WO2022172999A1 - 酸化鉄及び/又は水酸化鉄用還元剤組成物 - Google Patents

酸化鉄及び/又は水酸化鉄用還元剤組成物 Download PDF

Info

Publication number
WO2022172999A1
WO2022172999A1 PCT/JP2022/005372 JP2022005372W WO2022172999A1 WO 2022172999 A1 WO2022172999 A1 WO 2022172999A1 JP 2022005372 W JP2022005372 W JP 2022005372W WO 2022172999 A1 WO2022172999 A1 WO 2022172999A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
agent composition
component
mass
iron oxide
Prior art date
Application number
PCT/JP2022/005372
Other languages
English (en)
French (fr)
Inventor
典明 牛尾
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to EP22752821.3A priority Critical patent/EP4293137A1/en
Priority to CN202280014719.3A priority patent/CN116867741A/zh
Priority to US18/275,866 priority patent/US20240133046A1/en
Publication of WO2022172999A1 publication Critical patent/WO2022172999A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/19Iron or steel

Definitions

  • the present invention relates to a reducing agent composition for iron oxide and/or iron hydroxide, and a method for reducing iron oxide and/or iron hydroxide using the same.
  • Iron oxide occurs in various environments in machines and equipment that come into contact with water, and reduces the performance of the machines and equipment. For example, in water supply pipes, boiler pipes for power plants, living environment facilities, etc., adhesion of iron oxide causes deterioration in performance and inconvenience in terms of hygiene and appearance. In addition, in the decommissioning of nuclear power plants, it is necessary to decontaminate radioactive substances, and since radioactive substances exist as if they were kneaded into the iron oxide film adhering to the base material, , it is desired to efficiently dissolve the iron oxide coating.
  • Patent Document 1 discloses a reducing agent composition containing thiourea dioxide, a specific alkali metal salt anhydride and an alkali metal bicarbonate.
  • Patent Document 2 describes a rust removing composition comprising a basic compound, a water-soluble metal chelating agent and thiourea dioxide.
  • Patent Document 1 JP-A-57-128767 (Patent Document 2) International Publication No. 2002/088427 pamphlet
  • the present invention provides a reducing agent composition containing the following components (A) to (C) and having a pH within the range of 7 to 11, wherein the aqueous solution containing the components (B) and (C) is The oxidation-reduction potential when component (A) is dissolved becomes -600 mV or less within 20 minutes after the start of dissolution of component (A), and the rate of change of oxidation-reduction potential becomes a value of 0 mV/min or more within 60 minutes. , iron oxide and/or iron hydroxide reducing agent compositions.
  • the present invention provides a method for reducing iron oxide and/or iron hydroxide, wherein the reducing agent composition is brought into contact with iron oxide and/or iron hydroxide.
  • the rust removing composition described in Patent Document 2 exclusively uses caustic alkali as the basic compound. Also, when thiourea dioxide and an alkaline agent are mixed in an aqueous solution, dithionous acid, which is a reducing species of iron oxide, is generated to cause a reduction reaction. However, since both the alkali metal bicarbonate salt used in Patent Document 1 and the caustic alkali used in Patent Document 2 produce dithionous acid at a slow rate, the rate at which the reducing species is deactivated by dissolved oxygen in water is There was a problem that the dissolution time and dissolution amount of iron oxide were not sufficient due to competition.
  • the present invention can rapidly generate dithionous acid, which is a reducing active species, from thiourea dioxide, and suppresses deactivation of the reducing species due to dissolved oxygen in water, thereby producing iron oxide and/or hydroxide.
  • the present invention relates to a reducing agent composition for iron oxide and/or iron hydroxide capable of sufficiently exhibiting an iron reduction rate, and a method for reducing iron oxide and/or iron hydroxide using the same.
  • dithionous acid which is a reducing active species
  • an amine compound as an alkaline agent.
  • deactivation of reducing species due to dissolved oxygen in water can be suppressed as much as possible, and the rate of reduction of iron oxide and/or iron hydroxide can be sufficiently exhibited.
  • the present inventors have found that iron oxide and/or iron hydroxide can be reduced and dissolved to near the stoichiometric amount of thiourea dioxide, and have completed the present invention.
  • the reducing agent composition for iron oxide and/or iron hydroxide of the present invention can rapidly generate dithionous acid, which is a reducing active species, from thiourea dioxide, thereby eliminating the reducing species due to dissolved oxygen in water.
  • the activity can be suppressed as much as possible, and the reduction rate of iron oxide and/or iron hydroxide can be fully exhibited.
  • Component (A): reducing agent Thiourea dioxide is preferably used as the reducing agent of component (A).
  • the content of component (A) in the reducing agent composition of the present invention is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, from the viewpoint of the high dissolution amount of iron oxide and/or iron hydroxide. , more preferably 0.03% by mass or more, and from the viewpoint of the solubility of the reducing agent, preferably 7.8% by mass or less, more preferably 7.0% by mass or less, and even more preferably 5.0% by mass or less.
  • Component (B) water-soluble metal chelating agent
  • Water-soluble metal chelating agents of component (B) include nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, hydroxyethylethylenediaminetriacetic acid, triethylenetetraminehexaacetic acid, 1,3-propanediaminetetraacetic acid, 1,3- Diamino-2-hydroxypropanetetraacetic acid, hydroxyethyliminodiacetic acid, dihydroxyethylglycine, glycol etherdiaminetetraacetic acid, dicarboxymethylglutamic acid, ethylenediamine-N,N'-disuccinic acid, L-aspartic acid-N,N-di Aminocarboxylic acid compounds such as acetic acid, N-(2-hydroxyethyl)iminodiacetic acid, methylglycine diacetic acid, 3-hydroxy-2,2'-imino
  • the content of component (B) in the reducing agent composition of the present invention is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, from the viewpoint of the high dissolution amount of iron oxide and/or iron hydroxide. , more preferably 0.03% by mass or more, and from the viewpoint of the solubility of the metal chelating agent, preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 20% by mass or less.
  • the total content of component (A) and component (B) in the reducing agent composition of the present invention is preferably 0.03% by mass or more, from the viewpoint of the high dissolution amount of iron oxide and/or iron hydroxide. More preferably 0.04% by mass or more, still more preferably 0.05% by mass or more, and from the viewpoint of solubility of component (A) and component (B), preferably 40% by mass or less, more preferably 30% by mass or less, More preferably, it is 20% by mass or less.
  • the total content of component (A) and component (B) in the reducing agent composition of the present invention is preferably is 0.01% by mass or more, more preferably 0.02% by mass or more, and still more preferably 0.03% by mass or more, and from the viewpoint of not dissolving iron oxide and / or iron hydroxide more than necessary to reduce radiation exposure, it is preferable is 0.2% by mass or less, more preferably 0.1% by mass or less, and still more preferably 0.08% by mass or less.
  • Component (C) Amine compound
  • Amine compounds of component (C) include hydrazine, methylamine, monoethanolamine, N,N-dimethylaminoethanol, N,N-diethylaminoethanol, N,N-dibutylaminoethanol, and N-( ⁇ -aminoethyl).
  • ethanolamine N-methylethanolamine, 2-ethylaminoethanol, mono-n-butylethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, mono-n-butyldiethanolamine, morpholine, piperazine, aminoethylpiperazine, homopiperazine , piperidine, ethylenediamine, diethylenetriamine, 1,2-propanediamine, dimethylethylenediamine, pentamethyldiethylenetriamine, tetramethylethylenediamine, dimethylaminohexanol, polyethyleneimine, hydrazine, 4-aminomorpholine, 4-aminopiperidine and the like.
  • those having a 1,2-diamine structure such as N-( ⁇ -aminoethyl)ethanolamine, piperazine, homopiperazine, ethylenediamine, diethylenetriamine, 1,2-propanediamine, etc., from the viewpoint of the speed of generation of reducing active species is preferred.
  • an amine compound having a 1,2-diamine structure is preferable as component (C) can be considered as follows.
  • ethylenediamine having a 1,2-diamine structure undergoes an addition reaction with thiourea dioxide to produce aminoethylguanidine (reaction 1).
  • This compound rapidly undergoes an intramolecular cyclization reaction to give an aminoimidazoline (reaction 2).
  • Further addition reaction of ethylenediamine to this aminoimidazoline produces aminoethylaminoimidazoline (reaction 3). It is known that this reaction proceeds quantitatively at a molar ratio of 1:2 between thiourea dioxide and ethylenediamine, and proceeds very rapidly.
  • thiourea dioxide is decomposed to rapidly generate dithionous acid, which is a reducing active species, thereby suppressing deactivation of the reducing species due to dissolved oxygen in water, thereby producing iron oxide and/or iron hydroxide.
  • dithionous acid which is a reducing active species
  • iron oxide and/or iron hydroxide can sufficiently exhibit the reduction rate of This reaction is considered to be specific to amines having a 1,2-diamine structure.
  • the content of component (C) in the reducing agent composition of the present invention is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, from the viewpoint of the high dissolution amount of iron oxide and/or iron hydroxide. , more preferably 0.03% by mass or more, and from the viewpoint of pH control, preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less.
  • the molar ratio (C)/(A) of component (C) to component (A) in the reducing agent composition of the present invention is preferably It is 1.5 or more, more preferably 1.8 or more, still more preferably 2 or more, and from the viewpoint of pH control, it is preferably 10 or less, more preferably 9 or less, and still more preferably 8 or less.
  • the reducing agent composition of the present invention preferably uses water as a solvent, and, in addition to the components (A) to (C), surfactants, organic acids, inorganic acids, organic salts, inorganic salts, and amine compounds. It is possible to contain an alkaline agent or the like other than the above.
  • the pH of the reducing agent composition of the present invention is 7 or more, preferably 7.5 or more, more preferably 8 or more, and still more preferably 8.5, from the viewpoint of the high dissolution amount of iron oxide and/or iron hydroxide. and is 11 or less, preferably 10.5 or less, more preferably 10 or less, and still more preferably 9.5 or less.
  • the reducing agent composition of the present invention must satisfy the contents and pH of the components (A) to (C) described above and satisfy the following conditions. That is, when (A) a reducing agent is dissolved in an aqueous solution containing (B) a water-soluble metal chelating agent and (C) an amine compound, the redox potential is - within 20 minutes after the start of dissolving component (A). It is necessary that the voltage is 600 mV or less and that the rate of change of the oxidation-reduction potential becomes 0 mV/min or more within 60 minutes.
  • Iron oxide and iron hydroxide to be reduced are generally known as red rust.
  • iron oxides include hematite represented by ⁇ -Fe 2 O 3 and maghematite represented by ⁇ -Fe 2 O 3 .
  • iron hydroxide include iron (III) hydroxide represented by Fe(OH) 3 and iron oxyhydroxide, and goethite represented by ⁇ -FeOOH, akaganate represented by ⁇ -FeOOH, and ⁇ -FeOOH. Lepidocrocite represented by.
  • the temperature at which the reducing agent composition of the present invention is brought into contact with iron oxide and/or iron hydroxide is preferably 5°C or higher, more preferably 10°C or higher, still more preferably 20°C or higher, and preferably 50°C. Below, more preferably 45° C. or less, still more preferably 40° C. or less. It is preferable to bring iron oxide and/or iron hydroxide into contact with a solution in which the components (B) and (C) of the present invention are dissolved, and then dissolve the component (A).
  • a reducing agent composition containing the following components (A) to (C) and having a pH within the range of 7 to 11, wherein an aqueous solution containing components (B) and (C) is added to the component ( The oxidation-reduction potential when A) is dissolved becomes -600 mV or less within 20 minutes after the start of dissolution of component (A), and the rate of change of the oxidation-reduction potential becomes 0 mV/min or more within 60 minutes.
  • the content of component (A) is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, still more preferably 0.03% by mass or more, and preferably 7.8% by mass or less, more preferably 7.0% by mass.
  • ⁇ 4> The reducing agent according to any one of ⁇ 1> to ⁇ 3>, wherein the component (B) is one or more selected from aminocarboxylic acid compounds, phosphonic acid compounds and hydroxycarboxylic acid compounds. Composition.
  • ⁇ 5> The reducing agent composition according to any one of ⁇ 1> to ⁇ 4>, wherein the component (B) is one or more selected from aminocarboxylic acid compounds and phosphonic acid compounds.
  • ⁇ 6> The reducing agent composition according to any one of ⁇ 1> to ⁇ 5> above, wherein the component (B) is an aminocarboxylic acid compound.
  • Aminocarboxylic acid compounds are nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, hydroxyethylethylenediaminetriacetic acid, triethylenetetraminehexaacetic acid, 1,3-propanediaminetetraacetic acid, 1,3-diamino-2 -hydroxypropanetetraacetic acid, hydroxyethyliminodiacetic acid, dihydroxyethylglycine, glycol etherdiaminetetraacetic acid, dicarboxymethylglutamic acid, ethylenediamine-N,N'-disuccinic acid, L-aspartic acid-N,N-diacetic acid, N -(2-Hydroxyethyl)iminodiacetic acid, methylglycine diacetic acid, 3-hydroxy-2,2'-iminodisuccinic acid, L-glutamic acid diacetic acid, and at
  • the content of component (B) is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, still more preferably 0.03% by mass or more, and preferably 40% by mass or less, more preferably 30% by mass.
  • the total content of component (A) and component (B) is preferably 0.03% by mass or more, more preferably 0.04% by mass or more, still more preferably 0.05% by mass or more, and preferably 40% by mass.
  • the compound having a 1,2-diamine structure is one or more selected from N-( ⁇ -aminoethyl)ethanolamine, piperazine, homopiperazine, ethylenediamine, diethylenetriamine, and 1,2-propanediamine.
  • the reducing agent composition according to any one of ⁇ 1> to ⁇ 10>.
  • the content of component (C) is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, still more preferably 0.03% by mass or more, and is preferably 25% by mass or less, more preferably 20% by mass.
  • the molar ratio (C)/(A) of component (C) to component (A) is preferably 1.5 or more, more preferably 1.8 or more, and still more preferably 2 or more, and from the viewpoint of pH control , preferably 10 or less, more preferably 9 or less, still more preferably 8 or less, the reducing agent composition according to any one of ⁇ 1> to ⁇ 12>.
  • the pH is preferably 7.5 or higher, more preferably 8 or higher, still more preferably 8.5 or higher, and is preferably 10.5 or lower, more preferably 10 or lower, and further preferably 9.5 or lower.
  • the reducing agent composition according to any one of ⁇ 13>.
  • ⁇ 15> A method for reducing iron oxide and/or iron hydroxide, wherein the reducing agent composition of ⁇ 1> to ⁇ 14> is brought into contact with iron oxide and/or iron hydroxide.
  • the temperature at which the reducing agent composition is brought into contact with iron oxide and/or iron hydroxide is preferably 5°C or higher, more preferably 10°C or higher, still more preferably 20°C or higher, and preferably 50°C.
  • Examples 1-15, Comparative Examples 1-6 Aqueous solutions shown in Tables 1 and 2 were prepared, and the following hematite dissolution test and oxidation-reduction potential measurement were performed.
  • thiourea dioxide is added while stirring the ingredients other than thiourea dioxide with a magnetic stirrer, and the pH when thiourea dioxide is completely dissolved is measured using a portable pH meter D-72. (manufactured by Horiba, Ltd.) and pH electrode 9615S-10D (manufactured by Horiba, Ltd.).
  • ⁇ Hematite dissolution test method> In a glass container with a capacity of 50 mL, 40 g of the composition shown in Tables 1 and 2, except for thiourea dioxide, was mixed, 0.4 g of hematite was added, and the mixture was stirred at room temperature using a magnetic stirrer. rice field. After stirring for 1 hour after the addition of thiourea dioxide, samples were taken and filtered using a disposable filter DISMIC 25CS020AN (manufactured by AS ONE).
  • Tables 1 and 2 show the total content (% by mass) of components (A) and (B) as an index showing the iron oxide and/or iron hydroxide reducing ability of each composition along with the iron ion concentration. The ratio of iron ion concentration (ppm) to
  • ⁇ Oxidation-reduction potential measurement method In a 100 mL glass container, 100 g of a composition was prepared by mixing components other than thiourea dioxide in the compositions shown in Tables 1 and 2, and stirred at room temperature using a magnetic stirrer. While stirring, using a portable pH meter D-72 (manufactured by Horiba, Ltd.) and an ORP electrode 9300-10D (manufactured by Horiba, Ltd.), oxidation was performed at intervals of 10 seconds with the time of adding thiourea dioxide as 0 seconds. Reduction potential measurements were recorded. Tables 1 and 2 show the time (minutes) until the oxidation-reduction potential becomes ⁇ 600 mV or less and the time (minutes) until the rate of change of the oxidation-reduction potential becomes 0 mV/min or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

成分(A)~(C)を含有し、pHが7~11の範囲内である還元剤組成物であって、成分(B)及び(C)を含有する水溶液に成分(A)を溶解したときの酸化還元電位が、成分(A)を溶解開始後20分以内に-600mV以下となり、かつ酸化還元電位の変化率が60分以内に0mV/分以上の値となる、酸化鉄及び/又は水酸化鉄用還元剤組成物、並びに当該還元剤組成物を酸化鉄及び/又は水酸化鉄に接触させる酸化鉄及び/又は水酸化鉄の還元方法。 (A)還元剤 (B)水溶性金属キレート剤 (C)アミン化合物

Description

酸化鉄及び/又は水酸化鉄用還元剤組成物
 本発明は、酸化鉄及び/又は水酸化鉄用還元剤組成物、並びにこれを用いた酸化鉄及び/又は水酸化鉄の還元方法に関する。
 酸化鉄は、水と接触する機械、設備等に対して、種々の環境下で発生し、機械や設備の性能を低下させる。例えば、水道用配管、発電所用ボイラー配管、住環境設備等において、酸化鉄の付着に起因して、性能の低下や、衛生上又は外観上の不都合が生じている。また、原子力発電所の廃炉においては、放射性物質の除染作業が必要とされており、放射性物質は母材に付着している酸化鉄被膜中に練り込まれるように存在していることから、酸化鉄被膜を効率よく溶解することが望まれている。
 そこで、様々な酸化鉄除去技術が提案されている。例えば、特許文献1には、二酸化チオ尿素、特定のアルカリ金属塩無水物及び重炭酸アルカリ金属塩を含有する還元剤組成物が開示されている。特許文献2には、塩基性化合物、水溶性の金属キレート剤及び二酸化チオ尿素からなる除錆用組成物が記載されている。
    (特許文献1)特開昭57-128767号公報
    (特許文献2)国際公開第2002/088427号パンフレット
 本発明は、次の成分(A)~(C)を含有し、pHが7~11の範囲内である還元剤組成物であって、成分(B)及び(C)を含有する水溶液に成分(A)を溶解したときの酸化還元電位が、成分(A)を溶解開始後20分以内に-600mV以下となり、かつ酸化還元電位の変化率が60分以内に0mV/分以上の値となる、酸化鉄及び/又は水酸化鉄用還元剤組成物を提供するものである。
 (A)還元剤
 (B)水溶性金属キレート剤
 (C)アミン化合物
 さらに本発明は、前記の還元剤組成物を酸化鉄及び/又は水酸化鉄に接触させる、酸化鉄及び/又は水酸化鉄の還元方法を提供するものである。
発明の詳細な説明
 特許文献2に記載の除錆用組成物では、塩基性化合物として専ら苛性アルカリを用いている。また、二酸化チオ尿素とアルカリ剤を水溶液中で混合することにより酸化鉄の還元種である亜ジチオン酸が生成することにより還元反応が起こる。しかし、特許文献1で使用される重炭酸アルカリ金属塩、特許文献2で使用される苛性アルカリのいずれも亜ジチオン酸の生成速度が遅いため、還元種が水中の溶存酸素で失活する速度と競合してしまい、酸化鉄の溶解時間と溶解量が十分でないという問題があった。
 したがって本発明は、二酸化チオ尿素から還元活性種である亜ジチオン酸を速やかに生成することができ、水中の溶存酸素による還元種の失活を限りなく抑制することにより酸化鉄及び/又は水酸化鉄の還元速度を十分に発揮できる酸化鉄及び/又は水酸化鉄用還元剤組成物、並びにそれを用いた酸化鉄及び/又は水酸化鉄の還元方法に関する。
 本発明者は、種々のアルカリ剤を検討した結果、アルカリ剤としてアミン化合物を用いることで、二酸化チオ尿素から還元活性種である亜ジチオン酸を速やかに生成することが出来ることを見出した。これにより、水中の溶存酸素による還元種の失活を限りなく抑制され、酸化鉄及び/又は水酸化鉄の還元速度を十分に発揮できる。その結果、酸化鉄及び/又は水酸化鉄を二酸化チオ尿素の化学量論的量近くまで還元溶解可能であることを見出し、本発明を完成した。
 本発明の酸化鉄及び/又は水酸化鉄用還元剤組成物は、二酸化チオ尿素から還元活性種である亜ジチオン酸を速やかに生成することができ、これにより水中の溶存酸素による還元種の失活を限りなく抑制して酸化鉄及び/又は水酸化鉄の還元速度を十分に発揮することができる。
〔成分(A):還元剤〕
 成分(A)の還元剤としては、二酸化チオ尿素が好適に用いられる。本発明の還元剤組成物中における成分(A)の含有量は、酸化鉄及び/又は水酸化鉄の溶解量の高さの観点から、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、更に好ましくは0.03質量%以上であり、また、還元剤の溶解度の観点から、好ましくは7.8質量%以下、より好ましくは7.0質量%以下、更に好ましくは5.0質量%以下である。
〔成分(B):水溶性金属キレート剤〕
 成分(B)の水溶性金属キレート剤としては、ニトリロ三酢酸、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルエチレンジアミントリ酢酸、トリエチレンテトラミン六酢酸、1,3-プロパンジアミン四酢酸、1,3-ジアミノ-2-ヒドロキシプロパン四酢酸、ヒドロキシエチルイミノ二酢酸、ジヒドロキシエチルグリシン、グリコールエーテルジアミン四酢酸、ジカルボキシメチルグルタミン酸、エチレンジアミン-N,N'-ジコハク酸、L-アスパラギン酸-N,N-二酢酸、N-(2-ヒドロキシエチル)イミノ二酢酸、メチルグリシン二酢酸、3-ヒドロキシ-2,2'-イミノジコハク酸、L-グルタミン酸二酢酸、これらの塩等のアミノカルボン酸系化合物;ヒドロキシエチリデンジホスホン酸、ニトリロトリ(メチルホスホン酸)、2-ホスホノブタン-1,2,4-トリカルボン酸、エチレンジアミンテトラメチレンホスホン酸、これらの塩等のホスホン酸系化合物;グルコン酸、クエン酸、これらの塩等のヒドロキシカルボン酸系化合物が挙げられる。これらのなかでも、アミノカルボン酸系化合物、ホスホン酸系化合物が好ましい。
 本発明の還元剤組成物中における成分(B)の含有量は、酸化鉄及び/又は水酸化鉄の溶解量の高さの観点から、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、更に好ましくは0.03質量%以上であり、また、金属キレート剤の溶解度の観点から、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である。
 本発明の還元剤組成物中における成分(A)と成分(B)の合計含有量は、酸化鉄及び/又は水酸化鉄の溶解量の高さの観点からは、好ましくは0.03質量%以上、より好ましくは0.04質量%以上、更に好ましくは0.05質量%以上であり、また、成分(A)及び成分(B)の溶解度の観点から、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である。
 一方、本発明を原子力発電所の原子炉設備における放射性物質の除染作業に適用する場合には、酸化鉄及び/又は水酸化鉄は放射性物質と共に溶解されることから、作業員への被ばく量を軽減するため、酸化鉄及び/又は水酸化鉄の溶解量を抑制する必要が生じる場合がある。この観点から、本発明の還元剤組成物を放射性物質の除染作業に使用する場合においては、本発明の還元剤組成物中における成分(A)と成分(B)の合計含有量は、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、更に好ましくは0.03質量%以上であり、また、被ばく量軽減のために必要以上の酸化鉄及び/又は水酸化鉄を溶解しない観点から、好ましくは0.2質量%以下、より好ましくは0.1質量%以下、更に好ましくは0.08質量%以下である。
〔成分(C):アミン化合物〕
 成分(C)のアミン化合物としては、ヒドラジン、メチルアミン、モノエタノールアミン、N,N-ジメチルアミノエタノール、N,N-ジエチルアミノエタノール、N,N-ジブチルアミノエタノール、N-(β-アミノエチル)エタノールアミン、N-メチルエタノールアミン、2-エチルアミノエタノール、モノ-n-ブチルエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、モノ-n-ブチルジエタノールアミン、モルホリン、ピペラジン、アミノエチルピペラジン、ホモピペラジン、ピペリジン、エチレンジアミン、ジエチレントリアミン、1,2-プロパンジアミン、ジメチルエチレンジアミン、ペンタメチルジエチレントリアミン、テトラメチルエチレンジアミン、ジメチルアミノヘキサノール、ポリエチレンイミン、ヒドラジン、4-アミノモルホリン、4-アミノピペリジン等が挙げられ、なかでも、還元活性種の生成の速さの観点から、N-(β-アミノエチル)エタノールアミン、ピペラジン、ホモピペラジン、エチレンジアミン、ジエチレントリアミン、1,2-プロパンジアミン等の1,2-ジアミン構造を有するものが好ましい。
 成分(C)として1,2-ジアミン構造を有するアミン化合物が好ましい理由は、以下のように考えることができる。二酸化チオ尿素に対し、例えば1,2-ジアミン構造を有するエチレンジアミンが付加反応することにより、アミノエチルグアニジンが生成する(反応1)。この化合物は速やかに分子内環化反応することによりアミノイミダゾリンとなる(反応2)。このアミノイミダゾリンに対して更にエチレンジアミンが付加反応することにより、アミノエチルアミノイミダゾリンを生成する(反応3)。この反応は二酸化チオ尿素とエチレンジアミンがモル比1:2で定量的に進行することが分かっており、非常に速やかに進行する。その結果、二酸化チオ尿素が分解して還元活性種である亜ジチオン酸を速やかに生成することにより、水中の溶存酸素による還元種の失活を限りなく抑制して酸化鉄及び/又は水酸化鉄の還元速度を十分に発揮することができる。この反応は、1,2-ジアミン構造を有するアミンに特異的な反応であると考えられる。
Figure JPOXMLDOC01-appb-C000001
 本発明の還元剤組成物中における成分(C)の含有量は、酸化鉄及び/又は水酸化鉄の溶解量の高さの観点から、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、更に好ましくは0.03質量%以上であり、また、pHコントロールの観点から、好ましくは25質量%以下、より好ましくは20質量%以下、更に好ましくは15質量%以下である。
 本発明の還元剤組成物中における成分(A)に対する成分(C)のモル比(C)/(A)は、酸化鉄及び/又は水酸化鉄の溶解量の高さの観点から、好ましくは1.5以上、より好ましくは1.8以上、更に好ましくは2以上であり、また、pHコントロールの観点から、好ましくは10以下、より好ましくは9以下、更に好ましくは8以下である。
〔溶媒、任意成分〕
 本発明の還元剤組成物は、水を溶媒とすることが好ましく、また、前記成分(A)~(C)以外に、界面活性剤、有機酸、無機酸、有機塩、無機塩、アミン化合物以外のアルカリ剤等を含有することができる。
〔pH〕
 本発明の還元剤組成物のpHは、酸化鉄及び/又は水酸化鉄の溶解量の高さの観点から、7以上であって、好ましくは7.5以上、より好ましくは8以上、更に好ましくは8.5以上であり、また、11以下であって、好ましくは10.5以下、より好ましくは10以下、更に好ましくは9.5以下である。
〔酸化還元電位〕
 本発明の還元剤組成物は、以上述べた成分(A)~(C)の含有量及びpHを満たし、かつ、以下の条件を満たすことが必要である。すなわち、(B)水溶性金属キレート剤と(C)アミン化合物を含有する水溶液に、(A)還元剤を溶解したときの酸化還元電位が、成分(A)を溶解開始後20分以内に-600mV以下となり、かつ酸化還元電位の変化率が60分以内に0mV/分以上の値となることが必要である。
〔還元対象としての酸化鉄及び/又は水酸化鉄〕
 本発明が還元の対象とする酸化鉄及び水酸化鉄は、一般的に赤錆として知られているものである。具体的には、酸化鉄としてはα-Feで表されるヘマタイト、γ-Feで表されるマグヘマタイトが挙げられる。水酸化鉄としては、Fe(OH)で表される水酸化鉄(III)やオキシ水酸化鉄であり、α-FeOOHで表されるゲータイト、β-FeOOHで表されるアカガネイト、γ-FeOOHで表されるレピドクロサイトが挙げられる。
〔還元方法〕
 以上述べた本発明の還元剤組成物を酸化鉄及び/又は水酸化鉄に接触させることによって、酸化鉄及び/又は水酸化鉄を還元することができる。本発明の還元剤組成物を酸化鉄及び/又は水酸化鉄に接触させる温度は、好ましくは5℃以上、より好ましくは10℃以上、更に好ましくは20℃以上であり、また、好ましくは50℃以下、より好ましくは45℃以下、更に好ましくは40℃以下である。本発明の成分(B)と成分(C)を溶解した液に酸化鉄及び/又は水酸化鉄を接触させ、その後、成分(A)を溶解させることが好ましい。
 以上述べた実施形態に関し、以下に本発明の好ましい態様を更に開示する。
<1> 次の成分(A)~(C)を含有し、pHが7~11の範囲内である還元剤組成物であって、成分(B)及び(C)を含有する水溶液に成分(A)を溶解したときの酸化還元電位が、成分(A)を溶解開始後20分以内に-600mV以下となり、かつ酸化還元電位の変化率が60分以内に0mV/分以上の値となる、酸化鉄及び/又は水酸化鉄用還元剤組成物。
 (A)還元剤
 (B)水溶性金属キレート剤
 (C)アミン化合物
<2> 成分(A)が二酸化チオ尿素である、前記<1>記載の還元剤組成物。
<3> 成分(A)の含有量が、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、更に好ましくは0.03質量%以上であり、また、好ましくは7.8質量%以下、より好ましくは7.0質量%以下、更に好ましくは5.0質量%以下である、前記<1>又は<2>記載の還元剤組成物。
<4> 成分(B)が、アミノカルボン酸系化合物、ホスホン酸系化合物及びヒドロキシカルボン酸系化合物から選ばれる1種以上である、前記<1>~<3>のいずれか1記載の還元剤組成物。
<5> 成分(B)が、アミノカルボン酸系化合物及びホスホン酸系化合物から選ばれる1種以上である、前記<1>~<4>のいずれか1記載の還元剤組成物。
<6> 成分(B)がアミノカルボン酸系化合物である、前記<1>~<5>のいずれか1記載の還元剤組成物。
<7> アミノカルボン酸系化合物が、ニトリロ三酢酸、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルエチレンジアミントリ酢酸、トリエチレンテトラミン六酢酸、1,3-プロパンジアミン四酢酸、1,3-ジアミノ-2-ヒドロキシプロパン四酢酸、ヒドロキシエチルイミノ二酢酸、ジヒドロキシエチルグリシン、グリコールエーテルジアミン四酢酸、ジカルボキシメチルグルタミン酸、エチレンジアミン-N,N'-ジコハク酸、L-アスパラギン酸-N,N-二酢酸、N-(2-ヒドロキシエチル)イミノ二酢酸、メチルグリシン二酢酸、3-ヒドロキシ-2,2'-イミノジコハク酸、L-グルタミン酸二酢酸、及びこれらの塩から選ばれる1種以上である、前記<6>記載の還元剤組成物。
<8> 成分(B)の含有量が、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、更に好ましくは0.03質量%以上であり、また、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である、前記<1>~<7>のいずれか1記載の還元剤組成物。
<9> 成分(A)と成分(B)の合計含有量が、好ましくは0.03質量%以上、より好ましくは0.04質量%以上、更に好ましくは0.05質量%以上であり、また、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である、前記<1>~<8>のいずれか1記載の還元剤組成物。
<10> 成分(C)が、1,2-ジアミン構造を有する化合物である、前記<1>~<9>のいずれか1記載の還元剤組成物。
<11> 1,2-ジアミン構造を有する化合物が、N-(β-アミノエチル)エタノールアミン、ピペラジン、ホモピペラジン、エチレンジアミン、ジエチレントリアミン、及び1,2-プロパンジアミンから選ばれる1以上である、前記<1>~<10>のいずれか1記載の還元剤組成物。
<12> 成分(C)の含有量が、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、更に好ましくは0.03質量%以上であり、また、好ましくは25質量%以下、より好ましくは20質量%以下、更に好ましくは15質量%以下である、前記<1>~<11>のいずれか1記載の還元剤組成物。
<13> 成分(A)に対する成分(C)のモル比(C)/(A)が、好ましくは1.5以上、より好ましくは1.8以上、更に好ましくは2以上であり、また、pHコントロールの観点から、好ましくは10以下、より好ましくは9以下、更に好ましくは8以下である、前記<1>~<12>のいずれか1記載の還元剤組成物。
<14> pHが、好ましくは7.5以上、より好ましくは8以上、更に好ましくは8.5以上であり、また、好ましくは10.5以下、より好ましくは10以下、更に好ましくは9.5以下である前記<1>~<13>のいずれか1記載の還元剤組成物。
<15> 前記<1>~<14>の還元剤組成物を、酸化鉄及び/又は水酸化鉄に接触させる、酸化鉄及び/又は水酸化鉄の還元方法。
<16> 還元剤組成物を酸化鉄及び/又は水酸化鉄に接触させる温度が、好ましくは5℃以上、より好ましくは10℃以上、更に好ましくは20℃以上であり、また、好ましくは50℃以下、より好ましくは45℃以下、更に好ましくは40℃以下である、前記<15>記載の還元方法。
実施例1~15、比較例1~6
 表1~2に示す水溶液を調製し、以下に示すヘマタイト溶解試験及び酸化還元電位の測定を行った。
<pH測定方法>
 表1~2に示す組成中、二酸化チオ尿素以外の成分をマグネットスターラーで攪拌しながら二酸化チオ尿素を添加して、二酸化チオ尿素が完全に溶解したときのpHを、ポータブル型pHメーターD-72(堀場製作所社製)及びpH電極 9615S-10D(堀場製作所社製)を用いて測定した。
<ヘマタイト溶解試験方法>
 容量50mLのガラス容器に、表1~2に示す組成中、二酸化チオ尿素以外の成分を混合した組成物40gを調製し、ヘマタイトを0.4g添加してマグネティックスターラーを用いて室温にて攪拌を行った。二酸化チオ尿素を添加してから1時間攪拌した後にサンプリングして、ディスポーザブルフィルターDISMIC 25CS020AN(アズワン社製)を用いてサンプルをろ過した後、水相中の鉄イオン濃度を、ポータブル多項目水質計PF-12(MACHEREY-NAGEL社製)及び鉄測定試薬NANOCOLOR Tube Test Iron 3(MACHEREY-NAGEL社製)を用いて測定し、ヘマタイトから溶解した鉄イオン濃度を算出した。
 表1及び2には、鉄イオン濃度と共に、各組成物の酸化鉄及び/又は水酸化鉄還元能力の高さを示す指標として、成分(A)及び(B)の合計含有量(質量%)に対する鉄イオン濃度(ppm)の比率を示した。
<酸化還元電位測定方法>
 容量100mLのガラス容器に、表1~2に示す組成中、二酸化チオ尿素以外の成分を混合した組成物100gを調製し、マグネティックスターラーを用いて室温にて攪拌を行った。攪拌をしながら、ポータブル型pHメーターD-72(堀場製作所社製)及びORP電極 9300-10D(堀場製作所社製)を用いて、二酸化チオ尿素を添加した時点を0秒として10秒間隔で酸化還元電位の計測値を記録した。酸化還元電位が-600mV以下になるまでの時間(分)、及び酸化還元電位の変化率が0mV/min以上になるまでの時間(分)を表1及び2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 

Claims (9)

  1.  次の成分(A)~(C)を含有し、pHが7~11の範囲内である還元剤組成物であって、成分(B)及び(C)を含有する水溶液に成分(A)を溶解したときの酸化還元電位が、成分(A)を溶解開始後20分以内に-600mV以下となり、かつ酸化還元電位の変化率が60分以内に0mV/分以上の値となる、酸化鉄及び/又は水酸化鉄用還元剤組成物。
     (A)還元剤
     (B)水溶性金属キレート剤
     (C)アミン化合物
  2.  成分(A)が二酸化チオ尿素である請求項1に記載の還元剤組成物。
  3.  成分(B)がアミノカルボン酸系化合物である請求項1又は2に記載の還元剤組成物。
  4.  成分(C)が1,2-ジアミン構造を有する化合物である請求項1~3のいずれか1項に記載の還元剤組成物。
  5.  成分(A)に対する成分(C)のモル比(C)/(A)が1.5以上である請求項1~4のいずれか1項に記載の還元剤組成物。
  6.  成分(A)の含有量が、0.01質量%以上7.8質量%以下である、請求項1~5のいずれか1項に記載の還元剤組成物。
  7.  成分(B)の含有量が、0.01質量%以上40質量%以下である、請求項1~6のいずれか1項に記載の還元剤組成物
  8.  請求項1~7のいずれか1項に記載の還元剤組成物を酸化鉄及び/又は水酸化鉄に接触させる、酸化鉄及び/又は水酸化鉄の還元方法。
  9.  5℃以上40℃以下の温度範囲で行う請求項8に記載の酸化鉄及び/又は水酸化鉄の還元方法。
PCT/JP2022/005372 2021-02-12 2022-02-10 酸化鉄及び/又は水酸化鉄用還元剤組成物 WO2022172999A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22752821.3A EP4293137A1 (en) 2021-02-12 2022-02-10 Reducing agent composition for iron oxide and/or iron hydroxide
CN202280014719.3A CN116867741A (zh) 2021-02-12 2022-02-10 氧化铁和/或氢氧化铁用还原剂组合物
US18/275,866 US20240133046A1 (en) 2021-02-12 2022-02-10 Reducing agent composition for iron oxide and/or iron hydroxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021021151 2021-02-12
JP2021-021151 2021-02-12

Publications (1)

Publication Number Publication Date
WO2022172999A1 true WO2022172999A1 (ja) 2022-08-18

Family

ID=82838336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005372 WO2022172999A1 (ja) 2021-02-12 2022-02-10 酸化鉄及び/又は水酸化鉄用還元剤組成物

Country Status (5)

Country Link
US (1) US20240133046A1 (ja)
EP (1) EP4293137A1 (ja)
JP (1) JP2022123875A (ja)
CN (1) CN116867741A (ja)
WO (1) WO2022172999A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128767A (en) 1981-02-02 1982-08-10 Kao Corp Reducing agent composition
JPH05507305A (ja) * 1990-04-30 1993-10-21 アーク・デベロップメント・コーポレーション 金属酸化物の溶解剤
JPH10251694A (ja) * 1997-03-11 1998-09-22 Ryutaro Kiyono 赤さび・温泉の黒色付着物、黒さび・砂鉄・ベンガラ、コンクリート製品等に付着浸透した墨・油性インキ・ラッカースプレーの溶剤およびそれらの溶剤の製造方法
WO2002088427A1 (fr) 2001-04-25 2002-11-07 Amtec Kabushiki Kaisha Composition antirouille et procede d'elimination de la rouille au moyen de celle-ci
JP2018127661A (ja) * 2017-02-07 2018-08-16 日本パーカライジング株式会社 処理液及び酸化鉄除去方法
JP2020084304A (ja) * 2018-11-30 2020-06-04 三菱日立パワーシステムズ株式会社 溶解除去組成物および洗浄方法
JP2020180359A (ja) * 2019-04-26 2020-11-05 三菱パワー株式会社 化学洗浄方法および化学洗浄装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128767A (en) 1981-02-02 1982-08-10 Kao Corp Reducing agent composition
JPH05507305A (ja) * 1990-04-30 1993-10-21 アーク・デベロップメント・コーポレーション 金属酸化物の溶解剤
JPH10251694A (ja) * 1997-03-11 1998-09-22 Ryutaro Kiyono 赤さび・温泉の黒色付着物、黒さび・砂鉄・ベンガラ、コンクリート製品等に付着浸透した墨・油性インキ・ラッカースプレーの溶剤およびそれらの溶剤の製造方法
WO2002088427A1 (fr) 2001-04-25 2002-11-07 Amtec Kabushiki Kaisha Composition antirouille et procede d'elimination de la rouille au moyen de celle-ci
JP2018127661A (ja) * 2017-02-07 2018-08-16 日本パーカライジング株式会社 処理液及び酸化鉄除去方法
JP2020084304A (ja) * 2018-11-30 2020-06-04 三菱日立パワーシステムズ株式会社 溶解除去組成物および洗浄方法
JP2020180359A (ja) * 2019-04-26 2020-11-05 三菱パワー株式会社 化学洗浄方法および化学洗浄装置

Also Published As

Publication number Publication date
JP2022123875A (ja) 2022-08-24
US20240133046A1 (en) 2024-04-25
CN116867741A (zh) 2023-10-10
EP4293137A1 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
CN101947381B (zh) 重金属处理剂及重金属污染物质的处理方法
US7727420B2 (en) Corrosion inhibiting compositions
EP1345848B1 (en) Composition comprising an oxidizing and complexing compound
TWI738104B (zh) 溶解去除用組成物及洗淨方法
JP2007291505A (ja) 銅配線用洗浄剤
WO2022172999A1 (ja) 酸化鉄及び/又は水酸化鉄用還元剤組成物
JP2004175871A (ja) 金属表面の洗浄剤及びそれを用いた金属表面の洗浄方法
JP2016183370A (ja) 溶解除去組成物
WO2005001016A1 (en) Semiconductor cleaning solution
WO2010098734A1 (en) Corrosion inhibiting compositions
US20060261313A1 (en) Cerium ion-containing solution and corrosion inhibitor
JP4114820B2 (ja) 洗浄剤組成物
JP2006328442A (ja) セリウムイオン含有溶液及び腐食抑制剤
JP2014088477A (ja) 重金属処理剤及び重金属汚染物質の処理方法
JPH0119473B2 (ja)
EP1652969A1 (en) Deruster composition and method
EP1086944B1 (en) Amino acid derivative composition and process for producing an amino acid derivative
JP2015112557A (ja) 析出抑制剤
JP2015105412A (ja) 溶解除去組成物
WO2002088427A1 (fr) Composition antirouille et procede d'elimination de la rouille au moyen de celle-ci
CA2610867C (en) Ferric and acid complex
CN109535023B (zh) 一种dtpa偏中性盐及其制备方法与应用
JP5101332B2 (ja) 炭素鋼の表面処理方法及び表面処理された炭素鋼
JP7061758B2 (ja) 過酸化水素安定化剤および過酸化水素組成物
JP2003176997A (ja) スケールの除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18275866

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280014719.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022752821

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022752821

Country of ref document: EP

Effective date: 20230912