは、カバー部材252のうちの、ベアリング240が設けられる軸方向範囲の部分全体を指す。
 ベアリング240は、図3Aに示すように、シャフト部314のX1側の端部における径方向外側に設けられる。具体的には、ベアリング240は、アウタレースの径方向外側がカバー部材252に支持され、インナレースの径方向内側がシャフト部314の外周面に支持される。なお、変形例では、逆に、ベアリング240は、インナレースの径方向内側がカバー部材252に支持され、アウタレースの径方向外側がシャフト部314の内周面に支持されてもよい。
 本実施例では、カバー部材252は、図3A及び図3Cに示すように、第1軸A1を中心とした円環状の底部2521、2521Aと、底部2521の内周縁から軸方向他端側(X2側)へと突出する周壁部2522とを含み、底部2521と周壁部2522とが、インバータ収容室SP2を画成する。底部2521における軸方向他端側(X2側)の中央部(第1軸A1を中心とした部分)には、軸方向他端側(X2側)に突出する円筒状部位25211が形成され、円筒状部位25211にベアリング支持部2524が設定される。なお、円筒状部位25211は、第1軸A1を中心として同芯に形成される。なお、底部2521、2521Aには、後述する第1冷却水路25281、第2冷却水路25282がそれぞれ形成されてよい。
 インバータ収容室SP2は、空間であってもよいが、好ましくは、比較的高い伝熱性を有するフィラーを含む樹脂により封止される。すなわち、カバー部材252は、好ましくは、伝熱性のモールド樹脂部2523を有する。この場合、モールド樹脂部2523は、後述するモータ駆動装置8を封止して支持する機能と、モータ収容室SP1内の油に対してモータ駆動装置8を保護する機能と、モータ駆動装置8からの熱をカバー部材252に伝達する機能を有することができる。なお、図3Aでは、モールド樹脂部2523内に封止される要素(後述するブロック組立体90等)が透視で示されている。モールド樹脂部2523の形成範囲は、図3A等に示す範囲に限られず、底部2521側から、よりX1側までしか延在しなくてもよいし、よりX2側まで延在してもよい。
 また、図3Dに示す変形例の車両駆動装置10Aのモールド樹脂部2523Aのように、複数の樹脂材料による層構造を有してもよい。具体的には、モールド樹脂部2523Aは、第1樹脂層25231と、第2樹脂層25232とを含む態様で、軸方向に層をなす層構造を有する。この場合、第1樹脂層25231は、好ましくは、軸方向で第2樹脂層25232よりも回転電機1に近い側(すなわちX2側)に配置され、かつ、第2樹脂層25232よりも熱伝導性が低い。例えば、第1樹脂層25231は、断熱性の比較的高い樹脂材料(例えば発泡樹脂材料)により形成されてよく、第2樹脂層25232は、熱伝導性の比較的高い樹脂材料(例えば金属のフィラー等を含む樹脂材料)により形成されてよい。かかるモールド樹脂部2523Aによれば、モータ駆動装置8におけるコイルエンド部322Aからの受熱を抑制しつつ、モータ駆動装置8からの熱をカバー部材252に効率的に伝達できる。なお、この場合、コイルエンド部322Aの冷却は、別の冷却系(例えばモータケース250内の油路及び/又は冷却水路)により実現されてもよい。
 なお、モールド樹脂部2523は、後述するコンデンサモジュール82等を含むモータ駆動装置8をカバー部材252に固定する機能をも有する。この場合、モールド樹脂部2523は、コンデンサモジュール82の全体を封止するように形成されてもよい。
 カバー部材252は、好ましくは、比較的高い伝熱性を有する材料(例えばアルミ)により形成され、内部に冷却水路2528を有する。冷却水路2528には、水が冷却水として流れる。なお、水は、例えばLLC(Long Life Coolant)を含む水であってよい。この場合、冷却水路2528を流れる冷却水は、車両に搭載されるラジエーター(図示せず)で放熱されることで、比較的低温に維持できる。カバー部材252の冷却水路2528に冷却水が流れると、カバー部材252の熱が冷却水に奪われることで、カバー部材252が冷却される。これにより、カバー部材252は、軸方向に隣接して配置されるモータ駆動装置8を冷却する機能を有することができる。すなわち、モータ駆動装置8からの熱は、カバー部材252を介して冷却水により奪われ、モータ駆動装置8の冷却が促進される。このような冷却機能は、上述したモールド樹脂部2523により更に促進することができる。なお、変形例では、冷却水に代えて、他の冷媒(例えば油)が利用されてもよい。
 冷却水路2528は、軸方向に視て任意の形態であってよく、例えば、円環状の形態であってもよいし、螺旋状の形態であってもよいし、径方向外側と内側に蛇行しながら周方向に沿って延在する形態であってもよい。冷却水路2528には、フィン等が形成されてもよい。なお、カバー部材252を中子等を用いて製造する場合は、冷却水路2528の形状等の自由度を高めることができる。
 ここで、本実施例では、図3Bに示すように、冷却水路2528は、第1冷却水路25281と、第2冷却水路25282とを有する。第1冷却水路25281は、軸方向に視て円環状の形態であり、軸方向に視て、パワーモジュール80(後述)に対向する。これにより、第1冷却水路25281の全周にわたってパワーモジュール80を冷却できる。第2冷却水路25282は、軸方向に視て円環状の形態であり、軸方向に視て、コンデンサモジュール82(後述)に対向する。これにより、第2冷却水路25282の全周にわたってコンデンサモジュール82を冷却できる。第1冷却水路25281及び第2冷却水路25282は、径方向の接続流路25283(図3A参照)により連通する。第1冷却水路25281は、好ましくは、第2冷却水路25282よりも上流側(図示しないウォーターポンプの吐出側に近い側)に配置される。すなわち、冷却水路2528への入口部(カバー部材252に形成される入口部)(図示せず)は、好ましくは、第1冷却水路25281に接続される。このような構成によれば、コンデンサモジュール82よりも高温化しやすいパワーモジュール80のサブモジュール800(パワー半導体チップ801、802)(後述)を、第2冷却水路25282よりも上流側の第1冷却水路25281内の冷却水(比較的新鮮な冷却水)により効率的に冷却できる。
 モータ駆動装置8は、上述したインバータINVや平滑コンデンサC、制御装置500等を含む。モータ駆動装置8の要素の詳細は、図6から図13を参照して後述する。
 モータ駆動装置8は、図3Aに示すように、軸方向でカバー部材252と回転電機1との間に配置される。すなわち、モータ駆動装置8は、インバータ収容室SP2に配置される。
 このようにして、本実施例によれば、カバー部材252と回転電機1との間にモータ駆動装置8が配置されるので、モータ駆動装置8’がモータケース250’の外部に搭載される場合(図5参照)に比べて、車両駆動装置10全体としての体格を低減できる。
 特に、本実施例によれば、カバー部材252にベアリング支持部2524を設けつつ、軸方向でカバー部材252と回転電機1との間にモータ駆動装置8を配置することで、車両駆動装置10の軸方向の体格の低減を図ることができる。具体的には、軸方向でカバー部材252よりもX1側にモータ駆動装置8を設ける場合、モータ駆動装置8のX1側をカバーするカバー部材が別に必要となり、その分、車両駆動装置10の軸方向の体格の増加を招きやすい。この点、本実施例によれば、カバー部材252は、回転電機1のみならず、モータ駆動装置8に対しても、X1側のカバーとして機能できるので、車両駆動装置10の軸方向の体格の低減を図ることができる。
 更に、本実施例では、カバー部材252のベアリング支持部2524は、軸方向に視てモータ駆動装置8(後述するパワーモジュール80やコンデンサモジュール82等)よりも径方向内側に配置され、かつ、径方向に視てモータ駆動装置8にオーバラップする。これにより、カバー部材252の軸方向の寸法(ベアリング支持部2524からX2側への寸法)の低減を図りつつ、モータ駆動装置8を、軸方向でカバー部材252と回転電機1との間に配置できる。この結果、車両駆動装置10の軸方向の体格を更に効果的に低減できる。
 また、本実施例によれば、軸方向でモータ駆動装置8と回転電機1の間に、ベアリング支持部2524に対応するベアリング支持部を有するブラケットが設けられることがない。これにより、かかるブラケットが設けられる構成に比べて、部品点数の低減を図るとともに、モータ駆動装置8と回転電機1との間の軸方向の距離の短縮を図ることができ、上述したように車両駆動装置10の軸方向の体格の低減を図ることができる。また、軸方向でモータ駆動装置8と回転電機1との間を隔てる壁部(ブラケット)がないので、モータ駆動装置8と回転電機1との間の配線長の短縮を図ることができ、モータ駆動装置8と回転電機1との間の配線効率を高めることができる。
 また、本実施例によれば、カバー部材252に冷却水路2528が形成される場合、カバー部材252をモータ駆動装置8に熱的に接続(熱伝導可能に接続)できる。すなわち、モータ駆動装置8をカバー部材252を介して冷却水路2528内の冷却水により冷却できる。冷却水路2528には冷却水を安定的に流すことができるので、モータ駆動装置8の冷却の安定化を図ることができる。また、冷却水の流量を制御できる場合は、モータ駆動装置8の状態に応じた冷却の最適化を図ることも可能である。
 また、本実施例によれば、モータ駆動装置8と回転電機1との間の軸方向の距離の短縮を図ることで、カバー部材252(冷却水路2528を備えるカバー部材252)によりモータ駆動装置8のみならず、回転電機1の一部を冷却することも可能となる。例えば、上述したモールド樹脂部2523を回転電機1のステータコイル322に熱的に接続してもよい。具体的には、モールド樹脂部2523を回転電機1のコイルエンド部322Aに当接又は近接させることで、コイルエンド部322Aをモールド樹脂部2523及びカバー部材252を介して冷却水路2528内の冷却水により冷却できる。
 次に、図6から図13を参照して、モータ駆動装置8の具体的な例を説明する。
 図6は、図3AのQ1部の拡大図である。図7は、モータ駆動装置8をX1側から視た斜視図である。図8は、カバー部材252に配置されたパワーモジュール80及びコンデンサモジュール82をX2側から視た斜視図である。図9は、パワーモジュール80及びコンデンサモジュール82の構成とともに組み付け性を説明するための説明図である。図10は、ブロック組立体90により形成される電気回路の説明図である。図11は、回転電機1とブロック組立体90との間の電気的な接続方法の一例を示す概略図である。図12は、モータ駆動装置8の配線部88のうちの電源用バスバー886をX1側から視た斜視図である。図13は、制御基板84を概略的に示す平面図である。
 モータ駆動装置8は、パワーモジュール80と、コンデンサモジュール82と、制御基板84と、配線部88とを含む。なお、図7では、制御基板84及び配線部88の一部(リード線888や中継バスバー889等)の図示は省略されている。
 本実施例では、パワーモジュール80及びコンデンサモジュール82は、図7に示すように、複数の組(図7に示す例では、12組)をなして、周方向に沿って配置される。パワーモジュール80及びコンデンサモジュール82の組の数は、回転電機1の仕様に応じて変化させる。基本的には、パワーモジュール80及びコンデンサモジュール82の組の数が増加すると、回転電機1の出力が大きくなる。従って、回転電機1の設計の際に、パワーモジュール80及びコンデンサモジュール82の組の数が異なる複数のバリエーションを設定できる。
 パワーモジュール80及びコンデンサモジュール82は、好ましくは、組ごとに、周方向に沿って等ピッチで配置される。例えば、図7に示す例では、パワーモジュール80及びコンデンサモジュール82の組数は12組であり、12組は、30度ピッチで配置される。これにより、パワーモジュール80及びコンデンサモジュール82からの熱に起因した周方向に沿った温度分布を均一化できる。ただし、変形例では、異なるピッチが利用されてもよい。
 パワーモジュール80及びコンデンサモジュール82は、好ましくは、複数の組のそれぞれにおいて、一体化された組立体の形態である。すなわち、各組のパワーモジュール80及びコンデンサモジュール82は、一体化されたブロック組立体90を形成する。図9には、一の組に係るブロック組立体90の形成方法が模式的に示されている。この場合、パワーモジュール80及びコンデンサモジュール82は、サブアセンブリした状態でカバー部材252に組み付けることができる(図8参照)。これにより、組み付け性が良好となる。具体的には、組み付け方法は、モータ駆動装置8をカバー部材252に組み付ける工程と、モータ駆動装置8が組み付けられたカバー部材252をモータケース250に組み付ける工程とを含むことができる。モータ駆動装置8をカバー部材252に組み付ける工程は、パワーモジュール80及びコンデンサモジュール82を、サブアセンブリした状態でカバー部材252に組み付けることができるので、良好な作業性となる。なお、モータ駆動装置8をカバー部材252に組み付ける工程は、上述したモールド樹脂部2523を形成する工程を含んでよい。これにより、モータ駆動装置8とカバー部材252が強固に結合されるので、モータ駆動装置8が組み付けられたカバー部材252をモータケース250に組み付ける工程の作業性も良好となる。
 ブロック組立体90のそれぞれにおいて、パワーモジュール80は同じ構成を有し、コンデンサモジュール82は同じ構成(電気的特性や形状等)を有する。これにより、ブロック組立体90ごとの交換や整備も可能であり、汎用性を高めることができる。本実施例では、ブロック組立体90のそれぞれにおいて、パワーモジュール80は、サブモジュール800と、放熱部材810とを含む。この場合、ブロック組立体90のそれぞれにおいて、サブモジュール800は同じ構成(電気的特性や形状等)を有し、放熱部材810は同じ構成(材料や形状等)を有する。これにより、複数のブロック組立体90を周方向に沿って配置する際、どのブロック組立体90を、どの周方向の位置に配置するかを考慮する必要性がなくなり、組み付け性が良好となる。なお、電気的特性が同じとは、電気的特性に有意差がないことを意味し、個体差に起因した微差を無視する概念である。電気的特性とは、任意であるが、例えば、コンデンサモジュール82の電気的特性は、定格容量等であってよく、サブモジュール800(パワー半導体チップ801、802)の電気的特性は、ゲート閾値電圧等であってよい。同様に、形状が同じとは、形状に有意差がないことを意味し、個体差に起因した微差(例えば許容公差内の寸法の差等)を無視する概念である。
 なお、例えば、12個のブロック組立体90のうちのU相用の4つのブロック組立体90は、周方向に隣接して一塊で配置され、V相用の4つのブロック組立体90は、周方向に隣接して一塊で配置され、W相用の4つのブロック組立体90は、周方向に隣接して一塊で配置されてもよい。この場合、後述する中継バスバー889の数の低減を図ることができる。あるいは、U相用のブロック組立体90と、V相用のブロック組立体90と、W相用のブロック組立体90とが、周方向に沿って1つずつ又は2つずつ周期的に配置されてもよい。
 サブモジュール800のそれぞれは、インバータINV(図1参照)における一の相に係る上下アームを形成する。これにより、上下アームごとにサブモジュール化が可能となり、配線効率が向上する。具体的には、12組のうちの、4組におけるパワーモジュール80において、サブモジュール800のそれぞれは、U相に係る上下アームを形成し、他の4組におけるパワーモジュール80において、サブモジュール800のそれぞれは、V相に係る上下アームを形成し、更なる他の4組におけるパワーモジュール80において、サブモジュール800のそれぞれは、W相に係る上下アームを形成する。
 また、ブロック組立体90のそれぞれにおいて、サブモジュール800は、対のパワー半導体チップ801、802を有する。具体的には、対のパワー半導体チップ801、802は、高電位側(図10のP参照)の上アームを形成するパワー半導体チップ801と、低電位側(図10のN参照)の下アームを形成するパワー半導体チップ802とからなる。パワー半導体チップ801、802は、それぞれ、上述したパワースイッチング素子を含む。
 パワー半導体チップ801及びパワー半導体チップ802は、図9に示すように、好ましくは、放熱部材810と一体化される。これにより、上述したパワーモジュール80が放熱部材810を一体的に含むことになり、放熱部材810を介して対のパワー半導体チップ801、802の熱を効率的に放熱できる。また、対のパワー半導体チップ801、802及び放熱部材810をそれぞれ別々にカバー部材252又はコンデンサモジュール82に組み付ける場合よりも、組み付け性を高めることができる。
 また、パワー半導体チップ801及びパワー半導体チップ802は、図9に示すように、配線部88の一部としてバスバー881、882、883、884を有する。パワー半導体チップ801と一体化されるバスバー881は、パワー半導体チップ801とコンデンサモジュール82(例えば図9のコンデンサバスバー821)とを電気的に接続する。また、パワー半導体チップ801と一体化されるバスバー883は、放熱部材810の径方向内側の連結面8104の側に突出し、パワー半導体チップ801と、回転電機1における対応する相のステータコイル322(例えば図4に示すコイル辺121における端部1210又は1218)とを電気的に接続する。同様に、パワー半導体チップ802と一体化されるバスバー882は、パワー半導体チップ802とコンデンサモジュール82(例えば図9のコンデンサバスバー822)とを電気的に接続する。また、パワー半導体チップ802と一体化されるバスバー884は、放熱部材810の径方向内側の連結面8104の側に突出し、パワー半導体チップ802と、回転電機1における対応する相のステータコイル322(図4に示すコイル辺121における端部1210又は1218)とを電気的に接続する。
 本実施例では、対のパワー半導体チップ801、802は、放熱部材810の周方向の側面8101、8102に接合される。この際、パワー半導体チップ801は、放熱部材810の周方向一方側の側面(表面)8102に接合され、パワー半導体チップ802は、放熱部材810の周方向他方側の側面(表面)8101に接合される。なお、接合方法は任意であり、比較的高い伝熱性の接着材料等が利用されてもよい。これにより、放熱部材810は、対のパワー半導体チップ801、802から周方向の側面を介して効率的に熱を受けることができる。また、周方向で隣り合う放熱部材810の間のスペースを効率的に利用して、対のパワー半導体チップ801、802を配置できる。また、上下アームのパワー半導体チップ801、802を放熱部材810の異なる側面(周方向の側面)8101、8102に配置することで、径方向内側においてバスバー883、884及び中継バスバー889を介して上下アームのパワー半導体チップ801、802を効率的に互いに対して電気的に接続できる。また、径方向外側(放熱部材810の径方向外側の連結面8103の側)において上下アームのパワー半導体チップ801、802をコンデンサモジュール82(及び電源Va)に効率的に電気的に接続できる。
 放熱部材810は、比較的高い伝熱性を有する材料(例えばアルミ)により形成される。本実施例では、放熱部材810は、中実のブロックの形態である。これにより、放熱部材810の熱容量を効率的に高めることができる。
 放熱部材810は、サブモジュール800からの熱を効率的に受け、受けた熱をカバー部材252(及び冷却水路2528内の冷却水)に効率的に伝達する機能を有する。
 本実施例では、上述したように、放熱部材810は、対のパワー半導体チップ801、802が周方向の側面に接合されるので、軸方向の表面(例えばX1側の表面)がフリーとなる。これにより、放熱部材810は、カバー部材252(及びそれに伴い冷却水路2528)に軸方向に近接又は当接する態様で、配置できる。この場合、放熱部材810を介して対のパワー半導体チップ801、802の熱をカバー部材252(及びそれに伴い冷却水路2528内の冷却水)へと効率的に伝達できる。なお、放熱部材810の軸方向他方側(X2側)の表面は、制御基板84上の素子の冷却等に利用されてもよい。
 本実施例では、図6に示すように、放熱部材810は、カバー部材252に軸方向で当接する。これにより、放熱部材810の熱をカバー部材252(及びそれに伴い冷却水路2528内の冷却水)へと効率的に伝達できる。また、放熱部材810は、軸方向に視て、冷却水路2528にオーバラップする。これにより、放熱部材810の熱をカバー部材252(及びそれに伴い冷却水路2528内の冷却水)へと、更に効率的に伝達できる。
 放熱部材810は、好ましくは、図7に示すように、軸方向に視て、径方向内側に向かうほど周方向幅が小さくなる形態である。すなわち、放熱部材810は、好ましくは、対のパワー半導体チップ801、802が接合される周方向の側面間の距離L1が、径方向で第1軸A1に近い側の方が第1軸A1から遠い側よりも小さい。これにより、放熱部材810をコンデンサモジュール82よりも径方向内側に配置しつつ、パワーモジュール80及びコンデンサモジュール82の組数(すなわちブロック組立体90の数)を比較的大きくした場合でも、放熱部材810のレイアウトを比較的容易に成立させることができる。また、周方向の側面に対のパワー半導体チップ801、802を配置した場合にも、径方向内側の配置スペース(放熱部材810の配置スペース)を確保しやすくすることができる。ただし、別の実施例では、距離L1は一定等であってもよい(図11参照)。
 コンデンサモジュール82は、平滑コンデンサC(図1参照)を形成するモジュールの形態である。コンデンサモジュール82は、平滑コンデンサCを形成するコンデンサ素子や配線部88のコンデンサバスバー821、822(図9参照)を樹脂により封止した形態であってよい。なお、コンデンサバスバー821、822は、それぞれ、封止樹脂部から露出した各端部が、コンデンサ素子の高電位側端子と、コンデンサ素子の低電位側端子とを形成する。コンデンサバスバー821、822は、サブモジュール800に接続されるとともに、電源用バスバー886(図3A、図6、及び図12参照)に接続される。
 ブロック組立体90のそれぞれにおいて、コンデンサモジュール82は、図10に示すように、対応する組のサブモジュール800の高電位側と低電位側との間に並列に電気的に接続される平滑コンデンサCを形成する。
 本実施例では、コンデンサモジュール82は、パワーモジュール80の径方向外側に配置される。これにより、コンデンサモジュール82がパワーモジュール80の径方向内側に配置される場合に比べて、配置できる周方向範囲が広くなり、コンデンサモジュール82の体格を大きくしやすくなる。例えば、パワーモジュール80及びコンデンサモジュール82の組数を比較的大きくした場合でも、比較的大きな体格のコンデンサモジュール82を実現できる。この結果、回転電機1の高出力化に対応することが容易となる。
 また、本実施例では、コンデンサモジュール82の軸方向の延在範囲は、図6に示すように、パワーモジュール80の軸方向の延在範囲とオーバラップする。特に、本実施例では、パワーモジュール80のサブモジュール800は、径方向に視て、コンデンサモジュール82とオーバラップする。これにより、車両駆動装置10の軸方向の体格の最小化を図りつつ、軸方向でカバー部材252と回転電機1との間にコンデンサモジュール82及びサブモジュール800を配置できる。
 コンデンサモジュール82は、パワー半導体チップ801、802のそれぞれとの距離が等しくなるように配置される。この場合、パワー半導体チップ801、802のそれぞれに接続されるコンデンサバスバー821(図9参照)の共用化を図ることができる。
 コンデンサモジュール82は、カバー部材252と熱的に接続される。例えば、コンデンサモジュール82は、放熱部材810を介してカバー部材252に熱的に接続されてもよい。コンデンサモジュール82は、放熱部材810の径方向外側の連結面8103(対のパワー半導体チップ801、802が固定される2つの側面8101、8102を連結する連結面8103)(図9参照)に径方向に対向することで、放熱部材810に熱的に接続できる。この場合、放熱部材810は、コンデンサモジュール82に近接するような径方向外側の突出部(図示せず)を有してもよい。
 あるいは、コンデンサモジュール82は、放熱部材810を介さずに、又は、放熱部材810を介した熱的な接続に加えて、直接的にカバー部材252に熱的に接続されてもよい。具体的には、コンデンサモジュール82は、軸方向でサブモジュール800よりも回転電機1から遠い側(すなわちX1側)まで延在し、カバー部材252に軸方向に近接又は当接する。本実施例では、コンデンサモジュール82は、図6に示すように、放熱部材810と同様、カバー部材252に軸方向に当接する。この場合、コンデンサモジュール82の熱をカバー部材252(及びそれに伴い冷却水路2528内の冷却水)へと効率的に伝達できる。また、コンデンサモジュール82は、カバー部材252の周壁部2522に径方向に当接されてもよい。
 あるいは、コンデンサモジュール82は、これらの熱的な接続方法に代えて又は加えて、モールド樹脂部2523を介してカバー部材252に熱的に接続されてもよい。
 このようにして、コンデンサモジュール82がカバー部材252と熱的に接続することで、コンデンサモジュール82の熱をカバー部材252(及び冷却水路2528内の冷却水)に効率的に伝達し、コンデンサモジュール82を効率的に冷却できる。
 特に本実施例では、コンデンサモジュール82、放熱部材810、及びサブモジュール800(パワー半導体チップ801、802)は、軸方向の延在範囲が、互いに対してオーバラップするので、モータ駆動装置8の軸方向の搭載スペースの最小化を図りつつ、放熱部材810を介したカバー部材252への伝熱性能を高めることができる。
 また、コンデンサモジュール82は、好ましくは、X2側の端部が、コイルエンド部322AよりもX2側まで延在する。すなわち、コンデンサモジュール82は、径方向に視て、コイルエンド部322Aにオーバラップする。これにより、コンデンサモジュール82と回転電機1との間の軸方向の隙間の最小化を図ることができる。この結果、コンデンサモジュール82の軸方向の必要な体格を確保しつつ、車両駆動装置10の軸方向の体格の低減を図ることができる。
 また、コンデンサモジュール82は、好ましくは、軸方向に視て、コイルエンド部322Aよりも径方向外側に配置される。これにより、径方向に視てコンデンサモジュール82をコイルエンド部322Aにオーバラップさせるレイアウトを実現することが可能となる。この場合、コンデンサモジュール82は、軸方向に視て、ステータコア321のバックヨーク部にオーバラップするように配置されてもよい。この場合、コンデンサモジュール82を、比較的径方向内側に配置できるので、モータケース250の径方向の体格が、パワーモジュール80よりも径方向外側でのコンデンサモジュール82の配置に起因して増加してしまう可能性又はその増分を、低減できる。
 制御基板84は、制御装置500(図1参照)の一部又は全体を形成する。制御基板84は、例えば多層プリント基板により形成されてもよい。制御基板84は、基板表面に対する法線方向が軸方向に沿う向きに配置される。これにより、制御基板84を軸方向の僅かな隙間を利用して配置できる。例えば、本実施例では、制御基板84は、図6に示すように、軸方向で回転電機1とパワーモジュール80との間に配置されてよい。より詳細には、制御基板84は、軸方向で回転電機1のコイルエンド部322Aとパワーモジュール80との間に配置されてよい。これにより、デッドスペースになりやすいスペースを利用した効率的な配置を実現できる。また、制御基板84は、軸方向に視て、コイルエンド部322Aにオーバラップする径方向位置まで径方向外側に延在できるので、制御基板84の面積(回路部形成範囲)の最大化を図ることができる。
 制御基板84は、好ましくは、径方向に視て、コンデンサモジュール82とオーバラップする。なお、図6に示す例では、コンデンサモジュール82は、X2側の端部がコイルエンド部322AよりもX2側まで延在し、かつ、径方向に視てサブモジュール800にオーバラップする。かかるレイアウトでは、制御基板84は、径方向に視て、コンデンサモジュール82とオーバラップするためには、軸方向で回転電機1のコイルエンド部322Aとパワーモジュール80(又はパワーモジュール80のサブモジュール800)との間に配置されればよい。
 制御基板84は、好ましくは、ロータ310のシャフト部314(図3Aも参照)が通る中央孔84aを有する円環状の形態である。この場合、周方向に沿って配置された複数のパワーモジュール80のいずれに対してもその近傍に制御基板84を配置できる。これにより、パワーモジュール80のサブモジュール800を形成する各パワー半導体チップ801、802(例えばパワースイッチング素子のゲート端子)と制御基板84の駆動回路846(図13参照)との間の電気的な接続(図示せず)が容易となる。
 制御基板84は、図13に示すように、中央孔84aまわりに円環状の低圧領域841と、低圧領域841よりも径方向外側に円環状の高圧領域842とを有する。高圧領域842と低圧領域841とは、円環状の絶縁領域843を介して電気的に絶縁される。これにより、制御基板84において、円環状の2つの領域(低圧領域841及び高圧領域842)のそれぞれに低圧系の回路と高圧系の回路とを共存させることができる。制御基板84における高圧領域842には、電源Vaに係る高圧を扱う回路部や素子が配置される。例えば、高圧領域842には、高圧系の電子部品として、パワー半導体チップ801、802を駆動するための駆動回路846が設けられてもよい。また、低圧領域841には、低圧系の電子部品として、制御装置500を実現するマイコン(マイクロコンピュータの略)502や電源回路503等が設けられてもよい。なお、制御基板84には、モータ収容室SP1内の油を循環させる電動オイルポンプ用の電子部品が実装されてもよい。
 本実施例では、制御基板84は、低圧領域841において、ステータコイル322とパワー半導体チップ801、802とを電気的に接続するリード線888(配線部88の要素)を通す貫通孔845を有する(図6参照)。これにより、制御基板84の必要なサイズを確保しつつ、リード線888を比較的短い配線長で成立させることができる。リード線888は、例えば図4に示したコイル辺121の場合、端部1210、1218により実現されてもよい。図6に示す例では、リード線888は、コイルエンド部322Aから径方向内側に曲げられて径方向内側に引き出され、かつ、ロータコア312のX1側で軸方向に曲げられて軸方向に延在する。そして、リード線888は、軸方向に延在する区間において、制御基板84を軸方向に貫通する。図13に示す例では、制御基板84は、3相のステータコイル322に対応して、3つの貫通孔845を有する。なお、リード線888のX1側の端部は、図11に示すように、中継バスバー889に接合されてよい。この場合、中継バスバー889には、上述したパワーモジュール80からのバスバー883、884が接合される。なお、中継バスバー889は、相ごとに設けられてもよく、相ごとに2つ以上のリード線888が共通の中継バスバー889に接合されてもよい。
 また、本実施例では、制御基板84は、貫通孔845にリード線888が通る構成を利用して、貫通孔845まわりに電流センサ902が設けられる。この場合、電流センサ902は、リード線888を通る電流を容易に検出できる。電流センサ902は、例えばホールセンサ等であってよい。電流センサ902は、図示しない制御基板84内の配線を介して、制御装置500に係るマイコン502(図13参照)に電気的に接続される。これにより、電流センサ902と制御装置500との間の配線を、制御基板84内の配線により容易に実現できるとともに、電流センサ902と制御装置500との間の配線長の短縮を図ることができる。
 また、本実施例では、制御基板84は、回転角センサ900が設けられる。回転角センサ900は、径方向で被検出部3141(上述したシャフト部314に設けられる被検出部3141、図6参照)に対向する。具体的には、回転角センサ900は、中央孔84aまわりの位置(すなわち開口縁部)に設けられる。なお、回転角センサ900は、制御基板84に一体に形成され、磁極位置センサとして機能してよい。これにより、回転角センサ900と制御装置500との間の配線を、制御基板84内の配線により容易に実現できるとともに、回転角センサ900と制御装置500との間の配線長の短縮を図ることができる。
 配線部88は、上述したコンデンサバスバー821、822と、上述したバスバー881、882、883、884と、電源用バスバー886と、上述したリード線888と、上述した中継バスバー889とを含む。
 電源用バスバー886は、図12に示すように、円環状の形態であり、図6(及び図3A)に示すように、第1軸A1まわりに延在する。本実施例では、電源用バスバー886は、軸方向でカバー部材252とサブモジュール800の間において、サブモジュール800に対してX1側から隣接する態様で周方向に延在する。この場合、電源用バスバー886は、軸方向に視てコンデンサモジュール82よりも径方向内側に配置され、かつ、径方向に視てコンデンサモジュール82とオーバラップする。これにより、電源用バスバー886と各ブロック組立体90との間の配線長を効率的に低減できる。
 電源用バスバー886は、電源Va(図1参照)の高電位側に電気的に接続される高電位側の電源用バスバー8861と、電源Va(図1参照)の低電位側に電気的に接続される低電位側の電源用バスバー8862とを含む。高電位側の電源用バスバー8861及び低電位側の電源用バスバー8862は、図7に示すように、径方向に互いにオフセットして配置されてもよいし、及び/又は、軸方向で互いにオフセットして配置されてもよい。高電位側の電源用バスバー8861は、コンデンサバスバー821のX1側端部に接合され、低電位側の電源用バスバー8862は、コンデンサバスバー822のX1側端部に接合されてよい。
 電源用バスバー886は、好ましくは、サブモジュール800(パワー半導体チップ801、802)よりもカバー部材252に近くなるように配置される。例えば、電源用バスバー886は、図3Aに示すように、径方向でコンデンサバスバー822と放熱部材810との間であって、サブモジュール800よりもX1側に配置されてよい。この場合、デッドスペースとなりうる空間を利用して電源用バスバー886を効率的に配置しつつ、電源用バスバー886からの熱をカバー部材252に効率的に伝達できる(すなわち電源用バスバー886を効率的に冷却できる。
 また、図13Aに示す変形例の車両駆動装置10Bでは、電源用バスバー886Bは、カバー部材252に形成された円環溝2529に設けられる。円環溝2529は、軸方向に視て、第1軸A1まわりの円環状の形態であり、X1側に凹む。電源用バスバー886Bは、軸方向に視て、径方向で第1冷却水路25281B及び第2冷却水路25282Bの間に延在してもよい。この場合、径方向で冷却水路2528Bの第1冷却水路25281B及び第2冷却水路25282Bの間の空間を利用して電源用バスバー886Bを効率的に配置できるとともに、電源用バスバー886Bを第1冷却水路25281B及び第2冷却水路25282Bにより効率的に冷却できる。
 次に、図14Aから図18を参照して、本実施例の効果の一部について説明する。
 図14Aは、ブロック組立体90を6つだけ周方向に沿って配置した回転電機1Aを説明する概略的な斜視図であり、図14Bは、ブロック組立体90を3つだけ周方向に沿って配置した回転電機1Bを説明する概略的な斜視図である。なお、図14A及び図14Bは、ブロック組立体90の配置の説明用の図であるので、一部の要素の図示は概略化又は省略されている場合がある。
 上述したように、本実施例では、ブロック組立体90は、ブロック組立体90ごとに同じ構成であり、任意の数で搭載できるので、多様な仕様の回転電機1を実現できる。例えば、図14Aに示すように6つ配置したり、図14Bに示すように3つ配置したりすることで、回転電機1に対して出力が異なる回転電機1A、1Bを容易に構成できる。これにより、部品の共用化を図りつつ、回転電機のバリエーションを効率的に増加させることができる。
 図15は、比較例による車両駆動装置10’の配線構造の概略的な説明図であり、図16は、本実施例による回転電機1で実現可能な配線構造の一例の概略的な説明図であり、図17A及び図17Bは、本実施例による回転電機1で実現可能な配線構造の他の一例の概略的な説明図であり、図18は、本実施例による回転電機1で実現可能な仕様の概略的な説明図である。
 比較例による車両駆動装置10’は、上述したインバータINVや、平滑コンデンサC、制御装置500等(図示せず)を含むパワーモジュールPM’が、モータケース250’の外部に配置される構成であるものとする。この場合、図15に概略的に示すように、モータケース250’の隔壁を介して、回転電機M’からのリード線(動力線)をパワーモジュールPM’まで引き出す配線構造となる。かかる配線構造では、回転電機M’からのリード線の配線長が長くなりやすく、また、配線の経路の自由度も高くない。
 これに対して、本実施例では、上述したように、モータ駆動装置8が隔壁を介さずに軸方向で回転電機1に隣接するので(図3A参照)、図16に概略的に示すように、各相のブロック組立体90(図16では、相の相違を示すために、“U”、“V”、“W”と表記)を、ステータコイル322のすぐ近傍に配置できる。(図3A参照)。これにより、リード線888の配線長の最小化を図ることができる。また、配線長が短くて済むので、電気的特性が良好であり、必要な信頼性を確保しやすく、また、配線の取り回し等が容易であり、周辺部材のレイアウトの自由度を高めることができる。このようにして、本実施例によれば、効率的な配線構造を実現できる。
 なお、本実施例では、相ごとの中継バスバー889(図11)に対して、ブロック組立体90を多様な個数で配置できるので、配線構造を複雑化することなく、上述したように、一の回転電機1に配置できるブロック組立体90の個数の自由度を高めることができる。
 また、本実施例では、図17A及び図17Bに示すように、ステータコイル322を相ごとに、並列に結線した場合でも、同様に、効率的な配線構造を実現できる。すなわち、図16に示した例と同様、図17A及び図17Bに概略的に示すように、各相のブロック組立体90を、ステータコイル322のコイルエンド部322Aのすぐ近傍に配置できる。なお、ステータコイル322を相ごとに、並列に結線した場合、直列に結線した場合(図16参照)に比べて、同じ出力を出すために必要な電流であって、ステータコイル322に流す電流を低減できる。例えば、図17A及び図17Bに示すように3並列に結線した場合、直列に結線した場合(図16参照)に300Aの電流を流す場合と同様の出力を、100Aの電流を流すことで実現できる。このように並列数を増加させることで、サブモジュール800に含まれるパワー半導体チップ801、802の小型化を図り、半導体ウェハの歩留まりを高めることも可能である。このようにして、ブロック組立体90によるインバータモジュールの分散化と、インバータINVに対するステータコイル322の結線の並列化(分散化)とを実現することで、体格の低減のみならず、コスト低減や、巻線構成のバリエーションの増加等を図ることができる。例えば、巻線構成のバリエーションの増加に関しては、図18に模式的に示すように、9相巻線の構成のような、3相以外の巻線構成も可能となる。
 また、本実施例では、一の回転電機1に配置できるブロック組立体90の個数の自由度が高いので、例えば図17A及び図17Bに示すステータコイル322の結線態様の場合、ブロック組立体90を相ごとに3つ配置できる。この場合、並列で結線されたステータコイル322-1~322-3に対して独立して通電することも可能となり、フェールセーフ機能等、冗長性を高めることも可能である。
 次に、図19から図25を参照して、上述した実施例(以下、区別のため、「実施例1」と称する)による車両駆動装置10とは別の他の実施例(以下、区別のため、「実施例2」と称する)による車両駆動装置10Cについて説明する。以下では、上述した実施例1と同様であってよい構成要素については、同一の参照符号を付して説明を省略する場合がある。
 図19は、本実施例の車両駆動装置10CをX1側から示す斜視図であり、図20は、車両駆動装置10CをX2側から示す斜視図であり、図21は、管部材70をX1側から示す斜視図であり、図22は、管部材70をX2側から示す斜視図である。図23は、本実施例の車両駆動装置10Cの要部の断面図であり、図6に対応する断面図である。図24は、他の実施例による車両駆動装置8C’の要部の断面図である。図25は、更なる他の実施例による車両駆動装置8C”の要部の断面図である。
 本実施例の車両駆動装置10Cは、上述した実施例1による車両駆動装置10に対して、モータ駆動装置8がモータ駆動装置8Cで置換された点が異なる。本実施例のモータ駆動装置8Cは、上述した実施例1によるモータ駆動装置8に対して、パワーモジュール80がパワーモジュール80Cで置換され、かつ、管部材70が設けられる点が異なる。パワーモジュール80Cは、上述した実施例1によるパワーモジュール80に対して、放熱部材810が放熱部材810Cで置換された点が異なる。
 放熱部材810Cは、上述した実施例1による放熱部材810に対して、形状が異なり、基本的な機能は同じである。具体的には、上述した実施例1による放熱部材810は、中実なブロック(金属ブロック)の形態であるのに対して、本実施例による放熱部材810Cは、中空の形態であり、中空内部に管部材70が通る。また、放熱部材810Cは、中空内部に伝熱性のモールド樹脂部811C(図20参照)を有する。モールド樹脂部811Cの材料は、上述したモールド樹脂部2523と同じであってよい。また、モールド樹脂部811Cは、モールド樹脂部2523と同じ工程で形成されてもよい。なお、図19では、モールド樹脂部811Cの図示は省略されており、図20では、モールド樹脂部811Cで封止されている管部材70の部位(後述する挿入部73)が透視で示されている。
 管部材70は、軸方向でカバー部材252と回転電機1との間に配置される。管部材70は、カバー部材252の冷却水路2528に連通する。従って、管部材70の流路には、冷却水路2528内を流れる冷却水が流れる。管部材70は、放熱部材810Cの中空内部を通るので、管部材70内を通る冷却水は、放熱部材810Cからの熱を効率的に受けることができる。すなわち、放熱部材810Cは、管部材70内を通る冷却水を介して熱を効率的に放出できる。この結果、放熱部材810Cを介してコンデンサモジュール82及びサブモジュール800(パワー半導体チップ801、802)を効率的に冷却できる。なお、別の実施例では、管部材70は、冷却水路2528を介さずに、同じ冷却水の供給源に連通されてもよい。
 本実施例では、管部材70は、好ましくは、カバー部材252の冷却水路2528のうちの、第1冷却水路25281に連通する。この場合、コンデンサモジュール82よりも高温化しやすいサブモジュール800(パワー半導体チップ801、802)を、第2冷却水路25282よりも上流側の第1冷却水路25281内の冷却水により効率的に冷却できる。
 本実施例では、管部材70は、図21及び図22に示すように、全体として周方向に沿って延在し、所定の周方向位置で、周方向で隣接し合う入口部71及び出口部72を有する。入口部71及び出口部72は、カバー部材252の冷却水路2528に連通する。なお、管部材70は、入口部71及び出口部72が冷却水路2528内に突出する態様で、カバー部材252に取り付けられてもよい。
 また、本実施例では、管部材70は、入口部71から出口部72まで連続した形態であり、挿入部73と、渡り部74とを含む。各挿入部73は、U字状の形態で軸方向に延在し、放熱部材810Cの中空内部に挿入される(図23の点線参照)。渡り部74は、周方向に延在し、周方向で隣り合う挿入部73間をつなぐ。このような管部材70によれば、製造が比較的容易であり、1ピースで実現されるので組み付け性が良好である。
 なお、変形例では、渡り部74が省略され、個々の挿入部73がそれぞれ入口部71及び出口部72を有する態様で冷却水路2528に連通してもよい。
 なお、本実施例では、管部材70が放熱部材810C内の冷却水路を形成するが、これに限られない。例えば、図24に概略的な断面図で示すモータ駆動装置8C’では、上述した実施例1によるパワーモジュール80がパワーモジュール80C’で置換されており、パワーモジュール80C’は、放熱部材810C’に冷却水路815が形成されている。なお、放熱部材810C’は、2ピースで形成されてもよく、冷却水路815以外の部分が中実であってよい。冷却水路815は、図24に示すように、カバー部材252の冷却水路2528に連通する。このようなモータ駆動装置8C’によっても、管部材70を利用しないことにより低減された部品点数で、上述した実施例2と同様の効果を得ることができる。
 また、他の変形例として、図25に模式的に断面図で示すように、軸方向でブロック組立体90と回転電機1の間に、放熱部材89が設けられてもよい。この場合、放熱部材89は、放熱性を有し、例えばアルミ等により形成される。放熱部材89は、ロータ310のシャフト部314が通る中央孔89aを有する円環状の形態であり、例えばシャフト部314に圧入等により固定されてもよい。このような構成によれば、回転電機1からの熱に対して放熱部材89により制御基板84を保護できる。また、放熱部材89は、電磁波をシールドして制御基板84を保護し、制御基板84を介して実現される制御の信頼性を高めることができる。
 次に、図26から図30を参照して、更なる別の他の実施例(以下、区別のため、「実施例3」と称する)による車両駆動装置10Dについて説明する。以下では、上述した実施例1と同様であってよい構成要素(配置やサイズが異なるだけの構成要素を含む)については、同一の参照符号を付して説明を省略する場合がある。また、図26等においては、図3A等においては示した構成要素の一部であって、本実施例の車両駆動装置10Dが備えてもよい構成要素の一部(例えば回転角センサ900)等の図示が省略されている場合がある。
 図26は、実施例3による車両駆動装置10Dの要部を概略的に示す断面図である。
 実施例3による車両駆動装置10Dは、上述した実施例1による車両駆動装置10に対して、コンデンサモジュール82が制御基板84DよりもX1側に配置されている点が主に異なる。この場合、上述した実施例1では、コンデンサモジュール82は、径方向に視て、制御基板84Dやコイルエンド部322Aとオーバラップするのに対して、本実施例では、コンデンサモジュール82は、径方向に視て、制御基板84Dやコイルエンド部322Aとオーバラップしない。
 かかる構成によれば、制御基板84Dの大径化(又は径方向外側への配置)が可能となる。具体的には、図26に示すように、制御基板84Dは、軸方向に視てコンデンサモジュール82とオーバラップする位置又はコンデンサモジュール82を径方向外側に超える位置まで、径方向外側に延在できる。このようにして、本実施例によれば、制御基板84Dの配置やサイズの自由度を高めることができる。ただし、変形例では、コンデンサモジュール82のX2側の端部は、上述した実施例1と同様、径方向に視てコイルエンド部322Aとオーバラップするように配置されてもよい。この場合、制御基板84Dの大径化に代えて、コンデンサモジュール82の軸方向の体格の大型化(容量の増加)を図ることができる。
 なお、実施例3では、コンデンサモジュール82は、上述した実施例1と同様、軸方向に視てコイルエンド部322Aとオーバラップしない態様で、コイルエンド部322Aよりも径方向外側に配置されている。ただし、変形例では、コンデンサモジュール82は、軸方向に視てコイルエンド部322Aとオーバラップする態様で、より径方向内側に配置されてもよい。この場合、カバー部材252Dの径方向の体格の低減を図ることができる。
 また、実施例3による車両駆動装置10Dは、上述した実施例1による車両駆動装置10に対して、カバー部材252が、カバー部材252Dで置換された点が異なる。
 ここで、本実施例では、上述したように、コンデンサモジュール82が制御基板84DよりもX1側に配置されていることに起因して、コンデンサモジュール82のX1側の端部は、パワーモジュール80よりもX1側まで延在する。すなわち、コンデンサモジュール82は、パワーモジュール80の放熱部材89よりもX1側まで延在する。このため、カバー部材252Dは、かかるパワーモジュール80とコンデンサモジュール82のX1側の段差に合わせて、X2側の表面が段差2526Dを有する。すなわち、カバー部材252DのX2側の表面は、径方向外側の表面部分(コンデンサモジュール82に軸方向に対向する表面部分)が、径方向内側の表面部分(パワーモジュール80に軸方向に対向する表面部分)よりもX1側にオフセットしている。これにより、カバー部材252Dは、パワーモジュール80とコンデンサモジュール82の双方に対して軸方向に近接又は当接できるので、パワーモジュール80及びコンデンサモジュール82の双方に対する熱的な接続を効果的に維持できる。
 本実施例においても、カバー部材252Dには、上述した実施例1による冷却水路2528と同様の機能を有する冷却水路2528Dが形成される。上述した実施例1による冷却水路2528と同様に、冷却水路2528Dは、第1冷却水路25281Dと、第2冷却水路25282Dとを有する。
 本実施例では、上述した実施例1による冷却水路2528とコンデンサモジュール82との位置関係とは異なり、コンデンサモジュール82は、図26に示すように、径方向に視て、第1冷却水路25281Dとオーバラップする。すなわち、上述したカバー部材252Dの段差2526Dに起因して、コンデンサモジュール82は、第1冷却水路25281Dに対して径方向で対向する。これにより、第1冷却水路25281Dによりコンデンサモジュール82に対する冷却性能を若干ながら高めることが可能である。
 また、本実施例では、図26に示すように、径方向で第1冷却水路25281Dとコンデンサモジュール82との間には電源用バスバー886Dが配置される。すなわち、電源用バスバー886Dは、カバー部材252Dの段差2526D近傍に配置される。これにより、径方向で第1冷却水路25281D及び第2冷却水路25282Dの間の空間を利用して電源用バスバー886Dを効率的に配置できるとともに、電源用バスバー886Dを第1冷却水路25281D及び第2冷却水路25282Dにより効率的に冷却できる。
 図27は、本実施例によるカバー部材252にモータ駆動装置8を組み付けたサブアセンブリした状態を説明する概略的な断面図である。
 カバー部材252Dは、上述した実施例1によるベアリング支持部2524と同様のベアリング支持部2524Dを有する。ベアリング支持部2524Dは、円筒状部位25211Dに設定されている。本実施例では、円筒状部位25211Dは、径方向に視て制御基板84Dにオーバラップする位置又は制御基板84DをX方向X2側に超える位置まで延在する態様で、X方向X2側へと突出する。この場合、図27に示すように、円筒状部位25211Dの径方向外側に位置するパワーモジュール80、コンデンサモジュール82、及び制御基板84Dを完全にモールド樹脂部2523Dにより封止できる。すなわち、X2側で段差を有さないモールド樹脂部2523Dによりモータ駆動装置8D及び制御基板84Dを覆うことができる。これにより、カバー部材252Dにモータ駆動装置8及び制御基板84Dをモールド樹脂部2523Dにより一体化することが容易となる。なお、モールド樹脂部2523Dは、図3Dを参照して上述したように層構造を有してもよい。
 図28は、本実施例によるカバー部材252Dに好適な冷却水路構造を示す説明図であり、軸方向に視た平面図である。図28では、カバー部材252Dにより形成される冷却水路構造が透視で示されている。
 本実施例においても、上述した実施例1による冷却水路2528と同様、第1冷却水路25281Dは、軸方向に視て円環状の形態であり、軸方向に視て、パワーモジュール80に対向する。第2冷却水路25282Dは、軸方向に視て円環状の形態であり、軸方向に視て、コンデンサモジュール82に対向する。第1冷却水路25281D及び第2冷却水路25282Dは、径方向の接続流路25283Dにより連通する。第1冷却水路25281Dは、好ましくは、第2冷却水路25282Dよりも上流側(図示しないウォーターポンプの吐出側に近い側)に配置される。すなわち、冷却水路2528Dは、第1冷却水路25281Dへの入口水路部(カバー部材252に形成される入口水路部)25288Dを更に有し、入口水路部25288Dは、図28に示すように、第1冷却水路25281Dに径方向に接続される。このような構成によれば、コンデンサモジュール82よりも高温化しやすいパワーモジュール80のサブモジュール800(パワー半導体チップ801、802、図29参照)を、第2冷却水路25282Dよりも上流側の第1冷却水路25281D内の冷却水により効率的に冷却できる。
 本実施例では、上述したように第1冷却水路25281Dと第2冷却水路25282Dとが軸方向にオフセットしているので、第2冷却水路25282Dよりも径方向内側に位置する第1冷却水路25281Dへの入口水路部25288Dの形成が比較的容易である。すなわち、入口水路部25288Dは、図28に示すように、軸方向に視て、第2冷却水路25282Dを径方向に跨ぐ態様で、径方向外側へと延在できる。なお、入口水路部25288Dの端部は、図示しない冷却水路の供給管に接続されてよい。
 なお、図28に示す例では、冷却水路2528Dは、第2冷却水路25282Dからの出口水路部25289D(カバー部材252に形成される出口水路部)を更に有し、第2冷却水路25282Dからの出口水路部25289Dは、第1冷却水路25281Dへの入口水路部25288Dと並んで配置されている。これにより、カバー部材252Dに対する冷却水の供給系と排出系の取り付けが1箇所に集約されるので、かかる取り付けの作業性等の向上を図ることができる。
 図29は、本実施例の車両駆動装置10Dに適用されるモータ駆動装置8Dを示す説明図であり、モータ駆動装置8DをX2側から軸方向に視た平面図である。なお、以下で説明するモータ駆動装置8Dは、上述した実施例1による車両駆動装置10のモータ駆動装置8に置換される態様で、上述した実施例1にも同様に適用可能である。
 本実施例によるモータ駆動装置8Dは、上述した実施例1によるモータ駆動装置8に対して、複数のブロック組立体90の周方向の配置態様が異なる。具体的には、本実施例では、回転電機1の相ごとに複数のブロック組立体90が設けられる点や、同相に係る複数のブロック組立体90が回転電機の周方向に沿って隣接して配置される点等は、上述した実施例によるモータ駆動装置8と同じであってよい。他方、本実施例によるモータ駆動装置8Dは、周方向で隣接する同相に係るブロック組立体90間の周方向の距離よりも、周方向で隣接する異なる相に係るブロック組立体90間の周方向の距離が大きい点が、上述した実施例によるモータ駆動装置8と異なる。すなわち、上述した実施例によるモータ駆動装置8では、複数のブロック組立体90は、各相の相違とは無関係に、周方向に沿って等間隔に配置されるのに対して、本実施例によるモータ駆動装置8Dは、周方向で隣接する同相に係るブロック組立体90間の周方向の距離よりも、周方向で隣接する異なる相に係るブロック組立体90間の周方向の距離が大きい。これにより、周方向で隣接する異なる相間において絶縁距離を適切に確保できる。
 例えば、図29に示す例では、12個のブロック組立体90のうちのU相用の4つのブロック組立体90(図29では、区別のため「90(U)」と表記)は、周方向に隣接して一塊で配置され、V相用の4つのブロック組立体90(図29では、区別のため「90(V)」と表記)は、周方向に隣接して一塊で配置され、W相用の4つのブロック組立体90(図29では、区別のため「90(W)」と表記)は、周方向に隣接して一塊で配置されている。この場合、例えば、U相用の4つのブロック組立体90(U)は、距離d1だけ周方向に離れて配置されるのに対して、U相用の周方向端の一のブロック組立体90(U)と、V相用の周方向端の一のブロック組立体90(V)とは、距離d1よりも有意に大きい距離d2だけ周方向に離れて配置される。これは、U相用の周方向端の一のブロック組立体90(U)と、W相用の周方向端の一のブロック組立体90(W)との関係についても同様であるし、V相用の周方向端の一のブロック組立体90(V)と、W相用の周方向端の一のブロック組立体90(W)との関係についても同様である。
 本実施例では、このような比較的大きい距離d2だけ離れたスペース(ブロック組立体90間のスペース)を利用して、中継バスバー889Dが配置されている。中継バスバー889Dは、上述した中継バスバー889と機能は同じであり、相ごとに、回転電機1とパワーモジュール80(上下アームの中点)とを電気的に接続するためのバスバーである。
 図29に示す例では、U相用の中継バスバー889D(図29では、区別のため「889D(U)」と表記)は、U相用の周方向端の一のブロック組立体90(U)と、V相用の周方向端の一のブロック組立体90(V)との間の周方向のスペース(距離d2のスペース)を利用して径方向に延在する。同様に、V相用の中継バスバー889D(図29では、区別のため「889D(V)」と表記)は、V相用の周方向端の一のブロック組立体90(V)と、W相用の周方向端の一のブロック組立体90(W)との間の周方向のスペース(距離d2のスペース)を利用して径方向に延在する。同様に、W相用の中継バスバー889D(図29では、区別のため「889D(W)」と表記)は、W相用の周方向端の一のブロック組立体90(W)と、W相用の周方向端の一のブロック組立体90(W)との間の周方向のスペース(距離d2のスペース)を利用して径方向に延在する。
 より具体的には、U相用の中継バスバー889D(U)は、U相用の4つのブロック組立体90(U)の径方向内側で、周方向延在する円弧状部位8891Dと、径方向に延在する径方向部位8892Dと、接続端部8893Dとを含む。径方向部位8892Dは、円弧状部位8891Dの一端から連続し、距離d2のスペースを通って、U相用の4つのブロック組立体90(U)のコンデンサモジュール82の径方向位置まで径方向外側に延在する。接続端部8893Dは、径方向部位8892Dの径方向外側端部から連続し、制御基板84Dの径方向外側で軸方向に延在する。また、接続端部8893Dは、図26に示すように、制御基板84DよりもX2側まで延在すると、径方向内側に屈曲してコイルエンド部322Aに接合される。なお、接続端部8893Dの一部(コイルエンド部322Aに接続される側の一部)は、回転電機1側から引き出される他の導線により実現されてもよい。
 かかる構成によれば、上述した実施例1で利用するリード線888(図3A参照)とは異なり、制御基板84の貫通孔845を通る配索が不要となるので、貫通孔845を不要とすることができる。その結果、モータ駆動装置8Dの配線部88Dに起因して制御基板84における素子実装領域が低減されてしまう可能性を、低減できる。
 このようにして本実施例によれば、周方向で隣接する異なる相に係るブロック組立体90間に周方向のスペースを形成できる。この結果、周方向で隣接する異なる相間において絶縁距離を適切に確保しつつ、かかるスペースを利用して中継バスバー889Dを効率的に配置できる。
 図30は、本実施例の冷却水路構造とモータ駆動装置8Dとの位置関係を示す説明図であり、モータ駆動装置8DをX1側から軸方向に視た平面図である。図30では、図28を参照して上述した本実施例の冷却水路構造が、点線で、図29に示したモータ駆動装置8Dに重ねて図示されている。
 本実施例では、図30に示すように、軸方向に視て、周方向で隣接する異なる相に係るブロック組立体90間に、径方向に延在する入口水路部25288Dが形成される。なお、図30に示す例では、入口水路部25288Dは、U相用の周方向端の一のブロック組立体90(U)と、W相用の周方向端の一のブロック組立体90(W)との間の周方向のスペース(距離d2のスペース)を利用して、径方向に延在する。
 ところで、本実施例では、上述したように、コンデンサモジュール82は、径方向に視て、第1冷却水路25281Dとオーバラップする。従って、入口水路部25288Dを、第1冷却水路25281Dの軸方向位置で径方向に延在させると、コンデンサモジュール82と干渉するおそれがある。しかしながら、本実施例では、U相用の周方向端の一のブロック組立体90(U)と、W相用の周方向端の一のブロック組立体90(W)との間の周方向のスペース(距離d2のスペース)を利用するので、コンデンサモジュール82との干渉が生じることなく、最短経路で入口水路部25288Dを形成できる。
 次に、図31から図33を参照して、モータ駆動装置8に係るレイアウトの変形例について説明する。以下では、上述した実施例1と同様であってよい構成要素については、同一の参照符号を付して説明を省略する場合がある。
 図31は、第1変形例によるモータ駆動装置8Eの要部のレイアウトを概略的に示す断面図である。図31(及び後出の図32及び図33も同様)では、モータ駆動装置8Eを備える車両駆動装置の第1軸A1の一方側かつX方向X1側の部分だけが概略的に示されている。
 第1変形例によるモータ駆動装置8Eは、上述した実施例1によるモータ駆動装置8に対して、制御基板84が2つの制御基板84E-1、84E-2で実現される点が異なる。この場合、制御基板84E-1、84E-2は、好ましくは、軸方向に視て、コイルエンド部322Aよりも径方向内側に配置される。この場合、例えばパワーモジュール80の放熱部材810(図9参照)とコイルエンド部322Aとを軸方向に近接させることで、放熱部材810を介してコイルエンド部322Aを冷却することも可能である。
 図32は、第2変形例によるモータ駆動装置8Fの要部のレイアウトを概略的に示す断面図である。
 第2変形例によるモータ駆動装置8Fは、上述した実施例1によるモータ駆動装置8に対して、軸方向に視てコンデンサモジュール82がコイルエンド部322Aにオーバラップする点が異なる。この場合、コンデンサモジュール82は、径方向に視て、コイルエンド部322Aにオーバラップせず、コイルエンド部322AよりもX1側に延在する。この場合、コンデンサモジュール82の径方向の体格を比較的大きくすることが可能となるあるいは、コンデンサモジュール82の配置を径方向内側に寄せることでカバー部材252の径方向の体格の低減を図ることが可能となる。なお、第2変形例でも、上述した第1変形例と同様、上述した実施例1によるモータ駆動装置8に対して、制御基板84が2つの制御基板84F-1、84-2Fで実現される点が異なる。ただし、制御基板84F-1、84-2Fは、一枚に統合されてもよい。
 図33は、第3変形例によるモータ駆動装置8Gの要部のレイアウトを概略的に示す断面図である。
 第3変形例によるモータ駆動装置8Gは、上述した実施例1によるモータ駆動装置8に対して、パワーモジュール80とコンデンサモジュール82の径方向の関係が異なる。具体的には、第3変形例では、パワーモジュール80は、軸方向に視て、コンデンサモジュール82よりも径方向外側に配置される。この場合、パワーモジュール80は、軸方向に視て、コイルエンド部322Aとオーバラップしてもよい。すなわち、パワーモジュール80は、コイルエンド部322AのX1側に延在してもよい。なお、パワーモジュール80は、径方向に視て、コンデンサモジュール82とオーバラップする。従って、本変形例の場合も、上述した実施例1による効果(例えば車両駆動装置10の軸方向の体格の低減を図ることができる等)を同様に奏することができる。なお、図33では、制御基板84Gがパワーモジュール80の径方向外側に配置されているが、他の配置態様が実現されてもよい。
 このような第3変形例によれば、コンデンサモジュール82の径方向内側にパワーモジュール80が配置されるレイアウトに比べて、パワーモジュール80の放熱部材810の体格(特に周方向の体格)を容易に増加させることができる。これにより、パワーモジュール80の放熱部材810を介した放熱性を効率的に高めることができる。
 なお、第3変形例においては、コンデンサモジュール82は、パワーモジュール80の放熱部材810に対して径方向内側から径方向に対向してよい。すなわち、コンデンサモジュール82は、放熱部材810の径方向内側の連結面8104(対のパワー半導体チップ801、802が固定される2つの側面を連結する連結面8104)に径方向に対向することで、放熱部材810に熱的に接続できる。この際、コンデンサモジュール82は、放熱部材810の径方向内側の表面に当接してもよい。かかる構成によっても、コンデンサモジュール82を放熱部材810を介して効率的に冷却できる。
 なお、図31から図33を参照して上述したいずれの変形例においても、ベアリング支持部2524は、軸方向に視て、パワーモジュール80の径方向内側に配置されるとともに、径方向に見て、コンデンサモジュール82とオーバラップしている。従って、上述した実施例1と同様の効果(例えば車両駆動装置の軸方向の体格の低減を図ること)を奏することができる。
 最後に、図34を参照して、補足的に用語の定義を説明する。本明細書においては、図34に示すように、Y方向に視て要素Cが要素BよりもZ方向Z1側に配置されるとは、矢印2900で示す位置関係のように、Y方向に平行な各直線のうち、要素Bに対しZ1側に接する直線に対して、要素Cの少なくとも一部がZ1側に位置する関係を含む概念である。なお、この場合、Y方向とZ方向は直交関係であり、各要素の位置関係は、YZ平面に対して垂直な方向に視たときの関係である。
 また、Y方向で要素Dが要素Bと要素Cの間に配置されるとは、矢印2900で示す位置関係のように、要素DのY方向の延在範囲(Y方向の座標範囲)の少なくとも一部が、要素BのY方向の延在範囲と、要素CのY方向の延在範囲との間にある関係を含む概念である。換言すると、要素Dを通るZ方向に平行な少なくとも1本の直線を、Y方向で要素Bと要素Cの間に(要素B及び要素Cのいずれをも通ることなく)、通すことができる関係を含む概念である。
 また、Y方向に視て要素Eが要素Fにオーバラップするとは、矢印2902で示す位置関係のように、要素Eを通るY方向に平行な各直線のうちの少なくとも1本の直線が要素Fを通る関係を含む概念である。なお、ここで、要素を通る直線とは、当該要素に接する直線は除く概念である。
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。また、各実施例の効果のうちの、従属項に係る効果は、上位概念(独立項)とは区別した付加的効果である。
 例えば、上述した実施例1(実施例2等も同様)では、カバー部材252は、冷却器として冷却水路2528を備えているが、これに限られない。例えば、カバー部材252は、冷却水路2528に代えて又は加えて、他の冷却器として空冷用のフィンを備えてもよい。
 また、実施例3では、コンデンサモジュール82は、コンデンサモジュール82がコイルエンド部322Aよりも径方向外側に配置されているが、これに限られない。すなわち、コンデンサモジュール82は、軸方向に視て、コイルエンド部322Aとオーバラップしてもよい。この場合、カバー部材252Dにおける径方向の体格の低減を図ることができる。
10、10C・・・車両駆動装置、1、1A、1B・・・回転電機、310・・・ロータ、320・・・ステータ、322・・・ステータコイル(ステータのコイル)、322A・・・コイルエンド部、250・・・モータケース(収容部材)、252・・・カバー部材、2524・・・ベアリング支持部(支持部)、2528、2528B、2528D・・・冷却水路(冷却器)、25281、25281B、25281D・・・第1冷却水路、25282、25282B、25282D・・・第2冷却水路、802・・・パワー半導体チップ(パワースイッチング素子)、C・・・平滑コンデンサ

Claims (12)

  1.  ロータ及びステータを有する回転電機と、
     前記回転電機が収容される収容室を形成する収容部材と、
     軸方向で前記収容部材の一端側に結合され、前記回転電機に軸方向に対向し、前記ロータを回転可能に支持する支持部を有するカバー部材と、
     前記ステータのコイルに電気的に接続されるパワースイッチング素子と、
     前記パワースイッチング素子に電気的に接続される平滑コンデンサとを含み、
     前記パワースイッチング素子及び前記平滑コンデンサは、前記カバー部材に固定されるとともに、軸方向で前記カバー部材と前記回転電機との間に配置され、
     前記平滑コンデンサは、径方向に視て、前記パワースイッチング素子とオーバラップする、車両駆動装置。
  2.  前記平滑コンデンサは、径方向に視て、前記ステータのコイルエンド部とオーバラップする、請求項1に記載の車両駆動装置。
  3.  軸方向で前記パワースイッチング素子と前記回転電機との間に、前記パワースイッチング素子を制御する制御基板を更に含み、
     前記平滑コンデンサは、径方向に視て、前記制御基板とオーバラップする、請求項1又は2に記載の車両駆動装置。
  4.  軸方向で前記パワースイッチング素子と前記回転電機との間に、前記パワースイッチング素子を制御する制御基板を更に含み、
     前記制御基板は、軸方向に視て、前記パワースイッチング素子及び前記平滑コンデンサとオーバラップする、請求項1に記載の車両駆動装置。
  5.  前記制御基板は、前記ステータのコイルと前記パワースイッチング素子とを電気的に接
    続する配線を通す貫通孔を有し、
    前記制御基板には、前記貫通孔まわりに電流センサが設けられる、請求項3または4に記載の車両駆動装置。
  6.  前記制御基板は、前記ロータのシャフト部が通る中央孔を有する円環状の形態であり、
     前記制御基板における前記中央孔まわりの位置に、前記ロータの回転角度情報を取得する回転角センサが設けられる、請求項5に記載の車両駆動装置。
  7.  前記制御基板は、前記中央孔まわりに円環状の第1領域と、径方向で前記第1領域よりも外側に、前記第1領域に対して電気的に絶縁された円環状の第2領域とを有し、
     前記第1領域には、前記貫通孔及び電流センサ、または前記回転角センサが設けられ、
     前記第2領域には、前記パワースイッチング素子を駆動する駆動回路が設けられる、請求項6に記載の車両駆動装置。
  8.  前記カバー部材は、冷却水を流す第1冷却水路が形成され、
     前記パワースイッチング素子は、前記第1冷却水路と軸方向に対向しつつ前記カバー部材に熱的に接続されており、
     前記平滑コンデンサは、軸方向に視て、前記第1冷却水路よりも径方向外側に配置され、かつ、径方向に視て、前記第1冷却水路とオーバラップする、請求項1から7のうちのいずれか1項に記載の車両駆動装置。
  9.  前記平滑コンデンサは、軸方向に視て、前記ステータのコイルエンド部よりも径方向外側に配置される、請求項1から8のうちのいずれか1項に記載の車両駆動装置。
  10.  前記パワースイッチング素子は、複数個、前記ロータの回転軸まわりの周方向に並んで配置され、
     前記平滑コンデンサは、複数個、前記ロータの回転軸まわりの周方向に並んで配置される、請求項1から9のいずれか1項に記載の車両駆動装置。
  11.  前記パワースイッチング素子及び前記平滑コンデンサを直流電源に電気的に接続する円環状の電源用バスバーを更に備え、
    前記電源用バスバーは、軸方向に視て前記パワースイッチング素子と前記平滑コンデンサとの径方向の間に配置される、請求項10に記載の車両駆動装置。
  12.  前記パワースイッチング素子は、放熱部材を介して前記カバー部材に固定され、
     前記電源用バスバーは、径方向で前記平滑コンデンサと前記放熱部材との間に配置される、請求項11に記載の車両駆動装置。
PCT/JP2022/005462 2021-02-12 2022-02-10 車両駆動装置 WO2022173013A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/034,794 US20230412042A1 (en) 2021-02-12 2022-02-10 Vehicle drive device
CN202280008543.0A CN116686195A (zh) 2021-02-12 2022-02-10 车辆驱动装置
EP22752835.3A EP4228141A4 (en) 2021-02-12 2022-02-10 VEHICLE DRIVE DEVICE
JP2022580689A JPWO2022173013A1 (ja) 2021-02-12 2022-02-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-021046 2021-02-12
JP2021021046 2021-02-12

Publications (1)

Publication Number Publication Date
WO2022173013A1 true WO2022173013A1 (ja) 2022-08-18

Family

ID=82838339

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/005463 WO2022173014A1 (ja) 2021-02-12 2022-02-10 車両駆動装置
PCT/JP2022/005462 WO2022173013A1 (ja) 2021-02-12 2022-02-10 車両駆動装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005463 WO2022173014A1 (ja) 2021-02-12 2022-02-10 車両駆動装置

Country Status (5)

Country Link
US (2) US20230412042A1 (ja)
EP (2) EP4228142A4 (ja)
JP (2) JPWO2022173013A1 (ja)
CN (2) CN116670981A (ja)
WO (2) WO2022173014A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048823A (ja) * 2002-07-08 2004-02-12 Hitachi Unisia Automotive Ltd インバータ付き電気機械
JP2008167641A (ja) * 2006-12-07 2008-07-17 Nissan Motor Co Ltd 電力変換装置およびモータ駆動システム
JP2011176999A (ja) * 2009-06-24 2011-09-08 Denso Corp 駆動装置
JP2013074656A (ja) * 2011-09-27 2013-04-22 Nissan Motor Co Ltd 電力変換装置
JP2014138489A (ja) 2013-01-17 2014-07-28 Nissan Motor Co Ltd インバータ付きモータ
JP2014143841A (ja) * 2013-01-24 2014-08-07 Nissan Motor Co Ltd インバータ一体型モータ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435286B2 (ja) * 2009-06-24 2014-03-05 株式会社デンソー 駆動装置
DE102014220835A1 (de) * 2014-10-15 2016-04-21 Zf Friedrichshafen Ag Antriebsvorrichtung für einen Kraftfahrzeugantriebsstrang
DE102015219865A1 (de) * 2015-10-13 2017-04-13 Lenze Drives Gmbh Elektrischer Antrieb

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048823A (ja) * 2002-07-08 2004-02-12 Hitachi Unisia Automotive Ltd インバータ付き電気機械
JP2008167641A (ja) * 2006-12-07 2008-07-17 Nissan Motor Co Ltd 電力変換装置およびモータ駆動システム
JP2011176999A (ja) * 2009-06-24 2011-09-08 Denso Corp 駆動装置
JP2013074656A (ja) * 2011-09-27 2013-04-22 Nissan Motor Co Ltd 電力変換装置
JP2014138489A (ja) 2013-01-17 2014-07-28 Nissan Motor Co Ltd インバータ付きモータ
JP2014143841A (ja) * 2013-01-24 2014-08-07 Nissan Motor Co Ltd インバータ一体型モータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4228141A4

Also Published As

Publication number Publication date
EP4228142A4 (en) 2024-04-10
CN116670981A (zh) 2023-08-29
EP4228141A1 (en) 2023-08-16
JPWO2022173014A1 (ja) 2022-08-18
EP4228142A1 (en) 2023-08-16
EP4228141A4 (en) 2024-04-17
CN116686195A (zh) 2023-09-01
US20230412042A1 (en) 2023-12-21
JPWO2022173013A1 (ja) 2022-08-18
US20230412043A1 (en) 2023-12-21
WO2022173014A1 (ja) 2022-08-18

Similar Documents

Publication Publication Date Title
JP4859950B2 (ja) 回転電機
US8299666B2 (en) Control apparatus-integrated dynamoelectric machine
WO2012096335A1 (ja) 回転電機ユニット
WO2013069128A1 (ja) 回転電機
JP2011030406A (ja) モータ
JP2014143841A (ja) インバータ一体型モータ
WO2020110887A1 (ja) 電駆動モジュール
JP2022128979A (ja) 車両駆動装置
JP2014138489A (ja) インバータ付きモータ
JP2004297847A (ja) 電力変換装置
WO2022173013A1 (ja) 車両駆動装置
WO2022173015A1 (ja) インバータ一体型回転電機
WO2022173016A1 (ja) スイッチング素子モジュール、インバータ装置、及び車両駆動装置
WO2020110880A1 (ja) 電駆動モジュール
WO2023176300A1 (ja) 車両駆動装置
JP3624897B2 (ja) 同期モータのコイル給電構造
US20240097525A1 (en) Rotary electrical machine
JP2022138516A (ja) 車両駆動装置
WO2022209600A1 (ja) 車両駆動装置
JP2023137405A (ja) 車両駆動装置及び車両駆動装置の製造方法
JP2012244839A (ja) 回転電機のステータ
JP2024072436A (ja) 車両用駆動装置及び車両用駆動装置の製造方法
JP2023067149A (ja) インバータ構造
JP2023037707A (ja) 回転電機
CN116014940A (zh) 定子组件及具有其的轴向磁通轮毂电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580689

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022752835

Country of ref document: EP

Effective date: 20230510

WWE Wipo information: entry into national phase

Ref document number: 202280008543.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE