WO2022172853A1 - ガスタービン設備、及びガスタービンの制御方法 - Google Patents

ガスタービン設備、及びガスタービンの制御方法 Download PDF

Info

Publication number
WO2022172853A1
WO2022172853A1 PCT/JP2022/004264 JP2022004264W WO2022172853A1 WO 2022172853 A1 WO2022172853 A1 WO 2022172853A1 JP 2022004264 W JP2022004264 W JP 2022004264W WO 2022172853 A1 WO2022172853 A1 WO 2022172853A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel
combustion
gas turbine
controller
Prior art date
Application number
PCT/JP2022/004264
Other languages
English (en)
French (fr)
Inventor
達哉 萩田
明典 林
裕行 武石
義隆 平田
圭祐 三浦
啓太 柚木
Original Assignee
三菱パワー株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社, 三菱重工業株式会社 filed Critical 三菱パワー株式会社
Priority to US18/270,634 priority Critical patent/US20240068416A1/en
Priority to DE112022000211.5T priority patent/DE112022000211T5/de
Priority to KR1020237021269A priority patent/KR20230107687A/ko
Priority to JP2022580595A priority patent/JP7454074B2/ja
Priority to CN202280008937.6A priority patent/CN116745511A/zh
Publication of WO2022172853A1 publication Critical patent/WO2022172853A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/057Control or regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • F02C9/52Control of fuel supply conjointly with another control of the plant with control of working fluid flow by bleeding or by-passing the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • F02C9/54Control of fuel supply conjointly with another control of the plant with control of working fluid flow by throttling the working fluid, by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • F05D2270/082Purpose of the control system to produce clean exhaust gases with as little NOx as possible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • F05D2270/083Purpose of the control system to produce clean exhaust gases by monitoring combustion conditions
    • F05D2270/0831Purpose of the control system to produce clean exhaust gases by monitoring combustion conditions indirectly, at the exhaust

Definitions

  • the present disclosure relates to gas turbine equipment and methods of controlling gas turbines.
  • This application claims priority based on Japanese Patent Application No. 2021-021754 filed in Japan on February 15, 2021, the content of which is incorporated herein.
  • a gas turbine includes a compressor that compresses air, a combustor that burns fuel in the air compressed by the compressor to generate combustion gas, and a turbine that is driven by the combustion gas.
  • NOx is generated by combustion of fuel.
  • This NOx emission is regulated by laws and the like. Therefore, a technique for reducing NOx emissions is desired.
  • Patent Document 1 discloses a technique for reducing NOx emissions by heating the air before it is drawn into the compressor.
  • an object of the present disclosure is to provide a technique capable of reducing NOx emissions when ammonia is used as fuel for a gas turbine.
  • a gas turbine facility as one aspect for achieving the above object includes: A gas turbine, a NOx concentration meter for detecting NOx concentration in exhaust gas, which is combustion gas discharged from the gas turbine, and a control device.
  • the gas turbine includes a compressor capable of compressing air to generate compressed air, a combustor capable of burning ammonia as a fuel in the compressed air to generate combustion gas, and a turbine driven by the combustion gas.
  • the compressor includes a compressor rotor rotatable about an axis, a compressor casing that covers the compressor rotor, an intake air adjuster that adjusts an air intake amount that is the flow rate of air sucked into the compressor casing, have
  • the combustor includes a combustion chamber former for forming a combustion chamber in which the fuel is combusted and for guiding the combustion gas generated by the combustion of the fuel to the turbine; a combustor body capable of injecting primary combustion air that is part of the compressed air.
  • the combustion chamber former has an opening through which dilution air, which is a part of the compressed air, can be introduced into the combustion chamber from outside the combustion chamber former.
  • the combustor includes, in the combustion chamber, a rich combustion region in which the fuel from the combustor main body is burned at a fuel-air ratio greater than a stoichiometric fuel-air ratio, and the rich combustion. Gas from the region is diluted with the dilution air from the openings, and the fuel contained in the gas after being diluted with the dilution air is removed in a fuel-air ratio in which the fuel-air ratio is less than the stoichiometric fuel-air ratio. and a lean combustion region for combustion are formed.
  • the control device has an intake controller that controls the operation of the intake regulator so that the intake air amount decreases according to the NOx concentration in the exhaust gas detected by the NOx concentration meter.
  • the amount of NOx generated changes according to the fuel-air ratio in the fuel combustion region.
  • the combustor of this aspect is a combustor in which a rich combustion region and a lean combustion region are formed in the combustion chamber. Therefore, the combustor of this aspect is a combustor that adopts the RQL (Rich burn quick Quench Lean burn) method. Further, the combustor of this aspect uses ammonia as fuel.
  • the combustion chamber fuel-air ratio which is the ratio of the total fuel flow rate injected into the combustion chamber to the total combustion air flowing in, becomes smaller than during rated load operation.
  • the fuel-air ratio in both the rich combustion region and the lean combustion region becomes small during partial load operation, and the combustion gas in the combustor exhausted from the combustor NOx concentration increases.
  • the intake controller controls the operation of the intake regulator so that the intake air amount decreases.
  • the intake air amount when the intake air amount is small, the fuel-air ratio increases both in the rich combustion region and the lean combustion region. As a result, in this aspect, the amount of NOx emissions can be suppressed.
  • a gas turbine facility as another aspect for achieving the above object includes: A gas turbine, an air return line, a return air control valve, a NOx concentration meter for detecting the NOx concentration in exhaust gas, which is combustion gas discharged from the gas turbine, and a control device.
  • the gas turbine includes a compressor capable of compressing air to produce compressed air, a combustor capable of combusting fuel in the compressed air to produce combustion gases, and a turbine operable by the combustion gases.
  • the combustor includes a combustion chamber former for forming a combustion chamber in which the fuel is combusted and for guiding the combustion gas generated by the combustion of the fuel to the turbine; a combustor body capable of injecting ammonia and main combustion air which is part of said compressed air.
  • the combustion chamber former has an opening through which dilution air, which is a part of the compressed air, can be introduced into the combustion chamber from outside the combustion chamber former.
  • the combustor includes, in the combustion chamber, a rich combustion region in which the fuel from the combustor main body is burned at a fuel-air ratio greater than a stoichiometric fuel-air ratio, and the rich combustion. Gas from the region is diluted with the dilution air from the openings, and the fuel contained in the gas after being diluted with the dilution air is removed in a fuel-air ratio in which the fuel-air ratio is less than the stoichiometric fuel-air ratio. and a lean combustion region for combustion are formed.
  • the air return line is configured to return part of the compressed air discharged from the compressor casing back into the compressor casing.
  • the return air control valve is configured to adjust the flow rate of the return air, which is the compressed air, flowing through the air return line.
  • the control device has a return air controller that controls the return air control valve so that the flow rate of the return air increases according to the NOx concentration in the exhaust gas, which is the combustion gas discharged from the turbine.
  • the return air controller controls the operation of the return air control valve so that the flow rate of the return air increases.
  • the fuel-air ratio increases both in the rich combustion region and the lean combustion region.
  • a gas turbine facility as still another aspect for achieving the above object comprises: A gas turbine, a dilution air control valve, and a controller.
  • the gas turbine includes a compressor capable of compressing air to generate compressed air, a combustor capable of burning ammonia as a fuel in the compressed air to generate combustion gas, and a turbine driven by the combustion gas.
  • the compressor has a compressor rotor rotatable about an axis and a compressor casing covering the compressor rotor.
  • the combustor includes a combustion chamber former for forming a combustion chamber in which the fuel is combusted and for guiding the combustion gas generated by the combustion of the fuel to the turbine; a combustor body capable of injecting primary combustion air that is part of the compressed air.
  • the combustion chamber former has an opening through which dilution air, which is a part of the compressed air, can be introduced into the combustion chamber from outside the combustion chamber former.
  • the combustor includes, in the combustion chamber, a rich combustion region in which the fuel from the combustor main body is burned at a fuel-air ratio greater than a stoichiometric fuel-air ratio, and the rich combustion. Gas from the region is diluted with the dilution air from the openings, and the fuel contained in the gas after being diluted with the dilution air is removed in a fuel-air ratio in which the fuel-air ratio is less than the stoichiometric fuel-air ratio. and a lean combustion region for combustion are formed.
  • the dilution air control valve is a valve capable of adjusting the flow rate of the dilution air introduced into the combustion chamber through the opening.
  • the control device has a dilution air controller that controls the dilution air control valve so that the flow rate of the dilution air increases according to the NOx concentration in the exhaust gas, which is the combustion gas discharged from the turbine.
  • the dilution air control valve when the dilution air control valve is controlled by the dilution air controller, when the flow rate of the dilution air flowing into the combustion chamber in the combustor that adopts the RQL method increases, the main combustion that is injected from the combustor body into the combustion chamber air flow is reduced. Therefore, in this aspect, when the NOx concentration in the exhaust gas reaches or exceeds a predetermined value, the fuel-air ratio in the lean combustion region decreases and the fuel-air ratio in the rich combustion region increases. As a result, in this aspect, the amount of NOx emissions can be suppressed.
  • the gas turbine has a compressor capable of compressing air to produce compressed air, a combustor capable of combusting fuel in the compressed air to produce combustion gases, and a turbine operable by the combustion gases.
  • the compressor has a compressor rotor rotatable about an axis and a compressor casing covering the compressor rotor.
  • the combustor includes a combustion chamber former for forming a combustion chamber in which the fuel is combusted and for guiding the combustion gas generated by the combustion of the fuel to the turbine; a combustor body capable of injecting ammonia and main combustion air which is part of said compressed air.
  • the combustion chamber former has an opening through which dilution air, which is a part of the compressed air, can be introduced into the combustion chamber from outside the combustion chamber former.
  • the ammonia as the fuel and the main combustion air are injected from the combustor main body into the combustion chamber, and the dilution air is introduced into the combustion chamber from the opening, so that the combustion A rich combustion region in which the fuel from the combustor body is burned at a fuel-air ratio greater than the stoichiometric fuel-air ratio, and a gas from the rich combustion region is provided in the opening.
  • a lean combustion region in which the fuel diluted with the dilution air from the gas is burned at a fuel-air ratio smaller than the stoichiometric fuel-air ratio; a NOx concentration detection step of detecting the NOx concentration in exhaust gas, which is combustion gas generated by combustion of the fuel and exhausted from the gas turbine, and the NOx concentration detected in the NOx concentration detection step and an intake control step of reducing an intake air amount, which is the flow rate of air sucked into the compressor casing, according to the NOx concentration in the exhaust gas.
  • a gas turbine control method as another aspect for achieving the object is applied to the following gas turbine.
  • the gas turbine has a compressor capable of compressing air to produce compressed air, a combustor capable of combusting fuel in the compressed air to produce combustion gases, and a turbine operable by the combustion gases.
  • the compressor has a compressor rotor rotatable about an axis and a compressor casing covering the compressor rotor.
  • the combustor includes a combustion chamber former for forming a combustion chamber in which the fuel is combusted and for guiding the combustion gas generated by the combustion of the fuel to the turbine; a combustor body capable of injecting ammonia and main combustion air which is part of said compressed air.
  • the combustion chamber former has an opening through which dilution air, which is a part of the compressed air, can be introduced into the combustion chamber from outside the combustion chamber former.
  • the ammonia as the fuel and the main combustion air are injected from the combustor main body into the combustion chamber, and the dilution air is introduced into the combustion chamber from the opening, so that the combustion A rich combustion region in which the fuel from the combustor body is burned at a fuel-air ratio greater than the stoichiometric fuel-air ratio, and a gas from the rich combustion region is provided in the opening.
  • a lean combustion region in which the fuel diluted with the dilution air from the gas is burned at a fuel-air ratio smaller than the stoichiometric fuel-air ratio; a NOx concentration detection step of detecting the NOx concentration in exhaust gas, which is combustion gas generated by combustion of the fuel and exhausted from the gas turbine, and the NOx concentration detected in the NOx concentration detection step and a return air control step of increasing a flow rate of part of the compressed air discharged from the compressor casing as return air to be returned into the compressor casing according to the NOx concentration in the exhaust gas.
  • a gas turbine control method as still another aspect for achieving the object is applied to the following gas turbine.
  • the gas turbine has a compressor capable of compressing air to produce compressed air, a combustor capable of combusting fuel in the compressed air to produce combustion gases, and a turbine operable by the combustion gases.
  • the compressor has a compressor rotor rotatable about an axis and a compressor casing covering the compressor rotor.
  • the combustor includes a combustion chamber former for forming a combustion chamber in which the fuel is combusted and for guiding the combustion gas generated by the combustion of the fuel to the turbine; a combustor body capable of injecting ammonia and main combustion air which is part of said compressed air.
  • the combustion chamber former has an opening through which dilution air, which is a part of the compressed air, can be introduced into the combustion chamber from outside the combustion chamber former.
  • the ammonia as the fuel and the main combustion air are injected from the combustor main body into the combustion chamber, and the dilution air is introduced into the combustion chamber from the opening, so that the combustion A rich combustion region in which the fuel from the combustor body is burned at a fuel-air ratio greater than the stoichiometric fuel-air ratio, and a gas from the rich combustion region is provided in the opening.
  • a lean combustion region in which the fuel diluted with the dilution air from the gas is burned at a fuel-air ratio smaller than the stoichiometric fuel-air ratio; a NOx concentration detection step of detecting the NOx concentration in exhaust gas, which is combustion gas generated by combustion of the fuel and exhausted from the gas turbine, and the NOx concentration detected in the NOx concentration detection step and a dilution air control step of increasing the flow rate of the dilution air according to the NOx concentration in the exhaust gas.
  • NOx emissions can be reduced when ammonia is used as fuel for the gas turbine.
  • FIG. 1 is a schematic configuration diagram of gas turbine equipment in a first embodiment according to the present disclosure
  • FIG. 1 is a schematic cross-sectional view of a combustor in a first embodiment according to the present disclosure
  • FIG. 3 is a functional block diagram of a control device in the first embodiment according to the present disclosure
  • FIG. 4 is a flow chart showing the procedure in the gas turbine control method in the first embodiment according to the present disclosure
  • 4 is a graph showing the relationship between the fuel-air ratio, NOx concentration, and unburned content concentration in various operation modes in the first embodiment according to the present disclosure
  • FIG. 5 is a functional block diagram of a control device in a second embodiment according to the present disclosure
  • FIG. 7 is a flow chart showing procedures in a gas turbine control method according to a second embodiment of the present disclosure
  • FIG. 7 is a graph showing the relationship between the fuel-air ratio, the NOx concentration, and the unburned content concentration in various operation modes in the second embodiment according to the present disclosure
  • FIG. 11 is a functional block diagram of a control device in a third embodiment according to the present disclosure
  • FIG. 10 is a flow chart showing procedures in a gas turbine control method according to a third embodiment of the present disclosure
  • FIG. 7 is a graph showing the relationship between the fuel-air ratio, the NOx concentration, and the unburned content concentration in various operating modes in the third embodiment according to the present disclosure
  • FIG. 11 is a functional block diagram of a control device in a fourth embodiment according to the present disclosure
  • FIG. 11 is a flow chart showing procedures in a gas turbine control method according to a fourth embodiment of the present disclosure
  • FIG. FIG. 11 is a graph showing the relationship between the fuel-air ratio, the NOx concentration, and the unburned content concentration in various operation modes in the fourth embodiment according to the present disclosure
  • FIG. FIG. 11 is a functional block diagram of a control device in a fifth embodiment according to the present disclosure
  • FIG. 11 is a flow chart showing procedures in a gas turbine control method according to a fifth embodiment of the present disclosure
  • FIG. 11 is a graph showing the relationship between the fuel-air ratio, NOx concentration, and unburned content concentration in various operation modes in the fifth embodiment of the present disclosure
  • FIG. FIG. 11 is a functional block diagram of a control device in a sixth embodiment according to the present disclosure
  • FIG. 11 is a flow chart showing procedures in a gas turbine control method according to a sixth embodiment of the present disclosure
  • FIG. 10 is a graph showing the relationship between the fuel-air ratio, the NOx concentration, and the unburned content concentration in various operating modes in the sixth embodiment according to the present disclosure
  • FIG. 1 A first embodiment of gas turbine equipment according to the present disclosure will be described below with reference to FIGS. 1 to 5.
  • FIG. 1 A first embodiment of gas turbine equipment according to the present disclosure will be described below with reference to FIGS. 1 to 5.
  • the gas turbine equipment of this embodiment includes a gas turbine 10, a compressed air return device 18, a denitrification device 28 that decomposes NOx contained in the exhaust gas from the gas turbine 10, a denitrification A chimney 29 that discharges the exhaust gas that has flowed out of the device 28 to the outside, a fuel supply facility 20 that supplies fuel to the gas turbine 10, and a control device 50 are provided.
  • the gas turbine 10 includes a compressor 14 that compresses air A, a combustor 15 that combusts fuel in the air compressed by the compressor 14 to generate combustion gas, and a turbine 16 that is driven by the high-temperature, high-pressure combustion gas. , an intake duct 12 , an intermediate casing 13 , and a dilution air conditioner 17 .
  • the compressor 14 includes a compressor rotor 14r that rotates about the rotor axis Ar, a compressor casing 14c that covers the compressor rotor 14r, and an air intake regulator (hereinafter referred to as , IGV (inlet guide vane) 14v.
  • IGV inlet guide vane
  • the IGV 14v adjusts the amount of intake air, which is the flow rate of air sucked into the compressor casing 14c, according to instructions from the control device 50 .
  • the intake duct 12 is connected to the suction port of the compressor casing 14c.
  • the turbine 16 has a turbine rotor 16r that rotates around the rotor axis Ar by combustion gas from the combustor 15, and a turbine casing 16c that covers the turbine rotor 16r.
  • the turbine rotor 16r and the compressor rotor 14r are rotatably connected to each other around the same rotor axis Ar to form the gas turbine rotor 11 .
  • a generator rotor for example, is connected to the gas turbine rotor 11 .
  • the intermediate casing 13 is arranged between the compressor casing 14c and the turbine casing 16c in the direction in which the rotor axis Ar extends, and connects the compressor casing 14c and the turbine casing 16c. Compressed air discharged from the compressor 14 flows into the intermediate casing 13 .
  • the combustor 15 is fixed to the intermediate casing 13.
  • the combustor 15 includes a combustion chamber forming device 15c that forms a combustion chamber 15s therein, and a combustor main body 15b that injects ammonia as fuel and compressed air into the combustion chamber 15s.
  • the combustion chamber former 15c is arranged inside the intermediate casing 13 into which the compressed air from the compressor 14 flows.
  • fuel is combusted in compressed air. Combustion gases generated by combustion of fuel flow through combustion chamber 15 s and are sent to turbine 16 .
  • the combustion chamber former 15c is formed with an opening 15o through which dilution air Al, which is part of the compressed air from the compressor 14, can be introduced into the combustion chamber 15s from outside the combustion chamber former 15c.
  • the combustor 15 is configured such that a rich combustion area RA, a quench area QA, and a lean combustion area LA are formed in the combustion chamber 15s.
  • the rich combustion region RA is a region in which the fuel F from the combustor main body 15b is burned in a fuel-air ratio, which is the ratio of fuel to air, greater than the stoichiometric fuel-air ratio.
  • the quench area QA is an area where the dilution air Al from the opening 15o is introduced to dilute the gas from the rich combustion area RA.
  • the lean burn region LA is a region where the fuel contained in the gas from the quench region QA is burned in a fuel-air ratio less than the stoichiometric fuel-air ratio. Therefore, this combustor 15 is a combustor that adopts the RQL (Rich burnquick Quench Lean burn) method.
  • the gas from the rich combustion area RA is diluted with the dilution air Al from the opening 15o, and the fuel contained in the diluted gas with the dilution air Al is added to the stoichiometric fuel-air ratio. It is also possible to define a region in which the combustion takes place in a fuel-air ratio less than the air ratio.
  • Gases from lean burn area LA are sent to turbine 16 .
  • the quench area QA is positioned upstream of the lean combustion area LA in the gas flow within the combustion chamber 15s.
  • the rich combustion area RA is located upstream of the quench area QA in the gas flow inside the combustion chamber 15s.
  • the combustor main body 15b injects ammonia as fuel F and main combustion air Am, which is a part of compressed air, into the rich combustion area RA within the combustion chamber 15s.
  • the dilution air conditioner 17 is arranged inside the intermediate casing 13 .
  • the dilution air regulator 17 has a dilution air regulator valve 17v and a dilution air line 17p.
  • the dilution air line 17p connects the dilution air control valve 17v and the opening 15o of the combustion chamber former 15c.
  • the dilution air control valve 17v adjusts the flow rate of the dilution air Al introduced into the combustion chamber 15s via the dilution air line 17p and the opening 15o of the combustion chamber former 15c.
  • This diluted air Al is part of the compressed air that has flowed into the intermediate casing 13 from the compressor 14 .
  • the dilution air control valve 17v has a valve casing 17vc and a valve body vb that slides inside the valve casing 17vc. An opening is formed in the valve body vb.
  • the compressed air return device 18 has an air return line 18p and a return air control valve 18v.
  • the air return line 18p connects the intermediate casing 13 and the intake duct 12, and can return part of the compressed air discharged from the compressor 14 to the compressor 14 as return air Ab.
  • the return air control valve 18v adjusts the flow rate of the return air Ab flowing through the air return line 18p.
  • Ammonia is supplied to the denitrification device 28 .
  • This denitrification device 28 uses this ammonia to decompose NOx contained in the exhaust gas from the gas turbine 10 into nitrogen and water vapor.
  • the fuel supply facility 20 has an ammonia tank 21, a liquid ammonia line 22, an ammonia pump 23, a fuel control valve 24, a vaporizer 25, and a gaseous ammonia line 26.
  • Liquid ammonia is stored in the ammonia tank 21 .
  • a liquid ammonia line 22 connects the ammonia tank 21 and the vaporizer 25 .
  • the liquid ammonia line 22 is provided with an ammonia pump 23 that pressurizes the liquid ammonia from the ammonia tank 21 and a fuel control valve 24 that adjusts the flow rate of the liquid ammonia flowing through the liquid ammonia line 22 .
  • the vaporizer 25 is a heat exchanger that heat-exchanges liquid ammonia and a heating medium to heat and vaporize the liquid ammonia.
  • a gaseous ammonia line 26 connects the vaporizer 25 and the combustor 15 . This gaseous ammonia line 26 guides the gaseous ammonia from the vaporizer 25 to the combustor 15 as fuel.
  • the gas turbine equipment further includes a NOx densitometer 58 and an unburned content densitometer 59 .
  • the NOx concentration meter 58 detects the concentration of NOx contained in the exhaust gas discharged from the gas turbine 10 and before flowing into the denitration device 28 .
  • the unburned content concentration meter 59 detects the concentration of unburned ammonia contained in the exhaust gas that has been exhausted from the gas turbine 10 and before it flows into the denitrification device 28 .
  • the control device 50 has a fuel flow calculator 51, a fuel controller 52, and an intake controller 53, as shown in FIG.
  • a fuel flow calculator 51 receives a load request PWr from the outside, obtains a fuel flow rate corresponding to the load request PWr, and outputs it.
  • the fuel controller 52 controls the fuel control valve 24 so that the flow rate of the fuel flowing through the liquid fuel line becomes the fuel flow rate calculated by the fuel flow calculator 51 .
  • the intake controller 53 controls the IGV 14v according to the fuel flow rate calculated by the fuel flow calculator 51, the NOx concentration detected by the NOx concentration meter 58, and the unburned concentration detected by the unburned concentration meter 59.
  • the control device 50 described above is a computer.
  • the control device 50 includes a CPU (Central Processing Unit) that performs various calculations, a main storage device such as a memory that serves as a work area for the CPU, an auxiliary storage device such as a hard disk drive, a keyboard, and so on. It has an input device such as a mouse and a display device.
  • Each functional unit of the control device 50 such as the fuel flow calculator 51, the fuel controller 52, the intake controller 53, etc., functions when the CPU executes a control program stored in the auxiliary storage device, for example.
  • the NOx concentration is maximized when the fuel-air ratio is close to the theoretical air-fuel ratio Rt.
  • the fuel-air ratio region (hereinafter referred to as medium fuel-air ratio region) RRm including the fuel-air ratio (hereinafter referred to as maximum NOx concentration fuel-air ratio) Rmax where the NOx concentration is maximized, other fuel-air ratio regions RRa, NOx concentration is higher than RRb.
  • the intermediate fuel-air ratio region RRm includes a region from the maximum NOx concentration fuel-air ratio Rmax to a fuel-air ratio that is a predetermined amount lower than the maximum NOx concentration fuel-air ratio Rmax, and a fuel-air ratio that is a predetermined amount higher than the maximum NOx concentration fuel-air ratio Rmax.
  • the NOx concentration is extremely low, and even if the fuel-air ratio changes within this small fuel-air ratio region RRa, the NOx concentration remains low. little change. Further, even in the large fuel-air ratio region RRb, where the fuel-air ratio is larger than the middle fuel-air ratio region RRm, the NOx concentration is extremely low, and even if the fuel-air ratio changes within the large fuel-air ratio region RRb, the NOx Concentration hardly changes.
  • the unburned content concentration is extremely low, and even if the fuel-air ratio changes in this medium-fuel-air ratio region RRm, the unburned content concentration hardly changes.
  • the concentration of unburned components gradually increases as the fuel-air ratio decreases.
  • the concentration of unburned components is extremely low, and even if the fuel-air ratio changes in this region RRb1, the concentration of unburned components hardly changes.
  • the concentration of unburned components sharply increases as the fuel-air ratio increases.
  • the fuel-air ratio Rrr in the rich combustion region RA is located within the region RRb1 where the fuel-air ratio is small in the large fuel-air ratio region RRb. Therefore, during this rated load operation, the NOx concentration and the unburned content concentration in the gas flowing out from the rich combustion region RA are extremely low. Further, during rated load operation, the fuel-air ratio Rrl in the lean combustion area LA is located within the large fuel-air ratio area RRa1 in the low fuel-air ratio area RRa. Therefore, during this rated load operation, the NOx concentration and the unburned content concentration in the gas flowing out from this lean combustion area LA are extremely low. In addition, the fuel-air ratio (hereinafter referred to as the combustion chamber The fuel-air ratio) is a value between the fuel-air ratio in the rich combustion region RA and the fuel-air ratio in the lean combustion region LA.
  • partial load operation In the process of shifting the gas turbine 10 from rated load operation to partial load operation, and when the gas turbine 10 is in partial load operation (hereinafter referred to as partial load operation), the fuel supplied to the combustor 15 is The flow rate decreases, and the combustion chamber fuel-air ratio becomes smaller than during rated load operation.
  • the fuel-air ratio Rpr in the rich combustion region RA becomes smaller than the fuel-air ratio Rrr in the rich combustion region RA during rated load operation, and is located within the middle fuel-air ratio region RRm. . Therefore, during partial load operation, the NOx concentration in the gas flowing out from the rich combustion region RA is higher than during rated load operation.
  • the concentration of unburned components in the gas flowing out of the rich combustion region RA is extremely low, similarly to during rated load operation.
  • the NOx concentration in the gas discharged from the rich combustion region RA increases, and the NOx concentration in the exhaust gas discharged from the gas turbine 10 becomes higher than the predetermined value. may also be higher.
  • the intake air amount is controlled by the intake controller 53 in order to reduce the NOx concentration during partial load operation.
  • the combustion process S1 is executed.
  • main combustion air Am and ammonia as fuel F are jetted from the combustor main body 15b into the combustion chamber 15s.
  • dilution air Al is introduced into the quench area QA in the combustion chamber 15s from the opening 15o.
  • the rich combustion area RA, the quench area QA, and the lean combustion area LA are formed in the combustion chamber 15s.
  • the NOx concentration detection process S2 and the unburned concentration detection process S3 are executed.
  • the NOx concentration meter 58 detects the NOx concentration in the exhaust gas.
  • the unburned concentration meter 59 detects the unburned concentration in the exhaust gas.
  • the intake controller 53 controls the NOx concentration detected by the NOx concentration meter 58 by reducing the amount of intake air, which is the flow rate of the air sucked into the compressor casing 14c.
  • the operation of the IGV 14v is controlled so that the concentration of unburned fuel is less than a predetermined value and the concentration of unburned fuel is within a predetermined range of concentration of unburned fuel.
  • the intake controller 53 determines whether or not the NOx concentration detected by the NOx concentration meter 58 has reached or exceeded a predetermined value.
  • the intake controller 53 determines that the NOx concentration detected by the NOx concentration meter 58 has exceeded a predetermined value
  • the intake air amount which is the flow rate of the air sucked into the compressor casing 14c
  • the operation of the IGV 14v is controlled so that the NOx concentration becomes less than the predetermined value and the unburned content concentration falls within the predetermined unburned content concentration range.
  • the intake controller 53 uses a predetermined relationship to adjust the intake air according to the NOx concentration detected by the NOx concentration meter 58 .
  • Amount (or IGV opening) may be defined.
  • the predetermined relationship means that the NOx concentration detected by the NOx concentration meter 58 and the NOx concentration is less than a predetermined value (and the unburned concentration is within a predetermined unburned concentration range). It is a relationship with the intake air amount (or IGV opening) that fits within.
  • the predetermined unburned concentration range is a range between the upper limit unburned concentration and the lower limit unburned concentration, which are determined according to the NOx concentration.
  • the unburned components in the exhaust gas discharged from the gas turbine 10 are ammonia in this embodiment.
  • the denitration device 28 uses ammonia to decompose NOx contained in the exhaust gas from the gas turbine 10 into nitrogen and water vapor. Therefore, if the exhaust gas contains ammonia as unburned matter, the ammonia in the exhaust gas can be used for the decomposition reaction of NOx, and the amount of ammonia supplied to the denitration device 28 can be suppressed. Therefore, in the present embodiment, the operation of the IGV 14v is controlled so that the unburned content in the exhaust gas falls within a predetermined unburned content concentration range according to the NOx concentration.
  • the opening degree of the IGV 14v is decreased, and the amount of intake air, which is the amount of air sucked into the compressor casing 14c, is decreased.
  • the combustion chamber fuel-air ratio increases by a predetermined amount.
  • the fuel-air ratio Rir in the rich combustion region RA is higher than the fuel-air ratio Rpr in the rich combustion region RA during simple partial load operation, even during partial load operation. It is increased by a predetermined amount, and is positioned within the low fuel-air ratio region RRb1 in the high fuel-air ratio region RRb. Therefore, by controlling the intake air amount as described above during partial load operation, the NOx concentration in the gas flowing out of the rich combustion region RA can be kept extremely low even during partial load operation.
  • the concentration of unburned components in the gas flowing out of the rich combustion region RA can be kept within a predetermined concentration range of unburned components. Further, even during partial load operation, the fuel-air ratio Ril in the lean combustion area LA is greater than the fuel-air ratio Rpl in the lean combustion area LA during simple partial load operation by a predetermined amount. , within the region RRa1 where the fuel-air ratio is large in the small fuel-air ratio region RRa. Therefore, by controlling the intake air amount as described above during partial load operation, the NOx concentration in the gas flowing out of the lean combustion area LA can be kept extremely low even during partial load operation. The concentration of unburned components in the gas flowing out of the lean combustion area LA can be kept within a predetermined concentration range of unburned components.
  • the NOx concentration in the exhaust gas discharged from the gas turbine 10 can be kept extremely low, and the concentration of unburned components in the exhaust gas can be set in advance. can be kept within the unburned content concentration range.
  • the gas turbine equipment of this embodiment includes a gas turbine 10, a compressed air return device 18, a denitrification device 28, a chimney 29, a fuel supply device 20, and a control device 50a, as in the first embodiment. .
  • the control device 50a of this embodiment differs from the control device 50 of the first embodiment.
  • the control device 50a of this embodiment has a fuel flow calculator 51 and a fuel controller 52, like the control device 50 of the first embodiment.
  • the control device 50a of the present embodiment further includes a return air controller 54 and an intake controller 53a different from the intake controller 53 of the first embodiment.
  • the intake controller 53a of this embodiment controls the IGV 14v according to the fuel flow rate from the fuel flow calculator 51, like the intake controller 53 of the first embodiment. However, the intake controller 53a of this embodiment does not control the IGV 14v according to the NOx concentration detected by the NOx concentration meter 58 and the unburned concentration detected by the unburned concentration meter 59. Instead, the return air controller 54 controls the operation of the return air control valve 18v according to the NOx concentration detected by the NOx concentration meter 58 and the unburned concentration detected by the unburned concentration meter 59 .
  • the combustion step S1 is executed. Furthermore, during execution of the combustion process S1, the NOx concentration detection process S2 and the unburned concentration detection process S3 are executed as in the first embodiment.
  • the return air controller 54 increases the flow rate of the return air Ab flowing through the air return line 18p by a predetermined amount in accordance with the NOx concentration detected by the NOx concentration meter 58. , the operation of the return air control valve 18v is controlled so that the NOx concentration is less than a predetermined value and the unburned concentration is within a predetermined unburned concentration range. Specifically, in the return air control step S5, for example, first, the return air controller 54 determines whether the NOx concentration detected by the NOx concentration meter 58 has reached or exceeded a predetermined value.
  • the return air controller 54 determines that the NOx concentration detected by the NOx concentration meter 58 has exceeded a predetermined value
  • the flow rate of the return air Ab flowing through the air return line 18p is increased by the predetermined amount.
  • the operation of the return air control valve 18v is controlled so that the NOx concentration falls below a predetermined value and the unburned content concentration falls within a predetermined unburned content concentration range.
  • the opening degree of the return air control valve 18v is increased, and the flow rate of the return air Ab is increased by a predetermined amount.
  • the return air controller 54 uses a predetermined relationship to adjust the NOx concentration detected by the NOx concentration meter 58.
  • the amount of return air (or the degree of opening of the return air control valve) may be determined.
  • the predetermined relationship means that the NOx concentration detected by the NOx concentration meter 58 and the NOx concentration is less than a predetermined value (and the unburned concentration is within a predetermined unburned concentration range). (or the opening of the return air control valve).
  • the combustion chamber fuel-air ratio increases by a predetermined amount, similar to the case where the intake air amount is decreased in the first embodiment.
  • the fuel-air ratio Rbr in the rich combustion region RA is lower than the fuel-air ratio Rpr in the rich combustion region RA during simple partial load operation described above. It is increased by a predetermined amount, and is positioned within the low fuel-air ratio region RRb1 in the high fuel-air ratio region RRb.
  • the NOx concentration in the gas flowing out from the rich combustion region RA can be kept extremely low even during partial load operation.
  • concentration of unburned components in the gas flowing out from the rich combustion area RA can be kept within a predetermined concentration range of unburned components.
  • the fuel-air ratio Rbl in the lean combustion area LA is greater than the fuel-air ratio Rpl in the lean combustion area LA during simple partial load operation by a predetermined amount. , within the region RRa1 where the fuel-air ratio is large in the small fuel-air ratio region RRa.
  • the NOx concentration in the gas flowing out of the lean combustion area LA can be kept extremely low even during partial load operation.
  • concentration of unburned components in the gas flowing out of the lean combustion area LA can be kept within a predetermined unburned component concentration range.
  • the NOx concentration in the exhaust gas discharged from the gas turbine 10 can be kept extremely low, and the concentration of unburned components in the exhaust gas can be set in advance. can be kept within the unburned content concentration range.
  • the gas turbine equipment of this embodiment includes a gas turbine 10, a compressed air return device 18, a denitrification device 28, a chimney 29, a fuel supply device 20, and a control device 50b, as in the first embodiment. .
  • the control device 50b of this embodiment differs from the control device 50 of the first embodiment.
  • the control device 50b of this embodiment has a fuel flow calculator 51 and a fuel controller 52, like the control device 50 of the first embodiment.
  • the control device 50b of the present embodiment further includes a dilution air controller 55 and an intake controller 53a different from the intake controller 53 of the first embodiment.
  • the intake controller 53a of this embodiment controls the IGV 14v according to the fuel flow rate from the fuel flow calculator 51, like the intake controller 53 of the first embodiment.
  • the intake controller 53a of the present embodiment is configured according to the NOx concentration detected by the NOx concentration meter 58 and the unburned concentration detected by the unburned concentration meter 59. and does not control the IGV 14v.
  • the dilution air controller 55 controls the operation of the dilution air control valve 17v according to the NOx concentration detected by the NOx concentration meter 58 and the unburned concentration detected by the unburned concentration meter 59 .
  • the combustion step S1 is executed. Furthermore, during execution of the combustion process S1, the NOx concentration detection process S2 and the unburned concentration detection process S3 are executed as in the first embodiment.
  • the dilution air controller 55 increases the flow rate of the dilution air Al introduced into the combustion chamber 15s by a predetermined amount in accordance with the NOx concentration detected by the NOx concentration meter 58. , the operation of the dilution air control valve 17v is controlled so that the NOx concentration is less than a predetermined value and the unburned concentration is within a predetermined unburned concentration range. Specifically, in the dilution air control step S6, for example, first, the dilution air controller 55 determines whether the NOx concentration detected by the NOx concentration meter 58 has reached or exceeded a predetermined value.
  • the dilution air controller 55 determines that the NOx concentration detected by the NOx concentration meter 58 has exceeded a predetermined value, the dilution air controller 55 reduces the flow rate of the dilution air Al introduced into the combustion chamber 15s by a predetermined amount.
  • the operation of the dilution air control valve 17v is controlled so that the NOx concentration becomes less than the predetermined value and the unburned content concentration falls within the predetermined unburned content concentration range.
  • the flow rate of the dilution air Al flowing into the combustion chamber 15s increases by a predetermined amount, while main combustion injected from the combustor body 15b into the combustion chamber 15s
  • the flow rate of the air Am is reduced by a predetermined amount.
  • the dilution air controller 55 determines that the NOx concentration detected by the NOx concentration meter 58 is increasing, the dilution air controller 55 uses a predetermined relationship to adjust the NOx concentration detected by the NOx concentration meter 58.
  • the amount of dilution air (or the degree of opening of the dilution air control valve) may be determined.
  • the predetermined relationship means that the NOx concentration detected by the NOx concentration meter 58 and the NOx concentration is less than a predetermined value (and the unburned concentration is within a predetermined unburned concentration range). (or the degree of opening of the dilution air control valve).
  • the combustion chamber air-fuel ratio does not change only by controlling the operation of the dilution air control valve 17v.
  • the ratio Rcr is greater by a predetermined amount than the fuel-air ratio Rpr in the rich combustion region RA during simple partial load operation described above, so that the fuel-air ratio Rpr increases in the large fuel-air ratio region RRb. It is positioned within the region RRb1 where the air ratio is small. Therefore, by controlling the flow rate of the dilution air Al during partial load operation as described above, the NOx concentration in the gas flowing out of the rich combustion region RA can be kept extremely low even during partial load operation.
  • the concentration of unburned components in the gas flowing out from the rich combustion area RA can be kept within a predetermined concentration range of unburned components. Even if the flow rate of the dilution air Al increases by a predetermined amount, the fuel-air ratio Rcl in the lean combustion region LA does not change from the fuel-air ratio Rpl in the lean combustion region LA during simple partial load operation described above. This is because even if the flow rate of the dilution air Al increases by a predetermined amount, the flow rate of the air in the gas flowing out from the rich combustion area RA decreases by a predetermined amount.
  • the NOx concentration in the gas flowing out of the lean combustion area LA can be kept extremely low even during partial load operation.
  • concentration of unburned components in the gas flowing out of the lean combustion area LA can be kept within a predetermined unburned component concentration range.
  • the NOx concentration in the exhaust gas discharged from the gas turbine 10 can be kept extremely low, and the unburned content concentration in the exhaust gas can be set in advance. can be kept within the unburned content concentration range.
  • the gas turbine equipment of this embodiment includes a gas turbine 10, a compressed air return device 18, a denitrification device 28, a chimney 29, a fuel supply device 20, and a control device 50c, as in the first embodiment. .
  • the control device 50c of this embodiment is different from the control device 50 of the first embodiment.
  • the control device 50c of this embodiment has a fuel flow calculator 51 and a fuel controller 52, like the control device 50 of the first embodiment.
  • the control device 50c of the present embodiment further includes a return air controller 54c, a cooperative controller 56, and an intake controller 53c different from the intake controller 53 of the first embodiment.
  • the intake controller 53c of this embodiment controls the IGV 14v according to the fuel flow rate from the fuel flow calculator 51, like the intake controller 53 of the first embodiment.
  • the intake controller 53c of the present embodiment controls the IGV 14v according to instructions from the cooperative controller 56.
  • FIG. The return air controller 54c controls the return air control valve 18v according to instructions from the cooperative controller 56.
  • FIG. The cooperative controller 56 controls the operation of the IGV 14v by the intake controller 53c and the return air controller 54c according to the NOx concentration detected by the NOx concentration meter 58 and the unburned concentration detected by the unburned concentration meter 59. It cooperates with the operation control of the return air control valve 18v.
  • the combustion step S1 is executed. Furthermore, during execution of the combustion process S1, the NOx concentration detection process S2 and the unburned concentration detection process S3 are executed as in the first embodiment.
  • the cooperative controller 56 instructs the intake controller 53c to control the IGV 14v according to the NOx concentration detected by the NOx concentration meter 58. Specifically, for example, the cooperative controller 56 determines whether the NOx concentration detected by the NOx concentration meter 58 has reached or exceeded a predetermined value. Then, when the cooperative controller 56 determines that the NOx concentration detected by the NOx concentration meter 58 has exceeded a predetermined value, it instructs the intake controller 53c to control the IGV 14v. At this time, the cooperative controller 56 instructs the intake controller 53c to make the NOx concentration less than a predetermined value by reducing the intake air amount by a predetermined amount.
  • the intake controller 53c controls the operation of the IGV 14v in an intake control step S4c so that the intake air amount is reduced by a predetermined amount and the NOx concentration is less than a predetermined value. Due to this operation control of the IGV 14v, the opening of the IGV 14v is reduced, and the amount of intake air sucked into the compressor casing 14c is reduced.
  • the combustion chamber fuel-air ratio increases by a predetermined amount.
  • the fuel-air ratio Rir in the rich combustion region RA is higher than the fuel-air ratio Rpr in the rich combustion region RA during simple partial load operation described above. It is increased by a predetermined amount, and is positioned within the low fuel-air ratio region RRb1 in the high fuel-air ratio region RRb. Therefore, by controlling the intake air amount as described above during partial load operation, the NOx concentration in the gas flowing out of the rich combustion region RA can be kept extremely low even during partial load operation.
  • the concentration of unburned components in the gas flowing out of the rich combustion region RA can be kept within a predetermined concentration range of unburned components. Further, even during partial load operation, the fuel-air ratio Ril in the lean combustion area LA is greater than the fuel-air ratio Rpl in the lean combustion area LA during simple partial load operation by a predetermined amount. , within the region RRa1 where the fuel-air ratio is large in the small fuel-air ratio region RRa. Therefore, by controlling the intake air amount as described above during partial load operation, the NOx concentration in the gas flowing out of the lean combustion area LA can be kept extremely low even during partial load operation. The concentration of unburned components in the gas flowing out from the lean combustion area LA can be made lower than in the simple partial load operation described above.
  • the cooperative controller 56 determines whether it is the first case, the second case, or the third case below.
  • Case 1 When the concentration of unburned carbon in the exhaust gas does not fall within the predetermined concentration range of unburned carbon.
  • Case 3 When the IGV 14v operation alone does not increase the fuel-air ratio by a predetermined amount
  • the cooperative controller 56 determines that it is the first case or the second case, the cooperative controller 56 instructs the return air controller 54c to control the return air control valve 18v. instruct.
  • the flow rate of the return air Ab flowing through the air return line 18p is increased by a predetermined amount, so that the concentration of unburned
  • the return air controller 54c is instructed to stay within the minute concentration range.
  • the return air controller 54c increases the flow rate of the return air Ab flowing through the air return line 18p by a predetermined amount in the return air control step S5c, thereby increasing the concentration of unburned components.
  • the return air control valve 18v is controlled so that the concentration of unburned components falls within the determined range. By controlling the operation of the return air control valve 18v, the opening degree of the return air control valve 18v is increased, and the flow rate of the return air Ab is increased by a predetermined amount.
  • the cooperative controller 56 determines that it is the second case, the flow rate of the return air Ab flowing through the air return line 18p is increased by a predetermined amount, so that the concentration of unburned components becomes lower.
  • the return air controller 54c increases the flow rate of the return air Ab flowing through the air return line 18p by a predetermined amount in the return air control step S5c, thereby lowering the concentration of unburned components.
  • the return air control valve 18v is controlled so that By controlling the operation of the return air control valve 18v, the opening degree of the return air control valve 18v is increased, and the flow rate of the return air Ab is increased by a predetermined amount.
  • the flow rate of the return air Ab flowing through the air return line 18p increases by a predetermined amount, so that the fuel-air ratio is increased by a predetermined amount.
  • the return air controller 54c directs the return air controller 54c to increase.
  • the return air controller 54c controls the return air control valve 18v so that the concentration of unburned components falls within a predetermined concentration range of unburned components.
  • the opening degree of the return air control valve 18v is increased, and the flow rate of the return air Ab is increased by a predetermined amount.
  • the fuel-air ratio Ribr in the rich combustion region RA becomes the fuel-air ratio Rir in the rich combustion region RA after execution of the above-described intake control step S4c. It is increased by a predetermined amount, and is positioned within the low fuel-air ratio region RRb1 in the large fuel-air ratio region RRb. Therefore, even during partial load operation, the concentration of NOx in the gas flowing out of the rich combustion region RA can be kept extremely low, and the concentration of unburned components in the gas flowing out of the rich combustion region RA can be adjusted in advance.
  • the concentration of unburned components within a predetermined range, or to lower the concentration of unburned components in the gas flowing out from the rich combustion region RA.
  • the fuel-air ratio Ribl in the lean combustion region LA becomes larger by a predetermined amount than the fuel-air ratio Ril in the rich combustion region RA after execution of the above-described intake control step S4c. It is positioned within the region RRa1 where the fuel-air ratio is large. Therefore, even during partial load operation, the NOx concentration in the gas flowing out of the lean combustion area LA can be kept extremely low, and the concentration of unburned components in the gas flowing out of the lean combustion area LA can be adjusted in advance. It is possible to keep the concentration of unburned components within a predetermined range or to lower the concentration of unburned components in the gas flowing out of the lean combustion area LA.
  • the NOx concentration in the exhaust gas discharged from the gas turbine 10 can be kept extremely low, and the concentration of unburned components in the exhaust gas can be set in advance.
  • the concentration of unburned components in the exhaust gas can be kept within the above range, or the concentration of unburned components in the exhaust gas can be made lower.
  • the fuel-air ratio can be changed in both the execution of the intake air control process and the execution of the return air control process. Therefore, by executing either one of the intake control process and the return air control process, the NOx concentration and the unburned content concentration can be adjusted.
  • the return air control process when executed, the flow rate of the return air increases, so the load on the compressor 14 increases. Therefore, when the return air control process is executed, the gas turbine efficiency becomes lower than when the intake air control process is executed. In other words, gas turbine efficiency is higher when performing the intake air control process than when performing the return air control process.
  • the intake control step S4c is first executed in order to reduce the gas turbine efficiency while reducing the NOx concentration.
  • the return air control step S5c is executed in order to effectively reduce the concentration of unburned components.
  • the return air control process S5c is executed after the intake control process S4c is executed.
  • the intake air control step S4c and the return air control step S5c may be executed in parallel.
  • the cooperative controller 56 determines that the NOx concentration detected by the NOx concentration meter 58 has reached or exceeded a predetermined value
  • the fuel-air ratio is changed in the execution of the intake control step S4c and the return air control step S5c.
  • the amount of increase is set to a predetermined amount according to the NOx concentration.
  • the cooperative controller 56 predetermines the ratio between the amount of increase in the fuel-air ratio when only the intake air control step S4c is performed and the amount of increase in the fuel-air ratio when only the return air control step S5c is performed. ratio. Then, the cooperative controller 56 determines the amount of increase in the fuel-air ratio in each process from this ratio and the amount of increase in the fuel-air ratio in the execution of the intake control process S4c and the return air control process S5c. Finally, the cooperative controller 56 informs the intake controller 53c of the amount of increase in the fuel-air ratio due to execution of the intake control step S4c, and to the return air controller 54c, It conveys the amount of increase in the fuel-air ratio.
  • the ratio between the amount of change in the fuel-air ratio in adjusting the intake air amount by the IGV 14v and the amount of change in the fuel-air ratio in adjusting the flow rate of the return air Ab by the return air control valve 18v is determined in advance.
  • the intake controller 53c is caused to control the intake air regulator and the return air controller 54c is caused to control the return air control valve 18v so as to achieve the ratio.
  • the amount of increase in the fuel-air ratio in the execution of only the intake control step S4c is returned. It is preferable to determine the above-mentioned predetermined ratio so as to be larger than the amount of increase in the fuel-air ratio when only the air control step S5c is executed. Further, when priority is given to lowering the unburned content concentration, the amount of increase in the fuel-air ratio when only the return air control step S5c is executed is larger than the amount of increase in the fuel-air ratio when only the intake air control step S4c is executed. It is preferable to determine the above-mentioned predetermined ratio so that This predetermined ratio is externally stored in the cooperative controller 56, and the cooperative controller 56 performs cooperative control using this predetermined ratio.
  • the change sensitivity of the NOx concentration and unburned content concentration to changes in the intake air amount is different from the change sensitivity of the NOx concentration and unburned content concentration to changes in the return air amount. Therefore, when the intake control step S4c and the return air control step S5c are executed in parallel, for example, the IGV opening is increased, the return air control valve 18v is increased, and the ratio of these operation amounts is set appropriately. , it is possible to reduce the concentration of unburned components while keeping the NOx concentration constant.
  • the gas turbine equipment of this embodiment includes a gas turbine 10, a compressed air return device 18, a denitration device 28, a chimney 29, a fuel supply device 20, and a control device 50d, as in the first embodiment. .
  • the control device 50d of this embodiment is different from the control device 50 of the first embodiment.
  • a control device 50d of the present embodiment has a fuel flow calculator 51 and a fuel controller 52, like the control device 50 of the first embodiment.
  • the control device 50d of this embodiment further includes a dilution air controller 55d, a coordination controller 56d, and an intake controller 53d different from the intake controller 53 of the first embodiment.
  • the intake controller 53d of this embodiment controls the IGV 14v according to the fuel flow rate from the fuel flow calculator 51, like the intake controller 53 of the first embodiment. Further, the intake controller 53d of the present embodiment controls the IGV 14v according to instructions from the cooperative controller 56d.
  • the dilution air controller 55d controls the dilution air control valve 17v according to instructions from the cooperative controller 56d.
  • the cooperative controller 56d controls the operation of the IGV 14v by the intake controller 53d and the dilution air controller 55d according to the NOx concentration detected by the NOx concentration meter 58 and the unburned concentration detected by the unburned concentration meter 59. It is coordinated with the operation control of the dilution air control valve 17v.
  • the combustion step S1 is executed. Furthermore, during execution of the combustion process S1, the NOx concentration detection process S2 and the unburned concentration detection process S3 are executed as in the first embodiment.
  • the cooperative controller 56d instructs the intake controller 53d to control the IGV 14v and the dilution air controller 55d to control the dilution air control valve 17v according to the NOx concentration detected by the NOx concentration meter 58. do. Specifically, for example, the cooperative controller 56d determines whether the NOx concentration detected by the NOx concentration meter 58 has reached or exceeded a predetermined value. Then, when the cooperative controller 56d determines that the NOx concentration detected by the NOx concentration meter 58 has exceeded a predetermined value, it instructs the intake controller 53d to control the IGV 14v, and the dilution air controller 55d. to control the dilution air control valve 17v.
  • the intake air control process is not executed, and only the dilution air control process is executed as in the third embodiment.
  • the fuel-air ratio Rcl in the lean combustion region LA is the same as the fuel-air ratio Rpl in the lean combustion region LA during simple partial load operation. .
  • the cooperative controller 56d prevents the NOx concentration from becoming less than a predetermined value and the concentration of unburned components in the gas flowing out of the lean combustion area LA from becoming high. is within a predetermined unburned concentration range, the control of the dilution air control valve 17v by the dilution air controller 55d and the control of the IGV 14v by the intake controller 53d are cooperatively controlled. Specifically, the cooperative controller 56d controls the IGV 14v by the intake controller 53d to reduce the intake air amount so that the fuel-air ratio in the lean combustion area LA does not change and the fuel-air ratio in the rich combustion area increases.
  • the dilution air control valve 17v is controlled by the dilution air controller 55d to increase the flow rate of the dilution air Al.
  • the intake controller 53d and the dilution air controller 55d are operated by the instructions from the cooperative controller 56d as described above to the intake controller 53d and the dilution air controller 55d, and the intake control process S4d and the dilution air control process S6d are performed. executed.
  • the intake control step S4d and the diluted air control step S6d are executed to reduce the intake air amount by a predetermined amount.
  • the flow rate of the dilution air Al is increased by a predetermined amount.
  • the fuel-air ratio Ricr in the rich combustion region RA is higher than the fuel-air ratio Rpr in the rich combustion region RA during simple partial load operation described above. It is increased by a predetermined amount, and is positioned within the low fuel-air ratio region RRb1 in the high fuel-air ratio region RRb.
  • the NOx concentration in the gas flowing out of the rich combustion region RA can be kept extremely low even during partial load operation.
  • concentration of unburned components in the gas flowing out from the rich combustion area RA can be kept within a predetermined concentration range of unburned components.
  • the fuel-air ratio Ricl in the lean combustion region LA is a predetermined amount more than the fuel-air ratio Rcl in the lean combustion region LA when only the dilution air control step S6d is executed even during partial load operation. only get bigger.
  • the NOx concentration in the gas flowing out of the lean combustion area LA can be kept extremely low even during partial load operation.
  • concentration of unburned components in the gas flowing out of the lean combustion area LA can be kept low and kept within a predetermined concentration range of unburned components.
  • the NOx concentration in the exhaust gas discharged from the gas turbine 10 can be kept extremely low, and the concentration of unburned components in the exhaust gas can be set in advance. can be kept within the unburned content concentration range.
  • the cooperative controller 56d of the present embodiment coordinates the operation control of the IGV 14v by the intake controller 53d and the operation control of the dilution air control valve 17v by the dilution air controller 55d.
  • the coordination controller 56d may coordinate the operation control of the return air control valve 18v by the return air controller 54d and the operation control of the dilution air control valve 17v by the dilution air controller 55d.
  • the cooperative controller 56d controls that the NOx concentration becomes less than the predetermined value and the concentration of unburned components in the gas flowing out of the lean combustion area LA does not increase, and the concentration of unburned components does not reach the predetermined value.
  • the operation control of the IGV 14v by the intake controller 53d and the control of the dilution air control valve 17v by the dilution air controller 55d are cooperatively controlled so that the concentration of unburned components is within the range.
  • the cooperative controller 56d causes the return air controller 54d to control the return air control valve 18v so that the fuel-air ratio in the lean combustion region LA does not change and the fuel-air ratio in the rich combustion region increases.
  • the dilution air controller 55d controls the dilution air control valve 17v to increase the flow rate of the dilution air Al.
  • the gas turbine equipment of this embodiment includes a gas turbine 10, a compressed air return device 18, a denitrification device 28, a chimney 29, a fuel supply device 20, and a control device 50e, as in the first embodiment. .
  • the control device 50e of this embodiment is different from the control device 50 of the first embodiment.
  • the control device 50e of this embodiment has a fuel flow calculator 51 and a fuel controller 52, like the control device 50 of the first embodiment.
  • the control device 50e of the present embodiment further includes a return air controller 54e, a dilution air controller 55e, a coordination controller 56e, and an intake controller 53e different from the intake controller 53 of the first embodiment. .
  • the intake controller 53e of this embodiment controls the IGV 14v according to the fuel flow rate from the fuel flow calculator 51, like the intake controller 53 of the first embodiment. Further, the intake controller 53e of the present embodiment controls the IGV 14v according to instructions from the cooperative controller 56e.
  • the return air controller 54e controls the return air control valve 18v according to instructions from the cooperative controller 56e.
  • the dilution air controller 55e controls the dilution air control valve 17v according to instructions from the cooperative controller 56e.
  • the cooperative controller 56e controls the operation of the IGV 14v by the intake controller 53e and the return air controller 54e according to the NOx concentration detected by the NOx concentration meter 58 and the unburned concentration detected by the unburned concentration meter 59. Operation control of the return air control valve 18v and operation control of the dilution air control valve 17v by the dilution air controller 55e are coordinated.
  • the combustion step S1 is executed. Furthermore, during execution of the combustion process S1, the NOx concentration detection process S2 and the unburned concentration detection process S3 are executed as in the first embodiment.
  • the cooperative controller 56e instructs the intake controller 53e to control the IGV 14v and the return air controller 54e to control the return air control valve 18v according to the NOx concentration detected by the NOx concentration meter 58. Furthermore, it instructs the dilution air controller 55e to control the dilution air control valve 17v. Specifically, for example, the cooperative controller 56e determines whether the NOx concentration detected by the NOx concentration meter 58 has reached or exceeded a predetermined value. Then, when the cooperative controller 56e judges that the NOx concentration detected by the NOx concentration meter 58 has exceeded a predetermined value, it instructs the intake controller 53e to control the IGV 14v, and instructs the return air controller 54e to control the IGV 14v. Directs control of return air control valve 18v and directs dilution air control 55e to control dilution air control valve 17v.
  • the intake control step S4e by the intake controller 53e, the return air control step S5e by the return air controller 54e, and the dilution air control step S6e by the dilution air controller 55e are executed.
  • the cooperative controller 56e cooperatively controls the control of the IGV 14v by the intake controller 53e and the control of the return air control valve 18v by the return air controller 54e. Therefore, even in this case, the return air control step S5e may be executed after the intake control step S4e is executed, or the intake control step S4e and the return air control step S5e may be executed in parallel. In this case, the cooperative controller 56e controls the IGV 14v by the intake controller 53e and the return air control valve 18v by the return air controller 54e, as in the fifth embodiment described above. The dilution air control valve 17v is cooperatively controlled by the device 55e.
  • the intake air control step S4e, the return air control step S5e, and the diluted air control step S6e are executed to determine the intake air amount.
  • the flow rate of the return air Ab increases by a predetermined amount
  • the flow rate of the dilution air Al increases by a predetermined amount.
  • the concentration of unburned components in the gas flowing out from the rich combustion area RA can be kept within a predetermined concentration range of unburned components.
  • the fuel-air ratio Ribcl in the lean combustion region LA is set by a predetermined amount more than the fuel-air ratio Rcl in the lean combustion region LA when only the dilution air control process is executed, even during partial load operation. growing. Therefore, during partial load operation, by controlling the intake air amount, the flow rate of return air Ab, and the flow rate of dilution air Al as described above, even during partial load operation, the gas flowing out of the lean combustion area LA In addition, the concentration of unburned components in the gas flowing out of the lean combustion area LA can be kept low and kept within a predetermined concentration range of unburned components.
  • the NOx concentration in the exhaust gas discharged from the gas turbine 10 can be kept extremely low, and the concentration of unburned components in the exhaust gas can be set in advance. can be kept within the unburned content concentration range.
  • the NOx concentration meter 58 in each of the above embodiments detects the concentration of NOx contained in the exhaust gas that is exhausted from the gas turbine 10 and before flowing into the denitration device 28 . Further, the unburned content concentration meter 59 detects the concentration of unburned ammonia contained in the exhaust gas that has been exhausted from the gas turbine 10 and before it flows into the denitrification device 28 . However, the NOx concentration meter 58 may detect the concentration of NOx contained in the exhaust gas discharged from the denitration device 28 . Further, the unburned concentration meter 59 may detect the concentration of unburned ammonia contained in the exhaust gas discharged from the denitrification device 28 .
  • the combustion chamber former 15c in each of the above embodiments may have a plurality of openings 15o.
  • the dilution air conditioner 17 should be connected to at least one opening 15o among the plurality of openings 15o.
  • the dilution air control device 17 in each of the above embodiments has a dilution air control valve 17v and a dilution air line 17p.
  • dilution air conditioner 17 may be devoid of dilution air line 17p.
  • the valve casing 17vc of the dilution air control valve 17v is directly connected to the combustion chamber former 15c.
  • the gas turbine equipment in each of the above embodiments includes a compressed air return device 18 and a dilution air conditioner 17.
  • the compressed air return device 18 may be omitted in gas turbine equipment in which the return air control process is not performed.
  • the dilution air conditioner 17 may be omitted in gas turbine equipment in which the dilution air control process is not performed.
  • the gas turbine equipment in the first aspect It comprises a gas turbine 10, a NOx concentration meter 58 for detecting the NOx concentration in the exhaust gas, which is the combustion gas discharged from the gas turbine 10, and controllers 50, 50c, 50d and 50e.
  • the gas turbine 10 can be driven by a compressor 14 capable of compressing air to generate compressed air, a combustor 15 capable of burning ammonia as a fuel in the compressed air to generate combustion gas, and the combustion gas.
  • a turbine 16 The compressor 14 includes a compressor rotor 14r rotatable about an axis Ar, a compressor casing 14c covering the compressor rotor 14r, and an intake air amount, which is the flow rate of air sucked into the compressor casing 14c, adjusted.
  • the combustor 15 includes a combustion chamber former 15c that forms a combustion chamber 15s in which the fuel is combusted and that can guide the combustion gas generated by the combustion of the fuel to the turbine 16, and the combustion chamber 15s. and a combustor main body 15b capable of injecting the main combustion air Am, which is part of the ammonia and the compressed air, inside.
  • the combustion chamber forming device 15c is formed with an opening 15o through which the dilution air Al, which is a part of the compressed air, can be introduced into the combustion chamber 15s from outside the combustion chamber forming device 15c.
  • the combustor 15 has a rich combustion region RA in which the fuel from the combustor main body 15b is burned in the combustion chamber 15s at a fuel-air ratio, which is the ratio of fuel to air, which is higher than the stoichiometric fuel-air ratio. Then, the gas from the rich combustion area RA is diluted with the dilution air Al from the opening 15o, and the fuel contained in the gas diluted with the dilution air Al is reduced to the stoichiometric fuel-air ratio. and a lean combustion region LA in which fuel is burned in a fuel-air ratio smaller than the air ratio.
  • a fuel-air ratio which is the ratio of fuel to air, which is higher than the stoichiometric fuel-air ratio.
  • the controllers 50, 50c, 50d, and 50e control the operation of the intake air regulator 14v so that the intake air amount decreases according to the NOx concentration in the exhaust gas detected by the NOx concentration meter 58. It has intake controllers 53, 53c, 53d and 53e.
  • the amount of NOx generated changes according to the fuel-air ratio in the fuel combustion region.
  • the combustor 15 of this aspect is a combustor in which a rich combustion area RA and a lean combustion area LA are formed in the combustion chamber 15s. Therefore, the combustor 15 of this embodiment is a combustor that employs the RQL (Rich burn quick Quench Leanburn) method. Further, the combustor 15 of this aspect uses ammonia as fuel.
  • the combustion chamber fuel-air ratio which is the ratio of the total fuel flow rate injected into the combustion chamber 15s to the total combustion air flowing into the combustion chamber 15s, becomes smaller than during rated load operation.
  • the amount of NOx generated in the combustor 15 is not limited to the combustor 15 adopting the RQL method, and changes according to the fuel-air ratio in the fuel combustion region.
  • both the fuel-air ratios in the rich combustion region RA and the lean combustion region LA become small during partial load operation, and the exhaust from the combustor 15 NOx concentration in the combustion gas increases.
  • the intake controllers 53, 53c, 53d, and 53e control the operation of the intake regulator 14v so that the amount of intake air decreases.
  • the intake air amount is small, the fuel-air ratios both in the rich combustion region RA and the lean combustion region LA become large. As a result, in this aspect, the amount of NOx emissions can be suppressed.
  • the gas turbine equipment in the second aspect further includes an unburned content concentration meter 59 for detecting the concentration of unburned content in the exhaust gas, and the intake controllers 53, 53c, 53d, and 53e detect The intake regulator 14v operates so that the NOx concentration is less than a predetermined value and the unburned concentration in the exhaust gas falls within a predetermined unburned concentration range determined according to the NOx concentration. to control.
  • the amount of unburned fuel remaining in the combustor 15 varies depending on the fuel-air ratio in the combustion region of the fuel, not only in the combustor 15 that employs the RQL method.
  • the fuel-air ratios in the rich combustion region RA and the lean combustion region LA both become small during partial load operation, and exhaust from the combustor 15
  • concentration of unburned components in the combustion gas from the combustor 15 increases.
  • the intake controllers 53, 53c, 53d, and 53e control the operation of the intake regulator 14v so that the amount of intake air decreases.
  • the intake air amount is small, the fuel-air ratios in both the rich combustion region RA and the lean combustion region LA become large.
  • the concentration of unburned components in the exhaust gas is set to the predetermined concentration of unburned components. That is, in this aspect, it is possible to suppress the amount of unburned emissions while suppressing the NOx concentration, and it is possible to keep the unburned concentration in the exhaust gas within a predetermined unburned concentration range.
  • an air return line 18p capable of returning part of the compressed air discharged from the compressor casing 14c to the compressor casing 14c, and the air It further includes a return air control valve 18v capable of adjusting the flow rate of the return air Ab, which is the compressed air flowing through the return line 18p.
  • the control devices 50c, 50d, 50e include return air controllers 54c, 54d, 54e for controlling the operation of the return air control valve 18v, and control of the intake air regulator 14v by the intake controllers 53c, 53d, 53e.
  • cooperative controllers 56, 56d, 56e for coordinating control of the return air control valve 18v by the return air controllers 54c, 54d, 54e.
  • the cooperative controllers 56, 56d, and 56e cause the return air controllers 54c, 54d, and 54e to adjust the flow rate of the return air Ab according to the NOx concentration in the exhaust gas detected by the NOx concentration meter 58.
  • the return air control valve 18v is controlled to increase.
  • an air return line 18p capable of returning part of the compressed air discharged from the compressor casing 14c to the compressor casing 14c, and an air return line 18p. It further includes a return air control valve 18v capable of adjusting the flow rate of the flowing return air Ab, which is the compressed air.
  • the control devices 50c, 50d, 50e include return air controllers 54c, 54d, 54e for controlling the operation of the return air control valve 18v, and control of the intake air regulator 14v by the intake controllers 53c, 53d, 53e. cooperative controllers 56, 56d, 56e for coordinating control of the return air control valve 18v by the return air controllers 54c, 54d, 54e.
  • the cooperative controllers 56, 56d, and 56e are controlled so that the NOx concentration in the exhaust gas becomes less than a predetermined value and the unburned content concentration in the exhaust gas is determined according to the NOx concentration.
  • the intake air controllers 53c, 53d and 53e are caused to control the intake air regulator 14v, and the return air controllers 54c, 54d and 54e are caused to control the return air control valve 18v so that the fuel concentration is within the range.
  • the cooperative controllers 56, 56d and 56e control the intake controllers 53c, 53d and 53e so that the NOx concentration in the exhaust gas is less than the predetermined value.
  • the return air controllers 54c, 54d and 54e control the return air
  • the control valve 18v adjusts the flow rate of the return air Ab so that the amount of the return air Ab increases.
  • the concentration of unburned components in the exhaust gas is not within the range of concentration of unburned components.
  • the second case is a case where a request for further reducing the concentration of unburned components in the exhaust gas is received.
  • the operation of the intake regulator 14v alone does not increase the fuel-air ratio by a predetermined amount.
  • the return air control valve 18v is controlled by the return air controllers 54c, 54d, and 54e to increase the flow rate of the return air Ab, so the load on the compressor 14 increases. Therefore, when the return air control valve 18v is controlled by the return air controllers 54c, 54d, and 54e, the gas turbine efficiency is higher than when the intake air regulator 14v is controlled by the intake controllers 53c, 53d, and 53e. becomes lower. Further, when the return air control valve 18v is controlled by the return air controllers 54c, 54d, and 54e to increase the flow rate of the return air Ab, the temperature of the compressed air flowing into the combustor 15 is increased by the intake controllers 53c, 53d, and 53e.
  • control of the intake air regulator 14v by the intake controllers 53c, 53d, and 53e.
  • Control of return air control valve 18v is preferably effected by devices 54c, 54d, 54e.
  • control of the intake regulator 14v is first performed by the intake controllers 53c, 53d, and 53e. After this control, in the first or second case, the return air control valve 18v is controlled by the return air controllers 54c, 54d, and 54e in order to effectively reduce the unburned content concentration. do.
  • the cooperative controllers 56, 56d, and 56e control the amount of change in the fuel-air ratio in the adjustment of the intake air amount by the intake air regulator 14v and the return air adjustment.
  • the intake controllers 53c, 53d, and 53e control the intake air regulator 14v so that the ratio of the amount of change in the fuel-air ratio due to the adjustment of the flow rate of the return air Ab by the valve 18v becomes a predetermined ratio. and causes the return air controllers 54c, 54d and 54e to control the return air control valve 18v.
  • the gas turbine efficiency when the gas turbine efficiency is prioritized, it is preferable to control the intake regulator 14v by the intake controllers 53, 53a, 53c, 53d, and 53e, and priority is given to lowering the concentration of unburned components.
  • the return air control valve 18v by the return air controllers 54, 54c, 54d and 54e. Therefore, by appropriately setting the predetermined ratio in this aspect, it is possible to give priority to the gas turbine efficiency and to lower the concentration of unburned components.
  • the gas turbine equipment in the seventh aspect further includes a dilution air control valve 17v for adjusting the flow rate of the dilution air Al introduced into the combustion chamber 15s through the opening 15o.
  • the control devices 50d and 50e include dilution air controllers 55d and 55e that control the operation of the dilution air control valve 17v, control of the intake air regulator 14v by the intake controllers 53d and 53e, and control of the dilution air controller 55d. , 55e for controlling the dilution air control valve 17v.
  • the cooperative controllers 56d and 56e cause the dilution air controllers 55d and 55e to increase the flow rate of the dilution air Al according to the NOx concentration in the exhaust gas detected by the NOx concentration meter 58.
  • the dilution air control valve 17v is controlled.
  • the combustor main body 15b when the dilution air control valve 17v is controlled by the dilution air controllers 55d and 55e and the flow rate of the dilution air Al flowing into the combustion chamber 15s of the combustor 15 adopting the RQL method increases, the combustor main body 15b , the flow rate of the main combustion air Am injected into the combustion chamber 15s decreases. Therefore, in this aspect, when the NOx concentration in the exhaust gas reaches or exceeds a predetermined value, the fuel-air ratio in the lean combustion area LA does not change and the fuel-air ratio in the rich combustion area RA increases. As a result, in this aspect, the amount of NOx emissions can be suppressed.
  • the coordination controllers 56d and 56e control the intake controller so that the fuel-air ratio in the lean combustion area LA remains unchanged and the fuel-air ratio in the rich combustion area RA increases.
  • the intake air amount is decreased by controlling the intake air regulator 14v by 53d and 53e, and the flow rate of the dilution air Al is increased by controlling the dilution air control valve 17v by the dilution air controllers 55d and 55e.
  • the combustor 15 that employs the RQL method, when the fuel-air ratio in the lean combustion area LA becomes smaller than a predetermined amount, the amount of unburned fuel in the lean combustion area LA increases. In this mode, since the fuel-air ratio in the lean combustion area LA does not change, it is possible to suppress an increase in the concentration of unburned components in the exhaust gas.
  • the gas turbine equipment in the ninth aspect further includes a dilution air control valve 17v for adjusting the flow rate of the dilution air Al introduced into the combustion chamber 15s through the opening 15o.
  • the controller 50e has a dilution air controller 55e that controls the operation of the dilution air control valve 17v.
  • the cooperative controller 56e controls the intake air regulator 14v by the intake controller 53e, controls the return air regulation valve 18v by the return air controller 54e, and regulates the dilution air by the dilution air controller 55e. Coordinates control of valve 17v.
  • the cooperative controller 56e causes the dilution air controller 55e to increase the flow rate of the dilution air Al according to the NOx concentration in the exhaust gas detected by the NOx concentration meter 58. Let the valve 17v be controlled.
  • the cooperative controller 56e controls the intake controller 53e, the return air controller 54e, and the dilution air controller 55e so that the fuel-air ratio in the lean combustion area LA does not change. , so that the fuel-air ratio in the rich combustion region increases, the intake air amount is decreased by the intake air regulator 14v, and the flow rate of the return air Ab is increased by the return air control valve 18v, while the dilution air control valve 17v increases the flow rate of the dilution air Al.
  • the gas turbine equipment in the eleventh aspect A gas turbine 10, an air return line 18p, a return air control valve 18v, a NOx concentration meter 58 for detecting the NOx concentration in the exhaust gas, which is the combustion gas discharged from the gas turbine 10, and controllers 50a and 50c. , 50d, 50e.
  • the gas turbine 10 includes a compressor 14 capable of compressing air to generate compressed air, a combustor 15 capable of burning fuel in the compressed air to generate combustion gas, and a turbine 16 driven by the combustion gas. and have
  • the combustor 15 includes a combustion chamber former 15c that forms a combustion chamber 15s in which the fuel is combusted and that can guide the combustion gas generated by the combustion of the fuel to the turbine 16, and the combustion chamber 15s.
  • a combustor main body 15b capable of injecting ammonia as the fuel and main combustion air Am, which is a part of the compressed air, is provided therein.
  • the combustion chamber forming device 15c is formed with an opening 15o through which the dilution air Al, which is a part of the compressed air, can be introduced into the combustion chamber 15s from outside the combustion chamber forming device 15c.
  • the combustor 15 has a rich combustion region RA in which the fuel from the combustor main body 15b is burned in the combustion chamber 15s at a fuel-air ratio, which is the ratio of fuel to air, which is higher than the stoichiometric fuel-air ratio.
  • the gas from the rich combustion area RA is diluted with the dilution air Al from the opening 15o, and the fuel contained in the gas diluted with the dilution air Al is reduced to the stoichiometric fuel-air ratio. and a lean combustion region LA in which fuel is burned in a fuel-air ratio smaller than the air ratio.
  • the air return line 18p is configured to return part of the compressed air discharged from the compressor 14 back into the compressor 14. As shown in FIG.
  • the return air control valve 18v is configured to adjust the flow rate of the return air Ab, which is the compressed air flowing through the air return line 18p.
  • the control devices 50a, 50c, 50d, and 50e adjust the return air control valve 18v so that the flow rate of the return air Ab increases according to the NOx concentration in the exhaust gas, which is the combustion gas discharged from the turbine. It has a controlling return air controller 54, 54c, 54d, 54e.
  • the return air controllers 54, 54c, 54d, and 54e operate the return air control valve 18v so that the flow rate of the return air Ab increases. to control.
  • the return air controllers 54, 54c, 54d, and 54e operate the return air control valve 18v so that the flow rate of the return air Ab increases. to control.
  • the fuel-air ratios both in the rich combustion area RA and the lean combustion area LA increase. As a result, in this aspect, the amount of NOx emissions can be suppressed.
  • the gas turbine equipment in the twelfth aspect further includes an unburned content concentration meter 59 for detecting the unburned content concentration in the exhaust gas.
  • the return air controllers 54, 54c, 54d, and 54e are controlled so that the NOx concentration in the exhaust gas becomes less than a predetermined value and the unburned content concentration in the exhaust gas is determined according to the NOx concentration.
  • the operation of the return air control valve 18v is controlled so that the concentration of unburned components is within the determined range.
  • the concentration of unburned components in the exhaust gas can be kept within a predetermined concentration range of unburned components while suppressing the concentration of NOx.
  • the gas turbine equipment in the thirteenth aspect further includes a dilution air control valve 17v that adjusts the flow rate of the dilution air Al introduced into the combustion chamber 15s from the opening 15o.
  • the control devices 50d and 50e include dilution air controllers 55d and 55e for controlling the operation of the dilution air control valve 17v, and control of the return air control valve 18v and the dilution air control by the return air controllers 54d and 54e.
  • cooperative controllers 56d and 56e for coordinating the control of the dilution air control valve 17v by the devices 55d and 55e.
  • the cooperative controllers 56d and 56e cause the dilution air controllers 55d and 55e to increase the flow rate of the dilution air Al according to the NOx concentration in the exhaust gas detected by the NOx concentration meter 58.
  • the dilution air control valve 17v is controlled.
  • the cooperative controllers 56d and 56e perform the return air control so that the fuel-air ratio in the lean combustion region LA remains unchanged and the fuel-air ratio in the rich combustion region increases. While increasing the flow rate of the return air Ab by controlling the return air control valve 18v by the devices 54d and 54e, the flow rate of the dilution air Al is increased by controlling the dilution air control valve 17v by the dilution air controllers 55d and 55e. make more
  • the combustor 15 that employs the RQL method, when the fuel-air ratio in the lean combustion area LA becomes smaller than a predetermined amount, the amount of unburned fuel in the lean combustion area LA increases. In this mode, since the fuel-air ratio in the lean combustion area LA does not change, it is possible to suppress an increase in the concentration of unburned components in the exhaust gas.
  • the gas turbine equipment in the fifteenth aspect includes a gas turbine 10, a dilution air control valve 17v, and controllers 50b, 50d and 50e.
  • the gas turbine 10 can be driven by a compressor 14 capable of compressing air to generate compressed air, a combustor 15 capable of burning ammonia as a fuel in the compressed air to generate combustion gas, and the combustion gas.
  • the compressor 14 has a compressor rotor 14r rotatable around the axis Ar, and a compressor casing 14c covering the compressor rotor 14r.
  • the combustor 15 includes a combustion chamber former 15c that forms a combustion chamber 15s in which the fuel is combusted and that can guide the combustion gas generated by the combustion of the fuel to the turbine 16, and the combustion chamber 15s. and a combustor main body 15b capable of injecting the main combustion air Am, which is part of the ammonia and the compressed air, inside.
  • the combustion chamber forming device 15c is formed with an opening 15o through which the dilution air Al, which is a part of the compressed air, can be introduced into the combustion chamber 15s from outside the combustion chamber forming device 15c.
  • the combustor 15 has a rich combustion region RA in which the fuel from the combustor main body 15b is burned in the combustion chamber 15s at a fuel-air ratio, which is the ratio of fuel to air, which is higher than the stoichiometric fuel-air ratio. Then, the gas from the rich combustion area RA is diluted with the dilution air Al from the opening 15o, and the fuel contained in the gas diluted with the dilution air Al is reduced to the stoichiometric fuel-air ratio. and a lean combustion region LA in which fuel is burned in a fuel-air ratio smaller than the air ratio.
  • a fuel-air ratio which is the ratio of fuel to air, which is higher than the stoichiometric fuel-air ratio.
  • the dilution air control valve 17v is a valve capable of adjusting the flow rate of the dilution air Al introduced into the combustion chamber 15s through the opening 15o.
  • the controllers 50b, 50d, and 50e control the dilution air control valve 17v so that the flow rate of the dilution air Al increases according to the NOx concentration in the exhaust gas, which is the combustion gas discharged from the turbine. It has dilution air controllers 55, 55d, 55e.
  • the combustor 15 when the dilution air control valve 17v is controlled by the dilution air controllers 55, 55d, and 55e and the flow rate of the dilution air Al flowing into the combustion chamber 15s of the combustor 15 adopting the RQL method increases, the combustor The flow rate of the main combustion air Am injected into the combustion chamber 15s from the main body 15b decreases. Therefore, in this aspect, when the NOx concentration in the exhaust gas reaches or exceeds a predetermined value, the fuel-air ratio in the lean combustion area LA decreases and the fuel-air ratio in the rich combustion area RA increases. As a result, in this aspect, the amount of NOx emissions can be suppressed.
  • the gas turbine equipment in the sixteenth aspect further includes an unburned content concentration meter 59 for detecting the unburned content concentration in the exhaust gas.
  • the dilution air controllers 55, 55d, and 55e are controlled so that the NOx concentration in the exhaust gas becomes less than a predetermined value and the concentration of unburned matter in the exhaust gas is determined in accordance with the NOx concentration.
  • the dilution air control valve 17v is controlled so that the concentration of unburned components falls within the range.
  • the concentration of unburned components in the exhaust gas can be kept within a predetermined concentration range of unburned components while suppressing the concentration of NOx.
  • the gas turbine control method in the seventeenth aspect is applied to the following gas turbines.
  • the gas turbine 10 includes a compressor 14 capable of compressing air to generate compressed air, a combustor 15 capable of burning fuel in the compressed air to generate combustion gas, and a turbine 16 driven by the combustion gas. and have
  • the compressor 14 has a compressor rotor 14r rotatable around the axis Ar, and a compressor casing 14c covering the compressor rotor 14r.
  • the combustor 15 includes a combustion chamber former 15c for forming a combustion chamber 15s in which the fuel is combusted and for guiding the combustion gas generated by the combustion of the fuel to the turbine, and and a combustor main body 15b capable of injecting ammonia as the fuel and main combustion air Am which is a part of the compressed air.
  • the combustion chamber forming device 15c is formed with an opening 15o through which the dilution air Al, which is a part of the compressed air, can be introduced into the combustion chamber 15s from outside the combustion chamber forming device 15c.
  • the ammonia as the fuel and the main combustion air Am are injected from the combustor main body 15b into the combustion chamber 15s, and the dilution air is injected into the combustion chamber 15s from the opening 15o.
  • a rich combustion region RA in which Al is introduced into the combustion chamber 15s and the fuel from the combustor main body 15b is burned at a fuel-air ratio, which is a ratio of fuel to air, greater than the stoichiometric fuel-air ratio.
  • the gas from the rich combustion area RA is diluted with the dilution air Al from the opening 15o, and the fuel contained in the gas diluted with the dilution air Al is reduced to the stoichiometric fuel-air ratio.
  • Intake control steps S4, S4c, S4d, and S5d are executed.
  • NOx emissions can be suppressed.
  • the gas turbine control method in the eighteenth aspect includes: In the method for controlling the gas turbine 10 according to the seventeenth aspect, an unburned content concentration detection step S3 of detecting the unburned content concentration in the exhaust gas is further performed. In the intake control steps S4, S4c, S4d, and S5d, the concentration of NOx in the exhaust gas becomes less than a predetermined value, and the concentration of unburned matter reaches a predetermined unburned matter determined according to the concentration of NOx. The intake air amount is controlled so as to be within the concentration range.
  • the gas turbine control method in the nineteenth aspect includes: In the control method of the gas turbine 10 according to the seventeenth aspect or the eighteenth aspect, according to the NOx concentration in the exhaust gas detected in the NOx concentration detection step S3, together with the intake control steps S4c and S4e, Return air control steps S5c and S5e are further executed to increase the flow rate of part of the compressed air discharged from the compressor casing 14c as return air Ab to be returned into the compressor casing 14c.
  • NOx emissions can be suppressed.
  • the gas turbine control method in the twentieth aspect includes: In the control method for the gas turbine 10 according to any one of the seventeenth to nineteenth aspects, the intake air Together with the control step S4e, a dilution air control step S6e for increasing the flow rate of the dilution air Al is further executed.
  • NOx emissions can be suppressed.
  • the gas turbine control method in the twenty-first aspect is applied to the following gas turbines.
  • the gas turbine 10 includes a compressor 14 capable of compressing air to generate compressed air, a combustor 15 capable of burning fuel in the compressed air to generate combustion gas, and a turbine 16 driven by the combustion gas. and have
  • the compressor 14 has a compressor rotor 14r rotatable around the axis Ar, and a compressor casing 14c covering the compressor rotor 14r.
  • the combustor 15 includes a combustion chamber former 15c that forms a combustion chamber 15s in which the fuel is combusted and that can guide the combustion gas generated by the combustion of the fuel to the turbine 16, and the combustion chamber 15s.
  • a combustor main body 15b capable of injecting ammonia as the fuel and main combustion air Am, which is a part of the compressed air, is provided therein.
  • the combustion chamber forming device 15c is formed with an opening 15o through which the dilution air Al, which is a part of the compressed air, can be introduced into the combustion chamber 15s from outside the combustion chamber forming device 15c.
  • the ammonia as the fuel and the main combustion air Am are injected from the combustor main body 15b into the combustion chamber 15s, and the dilution air is injected into the combustion chamber 15s from the opening 15o.
  • the gas turbine control method in the twenty-second aspect includes: In the method for controlling the gas turbine 10 according to the twenty-first aspect, an unburned concentration detection step S3 for detecting an unburned concentration in the exhaust gas is further executed, and in the return air control steps S5, S5c, and S5e , the return air Ab is adjusted so that the concentration of NOx in the exhaust gas is less than a predetermined value and the concentration of unburned matter falls within a predetermined concentration range of unburned matter determined according to the concentration of NOx. Control the flow rate.
  • the method for controlling a gas turbine in the twenty-third aspect includes: In the method for controlling the gas turbine 10 according to the twenty-first aspect or the twenty-second aspect, in accordance with the NOx concentration in the exhaust gas detected in the NOx concentration detecting step S3, together with the return air control step S5e , further executes a dilution air control step S6e for increasing the flow rate of the dilution air Al.
  • the gas turbine control method in the twenty-fourth aspect is applied to the following gas turbines.
  • the gas turbine 10 includes a compressor 14 capable of compressing air to generate compressed air, a combustor 15 capable of burning fuel in the compressed air to generate combustion gas, and a turbine 16 driven by the combustion gas. and have
  • the compressor 14 has a compressor rotor 14r rotatable around the axis Ar, and a compressor casing 14c covering the compressor rotor 14r.
  • the combustor 15 includes a combustion chamber former 15c that forms a combustion chamber 15s in which the fuel is combusted and that can guide the combustion gas generated by the combustion of the fuel to the turbine 16, and the combustion chamber 15s.
  • a combustor main body 15b capable of injecting ammonia as the fuel and main combustion air Am, which is a part of the compressed air, is provided therein.
  • the combustion chamber forming device 15c is formed with an opening 15o through which the dilution air Al, which is a part of the compressed air, can be introduced into the combustion chamber 15s from outside the combustion chamber forming device 15c.
  • the ammonia as the fuel and the main combustion air Am are injected from the combustor main body 15b into the combustion chamber 15s, and the dilution air is injected into the combustion chamber 15s from the opening 15o.
  • NOx emissions can be reduced when ammonia is used as fuel for the gas turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

ガスタービン設備は、ガスタービンと、制御装置と、を備える。ガスタービンの燃焼器は、アンモニアを燃料し、RQL方式を採用する燃焼器である。ガスタービンの圧縮機は、圧縮機ケーシング内に流入する空気の流量である吸気量を調節する吸気調節器を有する。制御装置は、排気ガス中のNOx濃度が予め定められた値以上になると、吸気量が少なくなるよう、吸気調節器の動作を制御する。

Description

ガスタービン設備、及びガスタービンの制御方法
 本開示は、ガスタービン設備、及びガスタービンの制御方法に関する。
 本願は、2021年2月15日に、日本国に出願された特願2021-021754号に基づき優先権を主張し、この内容をここに援用する。
 ガスタービンは、空気を圧縮する圧縮機と、圧縮機で圧縮された空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、燃焼ガスにより駆動するタービンと、を備えている。
 このようなガスタービンでは、燃料の燃焼により、NOxが生成される。このNOxの排出量は、法律等により規制されている。このため、NOxの排出量を低減する技術が望まれる。
 例えば、以下の特許文献1には、圧縮機が空気を吸い込む前に、この空気を加熱することで、NOxの排出量を低減する技術が開示されている。
特開2013-160227号公報
 近年、ガスタービンの燃料として、アンモニアを用いることが注目されている。
 そこで、本開示は、ガスタービンの燃料としてアンモニアを用いる場合に、NOxの排出量を低減できる技術を提供することを目的とする。
 前記目的を達成するための一態様としてのガスタービン設備は、
 ガスタービンと、前記ガスタービンから排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度計と、制御装置と、を備える。前記ガスタービンは、空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料としてのアンモニアを燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、を有する。前記圧縮機は、軸線を中心として回転可能な圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、前記圧縮機ケーシングに吸い込まれる空気の流量である吸気量を調節する吸気調節器と、を有する。前記燃焼器は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービンに導くことができる燃焼室を形成する燃焼室形成器と、前記燃焼室内に前記アンモニア及び前記圧縮空気の一部である主燃焼用空気を噴射可能な燃焼器本体と、を有する。前記燃焼室形成器には、前記燃焼室形成器外から前記燃焼室内に前記圧縮空気の一部である希釈空気を導入可能な開口が形成されている。前記燃焼器は、前記燃焼室内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体からの燃料を燃焼させるリッチ燃焼領域と、前記リッチ燃焼領域からのガスが前記開口からの前記希釈空気により希釈され、前記希釈空気により希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域と、が形成されるよう構成されている。前記制御装置は、前記NOx濃度計で検知された前記排気ガス中のNOx濃度に応じて、前記吸気量が少なくなるよう、前記吸気調節器の動作を制御する吸気制御器を有する。
 NOxの発生量は、燃料の燃焼領域における燃空比に応じて変化する。本態様の燃焼器は、燃焼室内に、リッチ燃焼領域と、リーン燃焼領域とが形成される燃焼器である。よって、本態様の燃焼器は、RQL(Rich burn quick Quench Lean burn)方式を採用する燃焼器である。また、本態様の燃焼器は、アンモニアを燃料にする。このような燃焼器では、ガスタービンを定格負荷運転から部分負荷運転に移行している過程、及び、ガスタービンが部分負荷運転しているとき等(以下、部分負荷運転時)では、燃焼室に流入する全燃焼用空気に対する燃焼室に噴射される全燃料流量の比である燃焼室燃空比が定格負荷運転時よりも小さくなる。ところで、燃焼器でのNOxの発生量は、RQL方式を採用する燃焼器に限らず、燃料の燃焼領域における燃空比に応じて変化する。RQL方式を採用し、アンモニアを燃料とする燃焼器では、部分負荷運転時に、リッチ燃焼領域及びリーン燃焼領域での燃空比がともに小さくなり、燃焼器から排出される燃焼器の燃焼ガス中のNOx濃度が高まる。
 本態様では、排気ガス中のNOx濃度が予め定められた値以上になると、吸気制御器が、吸気量が少なくなるよう、吸気調節器の動作を制御する。本態様のRQL方式を採用する燃焼器15では、吸気量が少なると、リッチ燃焼領域及びリーン燃焼領域での燃空比がともに大きくなる。この結果、本態様では、NOxの排出量を抑えることができる。
 前記目的を達成するための他の態様としてのガスタービン設備は、
 ガスタービンと、空気戻しラインと、戻し空気調節弁と、前記ガスタービンから排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度計と、制御装置と、を備える。前記ガスタービンは、空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、を有する。前記燃焼器は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービンに導くことができる燃焼室を形成する燃焼室形成器と、前記燃焼室内に前記燃料としてのアンモニア及び前記圧縮空気の一部である主燃焼用空気を噴射可能な燃焼器本体と、を有する。前記燃焼室形成器には、前記燃焼室形成器外から前記燃焼室内に前記圧縮空気の一部である希釈空気を導入可能な開口が形成されている。前記燃焼器は、前記燃焼室内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体からの燃料を燃焼させるリッチ燃焼領域と、前記リッチ燃焼領域からのガスが前記開口からの前記希釈空気により希釈され、前記希釈空気により希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域と、が形成されるよう構成されている。前記空気戻しラインは、前記圧縮機ケーシングから吐出された圧縮空気の一部を前記圧縮機ケーシング内に戻せるよう構成されている。前記戻し空気調節弁は、前記空気戻しライン中を流れる前記圧縮空気である戻し空気の流量を調節できるよう構成されている。前記制御装置は、前記タービンから排気される燃焼ガスである排気ガス中のNOx濃度に応じて、前記戻し空気の流量が多くなるよう、前記戻し空気調節弁を制御する戻し空気制御器を有する。
 本態様では、排気ガス中のNOx濃度が予め定められた値以上になると、戻し空気制御器が、戻し空気の流量が多くなるよう、戻し空気調節弁の動作を制御する。本態様のRQL方式を採用する燃焼器では、戻し空気の流量が多くなると、リッチ燃焼領域及びリーン燃焼領域での燃空比がともに大きくなる。この結果、本態様では、NOxの排出量を抑えることができる。
 前記目的を達成するためのさらに他の態様としてのガスタービン設備は、
 ガスタービンと、希釈空気調節弁と、制御装置と、を備える。前記ガスタービンは、空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料としてのアンモニアを燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、を有する。前記圧縮機は、軸線を中心として回転可能な圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、を有する。前記燃焼器は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービンに導くことができる燃焼室を形成する燃焼室形成器と、前記燃焼室内に前記アンモニア及び前記圧縮空気の一部である主燃焼用空気を噴射可能な燃焼器本体と、を有する。前記燃焼室形成器には、前記燃焼室形成器外から前記燃焼室内に前記圧縮空気の一部である希釈空気を導入可能な開口が形成されている。前記燃焼器は、前記燃焼室内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体からの燃料を燃焼させるリッチ燃焼領域と、前記リッチ燃焼領域からのガスが前記開口からの前記希釈空気により希釈され、前記希釈空気により希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域と、が形成されるよう構成されている。前記希釈空気調節弁は、前記開口から前記燃焼室に導入する前記希釈空気の流量を調節可能な弁である。前記制御装置は、前記タービンから排気される燃焼ガスである排気ガス中のNOx濃度に応じて、前記希釈空気の流量が増加するよう、前記希釈空気調節弁を制御する希釈空気制御器を有する。
 本態様では、希釈空気制御器による希釈空気調節弁の制御で、RQL方式を採用する燃焼器における燃焼室内に流入する希釈空気の流量が多くなると、燃焼器本体から燃焼室内に噴射される主燃焼用空気の流量が少なくなる。このため、本態様では、排気ガス中のNOx濃度が予め定められた値以上になると、リーン燃焼領域の燃空比が小さくなり、リッチ燃焼領域の燃空比が大きくなる。この結果、本態様では、NOxの排出量を抑えることができる。
 前記目的を達成するための一態様としてのガスタービンの制御方法は、以下のガスタービンに適用される。
 このガスタービンは、空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、を有する。前記圧縮機は、軸線を中心として回転可能な圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、を有する。前記燃焼器は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービンに導くことができる燃焼室を形成する燃焼室形成器と、前記燃焼室内に前記燃料としてのアンモニア及び前記圧縮空気の一部である主燃焼用空気を噴射可能な燃焼器本体と、を有する。前記燃焼室形成器には、前記燃焼室形成器外から前記燃焼室内に前記圧縮空気の一部である希釈空気を導入可能な開口が形成されている。
 本態様の制御方法では、前記燃焼器本体から前記燃焼室内に前記燃料としての前記アンモニア及び前記主燃焼用空気を噴射すると共に、前記開口から前記燃焼室内に前記希釈空気を導入して、前記燃焼室内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体からの燃料を燃焼させるリッチ燃焼領域と、前記リッチ燃焼領域からのガスが前記開口からの前記希釈空気により希釈され、前記希釈空気により希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域と、を形成する燃焼工程と、前記燃料の燃焼で生成され前記ガスタービンから排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度検知工程と、前記NOx濃度検知工程で検知された前記排気ガス中のNOx濃度に応じて、前記圧縮機ケーシングに吸い込まれる空気の流量である吸気量を少なくなする吸気制御工程と、を実行する。
 前記目的を達成するための他の態様としてのガスタービンの制御方法は、以下のガスタービンに適用される。
 このガスタービンは、空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、を有する。前記圧縮機は、軸線を中心として回転可能な圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、を有する。前記燃焼器は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービンに導くことができる燃焼室を形成する燃焼室形成器と、前記燃焼室内に前記燃料としてのアンモニア及び前記圧縮空気の一部である主燃焼用空気を噴射可能な燃焼器本体と、を有する。前記燃焼室形成器には、前記燃焼室形成器外から前記燃焼室内に前記圧縮空気の一部である希釈空気を導入可能な開口が形成されている。
 本態様の制御方法では、前記燃焼器本体から前記燃焼室内に前記燃料としての前記アンモニア及び前記主燃焼用空気を噴射すると共に、前記開口から前記燃焼室内に前記希釈空気を導入して、前記燃焼室内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体からの燃料を燃焼させるリッチ燃焼領域と、前記リッチ燃焼領域からのガスが前記開口からの前記希釈空気により希釈され、前記希釈空気により希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域と、を形成する燃焼工程と、前記燃料の燃焼で生成され前記ガスタービンから排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度検知工程と、前記NOx濃度検知工程で検知された前記排気ガス中のNOx濃度に応じて、前記圧縮機ケーシングから吐出された圧縮空気の一部を戻し空気として、前記圧縮機ケーシング内に戻す流量を多くする戻し空気制御工程と、を実行する。
 前記目的を達成するためのさらに他の態様としてのガスタービンの制御方法は、以下のガスタービンに適用される。
 このガスタービンは、空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、を有する。前記圧縮機は、軸線を中心として回転可能な圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、を有する。前記燃焼器は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービンに導くことができる燃焼室を形成する燃焼室形成器と、前記燃焼室内に前記燃料としてのアンモニア及び前記圧縮空気の一部である主燃焼用空気を噴射可能な燃焼器本体と、を有する。前記燃焼室形成器には、前記燃焼室形成器外から前記燃焼室内に前記圧縮空気の一部である希釈空気を導入可能な開口が形成されている。
 本態様の制御方法では、前記燃焼器本体から前記燃焼室内に前記燃料としての前記アンモニア及び前記主燃焼用空気を噴射すると共に、前記開口から前記燃焼室内に前記希釈空気を導入して、前記燃焼室内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体からの燃料を燃焼させるリッチ燃焼領域と、前記リッチ燃焼領域からのガスが前記開口からの前記希釈空気により希釈され、前記希釈空気により希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域と、を形成する燃焼工程と、前記燃料の燃焼で生成され前記ガスタービンから排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度検知工程と、前記NOx濃度検知工程で検知された前記排気ガス中のNOx濃度に応じて、前記希釈空気の流量を多くする希釈空気制御工程と、を実行する。
 本開示の一態様では、ガスタービンの燃料としてアンモニアを用いる場合に、NOxの排出量を低減できる。
本開示に係る第一実施形態におけるガスタービン設備の模式的構成図である。 本開示に係る第一実施形態における燃焼器の模式的断面図である。 本開示に係る第一実施形態における制御装置の機能ブロック図である。 本開示に係る第一実施形態におけるガスタービンの制御方法における手順を示すフローチャートである。 本開示に係る第一実施形態における各種運転形態における燃空比とNOx濃度及び未燃分濃度との関係を示すグラフである。 本開示に係る第二実施形態における制御装置の機能ブロック図である。 本開示に係る第二実施形態におけるガスタービンの制御方法における手順を示すフローチャートである。 本開示に係る第二実施形態における各種運転形態における燃空比とNOx濃度及び未燃分濃度との関係を示すグラフである。 本開示に係る第三実施形態における制御装置の機能ブロック図である。 本開示に係る第三実施形態におけるガスタービンの制御方法における手順を示すフローチャートである。 本開示に係る第三実施形態における各種運転形態における燃空比とNOx濃度及び未燃分濃度との関係を示すグラフである。 本開示に係る第四実施形態における制御装置の機能ブロック図である。 本開示に係る第四実施形態におけるガスタービンの制御方法における手順を示すフローチャートである。 本開示に係る第四実施形態における各種運転形態における燃空比とNOx濃度及び未燃分濃度との関係を示すグラフである。 本開示に係る第五実施形態における制御装置の機能ブロック図である。 本開示に係る第五実施形態におけるガスタービンの制御方法における手順を示すフローチャートである。 本開示に係る第五実施形態における各種運転形態における燃空比とNOx濃度及び未燃分濃度との関係を示すグラフである。 本開示に係る第六実施形態における制御装置の機能ブロック図である。 本開示に係る第六実施形態におけるガスタービンの制御方法における手順を示すフローチャートである。 本開示に係る第六実施形態における各種運転形態における燃空比とNOx濃度及び未燃分濃度との関係を示すグラフである。
 以下、本開示に係るガスタービン設備の各種実施形態及び各種変形例について、図面を用いて説明する。
 「第一実施形態」
 以下、本開示に係るガスタービン設備の第一実施形態について、図1~図5を用いて説明する。
 本実施形態のガスタービン設備は、図1に示すように、ガスタービン10と、圧縮空気戻し装置18と、ガスタービン10からの排気ガス中に含まれるNOx分を分解する脱硝装置28と、脱硝装置28から流出した排気ガスを外部に排気する煙突29と、ガスタービン10に燃料を供給する燃料供給設備20と、制御装置50と、を備える。
 ガスタービン10は、空気Aを圧縮する圧縮機14と、圧縮機14で圧縮された空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器15と、高温高圧の燃焼ガスにより駆動するタービン16と、吸気ダクト12と、中間ケーシング13と、希釈空気調節装置17と、を備える。
 圧縮機14は、ロータ軸線Arを中心として回転する圧縮機ロータ14rと、この圧縮機ロータ14rを覆う圧縮機ケーシング14cと、この圧縮機ケーシング14cの吸込み口に設けられている吸気調節器(以下、IGV(inlet guide vane)とする)14vと、を有する。IGV14vは、制御装置50からの指示に従い圧縮機ケーシング14c内に吸い込まれる空気の流量である吸気量を調節する。吸気ダクト12は、圧縮機ケーシング14cの吸込み口に接続されている。
 タービン16は、燃焼器15からの燃焼ガスにより、ロータ軸線Arを中心として回転するタービンロータ16rと、このタービンロータ16rを覆うタービンケーシング16cと、を有する。タービンロータ16rと圧縮機ロータ14rとは、同一のロータ軸線Arを中心として回転可能に相互に連結されて、ガスタービンロータ11を成す。このガスタービンロータ11には、例えば、発電機のロータが接続されている。
 中間ケーシング13は、ロータ軸線Arが延びている方向で、圧縮機ケーシング14cとタービンケーシング16cとの間に配置され、圧縮機ケーシング14cとタービンケーシング16cとを連結する。この中間ケーシング13内には、圧縮機14から吐出された圧縮空気が流入する。
 燃焼器15は、中間ケーシング13に固定されている。この燃焼器15は、内部に燃焼室15sを形成する燃焼室形成器15cと、燃焼室15s内に燃料としてのアンモニア及び圧縮空気を噴射する燃焼器本体15bと、を備える。燃焼室形成器15cは、圧縮機14からの圧縮空気が流入する中間ケーシング13内に配置されている。燃焼室15s内では、燃料が圧縮空気内で燃焼する。燃料の燃焼で生成された燃焼ガスは、燃焼室15sを流れて、タービン16に送られる。
 図2に示すように、燃焼室形成器15cには、燃焼室形成器15c外から燃焼室15s内に圧縮機14からの圧縮空気の一部である希釈空気Alを導入可能な開口15oが形成されている。この燃焼器15は、燃焼室15s内に、リッチ燃焼領域RAと、クエンチ領域QAと、リーン燃焼領域LAとが形成されるよう構成されている。リッチ燃焼領域RAは、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で燃焼器本体15bからの燃料Fを燃焼させる領域である。クエンチ領域QAは、開口15oからの希釈空気Alが導入されてリッチ燃焼領域RAからのガスを希釈する領域である。リーン燃焼領域LAは、クエンチ領域QAからのガス中に含まれる燃料を燃空比が理論燃空比より小さな燃空比中で燃焼させる領域である。よって、この燃焼器15は、RQL(Rich burnquick Quench Lean burn)方式を採用する燃焼器である。なお、リーン燃焼領域LAは、リッチ燃焼領域RAからのガスが開口15oからの希釈空気Alにより希釈され、希釈空気Alにより希釈された後のガス中に含まれる燃料を、燃空比が理論燃空比より小さな燃空比中で燃焼させる領域と、定義することも可能である。
 リーン燃焼領域LAからのガスは、タービン16に送られる。クエンチ領域QAは、このリーン燃焼領域LAに対して燃焼室15s内のガス流れの上流側に位置している。また、リッチ燃焼領域RAは、クエンチ領域QAに対して燃焼室15s内のガス流れの上流側に位置している。燃焼器本体15bは、燃焼室15s内のリッチ燃焼領域RAに、燃料Fとしてのアンモニア及び圧縮空気の一部である主燃焼用空気Amを噴射する。
 希釈空気調節装置17は、中間ケーシング13内に配置されている。希釈空気調節装置17は、希釈空気調節弁17vと、希釈空気ライン17pと、を有する。希釈空気ライン17pは、希釈空気調節弁17vと燃焼室形成器15cの開口15oとを接続する。希釈空気調節弁17vは、希釈空気ライン17p及び燃焼室形成器15cの開口15oを介して、燃焼室15s内に導入する希釈空気Alの流量を調節する。この希釈空気Alは、圧縮機14から中間ケーシング13内に流入した圧縮空気の一部である。希釈空気調節弁17vは、弁ケーシング17vcと、弁ケーシング17vc内をスライドする弁体vbと、を有する。弁体vbには、開口が形成されている。弁ケーシング17vcに対して、弁体vbがスライドすることで、弁ケーシング17vc内の流路面積が変化し、希釈空気Alの流量が調節される。
 図1に示すように、圧縮空気戻し装置18は、空気戻しライン18pと、戻し空気調節弁18vとを有する。空気戻しライン18pは、中間ケーシング13と吸気ダクト12とを接続し、圧縮機14からの吐出された圧縮空気の一部を戻し空気Abとして、圧縮機14に戻すことが可能である。戻し空気調節弁18vは、空気戻しライン18pを流れる戻し空気Abの流量を調節する。
 脱硝装置28には、アンモニアが供給される。この脱硝装置28は、このアンモニアを用いて、ガスタービン10からの排気ガス中に含まれるNOxを窒素と水蒸気とに分解する。
 燃料供給設備20は、アンモニアタンク21と、液体アンモニアライン22と、アンモニアポンプ23と、燃料調節弁24と、気化器25と、気体アンモニアライン26と、を有する。
 アンモニアタンク21には、液体アンモニアが貯留される。液体アンモニアライン22は、アンモニアタンク21と気化器25とを接続する。この液体アンモニアライン22には、アンモニアタンク21からの液体アンモニアを昇圧するアンモニアポンプ23と、液体アンモニアライン22を流れる液体アンモニアの流量を調節する燃料調節弁24と、が設けられている。気化器25は、液体アンモニアと加熱媒体とを熱交換させて、液体アンモニアを加熱し気化させる熱交換器である。気体アンモニアライン26は、気化器25と燃焼器15とを接続する。この気体アンモニアライン26は、気化器25からの気体アンモニアを燃料として、燃焼器15に導く。
 ガスタービン設備は、さらに、NOx濃度計58と、未燃分濃度計59と、を備える。
NOx濃度計58は、ガスタービン10から排気され脱硝装置28に流入する前の排気ガス中に含まれるNOxの濃度を検知する。未燃分濃度計59は、ガスタービン10から排気され脱硝装置28に流入する前の排気ガス中に含まれる未燃分であるアンモニアの濃度を検知する。
 制御装置50は、図3に示すように、燃料流量演算器51と、燃料制御器52と、吸気制御器53と、を有する。燃料流量演算器51は、外部から負荷要求PWrを受け付け、この負荷要求PWrに応じた燃料流量を求め、これを出力する。燃料制御器52は、液体燃料ラインを流れる燃料の流量が燃料流量演算器51で求められた燃料流量になるよう、燃料調節弁24を制御する。吸気制御器53は、燃料流量演算器51が求めた燃料流量、NOx濃度計58が検知したNOx濃度、及び未燃分濃度計59が検知した未燃分濃度に応じて、IGV14vを制御する。
 以上で説明した制御装置50は、コンピュータである。この制御装置50は、ハードウェア的には、各種演算を行うCPU(Central Processing Unit)と、CPUのワークエリアになるメモリ等の主記憶装置と、ハードディスクドライブ装置等の補助記憶装置と、キーボードやマウス等の入力装置と、表示装置と、を有する。燃料流量演算器51、燃料制御器52、吸気制御器53等の制御装置50における各機能部は、例えば、補助記憶装置に記憶された制御プログラムをCPUが実行することで、機能する。
 ここで、図5を参照して、本実施形態のように、RQL方式を採用する燃焼器15における燃空比と、NOx濃度及び未燃分濃度と、の関係について説明する。
 NOx濃度は、燃空比が理論空燃比Rtの近傍で最大になる。NOx濃度が最大になる燃空比(以下、最大NOx濃度燃空比)Rmaxを含む燃空比の領域(以下、中燃空比領域)RRmでは、後述の他の燃空比の領域RRa,RRbよりも、NOx濃度が高い。中燃空比領域RRmは、最大NOx濃度燃空比Rmaxから燃空比が所定分だけ小さい燃空比までの領域と、最大NOx濃度燃空比Rmaxから燃空比が所定分だけ大きい燃空比までの領域と、を合わせた領域である。この中燃空比領域RRmでは、燃空比が、最大NOx濃度燃空比Rmaxから燃空比が小さくなるに連れて、NOx濃度が急激に小さくなる。また、この中燃空比領域RRmでは、最大NOx濃度燃空比Rmaxから燃空比が大きくなるに連れて、NOx濃度が急激に小さくなる。
 燃空比が中燃空比領域RRmよりも小さい小燃空比領域RRaでは、NOx濃度が極めて低く、且つ、この小燃空比領域RRa内で燃空比が変化しても、NOx濃度はほとんど変化しない。また、燃空比が中燃空比領域RRmよりも大きい大燃空比領域RRbでも、NOx濃度が極めて低く、且つ、この大燃空比領域RRb内で燃空比が変化しても、NOx濃度はほとんど変化しない。
 一方、中燃空比領域RRmでは、未燃分濃度が極めて低く、この中燃空比領域RRmで燃空比が変化しても、未燃分濃度はほとんど変化しない。小燃空比領域RRaでは、燃空比が小さくなるに連れて未燃分濃度が次第に大きくなる。また、大燃空比領域RRb中で燃空比が小さい領域RRb1では、未燃分濃度が極めて低く、この領域RRb1で燃空比が変化しても、未燃分濃度はほとんど変化しない。大燃空比領域RRb中で燃空比が大きい領域RRb2では、燃空比が大きくなるに連れて、未燃分濃度が急激に高くなる。
 ガスタービンを定格負荷運転している定格負荷運転時、リッチ燃焼領域RAでの燃空比Rrrは、大燃空比領域RRb中で燃空比が小さい領域RRb1内に位置する。このため、この定格負荷運転時、リッチ燃焼領域RAから流出したガス中のNOx濃度及び未燃分濃度は、極めて低い。また、定格負荷運転時、リーン燃焼領域LAでの燃空比Rrlは、少燃空比領域RRa中で燃空比が大きい領域RRa1内に位置する。このため、この定格負荷運転時、このリーン燃焼領域LAから流出したガス中のNOx濃度及び未燃分濃度は、極めて低い。なお、燃焼室15s内に流入する全燃焼用空気(主燃焼用空気Am+希釈空気Al)の流量と燃焼室15s内に噴射される燃料の流量との比である燃空比(以下、燃焼室燃空比)は、リッチ燃焼領域RAでの燃空比とリーン燃焼領域LAでの燃空比との間の値である。
 ガスタービン10を定格負荷運転から部分負荷運転に移行している過程、及び、ガスタービン10が部分負荷運転しているとき等(以下、部分負荷運転時)では、燃焼器15に供給される燃料流量が少なくなり、燃焼室燃空比が定格負荷運転時よりも小さくなる。この関係で、部分負荷運転時、リッチ燃焼領域RAでの燃空比Rprは、定格負荷運転時におけるリッチ燃焼領域RAでの燃空比Rrrより小さくなり、中燃空比領域RRm内に位置する。このため、この部分負荷運転時、リッチ燃焼領域RAから流出したガス中のNOx濃度は、定格負荷運転時よりも高くなる。また、この部分負荷運転時、リッチ燃焼領域RAから流出したガス中の未燃分濃度は、定格負荷運転時と同様、極めて低い。
 以上のように、単に部分負荷運転しているときには、リッチ燃焼領域RAから流出したガス中のNOx濃度が高くなり、ガスタービン10から排気される排気ガス中のNOx濃度が予め定められた値よりも高くなる場合がある。
 そこで、本実施形態では、部分負荷運転時におけるNOx濃度を低下させるために、本実施形態では、吸気制御器53による吸気量の制御を行う。
 次に、図4に示すフローチャートに従って、本実施形態におけるガスタービン10の制御方法の実行手順について説明する。
 まず、燃焼工程S1が実行される。この燃焼工程S1では、燃焼器本体15bから主燃焼用空気Am及び燃料Fとしてのアンモニアが燃焼室15s内に噴出される。さらに、開口15oから燃焼室15s内のクエンチ領域QAに希釈空気Alが導入させる。この結果、この燃焼工程S1では、前述したように、燃焼室15s内に、リッチ燃焼領域RAと、クエンチ領域QAと、リーン燃焼領域LAとが、形成される。
 この燃焼工程S1の実行中、NOx濃度検知工程S2及び未燃分濃度検知工程S3が実行される。NOx濃度検知工程S2では、NOx濃度計58により排気ガス中のNOx濃度が検知される。また、未燃分濃度検知工程S3では、未燃分濃度計59により排気ガス中の未燃分濃度が検知される。
 吸気制御工程S4では、吸気制御器53が、NOx濃度計58で検知されたNOx濃度に応じて、圧縮機ケーシング14c内に吸い込まれる空気の流量である吸気量が少なくなることで、NOx濃度が予め定められた値未満になり且つ未燃分濃度が予め定められた未燃分濃度範囲内に収まるよう、IGV14vの動作を制御する。具体的に、吸気制御工程S4では、例えば、まず、吸気制御器53が、NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったか否かを判断する。そして、吸気制御器53は、NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったと判断すると、圧縮機ケーシング14c内に吸い込まれる空気の流量である吸気量が予め定められた分だけ少なることで、NOx濃度が予め定められた値未満になり且つ未燃分濃度が予め定められた未燃分濃度範囲内に収まるよう、IGV14vの動作を制御する。また、吸気制御器53は、NOx濃度計58で検知されたNOx濃度が増加中であると判断すると、予め定められた関係を用いて、NOx濃度計58で検知されたNOx濃度に応じた吸気量(又はIGV開度)を定めてもよい。ここで、予め定められた関係とは、NOx濃度計58で検知されたNOx濃度と、NOx濃度が予め定められた値未満になり(且つ未燃分濃度が予め定められた未燃分濃度範囲内に収まる)吸気量(又はIGV開度)との関係である。
 ここで、予め定められた未燃分濃度範囲は、NOx濃度に応じて定まる上限未燃分濃度と下限未燃分濃度との間の範囲である。ガスタービン10から排気される排気ガス中の未燃分は、本実施形態ではアンモニアである。脱硝装置28は、前述したように、アンモニアを用いて、ガスタービン10からの排気ガス中に含まれるNOxを窒素と水蒸気とに分解する。このため、排気ガス中に未燃分としてのアンモニアが含まれていると、この排気ガス中のアンモニアをNOxの分解反応に利用でき、脱硝装置28に供給するアンモニアの量を抑えることができる。そこで、本実施形態では、排気ガス中の未燃分がNOx濃度に応じて予め定められた未燃分濃度範囲内に収めるよう、IGV14vの動作を制御する。
 以上のIGV14vの動作制御により、IGV14v開度が小さくなり、圧縮機ケーシング14c内に吸い込まれる空気の量である吸気量が少なくなる。
 負荷が一定で、吸気量が予め定められた分だけ少なくなると、燃焼室燃空比は予め定められた分だけ大きくなる。この結果、図5に示すように、リッチ燃焼領域RAでの燃空比Rirは、部分負荷運転時であっても、前述の単なる部分負荷運転時におけるリッチ燃焼領域RAでの燃空比Rprより予め定められた分だけ大きくなり、大燃空比領域RRb中で燃空比が小さい領域RRb1内に位置するようになる。このため、部分負荷運転時に吸気量を前述したように制御することで、部分負荷運転時であっても、リッチ燃焼領域RAから流出したガス中のNOx濃度を極めて低く抑えることができる上に、リッチ燃焼領域RAから流出したガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収めることができる。また、リーン燃焼領域LAでの燃空比Rilは、部分負荷運転時であっても、前述の単なる部分負荷運転時におけるリーン燃焼領域LAでの燃空比Rplより予め定められた分だけ大きくなり、小燃空比領域RRa中で燃空比が大きい領域RRa1内に位置するようになる。このため、部分負荷運転時に吸気量を前述したように制御することで、部分負荷運転時であっても、リーン燃焼領域LAから流出したガス中のNOx濃度を極めて低く抑えることができる上に、リーン燃焼領域LAから流出したガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収めることができる。
 よって、本実施形態では、部分負荷運転時においても、ガスタービン10から排気された排気ガス中のNOx濃度を極めて低く抑えることができる上に、この排気ガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収めることができる。
 「第二実施形態」
 以下、本開示に係るガスタービン設備の第二実施形態について、図6~図8を用いて説明する。
 本実施形態のガスタービン設備は、第一実施形態と同様、ガスタービン10と、圧縮空気戻し装置18と、脱硝装置28と、煙突29と、燃料供給設備20と、制御装置50aと、を備える。但し、図6に示すように、本実施形態の制御装置50aは、第一実施形態の制御装置50と異なる。
 本実施形態の制御装置50aは、第一実施形態の制御装置50と同様、燃料流量演算器51と、燃料制御器52と、を有する。本実施形態の制御装置50aは、さらに、戻し空気制御器54と、第一実施形態の吸気制御器53と異なる吸気制御器53aと、を有する。
 本実施形態の吸気制御器53aは、第一実施形態の吸気制御器53と同様、燃料流量演算器51からの燃料流量に応じて、IGV14vを制御する。但し、本実施形態の吸気制御器53aは、NOx濃度計58が検知したNOx濃度、及び未燃分濃度計59が検知した未燃分濃度に応じて、IGV14vを制御しない。この替わりに、戻し空気制御器54は、NOx濃度計58が検知したNOx濃度、及び未燃分濃度計59が検知した未燃分濃度に応じて、戻し空気調節弁18vの動作を制御する。
 次に、図7に示すフローチャートに従って、本実施形態におけるガスタービン10の制御方法の実行手順について説明する。
 まず、第一実施形態と同様に、燃焼工程S1が実行される。さらに、この燃焼工程S1の実行中、第一実施形態と同様に、NOx濃度検知工程S2及び未燃分濃度検知工程S3が実行される。
 戻し空気制御工程S5では、戻し空気制御器54が、NOx濃度計58で検知されたNOx濃度に応じて、空気戻しライン18pを流れる戻し空気Abの流量が予め定められた分だけ多くなることで、NOx濃度が予め定められた値未満になり且つ未燃分濃度が予め定められた未燃分濃度範囲内に収まるよう、戻し空気調節弁18vの動作を制御する。具体的に、戻し空気制御工程S5では、例えば、まず、戻し空気制御器54が、NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったか否かを判断する。そして、戻し空気制御器54は、NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったと判断すると、空気戻しライン18pを流れる戻し空気Abの流量が予め定められた分だけ多くなることで、NOx濃度が予め定められた値未満になり且つ未燃分濃度が予め定められた未燃分濃度範囲内に収まるよう、戻し空気調節弁18vの動作を制御する。この戻し空気調節弁18vの動作制御により、戻し空気調節弁18vの弁開度が大きくなり、戻し空気Abの流量が予め定められた分だけ多くなる。また、戻し空気制御器54は、NOx濃度計58で検知されたNOx濃度が増加中であると判断すると、予め定められた関係を用いて、NOx濃度計58で検知されたNOx濃度に応じた戻し空気量(又は戻し空気調節弁の開度)を定めてもよい。ここで、予め定められた関係とは、NOx濃度計58で検知されたNOx濃度と、NOx濃度が予め定められた値未満になり(且つ未燃分濃度が予め定められた未燃分濃度範囲内に収まる)戻し空気量(又は戻し空気調節弁の開度)との関係である。
 負荷一定で、戻し空気Abの流量が予め定められた分だけ多くなると、第一実施形態において、吸気量を少なくした場合と同様に、燃焼室燃空比は予め定められた分だけ大きくなる。この結果、図8に示すように、リッチ燃焼領域RAでの燃空比Rbrは、部分負荷運転時であっても、前述の単なる部分負荷運転時におけるリッチ燃焼領域RAでの燃空比Rprより予め定められた分だけ大きくなり、大燃空比領域RRb中で燃空比が小さい領域RRb1内に位置するようになる。このため、部分負荷運転時に戻し空気Abの流量を前述したように制御することで、部分負荷運転時であっても、リッチ燃焼領域RAから流出したガス中のNOx濃度を極めて低く抑えることができる上に、リッチ燃焼領域RAから流出したガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収めることができる。また、リーン燃焼領域LAでの燃空比Rblは、部分負荷運転時であっても、前述の単なる部分負荷運転時におけるリーン燃焼領域LAでの燃空比Rplより予め定められた分だけ大きくなり、小燃空比領域RRa中で燃空比が大きい領域RRa1内に位置するようになる。このため、部分負荷運転時に戻し空気Abの流量を前述したように制御することで、部分負荷運転時であっても、リーン燃焼領域LAから流出したガス中のNOx濃度を極めて低く抑えることができる上に、リーン燃焼領域LAから流出したガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収めることができる。
 よって、本実施形態では、部分負荷運転時においても、ガスタービン10から排気された排気ガス中のNOx濃度を極めて低く抑えることができる上に、この排気ガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収めることができる。
 「第三実施形態」
 以下、本開示に係るガスタービン設備の第三実施形態について、図9~図11を用いて説明する。
 本実施形態のガスタービン設備は、第一実施形態と同様、ガスタービン10と、圧縮空気戻し装置18と、脱硝装置28と、煙突29と、燃料供給設備20と、制御装置50bと、を備える。但し、図9に示すように、本実施形態の制御装置50bは、第一実施形態の制御装置50と異なる。
 本実施形態の制御装置50bは、第一実施形態の制御装置50と同様、燃料流量演算器51と、燃料制御器52と、を有する。本実施形態の制御装置50bは、さらに、希釈空気制御器55と、第一実施形態の吸気制御器53と異なる吸気制御器53aと、を有する。
 本実施形態の吸気制御器53aは、第一実施形態の吸気制御器53と同様、燃料流量演算器51からの燃料流量に応じて、IGV14vを制御する。但し、本実施形態の吸気制御器53aは、第二実施形態の吸気制御器53aと同様、NOx濃度計58が検知したNOx濃度、及び未燃分濃度計59が検知した未燃分濃度に応じて、IGV14vを制御しない。この替わりに、希釈空気制御器55は、NOx濃度計58が検知したNOx濃度、及び未燃分濃度計59が検知した未燃分濃度に応じて、希釈空気調節弁17vの動作を制御する。
 次に、図10に示すフローチャートに従って、本実施形態におけるガスタービン10の制御方法の実行手順について説明する。
 まず、第一実施形態と同様に、燃焼工程S1が実行される。さらに、この燃焼工程S1の実行中、第一実施形態と同様に、NOx濃度検知工程S2及び未燃分濃度検知工程S3が実行される。
 希釈空気制御工程S6では、希釈空気制御器55が、NOx濃度計58で検知されたNOx濃度に応じて、燃焼室15s内に導入する希釈空気Alの流量が予め定められた分だけ多くなることで、NOx濃度が予め定められた値未満になり且つ未燃分濃度が予め定められた未燃分濃度範囲内に収まるよう、希釈空気調節弁17vの動作を制御する。具体的に、希釈空気制御工程S6では、例えば、まず、希釈空気制御器55が、NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったか否かを判断する。そして、希釈空気制御器55は、NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったと判断すると、燃焼室15s内に導入する希釈空気Alの流量が予め定められた分だけ多くなることで、NOx濃度が予め定められた値未満になり且つ未燃分濃度が予め定められた未燃分濃度範囲内に収まるよう、希釈空気調節弁17vの動作を制御する。この希釈空気調節弁17vの動作制御により、燃焼室15s内に流入する希釈空気Alの流量が予め定められた分だけ多くなる一方で、燃焼器本体15bから燃焼室15s内に噴射される主燃焼用空気Amの流量が予め定められた分だけ少なくなる。また、希釈空気制御器55は、NOx濃度計58で検知されたNOx濃度が増加中であると判断すると、予め定められた関係を用いて、NOx濃度計58で検知されたNOx濃度に応じた希釈空気量(又は希釈空気調節弁の開度)を定めてもよい。ここで、予め定められた関係とは、NOx濃度計58で検知されたNOx濃度と、NOx濃度が予め定められた値未満になり(且つ未燃分濃度が予め定められた未燃分濃度範囲内に収まる)希釈空気量(又は希釈空気調節弁の開度)との関係である。
 この希釈空気調節弁17vの以上の動作制御のみでは、燃焼室空燃比は変化しない。
 前述したように、燃焼器本体15bから燃焼室15s内に噴射される主燃焼用空気Amの流量が予め定められた分だけ少なくなると、図11に示すように、リッチ燃焼領域RAでの燃空比Rcrは、部分負荷運転時であっても、前述の単なる部分負荷運転時におけるリッチ燃焼領域RAでの燃空比Rprより予め定められた分だけ大きくなり、大燃空比領域RRb中で燃空比が小さい領域RRb1内に位置するようになる。このため、部分負荷運転時に希釈空気Alの流量を前述したように制御することで、部分負荷運転時であっても、リッチ燃焼領域RAから流出したガス中のNOx濃度を極めて低く抑えることができる上に、リッチ燃焼領域RAから流出したガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収めることができる。希釈空気Alの流量が予め定められた分だけ多くなっても、リーン燃焼領域LAの燃空比Rclは、前述の単なる部分負荷運転時におけるリーン燃焼領域LAでの燃空比Rplと変わらない。これは、希釈空気Alの流量が予め定められた分だけ多くなっても、リッチ燃焼領域RAから流出したガス中の空気の流量が予め定められた分だけ少なくなるからである。このため、部分負荷運転時に希釈空気Alの流量を前述したように制御することで、部分負荷運転時であっても、リーン燃焼領域LAから流出したガス中のNOx濃度を極めて低く抑えることができる上に、リーン燃焼領域LAから流出したガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収めることができる。
 よって、本実施形態でも、部分負荷運転時においても、ガスタービン10から排気された排気ガス中のNOx濃度を極めて低く抑えることができる上に、この排気ガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収めることができる。
 「第四実施形態」
 以下、本開示に係るガスタービン設備の第四実施形態について、図12~図14を用いて説明する。
 本実施形態のガスタービン設備は、第一実施形態と同様、ガスタービン10と、圧縮空気戻し装置18と、脱硝装置28と、煙突29と、燃料供給設備20と、制御装置50cと、を備える。但し、図12に示すように、本実施形態の制御装置50cは、第一実施形態の制御装置50と異なる。
 本実施形態の制御装置50cは、第一実施形態の制御装置50と同様、燃料流量演算器51と、燃料制御器52と、を有する。本実施形態の制御装置50cは、さらに、戻し空気制御器54cと、協調制御器56と、第一実施形態の吸気制御器53と異なる吸気制御器53cと、を有する。
 本実施形態の吸気制御器53cは、第一実施形態の吸気制御器53と同様、燃料流量演算器51からの燃料流量に応じて、IGV14vを制御する。また、本実施形態の吸気制御器53cは、協調制御器56からの指示に応じてIGV14vを制御する。戻し空気制御器54cは、協調制御器56からの指示に応じて、戻し空気調節弁18vを制御する。協調制御器56は、NOx濃度計58が検知したNOx濃度、及び未燃分濃度計59が検知した未燃分濃度に応じて、吸気制御器53cによるIGV14vの動作制御と戻し空気制御器54cによる戻し空気調節弁18vの動作制御とを協調させる。
 次に、図13に示すフローチャートに従って、本実施形態におけるガスタービン10の制御方法の実行手順について説明する。
 まず、第一実施形態と同様に、燃焼工程S1が実行される。さらに、この燃焼工程S1の実行中、第一実施形態と同様に、NOx濃度検知工程S2及び未燃分濃度検知工程S3が実行される。
 協調制御器56は、NOx濃度計58で検知されたNOx濃度に応じて、吸気制御器53cにIGV14vを制御するよう指示する。具体的に、例えば、協調制御器56は、NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったか否かを判断する。そして、協調制御器56は、NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったと判断すると、吸気制御器53cにIGV14vを制御するよう指示する。このとき、協調制御器56は、吸気量が予め定められた分だけ少なることで、NOx濃度が予め定められた値未満になるよう、吸気制御器53cに指示する。吸気制御器53cは、この指示を受けると、吸気制御工程S4cにおいて、吸気量が予め定められた分だけ少なって、NOx濃度が予め定められた値未満になるよう、IGV14vの動作を制御する。このIGV14vの動作制御により、IGV14v開度が小さくなり、圧縮機ケーシング14c内に吸い込まれる吸気量が少なくなる。
 吸気量が予め定められた分だけ少なくなると、燃焼室燃空比は予め定められた分だけ大きくなる。この結果、図14に示すように、リッチ燃焼領域RAでの燃空比Rirは、部分負荷運転時であっても、前述の単なる部分負荷運転時におけるリッチ燃焼領域RAでの燃空比Rprより予め定められた分だけ大きくなり、大燃空比領域RRb中で燃空比が小さい領域RRb1内に位置するようになる。このため、部分負荷運転時に吸気量を前述したように制御することで、部分負荷運転時であっても、リッチ燃焼領域RAから流出したガス中のNOx濃度を極めて低く抑えることができる上に、リッチ燃焼領域RAから流出したガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収めることができる。また、リーン燃焼領域LAでの燃空比Rilは、部分負荷運転時であっても、前述の単なる部分負荷運転時におけるリーン燃焼領域LAでの燃空比Rplより予め定められた分だけ大きくなり、小燃空比領域RRa中で燃空比が大きい領域RRa1内に位置するようになる。このため、部分負荷運転時に吸気量を前述したように制御することで、部分負荷運転時であっても、リーン燃焼領域LAから流出したガス中のNOx濃度を極めて低く抑えることができる上に、前述の単なる部分負荷運転時よりも、リーン燃焼領域LAから流出したガス中の未燃分濃度を低くすることができる。
 協調制御器56は、吸気制御器53cによりIGV14vの動作制御された後、以下の第一の場合、第二の場合、及び第三の場合であるかを判断する。
第一の場合:排気ガス中の未燃分濃度が予め定められた未燃分濃度範囲内に収まっていない場合
第二の場合:オペレター等から排気ガス中の未燃分濃度をより低下さるという要求を受け付けている場合
第三の場合:IGV14vの動作だけでは、燃空比が予め定められた分大きくならない場合
 協調制御器56は、吸気制御器53cによりIGV14vの動作制御された後、第一の場合、又は第二の場合であると判断すると、戻し空気制御器54cに戻し空気調節弁18vを制御するよう指示する。
 協調制御器56は、第一の場合であると判断すると、空気戻しライン18pを流れる戻し空気Abの流量が予め定められた分だけ多くすることで、未燃分濃度が予め定められた未燃分濃度範囲内に収まるよう、戻し空気制御器54cに指示する。戻し空気制御器54cは、この指示を受けると、戻し空気制御工程S5cにおいて、空気戻しライン18pを流れる戻し空気Abの流量が予め定められた分だけ多くなることで、未燃分濃度が予め定められた未燃分濃度範囲内に収まるよう、戻し空気調節弁18vを制御する。この戻し空気調節弁18vの動作制御により、戻し空気調節弁18vの弁開度が大きくなり、戻し空気Abの流量が予め定められた分だけ多くなる。
 また、協調制御器56は、第二の場合であると判断すると、空気戻しライン18pを流れる戻し空気Abの流量が予め定められた分だけ多くなることで、未燃分濃度がより低くなるよう、戻し空気制御器54cに指示する。戻し空気制御器54cは、この指示を受けると、戻し空気制御工程S5cにおいて、空気戻しライン18pを流れる戻し空気Abの流量が予め定められた分だけ多くなることで、未燃分濃度がより低くなるよう、戻し空気調節弁18vを制御する。この戻し空気調節弁18vの動作制御により、戻し空気調節弁18vの弁開度が大きくなり、戻し空気Abの流量が予め定められた分だけ多くなる。
 また、協調制御器56は、第三の場合であると判断すると、空気戻しライン18pを流れる戻し空気Abの流量が予め定められた分だけ多くなることで、燃空比が予め定められた分大きくなるよう、戻し空気制御器54cに指示する。戻し空気制御器54cは、この指示を受けると、未燃分濃度が予め定められた未燃分濃度範囲内に収まるよう、戻し空気調節弁18vを制御する。この戻し空気調節弁18vの動作制御により、戻し空気調節弁18vの弁開度が大きくなり、戻し空気Abの流量が予め定められた分だけ多くなる。
 以上の戻し空気制御工程S5cの実行で、図14に示すように、リッチ燃焼領域RAでの燃空比Ribrは、前述の吸気制御工程S4cの実行後におけるリッチ燃焼領域RAでの燃空比Rirより予め定められた分だけ大きくなり、大燃空比領域RRb中で燃空比が小さい領域RRb1内に位置するようになる。このため、部分負荷運転時であっても、リッチ燃焼領域RAから流出したガス中のNOx濃度を極めて低く抑えることができる上に、リッチ燃焼領域RAから流出したガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収める、又はリッチ燃焼領域RAから流出したガス中の未燃分濃度をより低くすることができる。また、リーン燃焼領域LAでの燃空比Riblは、前述の吸気制御工程S4cの実行後におけるリッチ燃焼領域RAでの燃空比Rilより予め定められた分だけ大きくなり、小燃空比領域RRa中で燃空比が大きい領域RRa1内に位置するようになる。
このため、部分負荷運転時であっても、リーン燃焼領域LAから流出したガス中のNOx濃度を極めて低く抑えることができる上に、リーン燃焼領域LAから流出したガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収める、又はリーン燃焼領域LAから流出したガス中の未燃分濃度をより低くすることができる。
 よって、本実施形態では、部分負荷運転時においても、ガスタービン10から排気された排気ガス中のNOx濃度を極めて低く抑えることができる上に、この排気ガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収める、又はこの排気ガス中の未燃分濃度をより低くすることができる。
 ところで、吸気制御工程の実行でも、戻し空気制御工程の実行でも、以上で説明したように、燃空比を変えることができる。このため、吸気制御工程と戻し空気制御工程とのうち、いずれか一方を実行すれば、NOx濃度及び未燃分濃度を調節することができる。但し、戻し空気制御工程を実行すると、戻し空気の流量が増えるため、圧縮機14の負荷が高まる。このため、戻し空気制御工程を実行した場合、吸気制御工程を実行した場合よりも、ガスタービン効率が低くなる。言い換えると、戻し空気制御工程を実行する場合よりも、吸気制御工程を実行する方が、ガスタービン効率が高くなる。また、戻し空気制御工程を実行すると、高温の圧縮空気の一部が圧縮機14に戻る関係で、燃焼器15に流入する圧縮空気の温度が、吸気制御工程を実行した場合よりも、高くなる。この結果、戻し空気制御工程を実行すると、吸気制御工程を実行した場合よりも、燃料の燃焼性が高まり、未燃分濃度が低くなる。
 よって、ガスタービン効率を優先する場合には、吸気制御工程を実行することが好ましく、未燃分濃度の低下を優先する場合には、戻し空気制御工程を実行することが好ましい。
 そこで、本実施形態では、NOx濃度の低減を図りつつもガスタービン効率の低下を抑えるために、まず、吸気制御工程S4cを実行する。そして、この吸気制御工程S4c後に、前述の第一の場合又は第二の場合には、効果的に未燃分濃度を低下させるために、戻し空気制御工程S5cを実行する。
 以上のように、本実施形態では、吸気制御工程S4cの実行後に、戻し空気制御工程S5cを実行する。しかしながら、吸気制御工程S4cと戻し空気制御工程S5cとを並行して実行してもよい。この場合、協調制御器56は、NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったと判断すると、吸気制御工程S4c及び戻し空気制御工程S5cの実行での燃空比の増加量を、NOx濃度に応じた予め定められた量に定める。次に、協調制御器56は、吸気制御工程S4cのみの実行での燃空比の増加量分と、戻し空気制御工程S5cのみの実行での燃空比の増加量との比を予め定められた比にする。そして、協調制御器56は、この比と、吸気制御工程S4c及び戻し空気制御工程S5cの実行での燃空比の増加量とから、各工程での燃空比の増加量を求める。最後に、協調制御器56は、吸気制御器53cに対して、吸気制御工程S4cの実行による燃空比の増加量を伝え、戻し空気制御器54cに対して、戻し空気制御工程S5cの実行による燃空比の増加量を伝える。すなわち、この場合、IGV14vによる吸気量の調節での燃空比の変化量と戻し空気調節弁18vによる戻し空気Abの流量の調節での燃空比の変化量との比が、予め定められた比になるよう、吸気制御器53cに吸気調節器を制御させると共に、戻し空気制御器54cに戻し空気調節弁18vを制御させる。
 以上にように、吸気制御工程S4cと戻し空気制御工程S5cとを並行して実行し、且つガスタービン効率を優先する場合、吸気制御工程S4cのみの実行での燃空比の増加量分を戻し空気制御工程S5cのみの実行での燃空比の増加量より多くなるよう、前述の予め定められた比を定めるとよい。また、未燃分濃度の低下を優先する場合には、戻し空気制御工程S5cのみの実行での燃空比の増加量を吸気制御工程S4cのみの実行での燃空比の増加量分より多くなるよう、前述の予め定められた比を定めるとよい。なお、この予め定められた比は、外部から協調制御器56に記憶され、協調制御器56は、この予め定められた比を用いて協調制御を行う。
 また、前述したように、吸気量の変化に対するNOx濃度及び未燃分濃度の変化感度と、戻し空気量の変化に対するNOx濃度及び未燃分濃度の変化感度とは、異なる。このため、吸気制御工程S4cと戻し空気制御工程S5cとを並行して実行する場合、例えば、IGV開度を大きくさせつつ、戻し空気調節弁18vの大きくさせ、且つこれらの動作量の比を適切に設定すれば、NOx濃度を一定に保ちつつ未燃分濃度を低下させることも可能である。このように、IGV14vの動作と戻し空気調節弁18vの動作とを協調制御することで、排気ガスのNOxと未燃分との存在比を変更することができ、排気ガスの性状を脱硝に有利な性状にすることができる。
 「第五実施形態」
 以下、本開示に係るガスタービン設備の第五実施形態について、図15~図17を用いて説明する。
 本実施形態のガスタービン設備は、第一実施形態と同様、ガスタービン10と、圧縮空気戻し装置18と、脱硝装置28と、煙突29と、燃料供給設備20と、制御装置50dと、を備える。但し、図15に示すように、本実施形態の制御装置50dは、第一実施形態の制御装置50と異なる。
 本実施形態の制御装置50dは、第一実施形態の制御装置50と同様、燃料流量演算器51と、燃料制御器52と、を有する。本実施形態の制御装置50dは、さらに、希釈空気制御器55dと、協調制御器56dと、第一実施形態の吸気制御器53と異なる吸気制御器53dと、を有する。
 本実施形態の吸気制御器53dは、第一実施形態の吸気制御器53と同様、燃料流量演算器51からの燃料流量に応じて、IGV14vを制御する。また、本実施形態の吸気制御器53dは、協調制御器56dからの指示に応じてIGV14vを制御する。希釈空気制御器55dは、協調制御器56dからの指示に応じて、希釈空気調節弁17vを制御する。協調制御器56dは、NOx濃度計58が検知したNOx濃度、及び未燃分濃度計59が検知した未燃分濃度に応じて、吸気制御器53dによるIGV14vの動作制御と希釈空気制御器55dによる希釈空気調節弁17vの動作制御とを協調させる。
 次に、図16に示すフローチャートに従って、本実施形態におけるガスタービン10の制御方法の実行手順について説明する。
 まず、第一実施形態と同様に、燃焼工程S1が実行される。さらに、この燃焼工程S1の実行中、第一実施形態と同様に、NOx濃度検知工程S2及び未燃分濃度検知工程S3が実行される。
 協調制御器56dは、NOx濃度計58で検知されたNOx濃度に応じて、吸気制御器53dにIGV14vを制御するよう指示すると共に、希釈空気制御器55dに希釈空気調節弁17vを制御するよう指示する。具体的に、例えば、協調制御器56dは、NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったか否かを判断する。
そして、協調制御器56dは、NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったと判断すると、吸気制御器53dにIGV14vを制御するよう指示すると共に、希釈空気制御器55dに希釈空気調節弁17vを制御するよう指示する。
 ここで、NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったとき、仮に、吸気制御工程を実行せず、第三実施形態と同様に、希釈空気制御工程のみを実行したとする。この場合、前述したように、図11を用いて前述したように、リーン燃焼領域LAの燃空比Rclは、前述の単なる部分負荷運転時におけるリーン燃焼領域LAでの燃空比Rplと変わらない。
 そこで、本実施形態では、協調制御器56dは、NOx濃度が予め定められた値未満になり、且つ、リーン燃焼領域LAから流出するガス中の未燃分濃度が高くならず、未燃分濃度が予め定められた未燃分濃度範囲内に収まるよう、希釈空気制御器55dによる希釈空気調節弁17vの制御と、吸気制御器53dによるIGV14vの制御とを協調制御する。具体的に、協調制御器56dは、リーン燃焼領域LAの燃空比が変わらず、リッチ燃焼領域の燃空比が大きくなるよう、吸気制御器53dによるIGV14vの制御で吸気量を少なくさせつつ、希釈空気制御器55dによる希釈空気調節弁17vの制御で希釈空気Alの流量を多くさせる。
 以上のような協調制御器56dから、吸気制御器53d及び希釈空気制御器55dへの指示により、吸気制御器53d及び希釈空気制御器55dが動作し、吸気制御工程S4d及び希釈空気制御工程S6dが実行される。
 NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったとき、吸気制御工程S4d及び希釈空気制御工程S6dが実行されると、吸気量が予め定められた分だけ少なくなって、希釈空気Alの流量が予め定められた分だけ多くなる。この結果、図17に示すように、リッチ燃焼領域RAでの燃空比Ricrは、部分負荷運転時であっても、前述の単なる部分負荷運転時におけるリッチ燃焼領域RAでの燃空比Rprより予め定められた分だけ大きくなり、大燃空比領域RRb中で燃空比が小さい領域RRb1内に位置するようになる。このため、部分負荷運転時に吸気量及び希釈空気Alの流量を前述したように制御することで、部分負荷運転時であっても、リッチ燃焼領域RAから流出したガス中のNOx濃度を極めて低く抑えることができる上に、リッチ燃焼領域RAから流出したガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収めることができる。また、リーン燃焼領域LAでの燃空比Riclは、部分負荷運転時であっても、希釈空気制御工程S6dのみを実行した場合におけるリーン燃焼領域LAでの燃空比Rclより予め定められた分だけ大きくなる。このため、部分負荷運転時に吸気量及び希釈空気Alの流量を前述したように制御することで、部分負荷運転時であっても、リーン燃焼領域LAから流出したガス中のNOx濃度を極めて低く抑えることができる上に、リーン燃焼領域LAから流出したガス中の未燃分濃度を低く抑えて、予め定められた未燃分濃度範囲内に収めることができる。
 よって、本実施形態では、部分負荷運転時においても、ガスタービン10から排気された排気ガス中のNOx濃度を極めて低く抑えることができる上に、この排気ガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収めることができる。
 以上のように、本実施形態の協調制御器56dは、吸気制御器53dによるIGV14vの動作制御と希釈空気制御器55dによる希釈空気調節弁17vの動作制御とを協調させる。しかしながら、協調制御器56dは、戻し空気制御器54dによる戻し空気調節弁18vの動作制御と希釈空気制御器55dによる希釈空気調節弁17vの動作制御とを協調させてもよい。
 この場合、協調制御器56dは、NOx濃度が予め定められた値未満になり、且つ、リーン燃焼領域LAから流出するガス中の未燃分濃度が高くならず、未燃分濃度が予め定められた未燃分濃度範囲内に収まるよう、吸気制御器53dによるIGV14vの動作制御と、希釈空気制御器55dによる希釈空気調節弁17vの制御とを協調制御する。具体的に、協調制御器56dは、リーン燃焼領域LAの燃空比が変わらず、リッチ燃焼領域の燃空比が大きくなるよう、戻し空気制御器54dによる戻し空気調節弁18vの制御で戻し空気Abの流量を多くさせつつ、希釈空気制御器55dによる希釈空気調節弁17vの制御で希釈空気Alの流量を多くさせる。
 「第六実施形態」
 以下、本開示に係るガスタービン設備の第六実施形態について、図18~図20を用いて説明する。
 本実施形態のガスタービン設備は、第一実施形態と同様、ガスタービン10と、圧縮空気戻し装置18と、脱硝装置28と、煙突29と、燃料供給設備20と、制御装置50eと、を備える。但し、図18に示すように、本実施形態の制御装置50eは、第一実施形態の制御装置50と異なる。
 本実施形態の制御装置50eは、第一実施形態の制御装置50と同様、燃料流量演算器51と、燃料制御器52と、を有する。本実施形態の制御装置50eは、さらに、戻し空気制御器54eと、希釈空気制御器55eと、協調制御器56eと、第一実施形態の吸気制御器53と異なる吸気制御器53eと、を有する。
 本実施形態の吸気制御器53eは、第一実施形態の吸気制御器53と同様、燃料流量演算器51からの燃料流量に応じて、IGV14vを制御する。また、本実施形態の吸気制御器53eは、協調制御器56eからの指示に応じてIGV14vを制御する。戻し空気制御器54eは、協調制御器56eからの指示に応じて、戻し空気調節弁18vを制御する。希釈空気制御器55eは、協調制御器56eからの指示に応じて、希釈空気調節弁17vを制御する。協調制御器56eは、NOx濃度計58が検知したNOx濃度、及び未燃分濃度計59が検知した未燃分濃度に応じて、吸気制御器53eによるIGV14vの動作制御と戻し空気制御器54eによる戻し空気調節弁18vの動作制御と希釈空気制御器55eによる希釈空気調節弁17vの動作制御とを協調させる。
 次に、図19に示すフローチャートに従って、本実施形態におけるガスタービン10の制御方法の実行手順について説明する。
 まず、第一実施形態と同様に、燃焼工程S1が実行される。さらに、この燃焼工程S1の実行中、第一実施形態と同様に、NOx濃度検知工程S2及び未燃分濃度検知工程S3が実行される。
 協調制御器56eは、NOx濃度計58で検知されたNOx濃度に応じて、吸気制御器53eにIGV14vを制御するよう指示し、戻し空気制御器54eに戻し空気調節弁18vを制御するよう指示し、さらに、希釈空気制御器55eに希釈空気調節弁17vを制御するよう指示する。具体的に、例えば、協調制御器56eは、NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったか否かを判断する。そして、協調制御器56eは、NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったと判断すると、吸気制御器53eにIGV14vを制御するよう指示し、戻し空気制御器54eに戻し空気調節弁18vを制御するよう指示し、さらに、希釈空気制御器55eに希釈空気調節弁17vを制御するよう指示する。
 この結果、吸気制御器53eによる吸気制御工程S4e、戻し空気制御器54eによる戻し空気制御工程S5e、及び、希釈空気制御器55eによる希釈空気制御工程S6eが実行される。
 この場合、前述の第四実施形態と同様に、協調制御器56eは、吸気制御器53eによるIGV14vの制御と戻し空気制御器54eに戻し空気調節弁18vの制御とを協調制御する。よって、この場合でも、吸気制御工程S4eを実行した後に、戻し空気制御工程S5eを実行してもよいし、吸気制御工程S4eと戻し空気制御工程S5eとを並行して実行してもよい。また、この場合、協調制御器56eは、前述の第五実施形態と同様に、吸気制御器53eによるIGV14vの制御及び戻し空気制御器54eに戻し空気調節弁18vの制御に対して、希釈空気制御器55eによる希釈空気調節弁17vを協調制御する。
 NOx濃度計58で検知されたNOx濃度が予め定められた値以上になったとき、吸気制御工程S4e、戻し空気制御工程S5e及び希釈空気制御工程S6eが実行されると、吸気量が予め定められた分だけ少なり、戻し空気Abの流量が予め定められた分だけ多くなり、希釈空気Alの流量が予め定められた分だけ多くなる。この結果、図20に示すように、リッチ燃焼領域RAでの燃空比Ribcrは、部分負荷運転時であっても、前述の単なる部分負荷運転時におけるリッチ燃焼領域RAでの燃空比Rprより予め定められた分だけ大きくなり、大燃空比領域RRb中で燃空比が小さい領域RRb1内に位置するようになる。このため、部分負荷運転時に、吸気量、戻し空気Abの流量、及び希釈空気Alの流量を前述したように制御することで、部分負荷運転時であっても、リッチ燃焼領域RAから流出したガス中のNOx濃度を極めて低く抑えることができる上に、リッチ燃焼領域RAから流出したガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収めることができる。また、リーン燃焼領域LAでの燃空比Ribclは、部分負荷運転時であっても、希釈空気制御工程のみを実行した場合におけるリーン燃焼領域LAでの燃空比Rclより予め定められた分だけ大きくなる。このため、部分負荷運転時に、吸気量、戻し空気Abの流量、及び希釈空気Alの流量を前述したように制御することで、部分負荷運転時であっても、リーン燃焼領域LAから流出したガス中のNOx濃度を極めて低く抑えることができる上に、リーン燃焼領域LAから流出したガス中の未燃分濃度を低く抑えて、予め定められた未燃分濃度範囲内に収めることができる。
 よって、本実施形態では、部分負荷運転時においても、ガスタービン10から排気された排気ガス中のNOx濃度を極めて低く抑えることができる上に、この排気ガス中の未燃分濃度を予め定められた未燃分濃度範囲内に収めることができる。
 「変形例」
 以上の各実施形態におけるNOx濃度計58は、ガスタービン10から排気され脱硝装置28に流入する前の排気ガス中に含まれるNOxの濃度を検知する。また、未燃分濃度計59は、ガスタービン10から排気され脱硝装置28に流入する前の排気ガス中に含まれる未燃分であるアンモニアの濃度を検知する。しかしながら、NOx濃度計58は、脱硝装置28から排気された排気ガス中に含まれるNOxの濃度を検知してもよい。また、未燃分濃度計59は、脱硝装置28から排気された排気ガス中に含まれる未燃分であるアンモニアの濃度を検知してもよい。
 以上の各実施形態における燃焼室形成器15cは、複数の開口15oを有してもよい。この場合、複数の開口15oのうち、少なくとも一の開口15oに希釈空気調節装置17が接続されていればよい。
 以上の各実施形態における希釈空気調節装置17は、希釈空気調節弁17vと、希釈空気ライン17pと、を有する。しかしながら、希釈空気調節装置17は、希釈空気ライン17pが無くてもよい。この場合、希釈空気調節弁17vの弁ケーシング17vcは、燃焼室形成器15cに直接接続される。
 以上の各実施形態におけるガスタービン設備は、いずれも、圧縮空気戻し装置18、及び希釈空気調節装置17を備える。しかしながら、以上の各実施形態のうち、戻し空気制御工程を実行しない実施形態におけるガスタービン設備では、圧縮空気戻し装置18を省略してもよい。また、以上の各実施形態のうち、希釈空気制御工程を実行しない実施形態におけるガスタービン設備では、希釈空気調節装置17を省略してもよい。
 以上、本開示の実施形態及び変形例について詳述したが、本開示は上記実施形態及び上記変形例に限定されるものではない。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲において、種々の追加、変更、置き換え、部分的削除等が可能である。
「付記」
 以上の実施形態におけるガスタービン設備は、例えば、以下のように把握される。
(1)第一態様におけるガスタービン設備は、
 ガスタービン10と、前記ガスタービン10から排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度計58と、制御装置50,50c,50d,50eと、を備える。前記ガスタービン10は、空気を圧縮して圧縮空気を生成できる圧縮機14と、前記圧縮空気中で燃料としてのアンモニアを燃焼させて燃焼ガスを生成できる燃焼器15と、前記燃焼ガスにより駆動可能なタービン16と、を有する。前記圧縮機14は、軸線Arを中心として回転可能な圧縮機ロータ14rと、前記圧縮機ロータ14rを覆う圧縮機ケーシング14cと、前記圧縮機ケーシング14cに吸い込まれる空気の流量である吸気量を調節する吸気調節器14vと、を有する。前記燃焼器15は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービン16に導くことができる燃焼室15sを形成する燃焼室形成器15cと、前記燃焼室15s内に前記アンモニア及び前記圧縮空気の一部である主燃焼用空気Amを噴射可能な燃焼器本体15bと、を有する。前記燃焼室形成器15cには、前記燃焼室形成器15c外から前記燃焼室15s内に前記圧縮空気の一部である希釈空気Alを導入可能な開口15oが形成されている。前記燃焼器15は、前記燃焼室15s内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体15bからの燃料を燃焼させるリッチ燃焼領域RAと、前記リッチ燃焼領域RAからのガスが前記開口15oからの前記希釈空気Alにより希釈され、前記希釈空気Alにより希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域LAと、が形成されるよう構成されている。前記制御装置50,50c,50d,50eは、前記NOx濃度計58で検知された前記排気ガス中のNOx濃度に応じて、前記吸気量が少なくなるよう、前記吸気調節器14vの動作を制御する吸気制御器53,53c,53d,53eを有する。
 NOxの発生量は、燃料の燃焼領域における燃空比に応じて変化する。本態様の燃焼器15は、燃焼室15s内に、リッチ燃焼領域RAと、リーン燃焼領域LAとが形成される燃焼器である。よって、本態様の燃焼器15は、RQL(Rich burn quick Quench Leanburn)方式を採用する燃焼器である。また、本態様の燃焼器15は、アンモニアを燃料にする。このような燃焼器15では、ガスタービン10を定格負荷運転から部分負荷運転に移行している過程、及び、ガスタービン10が部分負荷運転しているとき等(以下、部分負荷運転時)では、燃焼室15sに流入する全燃焼用空気に対する燃焼室15sに噴射される全燃料流量の比である燃焼室燃空比が定格負荷運転時よりも小さくなる。ところで、燃焼器15でのNOxの発生量は、RQL方式を採用する燃焼器15に限らず、燃料の燃焼領域における燃空比に応じて変化する。RQL方式を採用し、アンモニアを燃料とする燃焼器15では、部分負荷運転時に、リッチ燃焼領域RA及びリーン燃焼領域LAでの燃空比がともに小さくなり、燃焼器15から排出される燃焼器15の燃焼ガス中のNOx濃度が高まる。
 本態様では、排気ガス中のNOx濃度が予め定められた値以上になると、吸気制御器53,53c,53d,53eが、吸気量が少なくなるよう、吸気調節器14vの動作を制御する。本態様のRQL方式を採用する燃焼器15では、吸気量が少なると、リッチ燃焼領域RA及びリーン燃焼領域LAでの燃空比がともに大きくなる。この結果、本態様では、NOxの排出量を抑えることができる。
(2)第二態様におけるガスタービン設備は、
 前記第一態様におけるガスタービン設備において、前記排気ガス中の未燃分濃度を検知する未燃分濃度計59をさらに備え、前記吸気制御器53,53c,53d,53eは、前記排気ガス中のNOx濃度が予め定められた値未満になり且つ前記排気ガス中の未燃分濃度が前記NOx濃度に応じて定まる予め定められた未燃分濃度範囲内に収まるよう、前記吸気調節器14vの動作を制御する。
 燃焼器15での未燃分の残留量は、RQL方式を採用する燃焼器15に限らず、燃料の燃焼領域における燃空比に応じて変化する。RQL方式を採用し、アンモニアを燃料とする燃焼器15では、部分負荷運転時に、前述したように、リッチ燃焼領域RA及びリーン燃焼領域LAでの燃空比がともに小さくなり、燃焼器15から排出される燃焼器15の燃焼ガス中の未燃分濃度が高まる。
 本態様では、排気ガス中のNOx濃度が予め定められた値以上になると、吸気制御器53,53c,53d,53eが、吸気量が少なくなるよう、吸気調節器14vの動作を制御する。本態様のRQL方式を採用する燃焼器15では、吸気量が少なると、リッチ燃焼領域RA及びリーン燃焼領域LAでの燃空比がともに大きくなる。この結果、本態様では、未燃分の排出量を抑えることができ、排気ガス中の未燃分濃度を予め定められた未燃分濃度にすることができる。すなわち、本態様では、NOx濃度を抑えつつも、未燃分の排出量を抑えることができ、排気ガス中の未燃分濃度を予め定められた未燃分濃度範囲内にすることができる。
(3)第三態様におけるガスタービン設備は、
 前記第一態様又は前記第二態様におけるガスタービン設備において、前記圧縮機ケーシング14cから吐出された圧縮空気の一部を前記圧縮機ケーシング14c内に戻すことが可能な空気戻しライン18pと、前記空気戻しライン18p中を流れる前記圧縮空気である戻し空気Abの流量を調節可能な戻し空気調節弁18vと、をさらに備える。前記制御装置50c,50d,50eは、前記戻し空気調節弁18vの動作を制御する戻し空気制御器54c,54d,54eと、前記吸気制御器53c,53d,53eによる前記吸気調節器14vの制御と前記戻し空気制御器54c,54d,54eによる前記戻し空気調節弁18vの制御とを協調させる協調制御器56,56d,56eと、を有する。前記協調制御器56,56d,56eは、前記NOx濃度計58で検知された前記排気ガス中のNOx濃度に応じて、前記戻し空気制御器54c,54d,54eに、前記戻し空気Abの流量が多くなるよう前記戻し空気調節弁18vを制御させる。
 戻し空気Abの流量が多くなると、リッチ燃焼領域RA及びリーン燃焼領域LAでの燃空比がともに大きくなる。この結果、本態様では、NOxの排出量を抑えることができる。
(4)第四態様におけるガスタービン設備は、
 前記第二態様におけるガスタービン設備において、前記圧縮機ケーシング14cから吐出された圧縮空気の一部を前記圧縮機ケーシング14c内に戻すことが可能な空気戻しライン18pと、前記空気戻しライン18p中を流れる前記圧縮空気である戻し空気Abの流量を調節可能な戻し空気調節弁18vと、をさらに備える。前記制御装置50c,50d,50eは、前記戻し空気調節弁18vの動作を制御する戻し空気制御器54c,54d,54eと、前記吸気制御器53c,53d,53eによる前記吸気調節器14vの制御と前記戻し空気制御器54c,54d,54eによる前記戻し空気調節弁18vの制御とを協調させる協調制御器56,56d,56eと、を有する。前記協調制御器56,56d,56eは、前記排気ガス中のNOx濃度が予め定められた値未満になり且つ前記排気ガス中の未燃分濃度が前記NOx濃度に応じて定まる予め定められた未燃分濃度範囲内に収まるよう、前記吸気制御器53c,53d,53eに前記吸気調節器14vを制御させると共に、前記戻し空気制御器54c,54d,54eに前記戻し空気調節弁18vを制御させる。
 本態様では、NOx濃度を抑えつつも、未燃分の排出量を抑えることができ、排気ガス中の未燃分濃度を予め定められた未燃分濃度範囲内にすることができる。
(5)第五態様におけるガスタービン設備は、
 前記第四態様におけるガスタービン設備において、前記協調制御器56,56d,56eは、前記排気ガス中のNOx濃度が前記予め定められた値未満になるよう、前記吸気制御器53c,53d,53eに前記吸気調節器14vを制御させた後、第一の場合、第二の場合、及び第三の場合のうちいずれか一の場合に、前記戻し空気制御器54c,54d,54eに、前記戻し空気調節弁18vにより、前記戻し空気Abが多くなるよう、前記戻し空気Abの流量を調節させる。前記第一の場合は、前記排気ガス中の未燃分濃度が前記未燃分濃度範囲内に収まっていない場合である。前記第二の場合は、前記排気ガス中の未燃分濃度をより低下させるという要求を受け付けている場合である。前記第三の場合は、前記吸気調節器14vの動作だけでは、燃空比が予め定めた分大きくならない場合である。
 吸気制御器53c,53d,53eにより吸気調節器14vを制御しても、戻し空気制御器54c,54d,54eにより戻し空気調節弁18vを制御しても、各燃焼領域での燃空比を変えることができる。このため、吸気制御器53c,53d,53eによる吸気調節器14vの制御と、戻し空気制御器54c,54d,54eによる戻し空気調節弁18vの制御とのうち、いずれか一方の制御を実行すれば、NOx濃度及び未燃分濃度を調節することができる。但し、戻し空気制御器54c,54d,54eによる戻し空気調節弁18vの制御で、戻し空気Abの流量を多くすると、戻し空気Abの流量が増えるため、圧縮機14の負荷が高まる。このため、戻し空気制御器54c,54d,54eによる戻し空気調節弁18vの制御を実行した場合、吸気制御器53c,53d,53eによる吸気調節器14vの制御を実行した場合よりも、ガスタービン効率が低くなる。また、戻し空気制御器54c,54d,54eによる戻し空気調節弁18vの制御で、戻し空気Abの流量を多くすると、燃焼器15に流入する圧縮空気の温度が、吸気制御器53c,53d,53eによる吸気調節器14vの制御を実行した場合よりも、高くなる。このため、戻し空気制御器54c,54d,54eによる戻し空気調節弁18vの制御を実行すると、戻し空気制御器54c,54d,54eによる戻し空気調節弁18vの制御を実行した場合よりも、燃料の燃焼性が高まり、未燃分濃度が低くなる。
 よって、ガスタービン効率を優先する場合には、吸気制御器53c,53d,53eによる吸気調節器14vの制御を実行することが好ましく、未燃分濃度の低下を優先する場合には、戻し空気制御器54c,54d,54eによる戻し空気調節弁18vの制御を実行することが好ましい。
 そこで、本態様では、NOx濃度の低減を図りつつもガスタービン効率の低下を抑えるために、まず、吸気制御器53c,53d,53eによる吸気調節器14vの制御を実行する。そして、この制御後に、第一の場合又は第二の場合には、効果的に未燃分濃度を低下させるために、戻し空気制御器54c,54d,54eによる戻し空気調節弁18vの制御を実行する。
(6)第六態様におけるガスタービン設備は、
 前記第三態様又は前記第四態様におけるガスタービン設備において、前記協調制御器56,56d,56eは、前記吸気調節器14vによる前記吸気量の調節での燃空比の変化量と前記戻し空気調節弁18vによる前記戻し空気Abの流量の調節での燃空比の変化量との比が、予め定められた比になるよう、前記吸気制御器53c,53d,53eに前記吸気調節器14vを制御させると共に、前記戻し空気制御器54c,54d,54eに前記戻し空気調節弁18vを制御させる。
 前述したように、ガスタービン効率を優先する場合には、吸気制御器53,53a,53c,53d,53eによる吸気調節器14vの制御を実行することが好ましく、未燃分濃度の低下を優先する場合には、戻し空気制御器54,54c,54d,54eによる戻し空気調節弁18vの制御を実行することが好ましい。このため、本態様における予め定められた比を適宜設定することで、ガスタービン効率を優先することも、未燃分濃度の低下を優先することも可能になる。
(7)第七態様におけるガスタービン設備は、
 前記第一態様から前記第六態様のうちのいずれか一態様におけるガスタービン設備において、前記開口15oから前記燃焼室15sに導入する前記希釈空気Alの流量を調節する希釈空気調節弁17vをさらに備える。前記制御装置50d,50eは、前記希釈空気調節弁17vの動作を制御する希釈空気制御器55d,55eと、前記吸気制御器53d,53eによる前記吸気調節器14vの制御と前記希釈空気制御器55d,55eによる前記希釈空気調節弁17vの制御とを協調させる協調制御器56d,56eと、を有する。前記協調制御器56d,56eは、前記NOx濃度計58で検知された前記排気ガス中のNOx濃度に応じて、前記希釈空気制御器55d,55eに、前記希釈空気Alの流量が多くなるよう、前記希釈空気調節弁17vを制御させる。
 本態様では、希釈空気制御器55d,55eによる希釈空気調節弁17vの制御で、RQL方式を採用する燃焼器15の燃焼室15s内に流入する希釈空気Alの流量が多くなると、燃焼器本体15bから燃焼室15s内に噴射される主燃焼用空気Amの流量が少なくなる。このため、本態様では、排気ガス中のNOx濃度が予め定められた値以上になると、リーン燃焼領域LAの燃空比が変わらず、リッチ燃焼領域RAの燃空比が大きくなる。この結果、本態様では、NOxの排出量を抑えることができる。
(8)第八態様におけるガスタービン設備は、
 前記第七態様におけるガスタービン設備において、前記協調制御器56d,56eは、前記リーン燃焼領域LAの燃空比が変わらず、前記リッチ燃焼領域RAの燃空比が大きくなるよう、前記吸気制御器53d,53eによる前記吸気調節器14vの制御で前記吸気量を少なくさせつつ、前記希釈空気制御器55d,55eによる前記希釈空気調節弁17vの制御で前記希釈空気Alの流量を多くさせる。
 RQL方式を採用する燃焼器15では、リーン燃焼領域LAの燃空比が所定以上小さくなると、リーン燃焼領域LAでの未燃分が多くなる。本態様では、リーン燃焼領域LAの燃空比が変わらないので、排気ガス中の未燃分濃度の増加を抑えることができる。
(9)第九態様におけるガスタービン設備は、
 前記第三態様から前記第六態様のうちのいずれか一態様におけるガスタービン設備において、前記開口15oから前記燃焼室15sに導入する前記希釈空気Alの流量を調節する希釈空気調節弁17vをさらに備える。前記制御装置50eは、前記希釈空気調節弁17vの動作を制御する希釈空気制御器55eを有する。前記協調制御器56eは、前記吸気制御器53eによる前記吸気調節器14vの制御と、前記戻し空気制御器54eによる前記戻し空気調節弁18vの制御と、前記希釈空気制御器55eによる前記希釈空気調節弁17vの制御とを協調させる。前記協調制御器56eは、前記NOx濃度計58で検知された前記排気ガス中のNOx濃度に応じて、前記希釈空気制御器55eに、前記希釈空気Alの流量が多くなるよう、前記希釈空気調節弁17vを制御させる。
 本態様では、希釈空気制御器55eによる希釈空気調節弁17vの制御で、RQL方式を採用する燃焼器15の燃焼室15s内に流入する希釈空気Alの流量が多くなると、燃焼器本体15bから燃焼室15s内に噴射される主燃焼用空気Amの流量が少なくなる。このため、本態様では、排気ガス中のNOx濃度が予め定められた値以上になると、リーン燃焼領域LAの燃空比が小さくなり、リッチ燃焼領域RAの燃空比が大きくなる。この結果、本態様では、NOxの排出量を抑えることができる。
(10)第十態様におけるガスタービン設備は、
 前記第九態様におけるガスタービン設備において、前記協調制御器56eは、前記吸気制御器53e、前記戻し空気制御器54e及び前記希釈空気制御器55eに、前記リーン燃焼領域LAの燃空比が変わらず、前記リッチ燃焼領域の燃空比が大きくなるよう、前記吸気調節器14vにより前記吸気量を少なくさせ、前記戻し空気調節弁18vにより前記戻し空気Abの流量を多くさせつつ、前記希釈空気調節弁17vにより前記希釈空気Alの流量を多くさせる。
(11)第十一態様におけるガスタービン設備は、
 ガスタービン10と、空気戻しライン18pと、戻し空気調節弁18vと、前記ガスタービン10から排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度計58と、制御装置50a,50c,50d,50eと、を備える。前記ガスタービン10は、空気を圧縮して圧縮空気を生成できる圧縮機14と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器15と、前記燃焼ガスにより駆動可能なタービン16と、を有する。前記燃焼器15は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービン16に導くことができる燃焼室15sを形成する燃焼室形成器15cと、前記燃焼室15s内に前記燃料としてのアンモニア及び前記圧縮空気の一部である主燃焼用空気Amを噴射可能な燃焼器本体15bと、を有する。前記燃焼室形成器15cには、前記燃焼室形成器15c外から前記燃焼室15s内に前記圧縮空気の一部である希釈空気Alを導入可能な開口15oが形成されている。前記燃焼器15は、前記燃焼室15s内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体15bからの燃料を燃焼させるリッチ燃焼領域RAと、前記リッチ燃焼領域RAからのガスが前記開口15oからの前記希釈空気Alにより希釈され、前記希釈空気Alにより希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域LAと、が形成されるよう構成されている。前記空気戻しライン18pは、前記圧縮機14から吐出された圧縮空気の一部を前記圧縮機14内に戻せるよう構成されている。前記戻し空気調節弁18vは、前記空気戻しライン18p中を流れる前記圧縮空気である戻し空気Abの流量を調節できるよう構成されている。前記制御装置50a,50c,50d,50eは、前記タービンから排気される燃焼ガスである排気ガス中のNOx濃度に応じて、前記戻し空気Abの流量が多くなるよう、前記戻し空気調節弁18vを制御する戻し空気制御器54,54c,54d,54eを有する。
 本態様では、排気ガス中のNOx濃度が予め定められた値以上になると、戻し空気制御器54,54c,54d,54eが、戻し空気Abの流量が多くなるよう、戻し空気調節弁18vの動作を制御する。本態様のRQL方式を採用する燃焼器15では、戻し空気Abの流量が多くなると、リッチ燃焼領域RA及びリーン燃焼領域LAでの燃空比がともに大きくなる。この結果、本態様では、NOxの排出量を抑えることができる。
(12)第十二態様におけるガスタービン設備は、
 前記第十一態様におけるガスタービン設備において、前記排気ガス中の未燃分濃度を検知する未燃分濃度計59をさらに備える。前記戻し空気制御器54,54c,54d,54eは、前記排気ガス中のNOx濃度が予め定められた値未満になり且つ前記排気ガス中の未燃分濃度が前記NOx濃度に応じて定まる予め定められた未燃分濃度範囲内に収まるよう、前記戻し空気調節弁18vの動作を制御する。
 本態様では、NOx濃度を抑えつつも、排気ガス中の未燃分濃度を予め定められた未燃分濃度範囲内にすることができる。
(13)第十三態様におけるガスタービン設備は、
 前記第十一態様又は前記第十二態様におけるガスタービン設備において、前記開口15oから前記燃焼室15sに導入する前記希釈空気Alの流量を調節する希釈空気調節弁17vをさらに備える。前記制御装置50d,50eは、前記希釈空気調節弁17vの動作を制御する希釈空気制御器55d,55eと、前記戻し空気制御器54d,54eによる前記戻し空気調節弁18vの制御と前記希釈空気制御器55d,55eによる前記希釈空気調節弁17vの制御とを協調させる協調制御器56d,56eと、を有する。前記協調制御器56d,56eは、前記NOx濃度計58で検知された前記排気ガス中のNOx濃度に応じて、前記希釈空気制御器55d,55eに、前記希釈空気Alの流量が多くなるよう、前記希釈空気調節弁17vを制御させる。
 本態様では、希釈空気制御器55d,55eによる希釈空気調節弁17vの制御で、RQL方式を採用する燃焼器15の燃焼室15s内に流入する希釈空気Alの流量が多くなると、燃焼器本体15bから燃焼室15s内に噴射される主燃焼用空気Amの流量が少なくなる。このため、本態様では、排気ガス中のNOx濃度が予め定められた値以上になると、リーン燃焼領域LAの燃空比が小さくなり、リッチ燃焼領域RAの燃空比が大きくなる。この結果、本態様では、NOxの排出量を抑えることができる。
(14)第十四態様におけるガスタービン設備は、
 前記第十三態様におけるガスタービン設備において、前記協調制御器56d,56eは、前記リーン燃焼領域LAの燃空比が変わらず、前記リッチ燃焼領域の燃空比が大きくなるよう、前記戻し空気制御器54d,54eによる前記戻し空気調節弁18vの制御で前記戻し空気Abの流量を多くさせつつ、前記希釈空気制御器55d,55eによる前記希釈空気調節弁17vの制御で前記希釈空気Alの流量を多くさせる。
 RQL方式を採用する燃焼器15では、リーン燃焼領域LAの燃空比が所定以上小さくなると、リーン燃焼領域LAでの未燃分が多くなる。本態様では、リーン燃焼領域LAの燃空比が変わらないので、排気ガス中の未燃分濃度の増加を抑えることができる。
(15)第十五態様におけるガスタービン設備は、
 ガスタービン10と、希釈空気調節弁17vと、制御装置50b,50d,50eと、を備える。前記ガスタービン10は、空気を圧縮して圧縮空気を生成できる圧縮機14と、前記圧縮空気中で燃料としてのアンモニアを燃焼させて燃焼ガスを生成できる燃焼器15と、前記燃焼ガスにより駆動可能なタービン16と、を有する。前記圧縮機14は、軸線Arを中心として回転可能な圧縮機ロータ14rと、前記圧縮機ロータ14rを覆う圧縮機ケーシング14cと、を有する。前記燃焼器15は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービン16に導くことができる燃焼室15sを形成する燃焼室形成器15cと、前記燃焼室15s内に前記アンモニア及び前記圧縮空気の一部である主燃焼用空気Amを噴射可能な燃焼器本体15bと、を有する。前記燃焼室形成器15cには、前記燃焼室形成器15c外から前記燃焼室15s内に前記圧縮空気の一部である希釈空気Alを導入可能な開口15oが形成されている。前記燃焼器15は、前記燃焼室15s内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体15bからの燃料を燃焼させるリッチ燃焼領域RAと、前記リッチ燃焼領域RAからのガスが前記開口15oからの前記希釈空気Alにより希釈され、前記希釈空気Alにより希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域LAと、が形成されるよう構成されている。前記希釈空気調節弁17vは、前記開口15oから前記燃焼室15sに導入する前記希釈空気Alの流量を調節可能な弁である。前記制御装置50b,50d,50eは、前記タービンから排気される燃焼ガスである排気ガス中のNOx濃度に応じて、前記希釈空気Alの流量が増加するよう、前記希釈空気調節弁17vを制御する希釈空気制御器55,55d,55eを有する。
 本態様では、希釈空気制御器55,55d,55eによる希釈空気調節弁17vの制御で、RQL方式を採用する燃焼器15の燃焼室15s内に流入する希釈空気Alの流量が多くなると、燃焼器本体15bから燃焼室15s内に噴射される主燃焼用空気Amの流量が少なくなる。このため、本態様では、排気ガス中のNOx濃度が予め定められた値以上になると、リーン燃焼領域LAの燃空比が小さくなり、リッチ燃焼領域RAの燃空比が大きくなる。この結果、本態様では、NOxの排出量を抑えることができる。
(16)第十六態様におけるガスタービン設備は、
 前記第十五態様におけるガスタービン設備において、前記排気ガス中の未燃分濃度を検知する未燃分濃度計59をさらに備える。前記希釈空気制御器55,55d,55eは、前記排気ガス中のNOx濃度が予め定められた値未満になり且つ前記排気ガス中の未燃分濃度が前記NOx濃度に応じて定まる予め定められた未燃分濃度範囲内に収まるよう、前記希釈空気調節弁17vを制御する。
 本態様では、NOx濃度を抑えつつも、排気ガス中の未燃分濃度を予め定められた未燃分濃度範囲内にすることができる。
 以上の実施形態におけるガスタービンの制御方法は、例えば、以下のように把握される。
(17)第十七態様におけるガスタービンの制御方法は、以下のガスタービンに適用される。
 このガスタービン10は、空気を圧縮して圧縮空気を生成できる圧縮機14と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器15と、前記燃焼ガスにより駆動可能なタービン16と、を有する。前記圧縮機14は、軸線Arを中心として回転可能な圧縮機ロータ14rと、前記圧縮機ロータ14rを覆う圧縮機ケーシング14cと、を有する。前記燃焼器15は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービンに導くことができる燃焼室15sを形成する燃焼室形成器15cと、前記燃焼室15s内に前記燃料としてのアンモニア及び前記圧縮空気の一部である主燃焼用空気Amを噴射可能な燃焼器本体15bと、を有する。前記燃焼室形成器15cには、前記燃焼室形成器15c外から前記燃焼室15s内に前記圧縮空気の一部である希釈空気Alを導入可能な開口15oが形成されている。
 本態様の制御方法では、前記燃焼器本体15bから前記燃焼室15s内に前記燃料としての前記アンモニア及び前記主燃焼用空気Amを噴射すると共に、前記開口15oから前記燃焼室15s内に前記希釈空気Alを導入して、前記燃焼室15s内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体15bからの燃料を燃焼させるリッチ燃焼領域RAと、前記リッチ燃焼領域RAからのガスが前記開口15oからの前記希釈空気Alにより希釈され、前記希釈空気Alにより希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域LAと、を形成する燃焼工程S1と、前記燃料の燃焼で生成され前記ガスタービン10から排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度検知工程S2と、前記NOx濃度検知工程S2で検知された前記排気ガス中のNOx濃度に応じて、前記圧縮機ケーシング14cに吸い込まれる空気の流量である吸気量を少なくなする吸気制御工程S4,S4c,S4d,S5dと、を実行する。
 本態様では、第一態様におけるガスタービン設備と同様に、NOxの排出量を抑えることができる。
(18)第十八態様におけるガスタービンの制御方法は、
 前記第十七態様におけるガスタービン10の制御方法において、前記排気ガス中の未燃分濃度を検知する未燃分濃度検知工程S3をさらに実行する。前記吸気制御工程S4,S4c,S4d,S5dでは、前記排気ガス中のNOx濃度が予め定められた値未満になり且つ前記未燃分濃度が前記NOx濃度に応じて定まる予め定められた未燃分濃度範囲内に収まるよう、前記吸気量を制御する。
 本態様では、第二態様におけるガスタービン設備と同様に、NOx濃度を抑えつつも、排気ガス中の未燃分濃度を予め定められた未燃分濃度範囲内にすることができる。
(19)第十九態様におけるガスタービンの制御方法は、
 前記第十七態様又は前記第十八態様におけるガスタービン10の制御方法において、前記NOx濃度検知工程S3で検知された前記排気ガス中のNOx濃度に応じて、前記吸気制御工程S4c,S4eと共に、前記圧縮機ケーシング14cから吐出された圧縮空気の一部を戻し空気Abとして、前記圧縮機ケーシング14c内に戻す流量を多くする戻し空気制御工程S5c,S5eと、をさらに実行する。
 本態様では、第三態様におけるガスタービン設備と同様に、NOxの排出量を抑えることができる。
(20)第二十態様におけるガスタービンの制御方法は、
 前記第十七態様から前記第十九態様のうちのいずれか一態様におけるガスタービン10の制御方法において、前記NOx濃度検知工程S3で検知された前記排気ガス中のNOx濃度に応じて、前記吸気制御工程S4eと共に、前記希釈空気Alの流量を多くする希釈空気制御工程S6eをさらに実行する。
 本態様では、第七態様におけるガスタービン設備と同様に、NOxの排出量を抑えることができる。
(21)第二十一態様におけるガスタービンの制御方法は、以下のガスタービンに適用される。
 このガスタービン10は、空気を圧縮して圧縮空気を生成できる圧縮機14と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器15と、前記燃焼ガスにより駆動可能なタービン16と、を有する。前記圧縮機14は、軸線Arを中心として回転可能な圧縮機ロータ14rと、前記圧縮機ロータ14rを覆う圧縮機ケーシング14cと、を有する。前記燃焼器15は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービン16に導くことができる燃焼室15sを形成する燃焼室形成器15cと、前記燃焼室15s内に前記燃料としてのアンモニア及び前記圧縮空気の一部である主燃焼用空気Amを噴射可能な燃焼器本体15bと、を有する。前記燃焼室形成器15cには、前記燃焼室形成器15c外から前記燃焼室15s内に前記圧縮空気の一部である希釈空気Alを導入可能な開口15oが形成されている。
 本態様の制御方法では、前記燃焼器本体15bから前記燃焼室15s内に前記燃料としての前記アンモニア及び前記主燃焼用空気Amを噴射すると共に、前記開口15oから前記燃焼室15s内に前記希釈空気Alを導入して、前記燃焼室15s内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体15bからの燃料を燃焼させるリッチ燃焼領域RAと、前記リッチ燃焼領域RAからのガスが前記開口15oからの前記希釈空気Alにより希釈され、前記希釈空気Alにより希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域LAと、を形成する燃焼工程S1と、前記燃料の燃焼で生成され前記ガスタービン10から排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度検知工程S2と、前記NOx濃度検知工程S2で検知された前記排気ガス中のNOx濃度に応じて、前記圧縮機ケーシング14cから吐出された圧縮空気の一部を戻し空気Abとして、前記圧縮機ケーシング14c内に戻す流量を多くする戻し空気制御工程S5,S5c,S5eと、を実行する。
 本態様では、第十一態様におけるガスタービン設備と同様に、NOxの排出量を抑えることができる。
(22)第二十二態様におけるガスタービンの制御方法は、
 前記第二十一態様におけるガスタービン10の制御方法において、前記排気ガス中の未燃分濃度を検知する未燃分濃度検知工程S3をさらに実行し、前記戻し空気制御工程S5,S5c,S5eでは、前記排気ガス中のNOx濃度が予め定められた値未満になり且つ前記未燃分濃度が前記NOx濃度に応じて定まる予め定められた未燃分濃度範囲内に収まるよう、前記戻し空気Abの流量を制御する。
 本態様では、第十二態様におけるガスタービン設備と同様に、NOx濃度を抑えつつも、排気ガス中の未燃分濃度を予め定められた未燃分濃度範囲内にすることができる。
(23)第二十三態様におけるガスタービンの制御方法は、
 前記第二十一態様又は前記第二十二態様におけるガスタービン10の制御方法において、前記NOx濃度検知工程S3で検知された前記排気ガス中のNOx濃度に応じて、前記戻し空気制御工程S5eと共に、前記希釈空気Alの流量を多くする希釈空気制御工程S6eをさらに実行する。
 本態様では、第十三態様におけるガスタービン設備と同様に、NOxの排出量を抑えることができる。
(24)第二十四態様におけるガスタービンの制御方法は、以下のガスタービンに適用される。
 このガスタービン10は、空気を圧縮して圧縮空気を生成できる圧縮機14と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器15と、前記燃焼ガスにより駆動可能なタービン16と、を有する。前記圧縮機14は、軸線Arを中心として回転可能な圧縮機ロータ14rと、前記圧縮機ロータ14rを覆う圧縮機ケーシング14cと、を有する。前記燃焼器15は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービン16に導くことができる燃焼室15sを形成する燃焼室形成器15cと、前記燃焼室15s内に前記燃料としてのアンモニア及び前記圧縮空気の一部である主燃焼用空気Amを噴射可能な燃焼器本体15bと、を有する。前記燃焼室形成器15cには、前記燃焼室形成器15c外から前記燃焼室15s内に前記圧縮空気の一部である希釈空気Alを導入可能な開口15oが形成されている。
 本態様の制御方法では、前記燃焼器本体15bから前記燃焼室15s内に前記燃料としての前記アンモニア及び前記主燃焼用空気Amを噴射すると共に、前記開口15oから前記燃焼室15s内に前記希釈空気Alを導入して、前記燃焼室15s内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体15bからの燃料を燃焼させるリッチ燃焼領域RAと、前記リッチ燃焼領域RAからのガスが前記開口15oからの前記希釈空気Alにより希釈され、前記希釈空気Alにより希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域LAと、を形成する燃焼工程S1と、前記燃料の燃焼で生成され前記ガスタービン10から排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度検知工程S2と、前記NOx濃度検知工程S2で検知された前記排気ガス中のNOx濃度に応じて、前記希釈空気Alの流量を多くする希釈空気制御工程S6,S6d,S6eと、を実行する。
 本態様では、第十五態様におけるガスタービン設備と同様に、NOxの排出量を抑えることができる。
 本開示の一態様では、ガスタービンの燃料としてアンモニアを用いる場合に、NOxの排出量を低減できる。
10:ガスタービン
11:ガスタービンロータ
12:吸気ダクト
13:中間ケーシング
14:圧縮機
14r:圧縮機ロータ
14c:圧縮機ケーシング
14v:吸気調節器(又はIGV)
15:燃焼器
15b:燃焼器本体
15c:燃焼室形成器
15o:開口
15s:燃焼室
16:タービン
16r:タービンロータ
16c:タービンケーシング
17:希釈空気調節装置
17p:希釈空気ライン
17v:希釈空気調節弁
17vb:弁体
17vc:弁ケーシング
18:圧縮空気戻し装置
18p:空気戻しライン
18v:戻し空気調節弁
16:タービン
16r:タービンロータ
16c:タービンケーシング
20:燃料供給設備
21:アンモニアタンク
22:液体アンモニアライン
23:アンモニアポンプ
24:燃料調節弁
25:気化器
26:気体アンモニアライン
28:脱硝装置
29:煙突
50,50a,50b,50c,50d,50e:制御装置
51:燃料流量演算器
52:燃料制御器
53,53a,53c,53d,53e:吸気制御器
54,54c,54d,54e:戻し空気制御器
55,55d,55e:希釈空気制御器
56,56d,56e:協調制御器
58:NOx濃度計
59:未燃分濃度計
LA:リーン燃焼領域
RA:リッチ燃焼領域
QA:クエンチ領域
Ab:戻し空気
Al:希釈空気
Am:主燃焼用空気

Claims (24)

  1.  ガスタービンと、前記ガスタービンから排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度計と、制御装置と、を備え、
     前記ガスタービンは、空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料としてのアンモニアを燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、を有し、
     前記圧縮機は、軸線を中心として回転可能な圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、前記圧縮機ケーシングに吸い込まれる空気の流量である吸気量を調節する吸気調節器と、を有し、
     前記燃焼器は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービンに導くことができる燃焼室を形成する燃焼室形成器と、前記燃焼室内に前記アンモニア及び前記圧縮空気の一部である主燃焼用空気を噴射可能な燃焼器本体と、を有し、
     前記燃焼室形成器には、前記燃焼室形成器外から前記燃焼室内に前記圧縮空気の一部である希釈空気を導入可能な開口が形成され、
     前記燃焼器は、前記燃焼室内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体からの燃料を燃焼させるリッチ燃焼領域と、前記リッチ燃焼領域からのガスが前記開口からの前記希釈空気により希釈され、前記希釈空気により希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域と、が形成されるよう構成され、
     前記制御装置は、前記NOx濃度計で検知された前記排気ガス中のNOx濃度に応じて、前記吸気量が少なくなるよう、前記吸気調節器の動作を制御する吸気制御器を有する、
     ガスタービン設備。
  2.  請求項1に記載のガスタービン設備において、
     前記排気ガス中の未燃分濃度を検知する未燃分濃度計をさらに備え、
     前記吸気制御器は、前記排気ガス中のNOx濃度が予め定められた値未満になり且つ前記排気ガス中の未燃分濃度が前記NOx濃度に応じて定まる予め定められた未燃分濃度範囲内に収まるよう、前記吸気調節器の動作を制御する、
     ガスタービン設備。
  3.  請求項1又は2に記載のガスタービン設備において、
     前記圧縮機ケーシングから吐出された圧縮空気の一部を前記圧縮機ケーシング内に戻すことが可能な空気戻しラインと、前記空気戻しライン中を流れる前記圧縮空気である戻し空気の流量を調節可能な戻し空気調節弁と、
     をさらに備え、
     前記制御装置は、前記戻し空気調節弁の動作を制御する戻し空気制御器と、前記吸気制御器による前記吸気調節器の制御と前記戻し空気制御器による前記戻し空気調節弁の制御とを協調させる協調制御器と、を有し、
     前記協調制御器は、前記NOx濃度計で検知された前記排気ガス中のNOx濃度に応じて、前記戻し空気制御器に、前記戻し空気の流量が多くなるよう前記戻し空気調節弁を制御させる、
     ガスタービン設備。
  4.  請求項2に記載のガスタービン設備において、
     前記圧縮機ケーシングから吐出された圧縮空気の一部を前記圧縮機ケーシング内に戻すことが可能な空気戻しラインと、前記空気戻しライン中を流れる前記圧縮空気である戻し空気の流量を調節可能な戻し空気調節弁と、
     をさらに備え、
     前記制御装置は、前記戻し空気調節弁の動作を制御する戻し空気制御器と、前記吸気制御器による前記吸気調節器の制御と前記戻し空気制御器による前記戻し空気調節弁の制御とを協調させる協調制御器と、を有し、
     前記協調制御器は、前記排気ガス中のNOx濃度が予め定められた値未満になり且つ前記排気ガス中の未燃分濃度が前記NOx濃度に応じて定まる予め定められた未燃分濃度範囲内に収まるよう、前記吸気制御器に前記吸気調節器を制御させると共に、前記戻し空気制御器に前記戻し空気調節弁を制御させる、
     ガスタービン設備。
  5.  請求項4に記載のガスタービン設備において、
     前記協調制御器は、前記排気ガス中のNOx濃度が前記予め定められた値未満になるよう、前記吸気制御器に前記吸気調節器を制御させた後、第一の場合、第二の場合、及び第三の場合のうちいずれか一の場合に、前記戻し空気制御器に、前記戻し空気調節弁により、前記戻し空気が多くなるよう、前記戻し空気の流量を調節させ、
     前記第一の場合は、前記排気ガス中の未燃分濃度が前記未燃分濃度範囲内に収まっていない場合であり、
     前記第二の場合は、前記排気ガス中の未燃分濃度をより低下させるという要求を受け付けている場合であり、
     前記第三の場合は、前記吸気調節器の動作だけでは、燃空比が予め定めた分大きくならない場合である、
     ガスタービン設備。
  6.  請求項3又は4に記載のガスタービン設備において、
     前記協調制御器は、前記吸気調節器による前記吸気量の調節での燃空比の変化量と前記戻し空気調節弁による前記戻し空気の流量の調節での燃空比の変化量との比が、予め定められた比になるよう、前記吸気制御器に前記吸気調節器を制御させると共に、前記戻し空気制御器に前記戻し空気調節弁を制御させる、
     ガスタービン設備。
  7.  請求項1から6のいずれか一項に記載のガスタービン設備において、
     前記開口から前記燃焼室内に導入する前記希釈空気の流量を調節する希釈空気調節弁をさらに備え、
     前記制御装置は、前記希釈空気調節弁の動作を制御する希釈空気制御器と、前記吸気制御器による前記吸気調節器の制御と前記希釈空気制御器による前記希釈空気調節弁の制御とを協調させる協調制御器と、を有し、
     前記協調制御器は、前記NOx濃度計で検知された前記排気ガス中のNOx濃度に応じて、前記希釈空気制御器に、前記希釈空気の流量が多くなるよう、前記希釈空気調節弁を制御させる、
     ガスタービン設備。
  8.  請求項7に記載のガスタービン設備において、
     前記協調制御器は、前記リーン燃焼領域の燃空比が変わらず、前記リッチ燃焼領域の燃空比が大きくなるよう、前記吸気制御器による前記吸気調節器の制御で前記吸気量を少なくさせつつ、前記希釈空気制御器による前記希釈空気調節弁の制御で前記希釈空気の流量を多くさせる、
     ガスタービン設備。
  9.  請求項3から6のいずれか一項に記載のガスタービン設備において、
     前記開口から前記燃焼室内に導入する前記希釈空気の流量を調節する希釈空気調節弁をさらに備え、
     前記制御装置は、前記希釈空気調節弁の動作を制御する希釈空気制御器を有し、
     前記協調制御器は、前記吸気制御器による前記吸気調節器の制御と、前記戻し空気制御器による前記戻し空気調節弁の制御と、前記希釈空気制御器による前記希釈空気調節弁の制御とを協調させ、
     前記協調制御器は、前記NOx濃度計で検知された前記排気ガス中のNOx濃度に応じて、前記希釈空気制御器に、前記希釈空気の流量が多くなるよう、前記希釈空気調節弁を制御させる、
     ガスタービン設備。
  10.  請求項9に記載のガスタービン設備において、
     前記協調制御器は、前記吸気制御器、前記戻し空気制御器及び前記希釈空気制御器に、前記リーン燃焼領域の燃空比が変わらず、前記リッチ燃焼領域の燃空比が大きくなるよう、前記吸気調節器により前記吸気量を少なくさせ、前記戻し空気調節弁により前記戻し空気の流量を多くさせつつ、前記希釈空気調節弁により前記希釈空気の流量を多くさせる、
     ガスタービン設備。
  11.  ガスタービンと、空気戻しラインと、戻し空気調節弁と、前記ガスタービンから排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度計と、制御装置と、を備え、
     前記ガスタービンは、空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、を有し、
     前記燃焼器は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービンに導くことができる燃焼室を形成する燃焼室形成器と、前記燃焼室内に前記燃料としてのアンモニア及び前記圧縮空気の一部である主燃焼用空気を噴射可能な燃焼器本体と、を有し、
     前記燃焼室形成器には、前記燃焼室形成器外から前記燃焼室内に前記圧縮空気の一部である希釈空気を導入可能な開口が形成され、
     前記燃焼器は、前記燃焼室内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体からの燃料を燃焼させるリッチ燃焼領域と、前記リッチ燃焼領域からのガスが前記開口からの前記希釈空気により希釈され、前記希釈空気により希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域と、が形成されるよう構成され、
     前記空気戻しラインは、前記圧縮機から吐出された圧縮空気の一部を前記圧縮機内に戻せるよう構成され、
     前記戻し空気調節弁は、前記空気戻しライン中を流れる前記圧縮空気である戻し空気の流量を調節できるよう構成され、
     前記制御装置は、前記タービンから排気される燃焼ガスである排気ガス中のNOx濃度に応じて、前記戻し空気の流量が多くなるよう、前記戻し空気調節弁を制御する戻し空気制御器を有する、
     ガスタービン設備。
  12.  請求項11に記載のガスタービン設備において、
     前記排気ガス中の未燃分濃度を検知する未燃分濃度計をさらに備え、
     前記戻し空気制御器は、前記排気ガス中のNOx濃度が予め定められた値未満になり且つ前記排気ガス中の未燃分濃度が前記NOx濃度に応じて定まる予め定められた未燃分濃度範囲内に収まるよう、前記戻し空気調節弁の動作を制御する、
     ガスタービン設備。
  13.  請求項11又は12に記載のガスタービン設備において、
     前記開口から前記燃焼室に導入する前記希釈空気の流量を調節する希釈空気調節弁をさらに備え、
     前記制御装置は、前記希釈空気調節弁の動作を制御する希釈空気制御器と、前記戻し空気制御器による前記戻し空気調節弁の制御と前記希釈空気制御器による前記希釈空気調節弁の制御とを協調させる協調制御器と、を有し、
     前記協調制御器は、前記NOx濃度計で検知された前記排気ガス中のNOx濃度に応じて、前記希釈空気制御器に、前記希釈空気の流量が多くなるよう、前記希釈空気調節弁を制御させる、
     ガスタービン設備。
  14.  請求項13に記載のガスタービン設備において、
     前記協調制御器は、前記リーン燃焼領域の燃空比が変わらず、前記リッチ燃焼領域の燃空比が大きくなるよう、前記戻し空気制御器による前記戻し空気調節弁の制御で前記戻し空気の流量を多くさせつつ、前記希釈空気制御器による前記希釈空気調節弁の制御で前記希釈空気の流量を多くさせる、
     ガスタービン設備。
  15.  ガスタービンと、希釈空気調節弁と、制御装置と、を備え、
     前記ガスタービンは、空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料としてのアンモニアを燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、を有し、
     前記圧縮機は、軸線を中心として回転可能な圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、を有し、
     前記燃焼器は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービンに導くことができる燃焼室を形成する燃焼室形成器と、前記燃焼室内に前記アンモニア及び前記圧縮空気の一部である主燃焼用空気を噴射可能な燃焼器本体と、を有し、
     前記燃焼室形成器には、前記燃焼室形成器外から前記燃焼室内に前記圧縮空気の一部である希釈空気を導入可能な開口が形成され、
     前記燃焼器は、前記燃焼室内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体からの燃料を燃焼させるリッチ燃焼領域と、前記リッチ燃焼領域からのガスが前記開口からの前記希釈空気により希釈され、前記希釈空気により希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域と、が形成されるよう構成され、
     前記希釈空気調節弁は、前記開口から前記燃焼室に導入する前記希釈空気の流量を調節可能な弁であり、
     前記制御装置は、前記タービンから排気される燃焼ガスである排気ガス中のNOx濃度に応じて、前記希釈空気の流量が増加するよう、前記希釈空気調節弁を制御する希釈空気制御器を有する、
     ガスタービン設備。
  16.  請求項15に記載のガスタービン設備において、
     前記排気ガス中の未燃分濃度を検知する未燃分濃度計をさらに備え、
     前記希釈空気制御器は、前記排気ガス中のNOx濃度が予め定められた値未満になり且つ前記排気ガス中の未燃分濃度が前記NOx濃度に応じて定まる予め定められた未燃分濃度範囲内に収まるよう、前記希釈空気調節弁を制御する、
     ガスタービン設備。
  17.  空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、を有し、
     前記圧縮機は、軸線を中心として回転可能な圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、を有し、
     前記燃焼器は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービンに導くことができる燃焼室を形成する燃焼室形成器と、前記燃焼室内に前記燃料としてのアンモニア及び前記圧縮空気の一部である主燃焼用空気を噴射可能な燃焼器本体と、を有し、
     前記燃焼室形成器には、前記燃焼室形成器外から前記燃焼室内に前記圧縮空気の一部である希釈空気を導入可能な開口が形成されている、
     ガスタービンの制御方法において、
     前記燃焼器本体から前記燃焼室内に前記燃料としての前記アンモニア及び前記主燃焼用空気を噴射すると共に、前記開口から前記燃焼室内に前記希釈空気を導入して、前記燃焼室内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体からの燃料を燃焼させるリッチ燃焼領域と、前記リッチ燃焼領域からのガスが前記開口からの前記希釈空気により希釈され、前記希釈空気により希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域と、を形成する燃焼工程と、
     前記燃料の燃焼で生成され前記ガスタービンから排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度検知工程と、
     前記NOx濃度検知工程で検知された前記排気ガス中のNOx濃度に応じて、前記圧縮機ケーシングに吸い込まれる空気の流量である吸気量を少なくなする吸気制御工程と、
     を実行する、
     ガスタービンの制御方法。
  18.  請求項17に記載のガスタービンの制御方法において、
     前記排気ガス中の未燃分濃度を検知する未燃分濃度検知工程S3をさらに実行し、
     前記吸気制御工程では、前記排気ガス中のNOx濃度が予め定められた値未満になり且つ前記未燃分濃度が前記NOx濃度に応じて定まる予め定められた未燃分濃度範囲内に収まるよう、前記吸気量を制御する、
     ガスタービンの制御方法。
  19.  請求項17又は18に記載のガスタービンの制御方法において、
     前記NOx濃度検知工程で検知された前記排気ガス中のNOx濃度に応じて、前記吸気制御工程と共に、前記圧縮機ケーシングから吐出された圧縮空気の一部を戻し空気として、前記圧縮機ケーシング内に戻す流量を多くする戻し空気制御工程と、
     をさらに実行する、
     ガスタービンの制御方法。
  20.  請求項17から19のいずれか一項に記載のガスタービンの制御方法において、
      前記NOx濃度検知工程で検知された前記排気ガス中のNOx濃度に応じて、前記吸気制御工程と共に、前記希釈空気の流量を多くする希釈空気制御工程をさらに実行する、
     ガスタービンの制御方法。
  21.  空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、を有し、
     前記圧縮機は、軸線を中心として回転可能な圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、を有し、
     前記燃焼器は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービンに導くことができる燃焼室を形成する燃焼室形成器と、前記燃焼室内に前記燃料としてのアンモニア及び前記圧縮空気の一部である主燃焼用空気を噴射可能な燃焼器本体と、を有し、
     前記燃焼室形成器には、前記燃焼室形成器外から前記燃焼室内に前記圧縮空気の一部である希釈空気を導入可能な開口が形成されている、
     ガスタービンの制御方法において、
     前記燃焼器本体から前記燃焼室内に前記燃料としての前記アンモニア及び前記主燃焼用空気を噴射すると共に、前記開口から前記燃焼室内に前記希釈空気を導入して、前記燃焼室内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体からの燃料を燃焼させるリッチ燃焼領域と、前記リッチ燃焼領域からのガスが前記開口からの前記希釈空気により希釈され、前記希釈空気により希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域と、を形成する燃焼工程と、
     前記燃料の燃焼で生成され前記ガスタービンから排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度検知工程と、
     前記NOx濃度検知工程で検知された前記排気ガス中のNOx濃度に応じて、前記圧縮機ケーシングから吐出された圧縮空気の一部を戻し空気として、前記圧縮機ケーシング内に戻す流量を多くする戻し空気制御工程と、
     を実行する、
     ガスタービンの制御方法。
  22.  請求項21に記載のガスタービンの制御方法において、
     前記排気ガス中の未燃分濃度を検知する未燃分濃度検知工程をさらに実行し、
     前記戻し空気制御工程では、前記排気ガス中のNOx濃度が予め定められた値未満になり且つ前記未燃分濃度が前記NOx濃度に応じて定まる予め定められた未燃分濃度範囲内に収まるよう、前記戻し空気の流量を制御する、
     ガスタービンの制御方法。
  23.  請求項21又は22に記載のガスタービンの制御方法において、
     前記NOx濃度検知工程で検知された前記排気ガス中のNOx濃度に応じて、前記戻し空気制御工程と共に、前記希釈空気の流量を多くする希釈空気制御工程をさらに実行する、
     ガスタービンの制御方法。
  24.  空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、を有し、
     前記圧縮機は、軸線を中心として回転可能な圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、を有し、
     前記燃焼器は、前記燃料が燃焼し、且つ前記燃料の燃焼で生成された前記燃焼ガスを前記タービンに導くことができる燃焼室を形成する燃焼室形成器と、前記燃焼室内に前記燃料としてのアンモニア及び前記圧縮空気の一部である主燃焼用空気を噴射可能な燃焼器本体と、を有し、
     前記燃焼室形成器には、前記燃焼室形成器外から前記燃焼室内に前記圧縮空気の一部である希釈空気を導入可能な開口が形成されている、
     ガスタービンの制御方法において、
     前記燃焼器本体から前記燃焼室内に前記燃料としての前記アンモニア及び前記主燃焼用空気を噴射すると共に、前記開口から前記燃焼室内に前記希釈空気を導入して、前記燃焼室内に、空気に対する燃料の比である燃空比が理論燃空比より大きな燃空比中で前記燃焼器本体からの燃料を燃焼させるリッチ燃焼領域と、前記リッチ燃焼領域からのガスが前記開口からの前記希釈空気により希釈され、前記希釈空気により希釈された後の前記ガス中に含まれる燃料を前記燃空比が前記理論燃空比より小さな燃空比中で燃焼させるリーン燃焼領域と、を形成する燃焼工程と、
     前記燃料の燃焼で生成され前記ガスタービンから排気された燃焼ガスである排気ガス中のNOx濃度を検知するNOx濃度検知工程と、
     前記NOx濃度検知工程で検知された前記排気ガス中のNOx濃度に応じて、前記希釈空気の流量を多くする希釈空気制御工程と、
     を実行する、
     ガスタービンの制御方法。
PCT/JP2022/004264 2021-02-15 2022-02-03 ガスタービン設備、及びガスタービンの制御方法 WO2022172853A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/270,634 US20240068416A1 (en) 2021-02-15 2022-02-03 Gas turbine equipment and gas turbine control method
DE112022000211.5T DE112022000211T5 (de) 2021-02-15 2022-02-03 Gasturbinenausrüstung und Gasturbinensteuerverfahren
KR1020237021269A KR20230107687A (ko) 2021-02-15 2022-02-03 가스 터빈 설비, 및 가스 터빈의 제어 방법
JP2022580595A JP7454074B2 (ja) 2021-02-15 2022-02-03 ガスタービン設備、及びガスタービンの制御方法
CN202280008937.6A CN116745511A (zh) 2021-02-15 2022-02-03 燃气涡轮设备及燃气涡轮机的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-021754 2021-02-15
JP2021021754 2021-02-15

Publications (1)

Publication Number Publication Date
WO2022172853A1 true WO2022172853A1 (ja) 2022-08-18

Family

ID=82837837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004264 WO2022172853A1 (ja) 2021-02-15 2022-02-03 ガスタービン設備、及びガスタービンの制御方法

Country Status (6)

Country Link
US (1) US20240068416A1 (ja)
JP (1) JP7454074B2 (ja)
KR (1) KR20230107687A (ja)
CN (1) CN116745511A (ja)
DE (1) DE112022000211T5 (ja)
WO (1) WO2022172853A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254051U (ja) * 1988-09-26 1990-04-19
US5950417A (en) * 1996-07-19 1999-09-14 Foster Wheeler Energy International Inc. Topping combustor for low oxygen vitiated air streams
JP2004003752A (ja) * 2002-05-31 2004-01-08 Mitsubishi Heavy Ind Ltd 航空機用ガスタービンシステム,及びガスタービンシステム並びにその動作方法
JP2009052548A (ja) * 2007-08-24 2009-03-12 General Electric Co <Ge> ガスタービンエミッション規制順守を拡大適用するためのシステム及び方法
JP2009085221A (ja) * 2007-09-28 2009-04-23 General Electric Co <Ge> 低エミッションタービンシステム及び方法
WO2019088107A1 (ja) * 2017-10-31 2019-05-09 国立研究開発法人産業技術総合研究所 燃焼器および燃焼方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130750A (ja) 1998-10-28 2000-05-12 Hitachi Ltd 燃焼監視装置
US6742341B2 (en) * 2002-07-16 2004-06-01 Siemens Westinghouse Power Corporation Automatic combustion control for a gas turbine
US20130199192A1 (en) 2012-02-07 2013-08-08 General Electric Company System and method for gas turbine nox emission improvement
US9599017B2 (en) * 2013-06-28 2017-03-21 General Electric Company Gas turbine engine and method of operating thereof
US10422287B2 (en) * 2017-03-20 2019-09-24 General Electric Company Systems and methods for closed loop control of OBB valve for power generation systems
JP6926581B2 (ja) * 2017-03-27 2021-08-25 株式会社Ihi 燃焼装置及びガスタービン
JP6906381B2 (ja) 2017-07-03 2021-07-21 株式会社東芝 燃焼装置およびガスタービン
EP3447379B1 (en) * 2017-08-25 2022-01-26 Ansaldo Energia IP UK Limited Method for operating a gas turbine plant and gas turbine plant
JP7277302B2 (ja) 2019-07-24 2023-05-18 キヤノン株式会社 レンズ装置、カメラ、カメラシステム、制御方法
US11203986B1 (en) * 2020-06-08 2021-12-21 General Electric Company Systems and methods for extended emissions compliant operation of a gas turbine engine
US11898502B2 (en) * 2020-12-21 2024-02-13 General Electric Company System and methods for improving combustion turbine turndown capability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254051U (ja) * 1988-09-26 1990-04-19
US5950417A (en) * 1996-07-19 1999-09-14 Foster Wheeler Energy International Inc. Topping combustor for low oxygen vitiated air streams
JP2004003752A (ja) * 2002-05-31 2004-01-08 Mitsubishi Heavy Ind Ltd 航空機用ガスタービンシステム,及びガスタービンシステム並びにその動作方法
JP2009052548A (ja) * 2007-08-24 2009-03-12 General Electric Co <Ge> ガスタービンエミッション規制順守を拡大適用するためのシステム及び方法
JP2009085221A (ja) * 2007-09-28 2009-04-23 General Electric Co <Ge> 低エミッションタービンシステム及び方法
WO2019088107A1 (ja) * 2017-10-31 2019-05-09 国立研究開発法人産業技術総合研究所 燃焼器および燃焼方法

Also Published As

Publication number Publication date
TW202242244A (zh) 2022-11-01
JP7454074B2 (ja) 2024-03-21
DE112022000211T5 (de) 2023-09-07
KR20230107687A (ko) 2023-07-17
US20240068416A1 (en) 2024-02-29
JPWO2022172853A1 (ja) 2022-08-18
CN116745511A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
US20130327050A1 (en) Controlling flame stability of a gas turbine generator
EP2826979B1 (en) Gas turbine emissions control system and method
JP6461502B2 (ja) ガスタービン排出制御システムおよび方法
JP2016523344A (ja) 排気ガス再循環ガスタービンシステム内の排気ガス流を制御するためのシステム及び方法
JP2010530490A (ja) 排ガス再循環型ガスタービン設備
JP2012145111A5 (ja)
RU2014129872A (ru) Контроль состава газа в газотурбинной электростанции с рециркуляцией отработавших газов
EP2948659B1 (en) Method of operating a gas turbine for reduced ammonia slip
JP2009052560A (ja) ガスタービン内における燃料及び空気の混合のためのシステム及び方法
CN112943452B (zh) 一种燃机侧控制燃气机组运行全过程nox排放的系统
WO2022172853A1 (ja) ガスタービン設備、及びガスタービンの制御方法
TWI838681B (zh) 燃氣輪機設備及燃氣輪機的控制方法
JP2006511751A (ja) シングルシャフトガスタービンにおける触媒燃焼器のエミッションを制御し最適化するためのシステム。
JP2006029162A (ja) ガスタービンの制御装置および制御方法
JP4859512B2 (ja) 燃焼ボイラの制御方法
JP2007071188A (ja) ガスタービンの燃料制御装置
JP2013249755A (ja) 高湿分空気利用ガスタービン
JP4182414B2 (ja) 蒸気噴射ガスタービンの燃焼制御方法
RU2287066C1 (ru) Способ подачи пара в камеру сгорания парогазотурбинной установки
JP5762874B2 (ja) ガスタービン燃焼器、ガスタービンおよびガスタービン燃焼器の制御方法
JP2783638B2 (ja) ガスタービン燃焼装置
JP2005147136A (ja) ガスタービンの燃料制御装置
CN114877372A (zh) 燃气涡轮发动机的燃烧器
JPH0437328B2 (ja)
JP2002130674A (ja) 二流体サイクル用の低NOx燃焼器とその運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237021269

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2022580595

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18270634

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280008937.6

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22752680

Country of ref document: EP

Kind code of ref document: A1