JP2023067149A - インバータ構造 - Google Patents

インバータ構造 Download PDF

Info

Publication number
JP2023067149A
JP2023067149A JP2021178159A JP2021178159A JP2023067149A JP 2023067149 A JP2023067149 A JP 2023067149A JP 2021178159 A JP2021178159 A JP 2021178159A JP 2021178159 A JP2021178159 A JP 2021178159A JP 2023067149 A JP2023067149 A JP 2023067149A
Authority
JP
Japan
Prior art keywords
power module
inverter
bus bar
motor
smoothing capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021178159A
Other languages
English (en)
Inventor
隆之 佐藤
Takayuki Sato
匡司 林口
Tadashi Hayashiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Rohm Co Ltd
Original Assignee
Mazda Motor Corp
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Rohm Co Ltd filed Critical Mazda Motor Corp
Priority to JP2021178159A priority Critical patent/JP2023067149A/ja
Priority to EP22201766.7A priority patent/EP4175156A1/en
Priority to CN202211281268.8A priority patent/CN116073681A/zh
Priority to US17/970,331 priority patent/US20230136947A1/en
Publication of JP2023067149A publication Critical patent/JP2023067149A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/02Arrangements of circuit components or wiring on supporting structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/09Machines characterised by wiring elements other than wires, e.g. bus rings, for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2211/00Specific aspects not provided for in the other groups of this subclass relating to measuring or protective devices or electric components
    • H02K2211/03Machines characterised by circuit boards, e.g. pcb
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change

Abstract

【課題】バスバー等のインダクタンスを低減する。【解決手段】平滑コンデンサ19と複数のパワーモジュール20とを有するインバータでは、平滑コンデンサ19はそれぞれ両端に電極を有する複数の柱状の単位コンデンサ45と各単位コンデンサ45の一端の電極に接続される一端側バスプレート19cと他端の電極に接続される他端側バスプレート19dとを備え複数の単位コンデンサ45が軸方向を互いに平行にして軸方向に垂直な方向に並ぶように配置され、複数のパワーモジュール20は平滑コンデンサ19に対して軸方向に垂直な方向に並ぶように配置されている。【選択図】図7

Description

本開示は、電気自動車やハイブリッド自動車等の電動車両に搭載されるインバータ装置の構造に関するものである。
近年、ハイブリッド車、電気自動車など、電気を用いて走行する自動車の普及が著しい。この種の自動車には、駆動モータおよびバッテリが搭載されている。そして、そのバッテリから供給される直流の電力をインバータで交流に変換し、その交流電力を制御しながら駆動モータに供給する。それによって発生する回転動力を用いて自動車は走行する。
この種のインバータは、大きな電力を扱うため、高電圧が印加されて大電流が流れる。従って、作動時の発熱量が多く、冷却が必要である。大きなサージ電圧も発生する。そのため、インバータを構成している個々の電子部品も大きくなり、重量も重くなり易い。従って、従来のインバータは、燃費および電費の向上を妨げる要因となっている。
また、通常は送電距離を短くするために、インバータは駆動モータの近くに配置される。しかし、自動車の場合、設置する装置が多く、インバータを配置できるスペースは限られる。車体のバランスを考慮する必要もある。そのため、大型かつ高重量なインバータは、自動車に適切に配置するのは難しい。
例えばインバータ一体型交流モータにおけるインバータ構造として、ドーナツ形状のインバータケースにおいて+バスバーや-バスバーを樹脂一体成形し、スイッチング素子に接続する構成が知られている(例えば、特許文献1参照。)。
特開2004-274992号公報
インバータには、スイッチング素子を含むパワーモジュール、平滑コンデンサなどが備えられている。上述したように、高電圧な電源に対応したインバータの場合、これら電子部品は、大型かつ高重量であるのが一般的である。
これらを接続する電子部品である金具(バスバー)もまた、大電流が流れるため、大型かつ高重量である。バスバーの配線長が長くなると、それだけ電気抵抗が高くなり、通電時に銅損が発生する。バスバーは発熱量も多い。しかも、インバータでは、スイッチング制御により、大電流が高速でオンオフされるので、それに伴って、大きな磁気的変化がバスバーで発生する。
それにより、インバータの作動時には、磁気的変化に起因して、騒音、振動、電磁障害などがバスバーで発生する。これらはエネルギ損失となるし、自動車の性能に様々な悪影響を及ぼす。従って、これらの対策が必要である。バスバーの形状が複雑になれば、その影響はより顕著である。
上記のようにインバータケースに樹脂一体成形された+バスバーや-バスバーを介してスイッチング素子と平滑コンデンサとを接続する場合、配線長や配線幅の制約によって、バスバーのインダクタンスを低減することが容易ではない。
本発明は、上記の点に鑑みてなされたものであり、平滑コンデンサに接続されるバスバーのインダクタンスを容易に低減可能にすることを目的としている。
上記の目的を達成するために、
第1の発明は、
平滑コンデンサと複数のパワーモジュールとを有するインバータのインバータ構造であって、
上記平滑コンデンサは、それぞれ両端に電極を有する複数の柱状の単位コンデンサと、各単位コンデンサの一端の上記電極に接続される板状の一端側バスプレートと、他端の上記電極に接続される板状の他端側バスプレートとを備え、上記複数の単位コンデンサが、軸方向を互いに平行にして、上記軸方向に垂直な面に沿った方向に並ぶように配置されて成り、
上記複数のパワーモジュールは、上記平滑コンデンサに対して上記軸方向に垂直な面に沿った方向に並ぶように配置されていることを特徴とする。
これにより、パワーモジュールと平滑コンデンサとが、例えば同一平面上において並べて配置されることなどが可能になり、インバータ軸方向における小型化が容易になる。また、パワーモジュールと平滑コンデンサとの間の距離が短くなるため、これらを接続するバスバーの配線長が短くなり、バスバーのインダクタンスを効果的に低減できる。
また、複数の単位コンデンサが、軸方向を互いに平行にして、上記軸方向に垂直な面に沿った方向に並ぶように配置することによって、平滑コンデンサ全体としての容量を確保しつつ、インバータ軸方向における小型化が可能となる。
しかも、各単位コンデンサの一端の上記電極に接続される板状の一端側バスプレートと、他端の上記電極に接続される板状の他端側バスプレートとを設けることで、平滑コンデンサとの距離が短くなるようパワーモジュールを配置することが容易となる。すなわち、パワーモジュールのレイアウトの自由度を高めることができる。
第2の発明は、
第1の発明のインバータ構造であって、
上記一端側バスプレート、および他端側バスプレートは、外形が円形状に形成されていることを特徴とする。
これにより、例えば平滑コンデンサの周方向のどこからでも端子を取り出すなどして接続することができ、パワーモジュールのレイアウトの自由度をより一層高めることができる。
第3の発明は、
第1の発明から第2の発明のうち何れか1つのインバータ構造であって、
さらに、上記一端側バスプレート、および他端側バスプレートの外縁部と、上記パワーモジュールとを接続する入力用バスバーを有することを特徴とする。
また、第4の発明は、
第1の発明から第2の発明のうち何れか1つのインバータ構造であって、
上記一端側バスプレート、および他端側バスプレートの少なくとも一方の外縁部が、上記パワーモジュールに接続されていることを特徴とする。
これらにより、インダクタンスの低減や平準化を図りつつ、平滑コンデンサとパワーモジュールとの接続を容易にすることができる。
第5の発明は、
第1の発明から第4の発明のうち何れか1つのインバータ構造であって、
上記一端側バスプレート、および他端側バスプレートの少なくとも一方の外面と、上記パワーモジュールの外面とが、同一の平面上に位置するように配置されていることを特徴とする。
これにより、バスバーの配線長が短くなることによるインダクタンスの低減及びインバータ軸方向における小型化をより一層図ることができる。
本開示によれば、平滑コンデンサに接続されるバスバーのインダクタンスを低減することが容易にできる。
図1は、第1の実施形態に係る駆動ユニットを備える車両システムの概略構成図である。 図2は、モータ及びインバータを含む駆動ユニットの斜視図である。 図3は、モータをインバータ側から見た横断面図である。 図4は、インバータの回路図である。 図5は、SiC-MOSFETとIGBTとの比較を示す。 図6は、パワーモジュールの詳細構造を斜視図及び回路図で示す。 図7は、インバータをモータとは反対側から見た横断面図である。 図8は、インバータの縦断面図である。 図9は、バスバーの斜視図である。 図10は、バスバーにおけるサイズとインダクタンス感度との関係を示すグラフである。 図11は、インバータの冷却通路をモータ側から見た横断面図である。 図12は、第1の実施形態の第1変形例に係る図11相当図であって、インバータの冷却通路をモータ側から見た横断面図である。 図13は、第1の実施形態の第2変形例に係る図7相当図であって、インバータをモータとは反対側から見た横断面図である。 図14は、第2の実施形態に係る図7相当図であって、インバータをモータとは反対側から見た横断面図である。 図15は、第2の実施形態に係る図8相当図であって、インバータの縦断面図である。 図16は、第3の実施形態に係る図7相当図であって、インバータをモータとは反対側から見た横断面図である。 図17は、第3の実施形態に係る図8相当図であって、インバータの縦断面図である。 図18は、さらに他の変形例に係るパワーモジュールと単位コンデンサの配置の例を示す模式図である。
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物あるいはその用途を制限することを意図するものでは全くない。なお、以下の各実施形態や変形例において、他の実施形態等と同様の機能を有する構成要素については同一の符号を付して説明を省略する。
<第1の実施形態>
(車両構成)
図1は、第1の実施形態に係る駆動ユニットAを備える車両1を、車両下側から見た状態で示す。車両1は、車両前側に配置されたエンジン2及び駆動モータ3の少なくとも一方からの動力を、車両後側に配置された後輪4に伝達する。すなわち、車両1は、フロントエンジン・リアドライブ(FR)のハイブリッド車両である。
図1に示すように、車両1は、エンジン2と、エンジン2に連結された変速機5と、エンジン2と変速機5との間に配置された駆動モータ3と、変速機5に連結されてエンジン2及び駆動モータ3からの動力を後輪に伝達するプロペラシャフト6と、プロペラシャフト6に連結されてエンジン2及び駆動モータ3からの動力を左右の後輪4に伝達する差動装置7と、を備える。
プロペラシャフト6は、フロアパネル8の下側において、車両前後方向に延びている。フロアパネル8の車幅方向中央側には、トンネル部9が設けられている。プロペラシャフト6は、トンネル部9の内側に配置されている。
車両1は、エンジン2から車両前後方向に延びる排気管10を、備える。排気管10の上流側には、触媒装置11が配設されている。図示しないが、排気管10の下流側には、サイレンサが配設されている。
車両1は、エンジン2に供給する燃料を貯蔵する燃料タンク(図示せず)と、モータ3に供給する電力を貯蔵するバッテリ12と、を備える。駆動モータ3は、後輪4に動力を伝達するとともに、車両減速時にプロペラシャフト6により回転駆動されて回生発電を行い、発電した電力をバッテリ12に供給する。バッテリ12は、車幅方向両側に配置された第1バッテリユニット12a及び第2バッテリユニット12bで構成されている。第2バッテリユニット12bは、第1バッテリユニット12aよりも、車両前後方向に長い。各バッテリユニット12a,12bは、複数のバッテリセルから構成されている。バッテリセルは、例えばリチウムイオンバッテリである。
左右の前輪13各々には、インホイールモータ14が接続されている。インホイールモータ14は、車両1の発進時に動力を発生して前輪13に伝えるアシストモータとして機能する。また、インホイールモータ14は、車両の減速時に発電する回生ブレーキとしても機能する。インホイールモータ14は、駆動モータ3と同様に、バッテリ12から電力が供給される。
図1に示すように、駆動モータ3と変速機5との間には、インバータ15が介在している。駆動モータ3とインバータ15とは、駆動モータ3の軸方向(車両前後方向)に隣接して配置されている。インホイールモータ14の車幅方向内側には、インバータ16が配置されている。インホイールモータ14とインバータ16とは、インホイールモータ14の軸方向(車幅方向)に隣接して配置されている。駆動モータ3及びインバータ15は、駆動ユニットAを構成する。同様に、インホイールモータ14及びインバータ16は、駆動ユニットAを構成する。
インバータ15,16は、バッテリ12に貯蔵された直流電力を交流電力に変換してモータ3,14に供給するとともに、車両減速時にモータ3,14で発電した交流電力を直流電力に変換してバッテリを充電する。
(駆動ユニット)
車両1の駆動ユニットAについて、駆動モータ3及びインバータ15を例に、説明する。図2は、駆動ユニットAの斜視図である。上述したように、駆動ユニットAは、モータ3及びインバータ15で構成されている。モータ3とインバータ15とは、モータ3の軸方向に隣接して同軸に配置されている。詳細には、モータ3の中心軸Oとインバータ15の中心軸Oとは、互いに一致する。モータ3(詳細には、モータ3のケーシング)は、円筒状に形成されている。インバータ15(詳細には、インバータ15のケーシング)は、モータ3に対応した円筒状に形成されている。モータ3の回転軸3aは、インバータ15を軸方向に貫通している。インバータ15の厚みWivは、薄く、例えば、50mm以下(好ましくは30mm以下)である。インバータ15の内部には、後述する冷却通路61が設けられている。インバータの上部には、冷却通路61に連通する冷却用の入口配管62及び出口配管63が接続されている。
図3は、モータ3をインバータ15側から見た横断面図である。モータ3は、コイル17を有する。具体的には、モータ3のステータには、U相、V相及びW相のコイル17u,17v,17wが、それぞれ集中巻きされている。U相コイル17uは、モータ3の径方向に互いに対向するように、2箇所に配置されている。同様に、V相コイル17vは、モータ3の径方向に互いに対向するように、2箇所に配置されている。同様に、W相コイル17wは、モータ3の径方向に互いに対向するように、2箇所に配置されている。
モータ3の外周部には、3つのモータ側端子台18が設けられている。3つのモータ側端子台18は、U相、V相、W相のコイル17u,17v,17wに対応している。2箇所に配置されたU相コイル17u各々からは、リード線(図示せず)が引き出されている。当該2つのリード線は、1つに束ねられた後に、モータ側端子台18に、接続されている。V相コイル17v及びW相コイル17wについても同様である。回転軸3aには、ロータとして、鉄心27と、N極及びS極の永久磁石28と、が固定されている。
図4は、インバータ15の回路図である。インバータ15は、平滑コンデンサ19と、複数のパワーモジュール20と、を有する。平滑コンデンサ19は、パワーモジュール20に印加される電圧を平滑化する。複数のパワーモジュール20は、インバータ回路を構成しており、直流電圧を交流電圧に変換する。
複数のパワーモジュール20として、U相パワーモジュール20u、V相パワーモジュール20v及びW相パワーモジュール20wがある。U相パワーモジュール20uは、モータ3のU相コイル17uに接続されている。V相パワーモジュール20vは、モータ3のV相コイル17vに接続されている。W相パワーモジュール20wは、モータ3のW相コイル17wに接続されている。
パワーモジュール20は、スイッチング素子としての下アーム素子21及び上アーム素子22の2つで構成されている。各相のパワーモジュール20において、下アーム素子21及び上アーム素子22の一方が開くとき、下アーム素子21及び上アーム素子22の他方は閉じる。これにより、モータ3に対して三相交流電流が供給される。
ここで、パワーモジュール20は、SiC-MOSFETを含む。図5は、SiC-MOSFETとIGBTとの比較を示す。SiC-MOSFETは、炭化ケイ素(SiC)を含むMOSFET(metal-oxide-semiconductor field-effect transistor)であって、下アーム素子21及び上アーム素子22並びにその他の制御素子等を含むチップ24を、構成する。チップ24の下面は、シリコン基板に、はんだで固定されている。チップ24の上面には、伝熱ブロックとしての銅ブロック25が、はんだで固定されている。IGBT(Insulated Gate Bipolar Transistor)も、同様である。
図5に示すように、SiC-MOSFETで構成されたチップ24の表面積は、IGBTで構成されたチップ24’の表面積に比べて、小さい。それに伴い、SiC-MOSFET(チップ)24の上側に配置された銅ブロック25のサイズは、IGBT(チップ)24’の上側に配置された銅ブロック25’のサイズに比べて、小さい。また、SiC-MOSFETは、IGBTよりも耐熱性に優れる。
図6は、パワーモジュール20の詳細構造を斜視図及び回路図で示す。各パワーモジュール20は、幅広な扁平形状である。詳細には、各パワーモジュール20は、厚み方向tよりも幅方向Wに長い。パワーモジュール20は、略直方体状である。幅方向Wは、互いに直交する第1幅方向W1及び第2幅方向W2を含む。以下、パワーモジュール20の厚み方向一方側を下側、厚み方向他方側を上側という場合がある。
パワーモジュール20は、下側(片面側、厚み方向片側)に、第1被冷却面としての下面31を有する。パワーモジュール20は、上側に、上面32を有する。パワーモジュール20は、第1幅方向W1の一方側に、第1端面33を有する。パワーモジュール20は、第1幅方向W1の他方側に、第2端面34を有する。
第1端面33の下側且つ第2幅方向W2の一方側には、負極側入力端子35が接続されている。第1端面33の上側且つ第2幅方向W2の他方側には、正極側入力端子36が接続されている。負極側入力端子35と正極側入力端子36とは、上下方向(厚み方向)に間隔を空けて配置されている。第2端面34の中央部には、出力端子37が接続されている。
パワーモジュール20のパッケージ(箱体)内には、下アーム素子21及び上アーム素子22が収容されている。負極側入力端子35は、下アーム素子21に接続されている。正極側入力端子36は、上アーム素子22に接続されている。出力端子37は、下アーム素子21と上アーム素子22との間に接続されている。
図7は、インバータ15をモータ3とは反対側から見た横断面図である。図8は、インバータ15のVIII-VIII線における縦断面図である。図7に示すように、インバータ15の中心には、モータ3の回転軸3aを貫通させる軸貫通孔40が、設けられている。軸貫通孔40の周囲には、円筒状のボス部41が形成されている。平滑コンデンサ19は、ボス部41に沿うように配置されている。
各パワーモジュール20(U相パワーモジュール20u、V相パワーモジュール20v及びW相パワーモジュール20w)は、平滑コンデンサ19よりも外周側に配置されている。各パワーモジュール20は、平滑コンデンサ19よりも外周側において、モータ3の周方向に並べて配置されている。すなわち、例えばモータ3の回転軸3aの中心からの距離が互いに等距離の(円弧上の)位置に配置されている。また、各パワーモジュール20は、平滑コンデンサ19からの距離が互いに等距離の位置(平滑コンデンサ19に対して放射状の位置)に配置されている。より具体的には、例えばU相パワーモジュール20uの負極側入力端子35(または正極側入力端子36)と、平滑コンデンサ19の一端側バスプレート19c(または他端側バスプレート19d)の外縁部との間の距離をxとすると、V相パワーモジュール20v、およびW相パワーモジュール20wについての同様の距離xが互いに等しく設定されている。なお、負極側入力端子35、または正極側入力端子36の一方だけについて上記のような等距離の関係にされるのでもよい。
各パワーモジュール20の入力端子35,36(第1端面33)及び出力端子37(第2端面34)は、モータ3(インバータ15)の周方向を向いている。各パワーモジュール20は、インバータ15(モータ3)の中心Oを起点に、放射状に配置されている。各パワーモジュール20は、厚み方向tがモータ3の軸方向に一致するように、配置されている。平滑コンデンサ19及び各パワーモジュール20は、インバータ15における外周壁部42及びボス部41で区画された空間に、配置されている。
図7,8に示すように、インバータ15におけるモータ3側には、ヒートシンク60が設けられている。ヒートシンク60は、主に、各パワーモジュール20の冷却のために用いられる。ヒートシンク60は、インバータ15における外周壁部42とボス部41との間に、配置されている。ヒートシンク60は、上壁部60aと、外周壁部60bと、下壁部60cと、内周壁部60dと、を有する。
ヒートシンク60の上壁部60aにおける上面65は、モータ3の軸方向に直交する載置面(以下、「載置面65」という場合がある)を構成する。各パワーモジュール20(U相パワーモジュール20u、V相パワーモジュール20v及びW相パワーモジュール20w)の下面(第1被冷却面)31は、モータ3側に臨む。詳細には、各パワーモジュール20の下面(第1被冷却面)31は、同一の載置面65に並んで載置されている。
図7,8に示すように、平滑コンデンサ19は、それぞれ両端(一端19a及び他端19b)に電極Tを有する複数の円柱状の単位コンデンサ45の集合体を、軸方向を互いに平行、すなわちモータ3の回転軸3aと平行にして、上記軸方向に垂直な面に沿った方向に並ぶように配置し、軸方向両側から、それぞれ外形が円形状の一端側バスプレート19cと他端側バスプレート19dで挟むようにして接続したものである。平滑コンデンサ19の下側の一端側バスプレート19cは、第3被冷却面として機能し、モータ3側に臨む。詳細には、平滑コンデンサ19の一端側バスプレート19cは、載置面65に載置されている。
上記単位コンデンサ45の一端19a、および他端19bに有する電極Tの形態は特に限定されず、リード線状のものや、帯状、板状電極など、種々適用可能である。また、上記電極と一端側バスプレート19cおよび他端側バスプレート19dとの接続方法も特に限定されず、溶接や、半田付け、機械的な圧着など、種々の方法が適用可能である。
上記複数の単位コンデンサ45は、それぞれ、例えばモータ3の回転軸3aの中心からの距離が互いに等距離の位置に配置されたものが存在するように設けられている。また、各パワーモジュール20と、上記各パワーモジュール20の少なくとも近傍の単位コンデンサ45との配置パターンは、互いに等しく設定されている。および/または、各パワーモジュール20と、少なくとも上記各パワーモジュール20に最も近い単位コンデンサ45との間の距離は、互いに等しく設定されている。より具体的には、例えばU相パワーモジュール20uの負極側入力端子35(または正極側入力端子36)と、最も近い単位コンデンサ451の電極Tとの間の距離をyとすると、V相パワーモジュール20v、およびW相パワーモジュール20wと、これらに最も近い単位コンデンサの電極とについての同様の距離yが互いに等しく設定されている。なお、負極側入力端子35、または正極側入力端子36の一方だけについて上記のような等距離の関係にされるのでもよい。
これらによって、平滑コンデンサ19と各パワーモジュール20との間の接続配線のインダクタンス低減、および/または等長化によるインダクタンスの平準化を図ることが容易になる。
図7,8に示すように、各パワーモジュール20は、平滑コンデンサ19に対して上記軸方向に垂直な面に沿った方向に並ぶように配置され、平滑コンデンサ19と各パワーモジュール20とは、入力用バスバー50(以下、単に「バスバー50」という場合がある。)としての負極側バスバー51及び正極側バスバー52によって、互いに接続されている。負極側バスバー51及び正極側バスバー52は、板状である。詳細には、負極側バスバー51及び正極側バスバー52は、厚み方向tよりも幅方向W及び長さ方向Lに長い。
図7に示すように、負極側バスバー51及び正極側バスバー52は、モータ3(インバータ15)の周方向に沿うように、幅広に構成されている。換言すると、負極側バスバー51及び正極側バスバー52は、各パワーモジュール20の並ぶ方向に沿うように、幅広に構成されている。負極側バスバー51及び正極側バスバー52の幅方向Wは、モータ3の周方向に(円弧状に)延びている。負極側バスバー51及び正極側バスバー52は、扇形状である。負極側バスバー51及び正極側バスバー52の長さ方向Lは、モータ3の径方向に延びている。
負極側バスバー51の一端部51iは、平滑コンデンサ19の下面側に設けられた一端側バスプレート19cの外縁部に、接続されている。負極側バスバー51の他端部51oは、各パワーモジュール20の負極側入力端子35に接続されている。正極側バスバー52の一端部52iは、平滑コンデンサ19の上面側に設けられた他端側バスプレート19dの外縁部に、接続されている。正極側バスバー52の他端部52oは、各パワーモジュール20の正極側入力端子36に接続されている。なお、一端側バスプレート19c、及び他端側バスプレート19dの少なくとも一方の外縁部が、パワーモジュール20の負極側入力端子35、または正極側入力端子36に直接接続されるようにしてもよい。
負極側バスバー51は、下側(片面側、厚み方向片側)に、第2被冷却面としての下面51aを、有するようにしてもよい。負極側バスバー51の下面(第2被冷却面)51aは、モータ3側に臨む。詳細には、負極側バスバー51の下面(第2被冷却面)51aは、載置面65に載置されるようにしてもよい。
図7に示すように、各パワーモジュール20の出力端子37には、出力用バスバー54が接続されている。出力用バスバー54は、U相、V相、W相に対応して、計3つある。出力用バスバー54は、各パワーモジュール20と各コイル17との間に、介在している。出力用バスバー54は、板状である。また、各パワーモジュール20と各コイル17との間には、出力用バスバー54の他に、ワイヤハーネス等が介在してもよい。
インバータ15の外周部には、3つのインバータ側端子台46が設けられている。各インバータ側端子台46は、各パワーモジュール20に対応している。出力用バスバー54は、インバータ側端子台46まで、延びている。インバータ側端子台46とモータ側端子台18との間には、電導部材(バスバーやワイヤハーネス等)が介在している。
(バスバーのインダクタンス感度)
図9は、バスバー50の斜視図である。図10は、バスバー50におけるサイズとインダクタンス感度との関係を示すグラフである。本願発明者等は、鋭意研究の結果、バスバー50におけるサイズとインダクタンス感度との関係について、以下の発見をした。
図9,10に示すように、バスバー50の幅寸法W(mm)が大きいほど、バスバー50のインダクタンス感度(nH)は小さくなる。
バスバー50の長さ寸法L(mm)が大きいほど、基本的には、バスバー50のインダクタンス感度(nH)は大きくなる。しかしながら、図10の真ん中のグラフに示すように、バスバー50における長さ寸法L(mm)とインダクタンス感度(nH)との関係には、極小値Mが存在する。これにより、長さ寸法Lが異なるにもかかわらず、同一のインダクタンス感度(nH)となることがある。詳細には、バスバー50(51,52)のインダクタンス感度(nH)は、バスバー50(51,52)における一端部51i,52i(平滑コンデンサ19の一端側バスプレート19cまたは他端側バスプレート19d)から他端部51o,52o(各パワーモジュール20の入力端子35,36)に至る長さ寸法L(mm)の関数である。当該関数は、互いに異なる第1長さL1(mm)及び第2長さL2(mm)で同じインダクタンス感度K(nH)となるように、極小値Mを有する。第2長さL2(mm)は、第1長さL1(mm)よりも長い。
また、バスバー50の厚さ寸法t(mm)が変化しても、バスバー50のインダクタンス感度(nH)は、ほとんど変化しない。
図7に示すように、負極側バスバー51の幅寸法と正極側バスバー52の幅寸法とは、互いに略同じである。図8に示すように、負極側バスバー51の長さ寸法L-と正極側バスバー52の長さ寸法L+とは、互いに異なる。負極側バスバー51の長さ寸法L-は、第1長さL1に対応する。正極側バスバー52の長さ寸法L+は、第2長さL2に対応する。正極側バスバー52の長さ寸法L+(第2長さL2)は、負極側バスバー51の長さ寸法L-(第1長さL1)よりも長い。しかしながら、上記極小値Mの存在によって、負極側バスバー51のインダクタンスと正極側バスバー52のインダクタンスとは、互いに等しくなっている。
(冷却通路)
図11は、インバータ15の冷却通路61をモータ3側から見た横断面図である。図8,11に示すように、ヒートシンク60の内部には、冷却部としての冷却通路(冷却ジャケット)61が設けられている。冷却通路61は、上壁部60a、外周壁部60b、下壁部60c及び内周壁部60dによって区画されている。冷却通路61は、モータ3(インバータ15)の軸方向に見て、全周に亘ってドーナツ状(環状、円筒状)に形成されている。内周壁部60dの内側には、モータ3の回転軸3aが貫通する。上述したように、ヒートシンク60の上壁部60aにおける上面は、載置面65である。
冷却通路61は、載置面65よりもモータ3側に、設けられている。冷却通路61には、冷却媒体Hが流れる。冷却媒体Hは、冷却水や冷却油等である。
また、ヒートシンク60の内部(冷却通路61)には、冷却部としての複数のフィン64が設けられている。フィン64は、上壁部60aから冷却通路61内を下側に延びている。すなわち、フィン64は、載置面65よりもモータ3側に、設けられている。
図8,11に示すように、冷却通路(冷却部)61は、モータ3(インバータ15)の軸方向に見て、各パワーモジュール20の下面(第1被冷却面)31、及び平滑コンデンサ19の下側の一端側バスプレート(第3被冷却面)19cの全てに、臨んでいる。
同様に、フィン(冷却部)64は、モータ3の軸方向に見て、各パワーモジュール20の下面(第1被冷却面)31、及び平滑コンデンサ19の下側の一端側バスプレート(第3被冷却面)19cの全てに、臨んでいる。
図11に示すように、インバータ15の外周壁部42の上部には、入口配管62及び出口配管63が接続されている。入口配管62及び出口配管63は、冷却通路61に連通している。入口配管62を介して冷却通路61に導入された冷却媒体Hは、外周壁部42及びボス部41に案内されて、冷却通路61内を周方向に流れた後、出口配管63を介して外部に排出される。なお、入口配管62の下流側に案内板66を設けてもよい。
(第1の実施形態の作用効果:インダクタンスの低減及び平準化)
本実施形態によれば、各バスバー51,52の幅寸法を大きくすることによって、各バスバー51,52のインダクタンスを低減することができる。
平滑コンデンサ19と各パワーモジュール20u,20v,20wとが同一の載置面65に載置されているので、平滑コンデンサ19と各パワーモジュール20u,20v,20wとを接続する各バスバー51,52の距離が、短くなる。これにより、各バスバー51,52のインダクタンスを低減することができる。
モータ3とインバータ15とが軸方向に隣接配置されるので、各パワーモジュール20u,20v,20wと各コイル17u,17v,17wとの間における電気経路長が短くなる。これにより、各パワーモジュール20u,20v,20wと各コイル17u,17v,17wとを接続する電気経路(出力用バスバー54を含む)のインダクタンスを、低減することができる。
各パワーモジュール20u,20v,20wが平滑コンデンサ19よりも外周側においてモータ3の周方向に並ぶので、平滑コンデンサ19と各パワーモジュール20u,20v,20wの距離を、互いに等しくすることができる。さらに、各バスバー51,52をモータ3の周方向に沿うように幅広にすることによって、各バスバー51,52において、平滑コンデンサ19と各パワーモジュール20u,20v,20wとの間の電気経路のインダクタンスを、平準化することができる。
上記極小値M(図10参照)を利用することによって、負極側バスバー51の長さ寸法L-(第1長さL1)と正極側バスバー52の長さ寸法L+(第2長さL2)とが互いに異なるにもかかわらず、負極側バスバー51のインダクタンスと正極側バスバー52のインダクタンスとを、互いに平準化することができる。
特に各パワーモジュール20と、近傍の単位コンデンサ45との配置パターンが互いに等しく設定されることや、各パワーモジュール20と、少なくとも上記各パワーモジュール20に最も近い単位コンデンサ45との間の距離(電極と端子との間の配線接続距離)が、互いに等しく設定されていることによって、平滑コンデンサ19と各パワーモジュール20との間の接続配線のインダクタンス低減、および/または等長化によるインダクタンスの平準化を一層容易に図ることができる。
(第1の実施形態の作用効果:冷却性能の向上等)
また、幅広な扁平形状のパワーモジュール20における面積の大きな下面(第1被冷却面)31が、冷却部としての冷却通路61及びフィン64に臨むので、冷却部61,64によるパワーモジュール20への冷却面積を大きくすることができる。これにより、たとえパワーモジュール20の片面(下面、第1被冷却面)31のみを冷却部61,64により冷却した場合であっても、十分な冷却能力を確保することができる。
各パワーモジュール20(U相パワーモジュール20u、V相パワーモジュール20v及びW相パワーモジュール20w)の下面(第1被冷却面)31が、モータ3の軸方向に直交する同一の載置面65に並んで載置されているので、インバータ15の軸方向長さを短縮することができる。また、冷却部61,64をパワーモジュール20の片面(下面、第1被冷却面)31側にのみ設ければよいので、冷却部61,64がパワーモジュール20の両面側に設けられた場合に比較して、インバータ15を小型化することができる。
以上、パワーモジュール20を十分に冷却しつつ、モータ3及びインバータ15で構成される駆動ユニットAを小型化することができる。
冷却部としての冷却通路61に冷却媒体Hを流すことによって、冷却部によるパワーモジュール20の冷却能力をより大きくすることができる。
パワーモジュール20に含まれるSiC-MOSFETチップ24のサイズが小さいので、SiC-MOSFETチップ24の上に置かれれる伝熱ブロックとしての銅ブロック25のサイズも、小さい(図5参照)。このため、パワーモジュール20を効果的に両面冷却しようとすれば、高価なセラミック基板(例えばSiN)をSiC-MOSFETチップ24の両面側に配置する必要がある。したがって、パワーモジュール20を両面冷却するよりも、パワーモジュール20を片面冷却するとともに当該片面冷却の効果を向上させた方が、コスト面で有利である。
各パワーモジュール20と併せて平滑コンデンサ19をも、冷却部61,64によって冷却することができる。
各パワーモジュール20を平滑コンデンサ19よりも外周側においてモータ3の周方向に並べて配置し且つ負極側バスバー51の幅方向Wをモータ3の周方向に延ばすことによって、負極側バスバー51を簡単に幅広にすることができる。これにより、負極側バスバー51から冷却部61,64への放熱面積を簡単に大きくすることができる。
冷却部61,64がモータ3側に設けられているので、モータ3と各パワーモジュール20とを接続する配線(例えば、出力用バスバー54)の冷却にも、有利である。
図1に二点鎖線で示すように、従来、インバータ15’を、バッテリ12’の第2バッテリユニット12b’近傍に配置することが多かった。本実施形態によれば、インバータ15をモータ3の軸方向に隣接配置することができるので、第2バッテリユニット12b近傍にインバータ15を配置しなくてもよくなる。これにより、第2バッテリユニット12bのレイアウト自由度が高まり、第2バッテリユニット12bを大きくすることができる。
(第1の実施形態の第1変形例)
図12は、第1の実施形態の第1変形例に係る図11相当図である。本変形例によれば、冷却部(冷却通路61及びフィン64)は、平滑コンデンサ19の下側の一端側バスプレート(第3被冷却面)19cに、一切臨んでない。
平滑コンデンサ19の発熱量はパワーモジュール20の発熱量に比較して小さいので、たとえ平滑コンデンサ19が冷却部61,64によって冷却されなくても、問題ないことがある。
(第1の実施形態の第2変形例)
図13は、第1の実施形態の第2変形例に係る図7相当図である。本変形例に係るインバータ16は、インホイールモータ14に対して、インホイールモータ14の軸方向(車幅方向)に隣接して配置されている(図1参照)。インバータ16には、軸貫通孔40及びボス部41が設けられていない。平滑コンデンサ19は、中心部付近にも単位コンデンサ45が配置されている。また、ヒートシンク60は、内周壁部60dを有さない。冷却通路61は、モータ3の軸方向に見て、孔の無い円形状である。
(第1の実施形態のその他の変形例)
冷却通路61を流れる冷却媒体Hは、例えば空気でもよい。さらに、冷却部は、冷却通路61を含まず、例えば、フィン64だけで構成されてもよい。冷却部は、固体の冷却部材でもよい。
冷却部は、全周に亘って設けられる必要はなく、周方向のうちの各パワーモジュール20に臨む部分にのみ設けられてもよい。
負極側バスバー51ではなく、正極側バスバー52が、片面側(厚み方向片側)に、モータ3側に臨み且つ載置面65に載置される第2被冷却面を、有してもよい。
図示しないが、各出力用バスバー54は、モータ3の周方向に沿うように、幅広に構成されてもよい。換言すると、出力用バスバー54の幅方向は、周方向に(円弧状に)延びてもよい。出力用バスバー54は、扇形状でもよい。これにより、出力用バスバー54を幅広にしやすくなるので、出力用バスバー54のインダクタンスを低減しやすくなる(図10参照)。
載置面65は、モータ3の軸方向に直交する同一平面上に位置する複数の面で構成さてもよい。
<第2の実施形態>
図14は、第2の実施形態に係る図7相当図であって、インバータ15をモータ3とは反対側から見た横断面図である。図15は、第2の実施形態に係る図8相当図であって、インバータ15の縦断面図である。以下、上記実施形態と同様の構成については、詳細な説明を省略する場合がある。
本実施形態では、各パワーモジュール20(U相パワーモジュール20u、V相パワーモジュール20v及びW相パワーモジュール20w)は、平滑コンデンサ19よりも外周側に配置されている。各パワーモジュール20は、平滑コンデンサ19よりも外周側において、モータ3の周方向に並べて配置されている。
そして、各パワーモジュール20の入力端子35,36(第1端面33)及び出力端子37(第2端面34)は、モータ3(インバータ15)の径方向を向いている。具体的には、各パワーモジュール20の入力端子35,36(第1端面33)は、内周側を向いている。各パワーモジュール20の出力端子37(第2端面34)は、外周側を向いている。各パワーモジュール20は、インバータ15(モータ3)の中心Oを起点に、放射状に配置されている。
上記実施形態と同様に、各パワーモジュール20の下面(第1被冷却面)31、及び平滑コンデンサ19の下側の一端側バスプレート(第3被冷却面)19cは、載置面65に載置されている。
図14に示すように、負極側バスバー51の幅寸法と正極側バスバー52の幅寸法とは、互いに同じである。図15に示すように、負極側バスバー51の長さ寸法L-と正極側バスバー52の長さ寸法L+とは、互いに同じである。したがって、負極側バスバー51のインダクタンスと正極側バスバー52のインダクタンスとは、互いに等しくなっている。
その他の構成は、第1の実施形態と同様である。
<第3の実施形態>
図16は、第3の実施形態に係る図7相当図であって、インバータ15をモータ3とは反対側から見た横断面図である。図17は、第3の実施形態に係る図8相当図であって、インバータ15の縦断面図である。以下、上記実施形態と同様の構成については、詳細な説明を省略する場合がある。
図16,17に示すように、負極側入力端子35は、各パワーモジュール20の第1端面33の下側に接続されている。正極側入力端子36は、各パワーモジュール20の第2端面34の下側に接続されている。出力端子37は、各パワーモジュール20の上面32の中央に接続されている。
負極側バスバー51は、平滑コンデンサ19の一端側バスプレート19cと各パワーモジュールの負極側入力端子35とを、互いに接続する。正極側バスバー52は、平滑コンデンサ19の他端側バスプレート19dと各パワーモジュール20の正極側入力端子36とを、互いに接続する。
正極側バスバー52は、平滑コンデンサ19の他端側バスプレート19d(一端部52i)から出発して、各パワーモジュール20の第1端面33側から第2端面34側に亘って、上面32を沿うようにして延びる。その後、正極側バスバー52は、下側に折れて、第2端面34を沿うようにして、下側の正極側入力端子36(他端部52o)まで延びている。換言すると、正極側バスバー52は、各パワーモジュール20を上面32側から巻くようにして、延びている。各出力用バスバー54は、各パワーモジュール20の上面32の出力端子37から出発して、上側に延びている。正極側バスバー52には、上側に延びる3つの出力用バスバー54を通過させるための3つの開口部が、設けられている。
上記実施形態と同様に、各パワーモジュール20の下面(第1被冷却面)31、及び平滑コンデンサ19の下側の一端側バスプレート(第3被冷却面)19cは、載置面65に載置されている。
図16に示すように、負極側バスバー51の幅寸法と正極側バスバー52の幅寸法とは、互いに同じである。図17に示すように、負極側バスバー51の長さ寸法(L-)と正極側バスバー52の長さ寸法(La+及びLb+の合計)とは、互いに異なる。負極側バスバー51の長さ寸法(L-)は、第1長さL1に対応する。正極側バスバー52の長さ寸法(La+及びLb+の合計)は、第2長さL2に対応する。正極側バスバー52の長さ寸法(La+及びLb+の合計、第2長さL2)は、負極側バスバー51の長さ寸法(L-、第1長さL1)よりも長い。しかしながら、上記極小値M(図10参照)の存在によって、負極側バスバー51のインダクタンス感度と正極側バスバー52のインダクタンスとは、互いに等しくなっている。
なお、本実施形態に係る負極側バスバー51及び正極側バスバー52の条件(材質等)は、上記実施形態の場合とは異なる。したがって、上記極小値M(図10参照)の態様も異なる。具体的には、第1長さL1と第2長さL2との間隔(差分)が、上記実施形態の場合よりも大きい。
その他の構成は、第2の実施形態と同様である。
<その他の実施形態>
上記各実施の形態では、3つのパワーモジュール20が円周上で互いに近接して配置される例を示したが、これに限らず、例えば図18に示すように互いに120°の中心角を成すように配置され、これに対応して各単位コンデンサ45も回転対称なパターンに配置されるなどしてもよい。このような配置によって、一層、インダクタンスの平準化を図ることが容易にできる。
以上、本開示を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。
1 車両
2 エンジン
3 駆動モータ
12 バッテリ
14 インホイールモータ
15 インバータ
17u,17v,17w コイル
18 モータ側端子台
19 平滑コンデンサ
19a 一端
19b 他端
19c 一端側バスプレート
19d 他端側バスプレート
20 パワーモジュール
20u,20v,20w パワーモジュール
24 SiC-MOSFETチップ
31 下面
32 上面
33 第1端面
34 第2端面
35 負極側入力端子
36 正極側入力端子
37 出力端子
45 単位コンデンサ
50 入力用バスバー
51 負極側バスバー
51a 下面
51i,52i 一端部
51o,52o 他端部
52 正極側バスバー
54 出力用バスバー
65 載置面(上面)

Claims (5)

  1. 平滑コンデンサと複数のパワーモジュールとを有するインバータのインバータ構造であって、
    上記平滑コンデンサは、それぞれ両端に電極を有する複数の柱状の単位コンデンサと、各単位コンデンサの一端の上記電極に接続される板状の一端側バスプレートと、他端の上記電極に接続される板状の他端側バスプレートとを備え、上記複数の単位コンデンサが、軸方向を互いに平行にして、上記軸方向に垂直な面に沿った方向に並ぶように配置されて成り、
    上記複数のパワーモジュールは、上記平滑コンデンサに対して上記軸方向に垂直な面に沿った方向に並ぶように配置されていることを特徴とするインバータ構造。
  2. 請求項1のインバータ構造であって、
    上記一端側バスプレート、および他端側バスプレートは、外形が円形状に形成されていることを特徴とするインバータ構造。
  3. 請求項1から請求項2のうち何れか1項のインバータ構造であって、
    さらに、上記一端側バスプレート、および他端側バスプレートの外縁部と、上記パワーモジュールとを接続する入力用バスバーを有することを特徴とするインバータ構造。
  4. 請求項1から請求項2のうち何れか1項のインバータ構造であって、
    上記一端側バスプレート、および他端側バスプレートの少なくとも一方の外縁部が、上記パワーモジュールに接続されていることを特徴とするインバータ構造。
  5. 請求項1から請求項4のうち何れか1項のインバータ構造であって、
    上記一端側バスプレート、および他端側バスプレートの少なくとも一方の外面と、上記パワーモジュールの外面とが、同一の平面上に位置するように配置されていることを特徴とするインバータ構造。
JP2021178159A 2021-10-29 2021-10-29 インバータ構造 Pending JP2023067149A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021178159A JP2023067149A (ja) 2021-10-29 2021-10-29 インバータ構造
EP22201766.7A EP4175156A1 (en) 2021-10-29 2022-10-17 Inverter structure
CN202211281268.8A CN116073681A (zh) 2021-10-29 2022-10-19 逆变器结构
US17/970,331 US20230136947A1 (en) 2021-10-29 2022-10-20 Inverter structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021178159A JP2023067149A (ja) 2021-10-29 2021-10-29 インバータ構造

Publications (1)

Publication Number Publication Date
JP2023067149A true JP2023067149A (ja) 2023-05-16

Family

ID=83898256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021178159A Pending JP2023067149A (ja) 2021-10-29 2021-10-29 インバータ構造

Country Status (4)

Country Link
US (1) US20230136947A1 (ja)
EP (1) EP4175156A1 (ja)
JP (1) JP2023067149A (ja)
CN (1) CN116073681A (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4123436B2 (ja) 2003-02-18 2008-07-23 株式会社デンソー インバータ一体型交流モータ
JP5734364B2 (ja) * 2012-11-22 2015-06-17 株式会社デンソー 電力変換装置
US10759467B2 (en) * 2015-09-18 2020-09-01 Mitsubishi Electric Corporation Integrated electric power steering apparatus
JP6214710B2 (ja) * 2016-04-05 2017-10-18 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
EP4175156A1 (en) 2023-05-03
US20230136947A1 (en) 2023-05-04
CN116073681A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
CN103856032B (zh) 电容器模块
JP5501257B2 (ja) 回転電機ユニット
EP3112197B1 (en) Vehicle driving apparatus
JP2023067149A (ja) インバータ構造
JP2023067154A (ja) インバータ構造
JP2023067151A (ja) インバータ構造
US20230135655A1 (en) Vehicle drive unit
JP2023067172A (ja) 車両の駆動ユニット
US20230137055A1 (en) Electric drive unit
US20230132540A1 (en) Electric drive unit
US20230138904A1 (en) Electric drive unit
US20230136386A1 (en) Electric drive unit
US20240032265A1 (en) Power card
US20230412052A1 (en) Switching element module, inverter device, and vehicle drive device
JP2022106585A (ja) パワーモジュール