WO2022172815A1 - 非水電解質二次電池用負極活物質及びその製造方法並びに非水電解質二次電池 - Google Patents

非水電解質二次電池用負極活物質及びその製造方法並びに非水電解質二次電池 Download PDF

Info

Publication number
WO2022172815A1
WO2022172815A1 PCT/JP2022/003917 JP2022003917W WO2022172815A1 WO 2022172815 A1 WO2022172815 A1 WO 2022172815A1 JP 2022003917 W JP2022003917 W JP 2022003917W WO 2022172815 A1 WO2022172815 A1 WO 2022172815A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
secondary battery
electrolyte secondary
Prior art date
Application number
PCT/JP2022/003917
Other languages
English (en)
French (fr)
Inventor
拓史 松野
貴一 廣瀬
広太 高橋
祐介 大沢
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US18/276,113 priority Critical patent/US20240109782A1/en
Priority to CN202280013993.9A priority patent/CN116888766A/zh
Priority to KR1020237027245A priority patent/KR20230145351A/ko
Priority to EP22752643.1A priority patent/EP4293749A1/en
Publication of WO2022172815A1 publication Critical patent/WO2022172815A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • C01B33/325After-treatment, e.g. purification or stabilisation of solutions, granulation; Dissolution; Obtaining solid silicate, e.g. from a solution by spray-drying, flashing off water or adding a coagulant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • C01P2004/86Thin layer coatings, i.e. the coating thickness being less than 0.1 time the particle radius
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for nonaqueous electrolyte secondary batteries, a method for producing the same, and a nonaqueous electrolyte secondary battery.
  • lithium-ion secondary batteries are highly expected because they are small and easy to increase in capacity, and they can obtain higher energy density than lead-acid batteries and nickel-cadmium batteries.
  • the lithium-ion secondary battery described above includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the negative electrode contains a negative electrode active material involved in charge-discharge reactions.
  • the negative electrode active material expands and contracts during charging and discharging, so cracking occurs mainly near the surface layer of the negative electrode active material.
  • an ionic substance is generated inside the active material, making the negative electrode active material fragile.
  • a new surface is generated thereby increasing the reaction area of the active material.
  • a decomposition reaction of the electrolytic solution occurs on the new surface, and a film, which is a decomposition product of the electrolytic solution, is formed on the new surface, so that the electrolytic solution is consumed.
  • cycle characteristics tend to deteriorate.
  • silicon and amorphous silicon dioxide are simultaneously deposited using a vapor phase method (see Patent Document 1, for example).
  • a carbon material electroconductive material
  • an active material containing silicon and oxygen is produced, and an active material layer with a high oxygen ratio is formed in the vicinity of the current collector (for example, see Patent Document 3).
  • oxygen is contained in the silicon active material, and the average oxygen content is 40 at % or less, and the oxygen content is increased near the current collector. (see, for example, Patent Document 4).
  • a nanocomposite containing Si phase, SiO 2 , and M y O metal oxide is used to improve the initial charge/discharge efficiency (see, for example, Patent Document 5).
  • the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum and minimum molar ratios near the interface between the active material and the current collector is 0.4 or less (see Patent Document 7, for example).
  • a metal oxide containing lithium is used (see, for example, Patent Document 8).
  • a hydrophobic layer such as a silane compound is formed on the surface layer of the silicon material (see, for example, Patent Document 9).
  • Patent Document 10 silicon oxide is used, and conductivity is imparted by forming a graphite film on the surface layer.
  • Patent Document 10 broad peaks appear at 1330 cm ⁇ 1 and 1580 cm ⁇ 1 with respect to the shift values obtained from the RAMAN spectrum of the graphite film, and their intensity ratio I 1330 /I 1580 is 1.5 ⁇ I 1330 /I 1580 ⁇ 3.
  • particles having a silicon microcrystalline phase dispersed in silicon dioxide are used in order to increase battery capacity and improve cycle characteristics (see, for example, Patent Document 11).
  • a silicon oxide in which the atomic ratio of silicon and oxygen is controlled to 1:y (0 ⁇ y ⁇ 2) is used (see Patent Document 12, for example).
  • lithium-ion secondary batteries which are the main power source for these devices, have been required to have increased battery capacity.
  • the development of a lithium ion secondary battery comprising a negative electrode using a silicon material as a main material is desired.
  • the silicon material doped with Li has stability in the atmosphere. I had a problem with the drop.
  • the silicon material doped with Li at a high ratio to obtain high initial efficiency showed a marked decrease in stability.
  • Such a silicon material doped with Li at a high ratio needs to be handled in a low-humidity atmosphere or an inert gas atmosphere, and is industrially unsuitable.
  • the present invention has been made in view of the problems described above, and has high stability in the atmosphere, and can improve initial charge-discharge characteristics when used as a negative electrode active material for secondary batteries. It is an object of the present invention to provide a negative electrode active material having a negative electrode active material and a non-aqueous electrolyte secondary battery containing such a negative electrode active material. Another object of the present invention is to provide a method for producing a negative electrode active material that is highly stable in the atmosphere and capable of improving initial charge/discharge characteristics.
  • the negative electrode active material (also referred to as silicon-based active material) of the present invention includes negative electrode active material particles (also referred to as silicon-based active material particles) containing silicon compound particles, the battery capacity can be improved.
  • the silicon compound particles contain Li 2 SiO 3 , the irreversible capacity generated during charging can be reduced. This can improve the initial efficiency.
  • the half width of the peak due to the (020) plane of Li 2 SiO 3 is 1.1 ° or more and 1.5 ° or less, and ). Therefore, both improvement in initial efficiency and stability in the atmosphere can be achieved.
  • a higher initial efficiency can be obtained by reducing the ratio of crystalline Li 2 Si 2 O 5 in the negative electrode active material.
  • the ratio of crystalline Si in the negative electrode active material is small, the formation of lithium silicide during Li doping can be suppressed, thereby suppressing the diffusion of lithium to the surface during atmospheric storage. Therefore, the stability in the atmosphere can be further enhanced.
  • the spectrum obtained by the X-ray diffraction preferably satisfies 1.2 ⁇ Ib/Ia ⁇ 1.3.
  • the amount of lithium contained in the silicon compound particles is appropriate, and Li 2 SiO 3 has appropriate crystallinity. Therefore, the diffusion of lithium to the surface during storage in the atmosphere can be suppressed, and the stability in the atmosphere can be further enhanced.
  • the half width of the peak due to the (020) plane of Li 2 SiO 3 is 1.2° or more and 1.3° or less.
  • the crystallite size of Li 2 SiO 3 is in an appropriate range, so the stability in the air can be further enhanced.
  • the amount of LiOH.H 2 O on the surface of the negative electrode active material particles can be suppressed to an appropriate range, thereby suppressing absorption of moisture and carbonic acid from the atmosphere. Therefore, the stability in the atmosphere can be further enhanced.
  • the negative electrode active material does not contain LiOH.H 2 O, moisture absorption and carbonic acid absorption from the atmosphere can be suppressed, and the stability in the atmosphere can be further enhanced.
  • an appropriate amount of lithium carbonate can be included on the surface of the negative electrode active material particles. Therefore, moisture absorption from the atmosphere can be suppressed, and stability in the atmosphere can be further enhanced.
  • the amount of silicon in water after dispersing 10% by mass of the negative electrode active material particles in water at 25°C for 1 hour is 50 ppm by mass or less.
  • the BET specific surface area of the negative electrode active material particles is 1 m 2 /g or more and 3 m 2 /g or less.
  • the median diameter (D50) of the negative electrode active material particles is 4.0 ⁇ m or more and 15 ⁇ m or less, and the ratio (D90/D10) of the cumulative 90% diameter (D90) to the cumulative 10% diameter (D10) is 3 or less. is preferably
  • the negative electrode active material particles have an appropriate particle size, so lithium can be uniformly doped. Therefore, both the initial efficiency and the stability in the air can be better achieved.
  • the negative electrode active material particles contain a carbon material in the surface layer portion, and the average thickness of the carbon material is 10 nm or more and 100 nm or less.
  • the surface layer of the negative electrode active material particles By including a carbon material in the surface layer of the negative electrode active material particles, it is possible to increase electronic conductivity and improve battery characteristics. In addition, moisture absorption from the atmosphere can be suppressed by increasing the hydrophobicity of the surface. Moreover, if the average thickness of the carbon material is within the above range, the electronic conductivity can be enhanced while maintaining the lithium ion conductivity. Therefore, both the initial efficiency and the stability in the air can be better achieved.
  • the negative electrode active material particles contain a phosphate in the surface layer portion.
  • phosphate in the surface layer of the negative electrode active material particles, it is possible to trap the lithium diffused to the surface during storage in the atmosphere and suppress the elution of lithium from within the active material particles. Therefore, the stability in the atmosphere can be further enhanced.
  • the present invention also provides a non-aqueous electrolyte secondary battery comprising the negative electrode active material for a non-aqueous electrolyte secondary battery.
  • the stability of the negative electrode active material particles in the atmosphere is high, so the manufacturing process has a high degree of freedom and is suitable for industrialization.
  • a secondary battery having a high capacity and good initial charge/discharge characteristics can be obtained.
  • the present invention also provides a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery containing negative electrode active material particles containing silicon compound particles, wherein the silicon compound (SiO x : 0.8 ⁇ x ⁇ 1. 2), and a step of inserting Li into the silicon compound particles to contain Li 2 SiO 3 to prepare the negative electrode active material particles, and dissolving the negative electrode active material particles.
  • the half width of the peak resulting from the (020) plane of Li 2 SiO 3 obtained by the X-ray diffraction is 1.1° or more and 1.5° or less.
  • the step of selecting those that satisfy all of the following formulas (1) to (3) is further performed. and producing a negative electrode active material for a non-aqueous electrolyte secondary battery using the selected negative electrode active material particles. 1.1 ⁇ Ib/Ia ⁇ 1.5 (1) I (24.8°)/Ia ⁇ 0.5 (2) I (28.4°)/Ia ⁇ 1.0 (3)
  • the half width of the peak due to the (020) plane of Li 2 SiO 3 is 1.1. ° or more and 1.5 ° or less, and by producing the negative electrode active material so as to satisfy the formulas (1) to (3), the stability of the negative electrode active material in the atmosphere can be improved, and When used as a negative electrode active material for a secondary battery, it is possible to produce a negative electrode active material that has a high capacity, good cycle characteristics, and good initial charge/discharge characteristics.
  • the negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention has high stability in the air, and when used as a negative electrode active material for a secondary battery, it provides high capacity and good initial charge/discharge characteristics. be done.
  • a secondary battery using the negative electrode active material of the present invention has a high capacity and good initial charge/discharge characteristics.
  • the stability of the negative electrode active material particles in the atmosphere can be improved, and the negative electrode active material of the non-aqueous electrolyte secondary battery can be improved.
  • a negative electrode active material having good initial charge/discharge characteristics can be produced.
  • FIG. 1 is an example of an X-ray diffraction spectrum using a Cu—K ⁇ ray of a negative electrode active material of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows an example of a structure of the negative electrode for nonaqueous electrolyte secondary batteries containing the negative electrode active material of this invention.
  • 1 is an exploded view showing a configuration example (laminate film type) of a lithium secondary battery containing the negative electrode active material of the present invention.
  • one method of increasing the battery capacity of lithium-ion secondary batteries is to use a negative electrode that uses a silicon material as the main material.
  • a silicon material doped with Li to improve initial charge/discharge characteristics
  • the present inventors have made intensive studies to obtain a negative electrode active material that has high stability in the atmosphere and, when used in a secondary battery, has a high battery capacity and good initial efficiency. After repeated efforts, the inventors have arrived at the present invention.
  • the negative electrode active material for non-aqueous electrolyte secondary batteries of the present invention includes negative electrode active material particles.
  • the negative electrode active material particles contain silicon compound particles containing a silicon compound (SiO x : 0.8 ⁇ x ⁇ 1.2).
  • the silicon compound particles contain Li 2 SiO 3 as lithium silicate.
  • the negative electrode active material of the present invention contains negative electrode active material particles containing silicon compound particles, the battery capacity can be improved.
  • the silicon compound particles contain lithium silicate as described above, the irreversible capacity generated during charging can be reduced. As a result, the battery capacity, cycle characteristics, and initial charge/discharge efficiency of the secondary battery can be improved.
  • the negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention has a Li 2 SiO 3
  • the half width of the peak due to the (020) plane is 1.1° or more and 1.5° or less.
  • FIG. 1 shows an example of an X-ray diffraction spectrum of the non-aqueous electrolyte secondary battery negative electrode active material of the present invention measured using Cu—K ⁇ rays.
  • Each definition based on the X-ray diffraction spectrum in the negative electrode active material of the present invention specifically has the following technical significance.
  • the half width of the peak attributed to the (020) plane of Li 2 SiO 3 is 1.1° or more and 1.5° or less means that lithium silicate having appropriate crystallinity is formed in the silicon-based active material particles. indicates that If the half-value width of the peak due to the (020) plane of Li 2 SiO 3 is less than 1.1°, the crystal growth progresses too much, resulting in a decrease in lithium diffusibility during battery charging and discharging. decreases. When the half-value width of the peak attributed to the (020) plane of Li 2 SiO 3 is larger than 1.5°, the crystallinity is low, and moisture and carbonic acid in the air are likely to be absorbed. Therefore, the stability in the atmosphere deteriorates.
  • the peak intensity Ia is obtained as the intensity of the peak resulting from the (020) crystal plane of Li 2 SiO 3 .
  • the peak intensity Ib is obtained as an intensity obtained by superimposing the broad peak of SiOx and the peak due to the (111) crystal plane of Li 2 SiO 3 . Therefore, when the amount of lithium doping is large, the SiOx broad peak intensity is lowered, so Ib/Ia is small. Further, when the crystal growth of lithium silicate progresses, the contribution of the SiOx broad peak to the Ib peak becomes smaller, so Ib/Ia becomes smaller. Based on these relationships, the range of Ib/Ia can be defined as a parameter that defines the appropriate range of doping amount and crystallinity.
  • Satisfying the above formula (2) indicates that the type and ratio of lithium silicate contained in the silicon-based active material particles are appropriate.
  • Li 2 Si 2 O 5 is a compound formed in a range in which the amount of doped lithium is small relative to the silicon-based active material particles. Therefore, in the case of 0.5 ⁇ I(24.8°)/Ia, the amount of lithium in all or part of the silicon-based active material particles is small, so the effect of improving the initial efficiency is limited.
  • a sufficient initial efficiency improvement effect can be obtained.
  • the ratio of crystalline Si is small. Formation of lithium silicide during Li doping can be suppressed due to the small ratio of crystalline Si. Lithium silicide is more easily eluted into water than lithium silicate and is more likely to absorb moisture in the air. Therefore, when the ratio of crystalline Si is large, lithium silicide is formed during Li doping, and moisture in the atmosphere is absorbed, resulting in deterioration of stability in the atmosphere. When the above formula (3) is satisfied, the negative electrode active material particles can be stable in the atmosphere because the ratio of crystalline Si is small.
  • Point A is the point where the intensity is minimum in the range of 10° ⁇ 2 ⁇ 15°.
  • Point B is the point where the intensity is minimum in the range of 38° ⁇ 2 ⁇ 45°.
  • the silicon-based active material particles are uniformly doped with a sufficient amount of lithium. Therefore, higher initial efficiency can be obtained.
  • a smaller crystalline Si ratio can suppress the formation of lithium silicide during Li doping and further enhance the stability in the atmosphere.
  • the spectrum obtained by the X-ray diffraction preferably satisfies 1.2 ⁇ Ib/Ia ⁇ 1.3. Within the above range, it is possible to achieve both improved initial efficiency and stability in the atmosphere.
  • the half width of the peak due to the (020) plane of Li 2 SiO 3 is 1.2° or more and 1.3° or less. Within the above range, it is possible to achieve both improved initial efficiency and stability in the atmosphere.
  • the particle surface does not contain LiOH.H 2 O, the absorption of moisture and carbonic acid in the air is further suppressed, thereby further enhancing the stability in the air.
  • an appropriate amount of lithium carbonate can be contained on the surface of the negative electrode active material particles. Therefore, moisture absorption from the atmosphere can be suppressed, and stability in the atmosphere can be further enhanced.
  • the amount of silicon in water after dispersing 10% by mass of the negative electrode active material particles in water at 25°C for 1 hour is 50 ppm by mass or less.
  • the silicon elution amount in water is small, the silicon compound is less likely to appear in the air.
  • the amount of exposed silicon compound is small, the amount of the silicon compound having hygroscopicity and binding properties is small, so aggregation of the negative electrode active material particles can be suppressed.
  • the amount of silicon in water after being dispersed in water at 25° C. for 1 hour at a rate of 10% by mass is 50 ppm by mass or less, the appearance of silicon compounds in the air is suppressed, and good stability in the atmosphere is obtained. is obtained.
  • the BET specific surface area of the negative electrode active material particles is 1 m 2 /g or more and 3 m 2 /g or less. If the BET specific surface area is 1 m 2 /g or more, lithium can be sufficiently transferred on the surface of the negative electrode active material particles when a battery is produced. Therefore, good initial efficiency can be obtained. If the BET specific surface area is 3 m 2 /g or less, the contact area with air during storage in the atmosphere can be suppressed, and good stability in the atmosphere can be obtained.
  • the median diameter (D50) of the negative electrode active material particles is 4.0 ⁇ m or more and 15 ⁇ m or less, and the ratio (D90/D10) of the cumulative 90% diameter (D90) to the cumulative 10% diameter (D10) is 3 or less. is preferably When the negative electrode active material particles are small, the amount of lithium compound on the particle surface increases. On the other hand, when the negative electrode active material particles are large, it is difficult to diffuse lithium inside the particles, and the uniformity of lithium in the negative electrode active material particles decreases. If the median diameter is within the above range, the negative electrode active material particles can be uniformly doped with lithium. Therefore, the stability in the atmosphere can be further enhanced.
  • the particle size distribution is defined by volume-based particle size distribution measured using a laser scattering particle size distribution analyzer.
  • the negative electrode active material particles contain a carbon material in the surface layer portion, and that the average thickness of the carbon material is 10 nm or more and 100 nm or less.
  • the average thickness of the carbon material is 10 nm or more and 100 nm or less.
  • the average thickness of this carbon material can be calculated, for example, by the following procedure.
  • the negative electrode active material particles are observed at an arbitrary magnification with a TEM (transmission electron microscope).
  • This magnification is preferably a magnification that allows the thickness of the carbon material to be visually confirmed so that the thickness can be measured.
  • the thickness of the carbon material is measured at 15 arbitrary points. In this case, it is preferable to set the measurement positions widely and randomly without concentrating on a specific place as much as possible.
  • the average value of the thickness of the carbon material at the above 15 points is calculated.
  • the coverage of the carbon material is not particularly limited, it is desirable that it be as high as possible. If the coverage is 30% or more, the electronic conductivity is further improved, which is preferable.
  • the method of covering the carbon material is not particularly limited, but the sugar carbonization method and the thermal decomposition method of hydrocarbon gas are preferred. This is because the coverage can be improved.
  • the negative electrode active material particles contain a phosphate in the surface layer portion.
  • a phosphate in the surface layer portion of the negative electrode active material particles it is possible to form a salt with lithium that has diffused to the surface during storage in the air, trap lithium, and suppress diffusion of lithium to the surface. Therefore, the stability in the atmosphere can be further enhanced.
  • the phosphate is not particularly limited, it is preferable to use one or more of lithium phosphate, magnesium phosphate, and aluminum phosphate.
  • the above phosphate can suppress the diffusion of lithium to the surface while suppressing the absorption of moisture and carbonic acid in the atmosphere.
  • the method for including the phosphate on the surface is not particularly limited, but dry mixing such as stirring, tumbling, and shearing may be used, or the phosphate dispersed in the solution may be used as the negative electrode. Although wet mixing in which the active material particles are sprayed may be used, it is preferable to use shear mixing. Shear mixing allows the phosphate to adhere or coat the surface layer uniformly.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of a negative electrode for a non-aqueous electrolyte secondary battery containing the negative electrode active material of the present invention.
  • the negative electrode 10 has a structure in which a negative electrode active material layer 12 is provided on a negative electrode current collector 11 .
  • the negative electrode active material layer 12 may be provided on both sides of the negative electrode current collector 11 or only on one side. Furthermore, the negative electrode current collector 11 may be omitted as long as the negative electrode active material of the present invention is used.
  • the negative electrode current collector 11 is made of an excellent conductive material and has high mechanical strength.
  • Examples of conductive materials that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).
  • the negative electrode current collector 11 preferably contains carbon (C) and sulfur (S) in addition to the main elements. This is because the physical strength of the negative electrode current collector is improved. This is because, in particular, in the case of having an active material layer that expands during charging, if the current collector contains the above element, it has the effect of suppressing deformation of the electrode including the current collector.
  • the contents of the above-mentioned contained elements are not particularly limited, they are preferably 100 ppm by mass or less. This is because a higher deformation suppressing effect can be obtained. Cycle characteristics can be further improved by such a deformation suppression effect.
  • the surface of the negative electrode current collector 11 may or may not be roughened.
  • the roughened negative electrode current collector is, for example, an electrolytically treated, embossed, or chemically etched metal foil.
  • the non-roughened negative electrode current collector is, for example, a rolled metal foil.
  • the negative electrode active material layer 12 contains the negative electrode active material of the present invention, and from the viewpoint of battery design, may further contain other materials such as a negative electrode binder and a conductive aid.
  • the negative electrode active material layer 12 may contain a mixed negative electrode active material containing the negative electrode active material of the present invention and a carbon-based active material.
  • a mixed negative electrode active material containing the negative electrode active material of the present invention and a carbon-based active material.
  • carbon-based active material By including the carbon-based active material, the electrical resistance of the negative electrode active material layer is lowered, and the expansion stress associated with charging can be alleviated.
  • carbon-based active materials include pyrolytic carbons, cokes, vitreous carbon fibers, baked organic polymer compounds, and carbon blacks.
  • the ratio of the mass of the silicon-based active material to the total mass of the silicon-based negative electrode active material and the carbon-based active material is 6% by mass or more. If it is 6% by mass or more, the effect of improving the battery capacity by using the silicon-based negative electrode active material can be reliably obtained.
  • the negative electrode active material of the present invention contains silicon compound particles, and the silicon compound particles are a silicon oxide material containing a silicon compound (SiO x : 0.8 ⁇ x ⁇ 1.2). It is preferable that x is close to 1 in the composition. This is because high cycle characteristics can be obtained. Note that the composition of the silicon compound in the present invention does not necessarily mean 100% purity, and may contain trace amounts of impurity elements.
  • the silicon compound particles contain Li 2 SiO 3 .
  • the SiO 2 component part that becomes unstable when lithium is inserted and detached during charging and discharging of the battery is previously reformed into another lithium silicate, so it can be used during charging.
  • the generated irreversible capacity can be reduced.
  • the negative electrode binder contained in the negative electrode active material layer for example, one or more of polymer materials, synthetic rubbers, and the like can be used.
  • polymeric materials include polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, and carboxymethylcellulose.
  • Synthetic rubbers include, for example, styrene-butadiene-based rubber, fluorine-based rubber, and ethylene propylene diene.
  • the negative electrode conductive aid for example, one or more of carbon materials such as carbon black, acetylene black, graphite, ketjen black, carbon nanotubes, and carbon nanofibers can be used.
  • the negative electrode active material layer is formed, for example, by a coating method.
  • the coating method involves dispersing the negative electrode active material, which is a mixture of the negative electrode active material particles and the binder described above, and, if necessary, a conductive aid and carbon-based active material particles, in an organic solvent, water, or the like, and forming the negative electrode. This is a method of coating on a current collector or the like.
  • a negative electrode active material and a negative electrode can be manufactured by the following procedures, for example. First, the manufacturing method of the negative electrode active material used for the negative electrode will be described.
  • silicon compound particles containing a silicon compound (SiO x : 0.8 ⁇ x ⁇ 1.2) are produced.
  • Li is inserted into the silicon compound particles to contain Li 2 SiO 3 .
  • negative electrode active material particles are produced. From these negative electrode active material particles, those satisfying the following requirements are selected. That is, when the negative electrode active material particles are measured by X-ray diffraction using Cu—K ⁇ rays, the half width of the peak resulting from the (020) plane of Li 2 SiO 3 obtained by the X-ray diffraction is 1.1.
  • the spectrum obtained by the X-ray diffraction has the intensity Ia of the peak due to the (020) plane of Li 2 SiO 3 and the peak due to the (111) plane of Li 2 SiO 3
  • the selected negative electrode active material particles are used to produce a negative electrode active material for a non-aqueous electrolyte secondary battery. 1.1 ⁇ Ib/Ia ⁇ 1.5 (1) I (24.8°)/Ia ⁇ 0.5 (2) I (28.4°)/Ia ⁇ 1.0 (3)
  • the negative electrode active material can be produced as follows. First, a raw material that generates silicon oxide gas is heated in the presence of an inert gas under reduced pressure in a temperature range of 900° C. to 1600° C. to generate silicon oxide gas. Considering the presence of oxygen on the surface of the metallic silicon powder and a trace amount of oxygen in the reactor, the mixing molar ratio is preferably in the range of 0.8 ⁇ metallic silicon powder/silicon dioxide powder ⁇ 1.3.
  • the generated silicon oxide gas is solidified and deposited on the adsorption plate.
  • the silicon oxide deposit is taken out while the temperature in the reactor is lowered to 100° C. or less, and pulverized by using a ball mill, a jet mill, or the like, into a powder.
  • the powder thus obtained may be classified.
  • the particle size distribution and specific surface area of the silicon compound particles can be adjusted.
  • Silicon compound particles can be produced in the manner described above.
  • the Si crystallites in the silicon compound particles can be adjusted by changing the vaporization temperature or by heat treatment after production.
  • a carbon material layer may be formed on the surface layer of the silicon compound particles.
  • Pyrolytic CVD is desirable as the method for producing the carbon material layer. A method for producing a carbon material layer by pyrolytic CVD will be described.
  • silicon compound particles are set in a furnace.
  • a hydrocarbon gas is introduced into the furnace to raise the temperature inside the furnace.
  • the decomposition temperature is not particularly limited, it is preferably 1200° C. or lower, more preferably 850° C. or lower. Unintended disproportionation and crystal growth of the negative electrode active material particles can be suppressed by controlling the decomposition temperature.
  • a carbon layer is formed on the surfaces of the silicon compound particles.
  • the hydrocarbon gas used as the raw material of the carbon material is not particularly limited, but it is desirable that n ⁇ 4 in the C n H m composition. If n ⁇ 4, the production cost can be reduced, and the physical properties of the decomposition products can be improved. By controlling the decomposition temperature and decomposition time, it is possible to adjust the thickness of the carbon material in the surface layer portion of the negative electrode active material particles.
  • Li is inserted into the silicon compound particles produced as described above to contain Li 2 SiO 3 .
  • the insertion of Li is preferably performed by an oxidation-reduction method.
  • lithium can be inserted by first immersing the silicon compound particles in a solution A in which lithium is dissolved in an ether solvent.
  • This solution A may further contain a polycyclic aromatic compound or a linear polyphenylene compound.
  • active lithium can be desorbed from the silicon compound particles by immersing the silicon compound particles in a solution B containing a polycyclic aromatic compound or a derivative thereof.
  • a solvent for this solution B for example, an ether solvent, a ketone solvent, an ester solvent, an alcohol solvent, an amine solvent, or a mixed solvent thereof can be used.
  • the silicon compound particles after being immersed in solution B, the silicon compound particles are immersed in solution C containing an alcoholic solvent, a carboxylic acid solvent, water, or a mixed solvent thereof, thereby extracting more active lithium from the silicon compound particles. can be detached.
  • a solution C′ containing a compound having a quinoid structure in the molecule as a solute and an ether solvent, a ketone solvent, an ester solvent, or a mixed solvent thereof as a solvent may be used. good.
  • the immersion of the silicon compound particles in the solutions B, C, and C' may be repeated. By desorbing active lithium after intercalating lithium in this manner, a negative electrode active material with higher water resistance can be obtained.
  • the amount of lithium contained in the silicon active material particles can be adjusted by controlling the amount of lithium inserted and the amount of lithium desorbed.
  • Ether solvents used for solution A include diethyl ether, tert-butyl methyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, or mixed solvents thereof. can be used. Among these, it is particularly preferable to use tetrahydrofuran, dioxane, and 1,2-dimethoxyethane. These solvents are preferably dehydrated and preferably deoxygenated.
  • polycyclic aromatic compound contained in the solution A one or more of naphthalene, anthracene, phenanthrene, naphthacene, pentacene, pyrene, picene, triphenylene, coronene, chrysene, and derivatives thereof can be used.
  • linear polyphenylene compound one or more of biphenyl, terphenyl, and derivatives thereof can be used.
  • polycyclic aromatic compound contained in solution B one or more of naphthalene, anthracene, phenanthrene, naphthacene, pentacene, pyrene, picene, triphenylene, coronene, chrysene, and derivatives thereof can be used.
  • ether-based solvent for solution B diethyl ether, tert-butyl methyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and tetraethylene glycol dimethyl ether can be used. can.
  • Acetone, acetophenone, etc. can be used as the ketone-based solvent.
  • ester solvent methyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and the like can be used.
  • alcoholic solvent methanol, ethanol, propanol, isopropyl alcohol, etc. can be used.
  • amine-based solvent methylamine, ethylamine, ethylenediamine, etc. can be used.
  • the solvent may be mixed in multiple stages, for example, by mixing a ketone solvent and a silicon compound, stirring the mixture, and then adding an alcohol solvent.
  • Methanol, ethanol, propanol, isopropyl alcohol, etc. can be used as alcohol-based solvents for solution C.
  • carboxylic acid solvent formic acid, acetic acid, oxalic acid, etc. can be used.
  • an aqueous solution containing a solute such as ammonia water, lithium acetate water, lithium carbonate water, lithium hydroxide water, etc. may be used in addition to pure water.
  • a mixed solvent or the like in which two or more of the above alcohol-based solvents, carboxylic acid-based solvents, and water are combined may also be used.
  • a heat treatment may be performed after the modification by the oxidation-reduction method.
  • the lithium silicate in the lithium-doped silicon-based active material particles can be crystallized.
  • the heat treatment machine is not particularly limited, it is preferable to use a rotary kiln. Uniform heating can be achieved by using a rotary kiln.
  • the heat treatment temperature is not particularly limited, but is preferably 800° C. or lower, more preferably 650° C. or lower.
  • the heat treatment atmosphere is not particularly limited, but is preferably an inert gas atmosphere such as argon gas or nitrogen gas. Oxidation and carbonic acid absorption during heat treatment can be suppressed.
  • the type and crystallinity of lithium silicate, the degree of disproportionation and crystallinity of Si, and the amount of LiOH.H 2 O and lithium carbonate present can be controlled.
  • the inside of the heat treatment machine is preferably in a ventilated state rather than a closed state. Solvent and solute components remaining on the surface of the silicon-based active material particles after the oxidation-reduction method can be removed. By controlling the air flow rate, the solvent or solute component remaining on the surface of the silicon-based active material particles can be reacted to adhere or coat the surface as a carbon component. This makes it possible to adjust the surface area of the silicon-based active material particles and the thickness of the carbon material in the surface layer portion.
  • Li may be inserted into the silicon compound particles by a heat doping method.
  • silicon compound particles can be mixed with LiH powder or Li powder and heated in a non-oxidizing atmosphere.
  • a non-oxidizing atmosphere for example, an Ar atmosphere can be used. More specifically, first, LiH powder or Li powder and silicon oxide powder are sufficiently mixed in an Ar atmosphere, sealed, and stirred together with the sealed container to homogenize. After that, it is reformed by heating in the range of 700°C to 750°C. Also, in this case, in order to desorb part of the active Li from the silicon compound and stabilize the slurry more, the powder after heating is sufficiently cooled and then washed with alcohol, alkaline water, weak acid or pure water. good too.
  • the negative electrode active material particles (silicon compound particles) produced as described above, those that satisfy the above conditions when the negative electrode active material particles are measured by X-ray diffraction using Cu-K ⁇ rays are selected.
  • the production conditions of the negative electrode active material particles for satisfying each condition can be set by conducting an experiment.
  • ⁇ Aqueous negative electrode slurry composition If necessary, other materials such as a negative electrode binder and a conductive aid are mixed with the negative electrode active material produced and selected as described above, and then an organic solvent or water is added to form a water-based negative electrode slurry composition. can get things.
  • the aqueous negative electrode slurry composition is applied to the surface of the negative electrode current collector and dried to form a negative electrode active material layer. At this time, heat pressing or the like may be performed as necessary.
  • a negative electrode can be produced in the manner described above.
  • Lithium ion secondary battery containing the negative electrode active material of the present invention
  • a lithium ion secondary battery containing the negative electrode active material of the present invention will be described.
  • a laminated film type lithium ion secondary battery is taken as an example.
  • This wound body has a separator between the positive electrode and the negative electrode and is wound.
  • a laminate is housed with a separator between the positive electrode and the negative electrode.
  • a positive electrode lead 22 is attached to the positive electrode and a negative electrode lead 23 is attached to the negative electrode.
  • the outermost periphery of the electrode body is protected by a protective tape.
  • the positive and negative leads are led out in one direction from the interior of the exterior member 25 toward the exterior.
  • the positive lead 22 is made of a conductive material such as aluminum
  • the negative lead 23 is made of a conductive material such as nickel or copper.
  • the exterior member 25 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order.
  • the outer peripheral edges of the fusion layer are fused together or adhered to each other with an adhesive or the like.
  • the fused portion is, for example, a film such as polyethylene or polypropylene, and the metal portion is aluminum foil or the like.
  • the protective layer is, for example, nylon or the like.
  • An adhesion film 24 is inserted between the exterior member 25 and the positive and negative leads to prevent outside air from entering.
  • This material is, for example, polyethylene, polypropylene, polyolefin resin.
  • the positive electrode has, for example, a positive electrode active material layer on both sides or one side of the positive electrode current collector, like the negative electrode 10 in FIG.
  • the positive electrode current collector is made of a conductive material such as aluminum, for example.
  • the positive electrode active material layer contains one or more positive electrode materials capable of intercalating and deintercalating lithium ions, and may contain other materials such as binders, conductive aids, and dispersants depending on the design. You can stay. In this case, the details of the binder and the conductive aid are the same as those of the negative electrode binder and the negative electrode conductive aid already described, for example.
  • a lithium-containing compound is desirable as the positive electrode material.
  • the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, or a phosphate compound containing lithium and a transition metal element.
  • compounds containing at least one of nickel, iron, manganese and cobalt are preferred.
  • These chemical formulas are represented by, for example, Li x M1O 2 or Li y M2PO 4 .
  • M1 and M2 represent at least one transition metal element.
  • the values of x and y vary depending on the state of charge and discharge of the battery, they are generally represented by 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ y ⁇ 1.10.
  • Examples of composite oxides containing lithium and a transition metal element include lithium-cobalt composite oxides (Li x CoO 2 ) and lithium-nickel composite oxides (Li x NiO 2 ).
  • Examples of the phosphate compound containing lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) and a lithium iron manganese phosphate compound (LiFe 1-u Mn u PO 4 (0 ⁇ u ⁇ 1)). is mentioned. This is because the use of these positive electrode materials can provide high battery capacity and excellent cycle characteristics.
  • the negative electrode has the same configuration as the negative electrode 10 for a lithium ion secondary battery shown in FIG.
  • the negative electrode preferably has a larger negative electrode charge capacity than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material. This is because deposition of lithium metal on the negative electrode can be suppressed.
  • the positive electrode active material layer is provided on part of both surfaces of the positive electrode current collector, and the negative electrode active material layer is also provided on part of both surfaces of the negative electrode current collector.
  • the negative electrode active material layer provided on the negative electrode current collector is provided with a region where the facing positive electrode active material layer does not exist. This is for the purpose of stably designing a battery.
  • the non-facing region that is, the region where the negative electrode active material layer and the positive electrode active material layer do not face each other, is hardly affected by charging and discharging. Therefore, the state of the negative electrode active material layer is maintained as it is immediately after formation. As a result, the composition of the negative electrode active material can be accurately investigated with good reproducibility regardless of the presence or absence of charge/discharge.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass through while preventing current short circuit due to contact between the two electrodes.
  • This separator is formed of a porous film made of synthetic resin or ceramic, for example, and may have a laminated structure in which two or more kinds of porous films are laminated.
  • synthetic resins include polytetrafluoroethylene, polypropylene, and polyethylene.
  • Electrode At least part of the active material layer or the separator is impregnated with a liquid electrolyte (electrolytic solution).
  • electrolytic solution has an electrolytic salt dissolved in a solvent and may contain other materials such as additives.
  • Non-aqueous solvents include, for example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, 1,2-dimethoxyethane, and tetrahydrofuran.
  • ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate methylpropyl carbonate, 1,2-dimethoxyethane, and tetrahydrofuran.
  • the solvent contains at least one of a halogenated chain carbonate or a halogenated cyclic carbonate.
  • a halogenated chain carbonate is a chain carbonate having halogen as a constituent element (at least one hydrogen is substituted with halogen).
  • a halogenated cyclic carbonate is a cyclic carbonate having halogen as a constituent element (that is, at least one hydrogen is substituted with halogen).
  • halogen is not particularly limited, but fluorine is preferred. This is because it forms a better film than other halogens. Moreover, the larger the number of halogens, the better. This is because the coating obtained is more stable and the decomposition reaction of the electrolyte is reduced.
  • halogenated chain carbonates include fluoromethylmethyl carbonate and difluoromethylmethyl carbonate.
  • Halogenated cyclic carbonates include 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.
  • an unsaturated carbon-bonded cyclic carbonate As a solvent additive, it is preferable to contain an unsaturated carbon-bonded cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolytic solution can be suppressed.
  • unsaturated carbon-bonded cyclic ester carbonates include vinylene carbonate and vinylethylene carbonate.
  • sultone cyclic sulfonate
  • solvent additive examples include propane sultone and propene sultone.
  • the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved.
  • Acid anhydrides include, for example, propanedisulfonic anhydride.
  • the electrolyte salt can include, for example, any one or more of light metal salts such as lithium salts.
  • lithium salts include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).
  • the content of the electrolyte salt is preferably 0.5 mol/kg or more and 2.5 mol/kg or less with respect to the solvent. This is because high ionic conductivity can be obtained.
  • a negative electrode can be produced using the negative electrode active material produced by the method for producing a negative electrode active material of the present invention, and a lithium ion secondary battery can be produced using the produced negative electrode.
  • a positive electrode is produced using the positive electrode material described above.
  • a positive electrode active material and, if necessary, a binder, a conductive aid, and the like are mixed to form a positive electrode mixture, which is then dispersed in an organic solvent to obtain a positive electrode mixture slurry.
  • the mixture slurry is applied to the positive electrode current collector with a coating device such as a die coater having a knife roll or a die head, and dried with hot air to obtain a positive electrode active material layer.
  • the positive electrode active material layer is compression-molded using a roll press machine or the like. At this time, heating may be performed, and heating or compression may be repeated multiple times.
  • a negative electrode is manufactured by forming a negative electrode active material layer on the negative electrode current collector using the same work procedure as that for manufacturing the negative electrode 10 for a lithium ion secondary battery described above.
  • each active material layer is formed on both sides of the positive electrode and negative electrode current collectors. At this time, the length of the active material applied to both surfaces of both electrodes may be shifted (see FIG. 2).
  • the cathode lead 22 is attached to the cathode current collector, and the anode lead 23 is attached to the anode current collector.
  • the positive electrode and the negative electrode are laminated or wound with a separator interposed therebetween to prepare the wound electrode body 21, and a protective tape is adhered to the outermost periphery thereof.
  • the wound body is molded so as to have a flat shape.
  • the insulating portions of the exterior members are bonded together by a heat-sealing method, and the wound electrode body is left open only in one direction. to be enclosed.
  • Adhesive films are inserted between the positive electrode lead and the negative electrode lead and the exterior member. A predetermined amount of the electrolytic solution prepared above is introduced from the open portion, and vacuum impregnation is performed. After impregnation, the release portion is adhered by a vacuum heat-sealing method. As described above, the laminated film type lithium ion secondary battery 20 can be manufactured.
  • Example 1-1 The laminate film type lithium ion secondary battery 20 shown in FIG. 3 was produced by the following procedure.
  • the positive electrode active material contains 95% by mass of LiNi 0.7 Co 0.25 Al 0.05 O which is a lithium-nickel-cobalt composite oxide, 2.5% by mass of a positive electrode conductive aid, and a positive electrode binder (polyvinylidene fluoride : PVDF) at 2.5% by mass to prepare a positive electrode mixture.
  • the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone: NMP) to form a paste-like slurry.
  • the slurry was applied to both surfaces of the positive electrode current collector with a coating device having a die head, and dried with a hot air drying device. At this time, the positive electrode current collector used had a thickness of 15 ⁇ m.
  • compression molding was performed using a roll press.
  • a negative electrode active material was produced as follows. A raw material obtained by mixing metal silicon and silicon dioxide was introduced into a reactor, vaporized in a vacuum atmosphere of 10 Pa, deposited on an adsorption plate, cooled sufficiently, and then the deposit was taken out and pulverized with a ball mill. . The value of x in SiO x of the silicon compound particles thus obtained was 0.8. Subsequently, the particle size of the silicon compound particles was adjusted by classification. After that, by performing thermal decomposition CVD using propylene gas, the surface of the silicon compound particles was coated with a carbon material. The Si crystallinity of the silicon compound particles was adjusted by the pyrolytic CVD temperature. Also, the thickness of the carbon material was adjusted by the thermal decomposition CVD temperature and time.
  • the silicon compound particles were reformed by inserting lithium using an oxidation-reduction method.
  • the amount of lithium contained in the silicon active material particles was adjusted by controlling the amount of lithium inserted and the amount of lithium desorbed.
  • the modified silicon-based active material particles were heat-treated.
  • a rotary kiln was used as a heat treatment machine, and heat treatment was performed at a temperature of 800° C. or less while passing argon gas.
  • the type and crystallinity of lithium silicate, the degree of disproportionation and crystallinity of Si, and the amount of LiOH.H 2 O and lithium carbonate present were adjusted.
  • the amount of silicon in water after dispersing 10% by mass of the negative electrode active material particles in water at 25° C. for 1 hour was measured by the following method. First, 10 mass % of the negative electrode active material particles were dispersed in pure water at 25° C. and stirred for 1 hour. Thereafter, the dispersion liquid was filtered, and the resulting filtrate was collected to measure the amount of Si in water by ICP-OES. As a result, the amount of Si was 10 mass ppm.
  • the particle size distribution and BET specific surface area of the silicon-based active material particles were measured.
  • the BET specific surface area was 1 m 2 /g.
  • this negative electrode active material was blended with the carbon-based active material so that the mass ratio of the silicon-based active material particles and the carbon-based active material particles was 2:8 to prepare a mixed negative electrode active material.
  • the carbon-based active material a mixture of natural graphite coated with a pitch layer and artificial graphite at a mass ratio of 5:5 was used.
  • the median diameter of the carbon-based active material was 20 ⁇ m.
  • the mixed negative electrode active material conductive aid 1 (carbon nanotube, CNT), conductive aid 2 (carbon fine particles having a median diameter of about 50 nm), styrene-butadiene rubber (styrene-butadiene copolymer, hereinafter referred to as SBR), Carboxymethyl cellulose (hereinafter referred to as CMC) was mixed at a dry mass ratio of 92.5:1:1:2.5:3, and then diluted with pure water to prepare an aqueous negative electrode slurry.
  • SBR and CMC are negative electrode binders (negative electrode binders).
  • An electrolytic copper foil having a thickness of 15 ⁇ m was used as the negative electrode current collector.
  • This electrolytic copper foil contained carbon and sulfur at a concentration of 70 mass ppm each.
  • the negative electrode mixture slurry was applied to the negative electrode current collector and dried at 100° C. for 1 hour in a vacuum atmosphere. After drying, the deposition amount of the negative electrode active material layer per unit area (also referred to as area density) on one side of the negative electrode was 5 mg/cm 2 .
  • the electrolyte salt lithium hexafluorophosphate : LiPF 6
  • the secondary battery was assembled as follows. First, an aluminum lead was ultrasonically welded to one end of the positive electrode current collector, and a nickel lead was welded to one end of the negative electrode current collector. Subsequently, a positive electrode, a separator, a negative electrode, and a separator were laminated in this order and wound in the longitudinal direction to obtain a wound electrode assembly. The winding end portion was fixed with a PET protective tape. As the separator, a laminated film (thickness: 12 ⁇ m) sandwiched between films containing porous polypropylene as a main component and films containing porous polyethylene as a main component was used.
  • the outer peripheral edges except for one side were heat-sealed to each other, and the electrode body was housed inside.
  • An aluminum laminate film obtained by laminating a nylon film, an aluminum foil, and a polypropylene film was used as the exterior member.
  • the prepared electrolytic solution was injected from the opening, impregnated in a vacuum atmosphere, and then heat-sealed and sealed.
  • initial efficiency (initial discharge capacity/initial charge capacity) ⁇ 100.
  • the stability in the atmosphere was evaluated by the following method. 10 g of the produced negative electrode active material particles were placed in a constant temperature bath at 40° C. and 75% RH and stored for 24 hours.
  • the surface alkali content was measured according to the following procedure. First, 1 g of negative electrode active material particles was dispersed in 50 g of water at 25° C. and stirred for 10 minutes. Thereafter, the filtrate obtained by filtering the dispersion was subjected to neutralization titration, and the weight of lithium ions in the filtrate was determined from the amount of titration required to reach pH 5. The amount of surface alkali was calculated by dividing the obtained lithium ion weight by the amount of lithium in the negative electrode active material.
  • the aggregation state was evaluated by comparing the sieve weight after suction sieving before and after storage in a constant temperature bath.
  • Suction sieving was performed according to the following procedure. First, 100 g of negative electrode active material particles were prepared and sieved for 2 minutes with a suction sieve having an opening of 45 ⁇ m. At this time, the suction pressure was set to 3 kPa. After sieving was completed, the weight on the sieve was weighed. After that, the weight on the sieve before and after storage in the constant temperature bath was compared. When the sieve weight was 0.02 g or more, it was determined that there was cohesion, and when it was less than 0.02 g, it was determined that there was no cohesion.
  • Example 1-1 A secondary battery was manufactured in the same manner as in Example 1-1, except that the amount of oxygen in the bulk of the silicon compound was adjusted. In this case, the amount of oxygen was adjusted by changing the ratio of metallic silicon and silicon dioxide in the raw material of the silicon compound and the heating temperature.
  • Table 1 shows the values of x of silicon compounds represented by SiO 2 x in Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2.
  • the silicon-based active material particles of Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2 had the following properties.
  • Li 2 SiO 3 was contained inside the silicon compound particles in the negative electrode active material particles.
  • the Li 2 Si 2 O 5 peak and the LiOH ⁇ H 2 O peak were not confirmed.
  • the average thickness of the carbon material coated on the surface was 50 nm.
  • the median diameter of the negative electrode active material particles was 7 ⁇ m.
  • the BET specific surface area of the negative electrode active material particles was 1 m 2 /g.
  • Table 1 shows the evaluation results of Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2.
  • Example 2-1 A secondary battery was produced under the same conditions as in Example 1-2, except that the half width of Li 2 SiO 3 contained inside the silicon compound particles was changed as shown in Table 2. Stability and initial efficiency of the secondary battery were evaluated.
  • Example 2-1 A secondary battery was produced under the same conditions as in Example 1-2, except that lithium was not inserted into the silicon compound particles, and the stability of the negative electrode active material in the atmosphere and the initial efficiency of the secondary battery were evaluated. did.
  • Table 2 shows the results of Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-3.
  • Examples 3-1 to 3-2 Comparative Examples 3-1 to 3-2
  • Ib/Ia was adjusted as shown in Table 3, and the stability of the negative electrode active material in the atmosphere and the initial efficiency of the secondary battery were evaluated. evaluated.
  • Table 3 shows the results of Examples 3-1 and 3-2 and Comparative Examples 3-1 and 3-2.
  • Example 4-1 to 4-2, Comparative Example 4-1 A secondary battery was produced under the same conditions as in Example 1-2, except that the value of I(24.8°)/Ia and the presence or absence of the peak of Li 2 Si 2 O 5 were changed as shown in Table 4. The stability of the active material in air and the initial efficiency of the secondary battery were evaluated.
  • Example 5-1 to 5-2 Comparative Example 5-1
  • a secondary battery was produced under the same conditions as in Example 1-2, except that the value of I (28.4 °) / Ia and the presence or absence of the Si peak were changed as shown in Table 5. and the initial efficiency of the secondary battery were evaluated.
  • Example 6-1 to 6-3 A secondary battery was produced under the same conditions as in Example 1-2, except that the value of I(29.9°)/Ia and the presence or absence of the LiOH.H 2 O peak were changed as shown in Table 6. The atmospheric stability of the material and the first-time efficiency of the secondary battery were evaluated.
  • Example 7-1 to 7-2 A secondary battery was produced under the same conditions as in Example 1-2, except that the value of I (31.7 °) / Ia was changed as shown in Table 7, and the stability of the negative electrode active material in the atmosphere, and the initial efficiency of the secondary battery were evaluated.
  • Example 8-1 Secondary battery under the same conditions as in Example 1-2 except that the amount of silicon in water after dispersing 10% by mass of the negative electrode active material particles in water at 25 ° C. for 1 hour as shown in Table 8 was changed. were produced, and the stability of the negative electrode active material in the atmosphere and the initial efficiency of the secondary battery were evaluated.
  • Example 9-1 to 9-3 A secondary battery was produced under the same conditions as in Example 1-2, except that the BET specific surface area of the silicon compound particles was changed as shown in Table 9, and the stability of the negative electrode active material in the atmosphere and the secondary battery was evaluated for the first-time efficiency of
  • Example 9-1 which had a small BET specific surface area of less than 1, the initial efficiency was slightly lowered.
  • Example 9-3 with a BET specific surface area greater than 3 m 2 /g, a weight increase was observed after storage for 24 hours.
  • Example 10-1 to 10-6 A secondary battery was produced under the same conditions as in Example 1-2, except that the median diameter and D90/D10 of the silicon-based active material particles were adjusted. Initial efficiency was evaluated.
  • Example 10-1 with a median diameter of less than 4.0 ⁇ m and Example 10-4 with a median diameter of more than 15 ⁇ m, a slight decrease in initial efficiency was observed after storage for 24 hours.
  • Example 10-6 in which D90/D10 is greater than 3, a slight decrease in initial efficiency was observed after storage for 24 hours.
  • Example 11-1 A secondary battery was produced under the same conditions as in Example 1-2, except that the surface of the silicon-based active material particles was not coated with a carbon material, and the initial efficiency and slurry stability were evaluated.
  • Examples 11-2 to 11-4) A secondary battery was produced under the same conditions as in Example 1-2, except that the average thickness of the carbon material coated on the surface of the silicon-based active material particles was changed as shown in Table 11. and the initial efficiency of the secondary battery were evaluated. The average thickness of the carbon material was adjusted by changing the CVD conditions.
  • Example 11-1 which did not contain a carbon material on the surface, a slight decrease in initial efficiency was observed after storage for 24 hours.
  • Example 11-4 in which the thickness of the carbon material was greater than 100 nm, the initial efficiency before storage was slightly low.
  • Example 12-1 to 12-3 A secondary battery was produced under the same conditions as in Example 1-2, except that a phosphate was included on the surface of the silicon-based active material particles, and the stability of the negative electrode active material in the atmosphere and the performance of the secondary battery were evaluated. Initial efficiency was evaluated. Phosphate was blended at a rate of 1% by weight with respect to the negative electrode active material particles, and adhered to the surface of the negative electrode active material particles by shear mixing.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effects is the present invention. is included in the technical scope of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、負極活物質粒子を含む非水電解質二次電池用負極活物質であって、前記負極活物質粒子は、Li2SiO3を含有するケイ素化合物粒子を含有し、X線回折により測定したときに、Li2SiO3の(020)面に起因するピークの半値幅が1.1°以上1.5°以下であり、Li2SiO3の(020)面に起因するピークの強度Ia、Li2SiO3の(111)面に起因するピークの強度Ib、2θ=24.8°における強度I(24.8°)、2θ=28.4°における強度I(28.4°)について、下記式(1)~(3)の全てを満たす非水電解質二次電池用負極活物質である。これにより、大気中での安定性が高く、かつ、二次電池の負極活物質として用いた際に、初期充放電特性を向上させることが可能な負極活物質が提供される。 1.1≦Ib/Ia≦1.5 ・・・(1) I(24.8°)/Ia≦0.5 ・・・(2) I(28.4°)/Ia≦1.0 ・・・(3)

Description

非水電解質二次電池用負極活物質及びその製造方法並びに非水電解質二次電池
 本発明は、非水電解質二次電池用負極活物質及びその製造方法並びに非水電解質二次電池に関する。
 近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化、及び、長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
 その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。
 上記のリチウムイオン二次電池は、正極、負極、及び、セパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。
 この負極活物質としては、炭素系活物質が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素系活物質では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
 しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張及び収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
 これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極活物質材料、電極構成についてさまざまな検討がなされている。
 具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性を向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。
 また、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiO(0.8≦x≦1.5、粒径範囲=1μm~50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1~1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。
 また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するRAMANスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば、特許文献11参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。
特開2001-185127号公報 特開2002-042806号公報 特開2006-164954号公報 特開2006-114454号公報 特開2009-070825号公報 特開2008-282819号公報 特開2008-251369号公報 特開2008-177346号公報 特開2007-234255号公報 特開2009-212074号公報 特開2009-205950号公報 特開平06-325765号公報
 上述したように、近年、モバイル端末などに代表される小型の電子機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。
 また、ケイ素材を用いる場合、Liをドープしたケイ素材を用いることで高い初期効率及び容量維持率を得ることができるが、その一方で、Liをドープしたケイ素材は大気中での安定性が低下するという問題があった。特に、高い初期効率を得るためにLiを高い比率でドープしたケイ素材は、安定性の低下が顕著であった。そのようなLiを高い比率でドープしたケイ素材は、低湿度雰囲気や不活性ガス雰囲気での取り扱いが必要であり、工業的に不向きであった。
 本発明は前述のような問題に鑑みてなされたもので、大気中での安定性が高く、かつ、二次電池の負極活物質として用いた際に、初期充放電特性を向上させることが可能な負極活物質、及び、そのような負極活物質を含む非水電解質二次電池を提供することを目的とする。また、大気中での安定性が高く、初期充放電特性を向上させることができる負極活物質の製造方法を提供することも目的とする。
 上記課題を解決するために、本発明は、負極活物質粒子を含む非水電解質二次電池用負極活物質であって、前記負極活物質粒子は、ケイ素化合物(SiO:0.8≦x≦1.2)を含むケイ素化合物粒子を含有し、前記ケイ素化合物粒子は、LiSiOを含有し、前記負極活物質粒子をCu-Kα線を用いたX線回折により測定したときに、該X線回折により得られるLiSiOの(020)面に起因するピークの半値幅が1.1°以上1.5°以下であり、該X線回折により得られるスペクトルが、LiSiOの(020)面に起因するピークの強度Ia、LiSiOの(111)面に起因するピークの強度Ib、2θ=24.8°における強度I(24.8°)、2θ=28.4°における強度I(28.4°)について、下記式(1)~(3)の全てを満たすものであることを特徴とする非水電解質二次電池用負極活物質を提供する。
 1.1≦Ib/Ia≦1.5 ・・・(1)
 I(24.8°)/Ia≦0.5 ・・・(2)
 I(28.4°)/Ia≦1.0 ・・・(3)
 本発明の負極活物質(ケイ素系活物質とも呼称する)は、ケイ素化合物粒子を含む負極活物質粒子(ケイ素系活物質粒子とも呼称する)を含むため、電池容量を向上できる。また、ケイ素化合物粒子がLiSiOを含むことにより、充電時に発生する不可逆容量を低減することができる。これにより、初期効率を向上できる。さらに、X線回折により得られるスペクトルについて、LiSiOの(020)面に起因するピークの半値幅が1.1°以上1.5°以下であり、かつ、式(1)~(3)の全てを満たす。そのため、初期効率の向上と大気中での安定性を両立することができる。
 このとき、前記X線回折により得られるスペクトルが、LiSiに起因する2θ=24.8°付近のピークを有さないことが好ましい。
 負極活物質における結晶性のLiSiの比率が小さいことにより、より高い初期効率を得ることができる。
 また、前記X線回折により得られるスペクトルが、Siの(111)面に起因する2θ=28.4°付近のピークを有さないことが好ましい。
 負極活物質における結晶性のSiの比率が小さいことにより、Liドープ時のリチウムシリサイドの形成を抑えることで、大気保管時におけるリチウムの表面への拡散を抑えることができる。そのため、大気中での安定性をより高めることができる。
 また、前記X線回折により得られるスペクトルが、1.2≦Ib/Ia≦1.3を満たすことが好ましい。
 上記X線回折により得られるスペクトルが上記の範囲内であれば、ケイ素化合物粒子中に含まれるリチウム量が適度であり、かつ、LiSiOが適度な結晶性を有する。そのため、大気保管時におけるリチウムの表面への拡散を抑え、大気中での安定性をより高めることができる。
 また、前記LiSiOの(020)面に起因するピークの半値幅が、1.2°以上1.3°以下であることが好ましい。
 上記範囲内であれば、LiSiOの結晶子サイズが適切な範囲であるため、大気中での安定性をより高めることができる。
 また、前記X線回折により得られるスペクトルが、LiOH・HOに起因する2θ=29.9°における強度I(29.9°)について、I(29.9°)/Ia≦0.7を満たすことが好ましい。
 上記範囲内であれば、負極活物質粒子表面のLiOH・HOの量を適切な範囲に抑えることで、大気からの吸湿や炭酸吸収を抑えることができる。そのため、大気中での安定性をより高めることができる。
 この場合、前記X線回折により得られるスペクトルが、LiOH・HOに起因する2θ=29.9°付近のピークを有さないことがさらに好ましい。
 負極活物質がLiOH・HOを含まないことで、大気からの吸湿や炭酸吸収を抑え、大気中での安定性をより高めることができる。
 また、前記X線回折により得られるスペクトルが、2θ=31.7°における強度I(31.7°)について、I(31.7°)/Ia≦0.7を満たすことが好ましい。
 上記範囲内であれば、負極活物質粒子表面に含む炭酸リチウムを適切な量とすることができる。そのため、大気からの吸湿を抑え、大気中での安定性をより高めることができる。
 また、前記負極活物質粒子を10質量%の割合で25℃の水中に1時間分散した後の水中におけるケイ素量が、50質量ppm以下であることが好ましい。
 上記範囲内であれば、大気中における結着性を有するケイ素化合物の表面への溶出を抑えることができる。そのため、負極活物質粒子の凝集を抑えることができる。
 また、前記負極活物質粒子のBET比表面積が1m/g以上3m/g以下であることが好ましい。
 上記範囲内であれば、初回効率と大気中での安定性をより良く両立できる。
 また、前記負極活物質粒子のメジアン径(D50)が4.0μm以上15μm以下であり、かつ、累積10%径(D10)に対する累積90%径(D90)の比率(D90/D10)が3以下であることが好ましい。
 上記範囲内であれば、負極活物質粒子が適度な粒子径を持つため、均一にリチウムドープすることができる。そのため、初回効率と大気中での安定性をより良く両立できる。
 また、前記負極活物質粒子は、表層部に炭素材を含み、該炭素材の平均厚さは10nm以上100nm以下であることが好ましい。
 負極活物質粒子表層部に炭素材を含むことで、電子伝導性を高め、電池特性を向上できる。また、表面の疎水度が高まることで、大気からの吸湿を抑えることができる。また、炭素材の平均厚さが上記範囲内であれば、リチウムイオン伝導性を保持しながら電子伝導性を高めることができる。そのため、初回効率と大気中での安定性をより良く両立できる。
 また、前記負極活物質粒子は、表層部にリン酸塩を含むことが好ましい。
 負極活物質粒子表層部にリン酸塩を含むことで、大気保管時に表面に拡散したリチウムトラップし、活物質粒子内からのリチウム溶出を抑えることができる。そのため、大気中での安定性をより高めることができる。
 また、本発明は、上記非水電解質二次電池用負極活物質を含むことを特徴とする非水電解質二次電池を提供する。
 このような非水電解質二次電池であれば、負極活物質粒子の大気中での安定性が高いため、製造プロセスの自由度も大きく、工業化に適している。また、上記の負極活物質粒子を用いて負極を作製することで、高容量であるとともに良好な初期充放電特性を有する二次電池とすることができる。
 また、本発明は、ケイ素化合物粒子を含有する負極活物質粒子を含む非水電解質二次電池用負極活物質を製造する方法であって、ケイ素化合物(SiO:0.8≦x≦1.2)を含むケイ素化合物粒子を作製する工程と、前記ケイ素化合物粒子にLiを挿入し、LiSiOを含有させる工程と、によって、前記負極活物質粒子を作製し、前記負極活物質粒子をCu-Kα線を用いたX線回折により測定したときに、該X線回折により得られるLiSiOの(020)面に起因するピークの半値幅が1.1°以上1.5°以下であり、該X線回折により得られるスペクトルが、LiSiOの(020)面に起因するピークの強度Ia、LiSiOの(111)面に起因するピークの強度Ib、2θ=24.8°における強度I(24.8°)、2θ=28.4°における強度I(28.4°)について、下記式(1)~(3)の全てを満たすものを選別する工程をさらに有し、該選別した負極活物質粒子を用いて、非水電解質二次電池用負極活物質を製造することを特徴とする非水電解質二次電池用負極活物質の製造方法を提供する。
 1.1≦Ib/Ia≦1.5 ・・・(1)
 I(24.8°)/Ia≦0.5 ・・・(2)
 I(28.4°)/Ia≦1.0 ・・・(3)
 このように、上記Liを挿入したケイ素化合物粒子を含む負極活物質粒子が、上記X線回折により得られるスペクトルについて、LiSiOの(020)面に起因するピークの半値幅が1.1°以上1.5°以下であり、かつ、式(1)~(3)を満たすように負極活物質を製造することで、負極活物質の大気中での安定性を高めることができ、かつ、二次電池の負極活物質として使用した際に高容量であるとともに良好なサイクル特性及び初期充放電特性を有する負極活物質を製造することができる。
 本発明の非水電解質二次電池用負極活物質は、大気中での安定性が高く、かつ、二次電池の負極活物質として用いた際に、高容量で良好な初期充放電特性が得られる。また、本発明の負極活物質を用いた二次電池は、高容量で良好な初期充放電特性が得られる。また、本発明の非水電解質二次電池用負極活物質の製造方法であれば、負極活物質粒子の大気中での安定性を高めることができ、かつ、非水電解質二次電池の負極活物質として用いた際に、良好な初期充放電特性を有する負極活物質を製造することができる。
本発明の負極活物質のCu-Kα線を用いたX線回折スペクトルの一例である。 本発明の負極活物質を含む非水電解質二次電池用負極の構成の一例を示す断面図である。 本発明の負極活物質を含むリチウム二次電池の構成例(ラミネートフィルム型)を表す分解図である。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素材を主材として用いた負極を用いることが検討されている。炭素系活物質を用いたリチウムイオン二次電池と同等に近い初期充放電特性、及び、サイクル特性を得るには、ケイ素材の初期充放電特性を高める必要がある。しかしながら、Liをドープして初期充放電特性を高めたケイ素材を用いた場合、大気中での安定性が低下するという問題があり、工業的に不向きであった。そのため、工業的に取り扱いしやすく、かつ、炭素系活物質を用いたリチウムイオン二次電池と同等の初期充放電特性を有する負極活物質を提案するには至っていなかった。
 そこで、本発明者らは、大気中での安定性が高く、かつ、二次電池に用いた場合、高電池容量となるとともに、初回効率が良好となる負極活物質を得るために鋭意検討を重ね、本発明に至った。
[本発明の非水電解質二次電池用負極活物質]
 本発明の非水電解質二次電池用負極活物質は、負極活物質粒子を含む。そして、この負極活物質粒子は、ケイ素化合物(SiO:0.8≦x≦1.2)を含むケイ素化合物粒子を含有する。このケイ素化合物粒子は、リチウムシリケートとしてLiSiOを含有している。このように、本発明の負極活物質は、ケイ素化合物粒子を含む負極活物質粒子を含むため、電池容量を向上できる。さらに、ケイ素化合物粒子が上記のようなリチウムシリケートを含んでいるため、充電時に発生する不可逆容量を低減することができる。その結果、二次電池の電池容量、サイクル特性、及び、初回充放電効率を向上させることができる。
 さらに、本発明の非水電解質二次電池用負極活物質は、負極活物質粒子をCu-Kα線を用いたX線回折により測定したときに、該X線回折により得られるLiSiOの(020)面に起因するピークの半値幅が1.1°以上1.5°以下である。さらに、該X線回折により得られるスペクトルが、LiSiOの(020)面に起因するピークの強度Ia、LiSiOの(111)面に起因するピークの強度Ib、2θ=24.8°における強度I(24.8°)、2θ=28.4°における強度I(28.4°)について、下記式(1)~(3)の全てを満たす。そのため、初期効率の向上と大気中での安定性を両立することができる。
 1.1≦Ib/Ia≦1.5 ・・・式(1)
 I(24.8°)/Ia≦0.5 ・・・式(2)
 I(28.4°)/Ia≦1.0 ・・・式(3)
 図1に本発明の非水電解質二次電池負極活物質をCu-Kα線を用いて測定したX線回折スペクトルの一例を示す。LiSiOの(020)面に起因するピークは、一般に2θ=18.7°付近に、LiSiOの(111)面に起因するピーク、一般に2θ=26.7°付近に現れる。
 本発明の負極活物質におけるX線回折のスペクトルに基づく各規定は、具体的には以下のような技術的意義を有する。
 LiSiOの(020)面に起因するピークの半値幅が1.1°以上1.5°以下であることは、ケイ素系活物質粒子内に適度な結晶性を有するリチウムシリケートが形成されていることを示す。LiSiOの(020)面に起因するピークの半値幅が1.1°未満である場合、結晶成長が進みすぎているため、電池充放電時のリチウム拡散性が低下する結果、初期効率が低下する。LiSiOの(020)面に起因するピークの半値幅が1.5°よりも大きい場合、結晶性が低いため、空気中の水分や炭酸を吸収しやすい。そのため、大気中での安定性が悪化する。
 上記式(1)を満たすことは、ケイ素系活物質粒子に対するリチウムドープ量が適度であり、かつ、適度な結晶性を有するリチウムシリケートを形成していることを示す。そのため、初期効率の向上と大気中での安定性を両立することができる。Ib/Ia<1.1の場合、リチウムドープ量が過剰であり、かつ、リチウムシリケートの結晶成長が進みすぎているため、良好な大気中での安定性が得られない。1.5<Ib/Iaの場合、ケイ素系活物質粒子に対するリチウムドープ量が小さいため、十分な初回効率を得ることができない。
 なお、上記のように、ピーク強度Iaは、LiSiOの(020)結晶面に起因するピークの強度として得られる。一方、ピーク強度Ibは、SiOxのブロードピークとLiSiOの(111)結晶面に起因するピークを重ね合わせた強度として得られる。したがって、リチウムドープ量が大きい場合、SiOxブロードピーク強度が下がるため、Ib/Iaは小さくなる。また、リチウムシリケートの結晶成長が進んだ場合、Ibピークに占めるSiOxブロードピークの寄与が小さくなるため、Ib/Iaは小さくなる。これらの関係をもとに、ドープ量や結晶性の適正範囲を定めたパラメータとしてIb/Iaの範囲を規定することができる。
 上記式(2)を満たすことは、ケイ素系活物質粒子が有するリチウムシリケートの種類と比率が適切であることを示す。2θ=24.8°における強度は、LiSiの比率が大きいほど高くなる。LiSiは、ケイ素系活物質粒子に対してドープリチウム量が小さい範囲で形成される化合物である。したがって、0.5<I(24.8°)/Iaの場合、ケイ素系活物質粒子の全体、または一部のリチウム量が小さいため、初期効率の向上効果は限定的となる。一方で、上記式(2)を満たす場合は、十分に初期効率向上効果を得ることができる。
 上記式(3)を満たすことは、結晶性Siの比率が小さいことを示す。結晶性のSiの比率が小さいことにより、Liドープ時のリチウムシリサイドの形成を抑えることができる。リチウムシリサイドは、リチウムシリケートよりも水に溶出しやすく、空気中の水分を吸収しやすい。したがって、結晶性Siの比率が大きい場合、Liドープ時にリチウムシリサイドを形成し、大気中の水分を吸収するため、大気中での安定性が低下する。上記式(3)を満たす場合、結晶性Siの比率が小さいため、大気中で安定な負極活物質粒子とすることができる。
 なお、Cu-Kα線を用いたX線回折の各2θの値における強度を比較する際は、下記のようにバックグラウンド補正した値を使用する。
(1)10°≦2θ≦15°の範囲で強度が最小となる点をA点とする。
(2)38°≦2θ≦45°の範囲で強度が最小となる点をB点とする。
(3)各2θの値において、スペクトル曲線の強度から直線ABの強度を差し引く。
 また、上記負極活物質は、上記X線回折により得られるスペクトルが、LiSiに起因する2θ=24.8°付近のピークを実質的に有さないことが好ましい。LiSiに起因するピークを有さない場合、ケイ素系活物質粒子全体に均一に十分な量のリチウムがドープされているといえる。そのため、より高い初期効率を得ることができる。
 上記ピーク有無の定義は、下記の通りである。
(1)2θ=0.15°刻みでCu-Kα線を用いたX線回折を行い、スペクトルデータを得る。角度刻みを小さくして測定する場合は、得られるデータが0.15°刻みとなるように平均化処理を行う。
(2)10°≦2θ≦45°の範囲に関して、上記のバックグラウンド補正を行い、バックグラウンド補正済みスペクトルを用意する。
(3)バックグラウンド補正済みスペクトルを二回微分した二次導関数について、24.0°≦2θ≦25.0°の範囲の最小値(S)を抽出する。
(4)10°≦2θ≦15°の範囲に関して、標準偏差(σ)を計算する。
(5)S/σ<5の場合にピークなし、5≦S/σの場合にピークありと判定する。
 また、前記X線回折により得られるスペクトルが、Siの(111)面に起因する2θ=28.4°付近のピークを実質的に有さないことが好ましい。結晶性のSi比率がより小さいことにより、Liドープ時のリチウムシリサイドの形成を抑え、大気中での安定性をより高めることができる。
 上記ピーク有無の定義は、下記の通りである。
(1)2θ=0.15°刻みでCu-Kα線を用いたX線回折を行い、スペクトルデータを得る。角度刻みを小さくして測定する場合は、得られるデータが0.15°刻みとなるように平均化処理を行う。
(2)10°≦2θ≦45°の範囲に関して、上記のバックグラウンド補正を行い、バックグラウンド補正済みスペクトルを用意する。
(3)バックグラウンド補正済みスペクトルを二回微分した二次導関数について、28.2°≦2θ≦28.6°の範囲の最小値(S)を抽出する。
(4)10°≦2θ≦15°の範囲に関して、標準偏差(σ)を計算する。
(5)S/σ<5の場合にピークなし、5≦S/σの場合にピークありと判定する。
 また、前記X線回折により得られるスペクトルが、1.2≦Ib/Ia≦1.3を満たすことが好ましい。上記範囲内であれば、初回効率の向上と大気中での安定性をより良く両立できる。
 また、前記LiSiOの(020)面に起因するピークの半値幅が、1.2°以上1.3°以下であることが好ましい。上記範囲内であれば、初回効率の向上と大気中での安定性をより良く両立できる。
 また、前記X線回折により得られるスペクトルが、LiOH・HOに起因する2θ=29.9°における強度I(29.9°)について、I(29.9°)/Ia≦0.7を満たすことが好ましい。リチウムドープしたケイ素系活物質粒子の場合、2θ=29.9°付近の強度が高いことは、LiOH・HOが表面に多く存在することを意味する。LiOH・HOは、空気中の水分や炭酸を吸収する性質があるため、I(29.9°)/Ia≦0.7の範囲内であれば、LiOH・HOの負極活物質粒子表面における存在量は小さいといえ、より効果的に良好な大気中での安定性を得ることができる。
 また、前記X線回折により得られるスペクトルが、LiOH・HOに起因する2θ=29.9°付近のピークを実質的に有さないことがさらに好ましい。粒子表面にLiOH・HOを含まない場合、空気中の水分や炭酸の吸収をより抑えることで、大気中での安定性をより高めることができる。
 上記ピーク有無の定義は、下記の通りである。
(1)2θ=0.15°刻みでCu-Kα線を用いたX線回折を行い、スペクトルデータを得る。角度刻みを小さくして測定する場合は、得られるデータが0.15°刻みとなるように平均化処理を行う。
(2)10°≦2θ≦45°の範囲に関して、上記のバックグラウンド補正を行い、バックグラウンド補正済みスペクトルを用意する。
(3)バックグラウンド補正済みスペクトルを二回微分した二次導関数について、29.0°≦2θ≦30.0°の範囲の最小値(S)を抽出する。
(4)10°≦2θ≦15°の範囲に関して、標準偏差(σ)を計算する。
(5)S/σ<5の場合にピークなし、5≦S/σの場合にピークありと判定する。
 また、前記X線回折により得られるスペクトルが、2θ=31.7°における強度I(31.7°)について、I(31.7°)/Ia≦0.7を満たすことが好ましい。上記範囲内であれば、負極活物質粒子表面に含む炭酸リチウムを適切な量とすることができる。そのため、大気からの吸湿を抑え、大気中での安定性をより高めることができる。
 また、前記負極活物質粒子を10質量%の割合で25℃の水中に1時間分散した後の水中におけるケイ素量が、50質量ppm以下であることが好ましい。水中におけるケイ素溶出量が小さい場合、空気中においてもケイ素化合物が表出しにくい。表出したケイ素化合物が少ない場合、吸湿性や結着性を有するケイ素化合物が少ないため、負極活物質粒子の凝集を抑制することができる。上記10質量%の割合で25℃の水中に1時間分散した後の水中におけるケイ素量が50質量ppm以下の場合は、空気中におけるケイ素化合物の表出を抑え、良好な大気中での安定性が得られる。
 また、前記負極活物質粒子のBET比表面積が1m/g以上3m/g以下であることが好ましい。BET比表面積が1m/g以上であれば、電池を作製した際に負極活物質粒子表面でのリチウムの授受を十分に行うことができる。そのため、良好な初回効率が得られる。BET比表面積が3m/g以下であれば、大気保管時における空気との接触面積を抑えることができ、良好な大気中での安定性が得られる。
 また、前記負極活物質粒子のメジアン径(D50)が4.0μm以上15μm以下であり、かつ、累積10%径(D10)に対する累積90%径(D90)の比率(D90/D10)が3以下であることが好ましい。負極活物質粒子が小さい場合、粒子表面のリチウム化合物量が増えてしまう。一方、負極活物質粒子が大きい場合、粒子内部にリチウムを拡散させることが難しく、負極活物質粒子内のリチウムの均一性が低下する。メジアン径が上記範囲内であれば負極活物質粒子内に均一にリチウムドープすることができる。そのため、大気中での安定性をより高めることができる。また、D90/D10の比率が3以下であれば、ケイ素系負極活物質全体に占める小粒子や大粒子の比率が小さいため、それらの影響を受けることなく、均一にリチウムドープすることができる。そのため、大気中での安定性をより高めることができる。なお、上記粒径分布の規定はレーザー散乱粒度分布測定装置を用いて測定した体積基準粒度分布による。
 また、前記負極活物質粒子は、表層部に炭素材を含み、炭素材の平均厚さが10nm以上100nm以下であることが好ましい。負極活物質粒子表層部に炭素材を含むことで、電子伝導性を高め、電池特性を向上できる。また、表面の疎水度が高まることで、大気からの吸湿を抑えることができる。また、炭素材の平均厚さが上記範囲内であれば、リチウムイオン伝導性を保持しながら電子伝導性を高めることができる。そのため、初回効率と大気中での安定性をより良く両立できる。
 この炭素材の平均厚さは、例えば、以下の手順により算出できる。先ず、TEM(透過型電子顕微鏡)により任意の倍率で負極活物質粒子を観察する。この倍率は、厚さを測定できるように、目視で炭素材の厚さを確認できる倍率が好ましい。続いて、任意の15点において、炭素材の厚さを測定する。この場合、できるだけ特定の場所に集中せず、広くランダムに測定位置を設定することが好ましい。最後に、上記の15点の炭素材の厚さの平均値を算出する。
 炭素材の被覆率は特に限定されないが、できるだけ高い方が望ましい。被覆率が30%以上であれば、電子伝導性がより向上するため好ましい。炭素材の被覆手法は特に限定されないが、糖炭化法、炭化水素ガスの熱分解法が好ましい。なぜならば、被覆率を向上させることができるからである。
 また、前記負極活物質粒子は、表層部にリン酸塩を含むことが好ましい。負極活物質粒子表層部にリン酸塩を含むことで、大気保管時に表面に拡散したリチウムと塩を形成してリチウムをトラップし、表面へのリチウム拡散を抑えることができる。そのため、大気中での安定性をより高めることができる。
 上記リン酸塩は、特に限定されないが、リン酸リチウム、リン酸マグネシウム、およびリン酸アルミニウムのうちいずれか1つ以上を用いることが好ましい。上記のリン酸塩であれば大気中の水分や炭酸の吸収を抑えながら、表面へのリチウム拡散を抑えられる。
 上記リン酸塩を表面に含ませる方法は、特に限定されないが、攪拌混合、転動混合、せん断混合などの乾式混合を用いてもよいし、あるいは、溶液中に分散させたリン酸塩を負極活物質粒子にスプレー噴霧する湿式混合を用いてもよいが、せん断混合を用いることが好ましい。せん断混合により、リン酸塩を表層部に均一に付着、または被覆させることができる。
<非水電解質二次電池用負極>
 次に、本発明の負極活物質を含む非水電解質二次電池用負極(以下、「負極」とも呼称する)について説明する。図2は本発明の負極活物質を含む非水電解質二次電池用負極の構成の一例を示す断面図である。
[負極の構成]
 図2に示したように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。この負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていてもよい。さらに、本発明の負極活物質が用いられたものであれば、負極集電体11はなくてもよい。
[負極集電体]
 負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)があげられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
 負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、それぞれ100質量ppm以下であることが好ましい。より高い変形抑制効果が得られるからである。このような変形抑制効果によりサイクル特性をより向上できる。
 また、負極集電体11の表面は粗化されていてもよいし、粗化されていなくてもよい。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は、化学エッチング処理された金属箔などである。粗化されていない負極集電体は、例えば、圧延金属箔などである。
[負極活物質層]
 負極活物質層12は、本発明の負極活物質を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダー)や導電助剤など他の材料を含んでいてもよい。
 また、負極活物質層12は、本発明の負極活物質と炭素系活物質とを含む混合負極活物質を含んでいてもよい。炭素系活物質を含むことにより、負極活物質層の電気抵抗が低下するとともに、充電に伴う膨張応力を緩和することが可能となる。炭素系活物質としては、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、カーボンブラック類などを使用できる。
 また、混合負極活物質は、ケイ素系負極活物質と炭素系活物質の質量の合計に対する、ケイ素系活物質の質量の割合が6質量%以上であることが好ましい。6質量%以上であれば、ケイ素系負極活物質の使用による電池容量向上効果を確実に得ることができる。
 また、上記のように本発明の負極活物質は、ケイ素化合物粒子を含み、ケイ素化合物粒子はケイ素化合物(SiO:0.8≦x≦1.2)を含有する酸化ケイ素材であるが、その組成はxが1に近い方が好ましい。なぜならば、高いサイクル特性が得られるからである。なお、本発明におけるケイ素化合物の組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいてもよい。
 また、本発明の負極活物質において、ケイ素化合物粒子は、LiSiOを含有している。このようなものは、ケイ素化合物中の、電池の充放電時のリチウムの挿入、脱離時に不安定化するSiO成分部を予め別のリチウムシリケートに改質させたものであるので、充電時に発生する不可逆容量を低減することができる。
 また、負極活物質層に含まれる負極結着剤としては、例えば、高分子材料、合成ゴムなどのいずれか1種類以上を用いることができる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、カルボキシメチルセルロースなどである。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンなどである。
 負極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のいずれか1種以上を用いることができる。
 負極活物質層は、例えば、塗布法で形成される。塗布法とは、負極活物質粒子と上記の結着剤など、また、必要に応じて導電助剤、炭素系活物質粒子を混合した負極活物質を、有機溶剤や水などに分散させ、負極集電体などに塗布する方法である。
[負極活物質及び負極の製造方法]
 負極活物質及び負極は、例えば、以下の手順により製造できる。まず、負極に使用する負極活物質の製造方法を説明する。
 最初に、ケイ素化合物(SiO:0.8≦x≦1.2)を含むケイ素化合物粒子を作製する。次に、ケイ素化合物粒子にLiを挿入し、LiSiOを含有させる。これによって負極活物質粒子を作製する。この負極活物質粒子から、以下の要件を満たすものを選別する。すなわち、負極活物質粒子をCu-Kα線を用いたX線回折により測定したときに、該X線回折により得られるLiSiOの(020)面に起因するピークの半値幅が1.1°以上1.5°以下であり、該X線回折により得られるスペクトルが、LiSiOの(020)面に起因するピークの強度Ia、LiSiOの(111)面に起因するピークの強度Ib、2θ=24.8°における強度I(24.8°)、2θ=28.4°における強度I(28.4°)について、下記式(1)~(3)の全てを満たすものを選別する。次に、選別した負極活物質粒子を用いて、非水電解質二次電池用負極活物質を製造する。
 1.1≦Ib/Ia≦1.5 ・・・(1)
 I(24.8°)/Ia≦0.5 ・・・(2)
 I(28.4°)/Ia≦1.0 ・・・(3)
 より具体的には以下のように負極活物質を製造できる。先ず、酸化珪素ガスを発生する原料を不活性ガスの存在下、減圧下で900℃~1600℃の温度範囲で加熱し、酸化珪素ガスを発生させる。金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<金属珪素粉末/二酸化珪素粉末<1.3の範囲であることが望ましい。
 発生した酸化珪素ガスは吸着板上で固体化され堆積される。次に、反応炉内温度を100℃以下に下げた状態で酸化珪素の堆積物を取り出し、ボールミル、ジェットミルなどを用いて粉砕し、粉末化する。このようにして得られた粉末は、分級してもよい。粉砕及び分級を行うことで、ケイ素化合物粒子の粒度分布及び比表面積を調整することができる。以上のようにして、ケイ素化合物粒子を作製することができる。なお、ケイ素化合物粒子中のSi結晶子は、気化温度の変更、又は、生成後の熱処理で調整できる。
 ここで、ケイ素化合物粒子の表層に炭素材の層を生成してもよい。炭素材の層を生成する方法としては、熱分解CVD法が望ましい。熱分解CVD法で炭素材の層を生成する方法について説明する。
 先ず、ケイ素化合物粒子を炉内にセットする。次に、炉内に炭化水素ガスを導入し、炉内温度を昇温させる。分解温度は特に限定しないが、1200℃以下が望ましく、より望ましいのは850℃以下である。分解温度を制御することにより、負極活物質粒子の意図しない不均化及び結晶成長を抑制することができる。所定の温度まで炉内温度を昇温させた後に、ケイ素化合物粒子の表面に炭素層を生成する。また、炭素材の原料となる炭化水素ガスは、特に限定しないが、C組成においてn≦4であることが望ましい。n≦4であれば、製造コストを低くでき、また、分解生成物の物性を良好にすることができる。分解温度や分解時間を制御することで、負極活物質粒子表層部の炭素材の厚みを調整することができる。
 次に、上記のように作製したケイ素化合物粒子に、Liを挿入し、LiSiOを含有させる。Liの挿入は、酸化還元法により行うことが好ましい。
 酸化還元法による改質では、例えば、まず、エーテル溶媒にリチウムを溶解した溶液Aにケイ素化合物粒子を浸漬することで、リチウムを挿入できる。この溶液Aに更に多環芳香族化合物又は直鎖ポリフェニレン化合物を含ませてもよい。リチウムの挿入後、多環芳香族化合物やその誘導体を含む溶液Bにケイ素化合物粒子を浸漬することで、ケイ素化合物粒子から活性なリチウムを脱離できる。この溶液Bの溶媒は、例えば、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、アルコール系溶媒、アミン系溶媒、又は、これらの混合溶媒を使用できる。さらに、溶液Bに浸漬した後、アルコール系溶媒、カルボン酸系溶媒、水、又は、これらの混合溶媒を含む溶液Cにケイ素化合物粒子を浸漬することで、ケイ素化合物粒子から活性なリチウムをより多く脱離できる。また、溶液Cの代わりに、溶質として分子中にキノイド構造を持つ化合物を含み、溶媒としてエーテル系溶媒、ケトン系溶媒、エステル系溶媒、又は、これらの混合溶媒を含む溶液C’を用いてもよい。また、溶液B、C、C’へのケイ素化合物粒子の浸漬は繰り返し行ってもよい。このようにして、リチウムの挿入後、活性なリチウムを脱離すれば、より耐水性の高い負極活物質となる。その後、アルコール、炭酸リチウムを溶解したアルカリ水、弱酸、又は、純水などで洗浄する方法などで洗浄してもよい。ケイ素活物質粒子中に含むリチウムの量は、上記リチウムの挿入量、及びリチウムの脱離量を制御することで調整することができる。
 溶液Aに用いるエーテル系溶媒としては、ジエチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、又は、これらの混合溶媒等を用いることができる。この中でも特にテトラヒドロフラン、ジオキサン、1,2-ジメトキシエタンを用いることが好ましい。これらの溶媒は、脱水されていることが好ましく、脱酸素されていることが好ましい。
 また、溶液Aに含まれる多環芳香族化合物としては、ナフタレン、アントラセン、フェナントレン、ナフタセン、ペンタセン、ピレン、ピセン、トリフェニレン、コロネン、クリセン、及び、これらの誘導体のうち1種類以上を用いることができ、直鎖ポリフェニレン化合物としては、ビフェニル、ターフェニル、及び、これらの誘導体のうち1種類以上を用いることができる。
 溶液Bに含まれる多環芳香族化合物としては、ナフタレン、アントラセン、フェナントレン、ナフタセン、ペンタセン、ピレン、ピセン、トリフェニレン、コロネン、クリセン、及び、これらの誘導体のうち1種類以上を用いることができる。
 また、溶液Bのエーテル系溶媒としては、ジエチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、及び、テトラエチレングリコールジメチルエーテル等を用いることができる。
 ケトン系溶媒としては、アセトン、アセトフェノン等を用いることができる。
 エステル系溶媒としては、ギ酸メチル、酢酸メチル、酢酸エチル、酢酸プロピル、及び、酢酸イソプロピル等を用いることができる。
 アルコール系溶媒としては、メタノール、エタノール、プロパノール、及び、イソプロピルアルコール等を用いることができる。
 アミン系溶媒としては、メチルアミン、エチルアミン、及び、エチレンジアミン等を用いることができる。
 溶液Cを用いる場合、例えば、ケトン系溶媒とケイ素化合物を混合して撹拌後、アルコール系溶媒を加えるなど、複数段階にわたって溶媒を混合してもよい。
 溶液Cのアルコール系溶媒としては、メタノール、エタノール、プロパノール、イソプロピルアルコール等を使用できる。
 カルボン酸系溶媒としては、ギ酸、酢酸、シュウ酸等を使用できる。
 また、溶媒を水とする場合、純水以外にも、アンモニア水、酢酸リチウム水、炭酸リチウム水、水酸化リチウム水などの溶質を含んだ水溶液としてもよい。
 また、上記のアルコール系溶媒、カルボン酸系溶媒、及び、水のうち、2種以上を組み合わせた混合溶媒等を用いてもよい。
 酸化還元法による改質後に、熱処理を行ってもよい。熱処理を行うことで、リチウムドープしたケイ素系活物質粒子内のリチウムシリケートを結晶化することができる。熱処理機は、特に限定されないが、ロータリーキルンを用いることが好ましい。ロータリーキルンを用いることで均一に加熱することができる。熱処理温度は、特に限定されないが、800℃以下で行うことが好ましく、650℃以下であればより好ましい。熱処理雰囲気は、特に限定されないが、アルゴンガスや窒素ガスなどの不活性ガス雰囲気であることが好ましい。熱処理中の酸化や炭酸吸収を抑制することができる。熱処理温度や熱処理時間、熱処理雰囲気を制御することにより、リチウムシリケートの種類や結晶性、Siの不均化度や結晶性、LiOH・HOや炭酸リチウムの存在量を制御することができる。特に限定されないが、熱処理機内は密閉状態よりも通気状態であることが好ましい。酸化還元法後にケイ素系活物質粒子表面に残った溶媒や溶質成分を除去できる。通気量を制御することにより、ケイ素系活物質粒子表面に残った溶媒や溶質成分を反応させて、炭素成分として表面に付着、または被覆させることもできる。これにより、ケイ素系活物質粒子の表面積や表層部における炭素材の厚みを調整することができる。
 また、熱ドープ法によって、ケイ素化合物粒子にLiを挿入してもよい。熱ドープ法による改質では、例えば、ケイ素化合物粒子をLiH粉やLi粉と混合し、非酸化雰囲気下で加熱をすることで改質可能である。非酸化雰囲気としては、例えば、Ar雰囲気などが使用できる。より具体的には、まず、Ar雰囲気下でLiH粉又はLi粉と酸化珪素粉末を十分に混ぜ、封止を行い、封止した容器ごと撹拌することで均一化する。その後、700℃~750℃の範囲で加熱し改質を行う。またこの場合、活性なLiの一部をケイ素化合物から脱離して、スラリーをより安定させるために、加熱後の粉末を十分に冷却し、その後アルコールやアルカリ水、弱酸や純水で洗浄してもよい。
 以上のようにして作製した負極活物質粒子(ケイ素化合物粒子)から、負極活物質粒子をCu-Kα線を用いたX線回折により測定したときの条件が上記の条件を満たすものを選別する。各条件を満たすための負極活物質粒子の作製条件は、実験を行って設定することができる。
<水系負極スラリー組成物>
 以上のようにして作製、選別した負極活物質に、必要に応じて、負極結着剤、導電助剤などの他の材料も混合した後に、有機溶剤又は水などを加えることで水系負極スラリー組成物を得ることができる。
 次に、負極集電体の表面に、上記の水系負極スラリー組成物を塗布し、乾燥させて、負極活物質層を形成する。この時、必要に応じて加熱プレスなどを行ってもよい。以上のようにして、負極を作製できる。
<リチウムイオン二次電池>
 次に、本発明の負極活物質を含むリチウムイオン二次電池について説明する。ここでは具体例として、ラミネートフィルム型のリチウムイオン二次電池を例に挙げる。
[ラミネートフィルム型のリチウムイオン二次電池の構成]
 図3に示すラミネートフィルム型のリチウムイオン二次電池20は、主にシート状の外装部材25の内部に巻回電極体21が収納されたものである。この巻回体は正極、負極間にセパレータを有し、巻回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード22が取り付けられ、負極に負極リード23が取り付けられている。電極体の最外周部は保護テープにより保護されている。
 正負極リードは、例えば、外装部材25の内部から外部に向かって一方向で導出されている。正極リード22は、例えば、アルミニウムなどの導電性材料により形成され、負極リード23は、例えば、ニッケル、銅などの導電性材料により形成される。
 外装部材25は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が電極体21と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。
 外装部材25と正負極リードとの間には、外気侵入防止のため密着フィルム24が挿入されている。この材料は、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。
 [正極]
 正極は、例えば、図2の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
 正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。
 正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいてもよい。この場合、結着剤、導電助剤に関する詳細は、例えば既に記述した負極結着剤、負極導電助剤と同様である。
 正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又は、リチウムと遷移金属元素を有するリン酸化合物があげられる。これら記述される正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、LiM1OあるいはLiM2POで表される。式中、M1、M2は少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。
 リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)などが挙げられる。リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnPO(0<u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量が得られるとともに、優れたサイクル特性も得られるからである。
[負極]
 負極は、上記した図2のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、集電体11の両面に負極活物質層12を有している。この負極は、正極活物質剤から得られる電気容量(電池として充電容量)に対して、負極充電容量が大きくなることが好ましい。負極上でのリチウム金属の析出を抑制することができるためである。
 正極活物質層は、正極集電体の両面の一部に設けられており、負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。これは、安定した電池設計を行うためである。
 非対向領域、すなわち、上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため負極活物質層の状態が形成直後のまま維持される。これによって負極活物質の組成など、充放電の有無に依存せずに再現性良く組成などを正確に調べることができる。
[セパレータ]
 セパレータは正極、負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有してもよい。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[電解液]
 活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいてもよい。
 溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2-ジメトキシエタン、又は、テトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。電解質塩の解離性やイオン移動度が向上するためである。
 合金系負極を用いる場合、特に溶媒として、ハロゲン化鎖状炭酸エステル、又は、ハロゲン化環状炭酸エステルのうち少なくとも1種を含んでいることが望ましい。これにより、充放電時、特に充電時において、負極活物質表面に安定な被膜が形成される。ここで、ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。また、ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として有する(すなわち、少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。
 ハロゲンの種類は特に限定されないが、フッ素が好ましい。これは、他のハロゲンよりも良質な被膜を形成するからである。また、ハロゲン数は多いほど望ましい。これは、得られる被膜がより安定的であり、電解液の分解反応が低減されるからである。
 ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどが挙げられる。ハロゲン化環状炭酸エステルとしては、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどが挙げられる。
 溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。
 また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。
 さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。
 電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などが挙げられる。
 電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。
[ラミネートフィルム型二次電池の製造方法]
 本発明では、上記の本発明の負極活物質の製造方法によって製造した負極活物質を用いて負極を作製でき、該作製した負極を用いてリチウムイオン二次電池を製造することができる。
 最初に上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて結着剤、導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱しても良く、また加熱又は圧縮を複数回繰り返してもよい。
 次に、上記したリチウムイオン二次電池用負極10の作製と同様の作業手順を用い、負極集電体に負極活物質層を形成し負極を作製する。
 正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていてもよい(図2を参照)。
 続いて、電解液を調整する。続いて、超音波溶接などにより、正極集電体に正極リード22を取り付けると共に、負極集電体に負極リード23を取り付ける。続いて、正極と負極とをセパレータを介して積層、又は、巻回させて巻回電極体21を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回体を成型する。続いて、折りたたんだフィルム状の外装部材25の間に巻回電極体を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ解放状態にて、巻回電極体を封入する。正極リード、及び、負極リードと外装部材の間に密着フィルムを挿入する。解放部から上記調整した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により接着させる。以上のようにして、ラミネートフィルム型のリチウムイオン二次電池20を製造することができる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1-1)
 以下の手順により、図3に示したラミネートフィルム型のリチウムイオン二次電池20を作製した。
 最初に正極を作製した。正極活物質はリチウムニッケルコバルト複合酸化物であるLiNi0.7Co0.25Al0.05Oを95質量%と、正極導電助剤2.5質量%と、正極結着剤(ポリフッ化ビニリデン:PVDF)2.5質量%とを混合し、正極合剤とした。続いて正極合剤を有機溶剤(N-メチル-2-ピロリドン:NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時正極集電体は厚み15μmのものを用いた。最後にロールプレスで圧縮成型を行った。
 次に、負極を作製した。まず、負極活物質を以下のようにして作製した。金属ケイ素と二酸化ケイ素を混合した原料を反応炉に導入し、10Paの真空度の雰囲気中で気化させたものを吸着板上に堆積させ、十分に冷却した後、堆積物を取出しボールミルで粉砕した。このようにして得たケイ素化合物粒子のSiOのxの値は0.8であった。続いて、ケイ素化合物粒子の粒径を分級により調整した。その後、プロピレンガスを用いた熱分解CVDを行うことで、ケイ素化合物粒子の表面に炭素材を被覆した。熱分解CVD温度により、ケイ素化合物粒子のSi結晶性を調整した。また、熱分解CVD温度及び時間により炭素材の厚みを調整した。
 続いて、酸化還元法によりケイ素化合物粒子にリチウムを挿入し改質した。ケイ素活物質粒子中に含むリチウムの量は、上記リチウムの挿入量、及びリチウムの脱離量を制御することで調整した。
 次に、改質後のケイ素系活物質粒子の熱処理を行った。熱処理機にはロータリーキルンを使用し、アルゴンガスを通気しながら800℃以下の温度で熱処理を行った。熱処理温度や熱処理時間、熱処理雰囲気を制御することにより、リチウムシリケートの種類や結晶性、Siの不均化度や結晶性、LiOH・HOや炭酸リチウムの存在量を調整した。
 続いて、Cu-Kα線を用いたX線回折測定を行い、前述の方法によりバックグラウンドを補正し、バックグラウンド補正済みスペクトルを得た。バックグラウンド補正済みスペクトルから、前述のIa、Ib、I(24.8°)、I(28.4°)、I(29.9°)、I(31.7°)を読み取った。それらの値から、Ib/Ia、I(24.8°)/Ia、I(28.4°)/Ia、I(29.9°)/Ia、I(31.7°)/Iaをそれぞれ算出した。この時、Ib/Ia=1.3、I(24.8°)/Ia=0.3、I(28.4°)/Ia=0.8、I(29.9°)/Ia=0.4、I(31.7°)/Ia=0.3であった。また、LiSiOの(020)面に起因するピークの半値幅は1.3°であった。
次に、負極活物質粒子を10質量%の割合で25℃の水中に1時間分散した後の水中におけるケイ素量を以下の方法で測定した。まず、負極活物質粒子10質量%の割合で25℃の純水中に分散させ、1時間撹拌を行った。その後、分散液を濾過し、得られたろ液を採取してICP-OESにて水中のSi量を測定した。その結果、Si量は10質量ppmであった。
 また、ケイ素系活物質粒子の粒度分布及びBET比表面積を測定した。メジアン径は、7μmであり、D90/D10=2であった。また、BET比表面積は1m/gであった。
 次に、この負極活物質を、炭素系活物質に、ケイ素系活物質粒子と炭素系活物質粒子の質量比が2:8となるように配合し、混合負極活物質を作製した。ここで、炭素系活物質としては、ピッチ層で被覆した天然黒鉛及び人造黒鉛を5:5の質量比で混合したものを使用した。また、炭素系活物質のメジアン径は20μmであった。
 次に、上記混合負極活物質、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(メジアン径が約50nmの炭素微粒子)、スチレンブタジエンゴム(スチレンブタジエンコポリマー、以下、SBRと称する)、カルボキシメチルセルロース(以下、CMCと称する)92.5:1:1:2.5:3の乾燥質量比で混合した後、純水で希釈し水系負極スラリーとした。なお、上記のSBR、CMCは負極バインダー(負極結着剤)である。
 また、負極集電体としては、厚さ15μmの電解銅箔を用いた。この電解銅箔には、炭素及び硫黄がそれぞれ70質量ppmの濃度で含まれていた。最後に、負極合剤スラリーを負極集電体に塗布し真空雰囲気中で100℃×1時間の乾燥を行った。乾燥後の、負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度とも称する)は5mg/cmであった。
 次に、溶媒(4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、エチレンカーボネート(EC)、及び、ジメチルカーボネート(DMC))を混合した後、電解質塩(六フッ化リン酸リチウム:LiPF)を溶解させて電解液を調製した。この場合には、溶媒の組成を体積比でFEC:EC:DMC=10:20:70とし、電解質塩の含有量を溶媒に対して1.2mol/kgとした。
 次に、以下のようにして二次電池を組み立てた。最初に、正極集電体の一端にアルミリードを超音波溶接し、負極集電体の一端にはニッケルリードを溶接した。続いて、正極、セパレータ、負極、セパレータをこの順に積層し、長手方向に倦回させ倦回電極体を得た。その捲き終わり部分をPET保護テープで固定した。セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムに挟まれた積層フィルム(厚さ12μm)を用いた。続いて、外装部材間に電極体を挟んだ後、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔、及び、ポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。続いて、開口部から調整した電解液を注入し、真空雰囲気下で含浸した後、熱融着し、封止した。
 以上のようにして作製した二次電池の初回充放電特性を評価した。
 初回充放電特性を調べる場合には、初回効率(以下では初期効率と呼ぶ場合もある)を算出した。初回効率は、初回効率(%)=(初回放電容量/初回充電容量)×100で表される式から算出した。
 また、大気中での安定性は、以下の方法により評価した。作製した負極活物質粒子10gを40℃75%RHの恒温槽に入れ、24時間保管した後、初回効率、重量変化、Li溶出量、凝集状態を測定した。
 Li溶出量は、下記の手順で測定した。恒温槽保管前後の表面アルカリ量をそれぞれ測定し、恒温槽保管前の表面アルカリ量(B1)、恒温槽保管後の表面アルカリ量(B2)について下記のようにLi溶出量とした。
(Li溶出量)=B2-B1
 表面アルカリ量は、下記の手順で測定した。まず、負極活物質粒子1gを25℃の水50gに対して分散させ、10分間撹拌した。その後、分散液を濾過することで得られたろ液を中和滴定し、pH5までに要した滴定量から、ろ液中のリチウムイオン重量を求めた。得られたリチウムイオン重量を負極活物質中のリチウム量で割ることで、表面アルカリ量を算出した。
 凝集状態は、吸引篩がけ後の篩上重量を恒温槽保管前後で比較することで評価した。吸引篩がけは下記の手順で行った。まず、負極活物質粒子100gを準備し、目開き45μmの吸引篩で2分間篩がけを行った。この時、吸引圧力は、3kPaとした。篩がけ完了後、篩上の重量を計量した。その後、恒温槽保管前後での篩上重量を比較した。篩上重量が0.02g以上の場合は凝集性あり、0.02g未満の場合は凝集性なしと判定した。
(実施例1-2~実施例1-3、比較例1-1、1-2)
 ケイ素化合物のバルク内酸素量を調整したことを除き、実施例1-1と同様に、二次電池の製造を行った。この場合、ケイ素化合物の原料中の金属ケイ素と二酸化ケイ素との比率や加熱温度を変化させることで、酸素量を調整した。実施例1-1~1-3、比較例1-1、1-2における、SiOで表されるケイ素化合物のxの値を表1中に示した。
 このとき、実施例1-1~1-3、及び、比較例1-1、1-2のケイ素系活物質粒子は以下のような性質を有していた。負極活物質粒子中のケイ素化合物粒子の内部には、LiSiOが含まれていた。また、ケイ素化合物は、X線回折により得られるLiSiOの(020)結晶面に起因する回折ピークの半値幅(2θ)が1.3°であり、Ib/Ia=1.3、I(24.8°)/Ia=0.3、I(28.4°)/Ia=0.8、I(29.9°)/Ia=0.4、I(31.7°)/Ia=0.3であった。また、LiSiピーク及びLiOH・HOのピークは確認されなかった。また、表面に被覆された炭素材の平均厚さは50nmであった。また、負極活物質粒子のメジアン径は7μmであった。また、負極活物質粒子のBET比表面積は1m/gであった。
 実施例1-1~1-3、比較例1-1、1-2の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、SiOxで表わされるケイ素化合物において、xの値が、0.8≦x≦1.2の範囲外の場合、電池特性または大気中での安定性が悪化した。例えば、比較例1-1に示すように、酸素が十分にない場合(x=0.7)、重量変化やLi溶出量が大きく、凝集した。また、保管前後で初回効率も大きく低下した。一方、比較例1-2に示すように、酸素量が多い場合(x=1.3)は導電性の低下が生じ、保管前から初回効率は低かった。
(実施例2-1、実施例2-2)
 ケイ素化合物粒子の内部に含ませるLiSiOの半値幅を表2のように変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、負極活物質の大気中での安定性、および二次電池の初回効率を評価した。
(比較例2-1)
 ケイ素化合物粒子にリチウムの挿入を行わなかったこと以外、実施例1-2と同じ条件で二次電池を作製し、負極活物質の大気中での安定性、および二次電池の初回効率を評価した。
 実施例2-1~2-4、比較例2-1~2-3の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 ケイ素化合物がLiSiOを含むことで、初期効率が大きく向上した。一方で、改質を行わず、ケイ素化合物にリチウムを含ませなかった比較例2-1では初期効率が低下した。また、LiSiOの半値幅が1.1°以上1.5°以下の範囲内にある場合、良好な初回効率及び、大気中での安定性が得られた。一方、LiSiOの半値幅が1.1°未満の比較例2-2では、保管前の初回効率が低下した。また、LiSiOの半値幅が1.5°よりも大きい比較例2-3では、保管後の初回効率低下、重量増加、Li溶出、凝集が確認され、大気中で不安定であった。
(実施例3-1~実施例3-2、比較例3-1~比較例3-2)
 表3のようにIb/Iaを調整したことを除き、実施例1-2と同じ条件で二次電池を作製し、負極活物質の大気中での安定性、および二次電池の初回効率を評価した。
 実施例3-1~実施例3-2、比較例3-1~比較例3-2の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から分かるように、1.1≦Ib/Ia≦1.5の範囲内にある場合、初回効率及び大気中での安定性は良好であった。一方で、Ib/Ia<1.1である比較例3-1では、24時間保管後において、重量増加、Li溶出が大きく、凝集も見られたため、大気中で不安定であった。また、1.5<Ib/Iaである比較例3-2では、保管前の初回効率が低かった。
(実施例4-1~実施例4-2、比較例4-1)
 表4のようにI(24.8°)/Iaの値及びLiSiのピーク有無を変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、負極活物質の大気中での安定性、および二次電池の初回効率を評価した。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、I(24.8°)/Ia≦0.5の範囲内にある場合、良好な初回効率が得られた。一方で、0.5<I(24.8°)/Iaである比較例4-1では、初回効率が大きく低下した。また、LiSiのピークがある場合と比較してLiSiのピークがない場合に初回効率が向上した。
(実施例5-1~実施例5-2、比較例5-1)
 表5のようにI(28.4°)/Iaの値及びSiのピーク有無を変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、負極活物質の大気中での安定性、および二次電池の初回効率を評価した。
Figure JPOXMLDOC01-appb-T000005
 表5から分かるように、I(28.4°)/Ia≦1.0の範囲内にある場合、良好な大気中での安定性及び初回効率が得られた。一方で、1.0<I(28.4°)/Iaである比較例5-1では、24時間保管後に初回効率の低下、重量増加、Li溶出、凝集が見られ、大気中で不安定であった。また、Si(111)面のピークが確認されない場合により良好な特性が得られた。
(実施例6-1~実施例6-3)
 表6のようにI(29.9°)/Iaの値及びLiOH・HOのピーク有無を変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、負極活物質の大気中での安定性、および二次電池の初回効率を評価した。
Figure JPOXMLDOC01-appb-T000006
 表6のように、I(29.9°)/Ia≦0.7の範囲内にある場合、24時間保管後においても凝集することなく、特に大気中での安定性は良好であった。また、LiOH・HOのピークが確認されない場合、24時間保管後でも重量変化が見られず、さらに大気中での安定性は良好であった。
(実施例7-1~7-2)
 表7のようにI(31.7°)/Iaの値を変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、負極活物質の大気中での安定性、および二次電池の初回効率を評価した。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、I(31.7°)/Ia≦0.7の範囲内にある場合、24時間保管後でも重量変化が見られず、良好な大気中での安定性が得られた。
(実施例8-1、実施例8-2)
 表8のように負極活物質粒子を10質量%の割合で25℃の水中に1時間分散した後の水中におけるケイ素量を変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、負極活物質の大気中での安定性、および二次電池の初回効率を評価した。
Figure JPOXMLDOC01-appb-T000008
 表8から分かるように、負極活物質粒子を10質量%の割合で25℃の水中に1時間分散した後の水中におけるケイ素量が50ppm以下のものでは、24時間保管後でも重量変化がなく、良好な大気中での安定性が得られた。
(実施例9-1~9-3)
 ケイ素化合物粒子のBET比表面積を表9のように変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、負極活物質の大気中での安定性、および二次電池の初回効率を評価した。
Figure JPOXMLDOC01-appb-T000009
 負極活物質粒子のBET比表面積が1m/g以上3m/g以下の範囲内において、良好な大気中での安定性、および初回効率が得られた。BET比表面積が1未満と小さい実施例9-1では、初回効率がやや低下した。BET比表面積が3m/gよりも大きい実施例9-3では、24時間保管後に重量増加が見られた。
(実施例10-1~実施例10-6)
 ケイ素系活物質粒子のメジアン径及びD90/D10を調整したこと以外、実施例1-2と同じ条件で二次電池を作製し、負極活物質の大気中での安定性、および二次電池の初回効率を評価した。
Figure JPOXMLDOC01-appb-T000010
 表10からわかるように、メジアン径が4.0μm以上15μm以下でかつ、D90/D10が3以下の場合において、良好な大気中での安定性、及び初回効率が得られた。メジアン径が4.0μm未満の実施例10-1及びメジアン径が15μmよりも大きい実施例10-4では、24時間保管後において若干の初回効率低下がみられた。また、D90/D10が3よりも大きい実施例10-6においても24時間保管後において若干の初回効率低下がみられた。
(実施例11-1)
 ケイ素系活物質粒子の表面に炭素材を被覆しなかったこと以外、実施例1-2と同じ条件で二次電池を作製し、初回効率、スラリーの安定性を評価した。
(実施例11-2~11-4)
 ケイ素系活物質粒子の表面に被覆された炭素材の平均厚さを表11のように変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、負極活物質の大気中での安定性、および二次電池の初回効率を評価した。炭素材の平均厚さは、CVD条件を変更することで調整した。
Figure JPOXMLDOC01-appb-T000011
 表11から分かるように、炭素材の平均厚さが10nm以上100nm以下において、良好な大気中での安定性、及び初回効率が得られた。表面に炭素材を含まない実施例11-1では、24時間保管後において若干の初回効率の低下がみられた。また、炭素材厚さが100nmよりも大きい実施例11-4では、保管前の初回効率がやや低い値であった。
(実施例12-1~12-3)
 ケイ素系活物質粒子の表面にリン酸塩を含ませたこと以外、実施例1-2と同じ条件で二次電池を作製し、負極活物質の大気中での安定性、および二次電池の初回効率を評価した。リン酸塩は、負極活物質粒子に対して1重量%の割合で配合し、せん断混合により負極活物質粒子表面に付着させた。
Figure JPOXMLDOC01-appb-T000012
 表12から分かるように、表面にリン酸塩を含む場合、24時間保管後のLi溶出量が低下し、大気中での安定性が改善された。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (15)

  1.  負極活物質粒子を含む非水電解質二次電池用負極活物質であって、
     前記負極活物質粒子は、ケイ素化合物(SiO:0.8≦x≦1.2)を含むケイ素化合物粒子を含有し、
     前記ケイ素化合物粒子は、LiSiOを含有し、
     前記負極活物質粒子をCu-Kα線を用いたX線回折により測定したときに、
     該X線回折により得られるLiSiOの(020)面に起因するピークの半値幅が1.1°以上1.5°以下であり、
     該X線回折により得られるスペクトルが、
     LiSiOの(020)面に起因するピークの強度Ia、
     LiSiOの(111)面に起因するピークの強度Ib、
     2θ=24.8°における強度I(24.8°)、
     2θ=28.4°における強度I(28.4°)
    について、下記式(1)~(3)の全てを満たすものであることを特徴とする非水電解質二次電池用負極活物質。
     1.1≦Ib/Ia≦1.5 ・・・(1)
     I(24.8°)/Ia≦0.5 ・・・(2)
     I(28.4°)/Ia≦1.0 ・・・(3)
  2.  前記X線回折により得られるスペクトルが、LiSiに起因する2θ=24.8°付近のピークを有さないことを特徴とする請求項1に記載の非水電解質二次電池用負極活物質。
  3.  前記X線回折により得られるスペクトルが、Siの(111)面に起因する2θ=28.4°付近のピークを有さないことを特徴とする請求項1に記載の非水電解質二次電池用負極活物質。
  4.  前記X線回折により得られるスペクトルが、1.2≦Ib/Ia≦1.3を満たすことを特徴とする請求項1から請求項3のいずれか1項に記載の非水電解質二次電池用負極活物質。
  5.  前記LiSiOの(020)面に起因するピークの半値幅が、1.2°以上1.3°以下であることを特徴とする請求項1から請求項4のいずれか1項に記載の非水電解質二次電池用負極活物質。
  6.  前記X線回折により得られるスペクトルが、LiOH・HOに起因する2θ=29.9°における強度I(29.9°)について、I(29.9°)/Ia≦0.7を満たすことを特徴とする請求項1から請求項5のいずれか1項に記載の非水電解質二次電池用負極活物質。
  7.  前記X線回折により得られるスペクトルが、LiOH・HOに起因する2θ=29.9°付近のピークを有さないことを特徴とする請求項6に記載の非水電解質二次電池用負極活物質。
  8.  前記X線回折により得られるスペクトルが、2θ=31.7°における強度I(31.7°)について、I(31.7°)/Ia≦0.7を満たすことを特徴とする請求項1から請求項7のいずれか1項に記載の非水電解質二次電池用負極活物質。
  9.  前記負極活物質粒子を10質量%の割合で25℃の水中に1時間分散した後の水中におけるケイ素量が、50質量ppm以下であることを特徴とする請求項1から請求項8のいずれか1項に記載の非水電解質二次電池用負極活物質。
  10.  前記負極活物質粒子のBET比表面積が1m/g以上3m/g以下であることを特徴とする請求項1から請求項9のいずれか一項に記載の非水電解質二次電池用負極活物質。
  11.  前記負極活物質粒子のメジアン径が4.0μm以上15μm以下であり、かつ、累積10%径(D10)に対する累積90%径(D90)の比率(D90/D10)が3以下であることを特徴とする請求項1から請求項10のいずれか一項に記載の非水電解質二次電池用負極活物質。
  12.  前記負極活物質粒子は、表層部に炭素材を含み、
     該炭素材の平均厚さは10nm以上100nm以下であることを特徴とする請求項1から請求項11のいずれか一項に記載の非水電解質二次電池用負極活物質。
  13.  前記負極活物質粒子は、表層部にリン酸塩を含むことを特徴とする請求項1から請求項12のいずれか一項に記載の非水電解質二次電池用負極活物質。
  14.  請求項1から請求項13のいずれか1項に記載の非水電解質二次電池用負極活物質を含むことを特徴とする非水電解質二次電池。
  15.  ケイ素化合物粒子を含有する負極活物質粒子を含む非水電解質二次電池用負極活物質を製造する方法であって、
     ケイ素化合物(SiO:0.8≦x≦1.2)を含むケイ素化合物粒子を作製する工程と、
     前記ケイ素化合物粒子にLiを挿入し、LiSiOを含有させる工程と、
     によって、前記負極活物質粒子を作製し、
     前記負極活物質粒子をCu-Kα線を用いたX線回折により測定したときに、
     該X線回折により得られるLiSiOの(020)面に起因するピークの半値幅が1.1°以上1.5°以下であり、
     該X線回折により得られるスペクトルが、
     LiSiOの(020)面に起因するピークの強度Ia、
     LiSiOの(111)面に起因するピークの強度Ib、
     2θ=24.8°における強度I(24.8°)、
     2θ=28.4°における強度I(28.4°)
    について、下記式(1)~(3)の全てを満たすものを選別する工程をさらに有し、
     該選別した負極活物質粒子を用いて、非水電解質二次電池用負極活物質を製造することを特徴とする非水電解質二次電池用負極活物質の製造方法。
     1.1≦Ib/Ia≦1.5 ・・・(1)
     I(24.8°)/Ia≦0.5 ・・・(2)
     I(28.4°)/Ia≦1.0 ・・・(3)
PCT/JP2022/003917 2021-02-15 2022-02-02 非水電解質二次電池用負極活物質及びその製造方法並びに非水電解質二次電池 WO2022172815A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/276,113 US20240109782A1 (en) 2021-02-15 2022-02-02 Negative electrode active material for non-aqueous electrolyte secondary battery, method for manufacturing the same, and non-aqueous electrolyte secondary battery
CN202280013993.9A CN116888766A (zh) 2021-02-15 2022-02-02 非水电解质二次电池用负极活性物质及其制备方法、以及非水电解质二次电池
KR1020237027245A KR20230145351A (ko) 2021-02-15 2022-02-02 비수전해질 이차전지용 음극활물질 및 그의 제조방법그리고 비수전해질 이차전지
EP22752643.1A EP4293749A1 (en) 2021-02-15 2022-02-02 Negative electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-021701 2021-02-15
JP2021021701A JP7412372B2 (ja) 2021-02-15 2021-02-15 非水電解質二次電池用負極活物質及びその製造方法並びに非水電解質二次電池

Publications (1)

Publication Number Publication Date
WO2022172815A1 true WO2022172815A1 (ja) 2022-08-18

Family

ID=82838803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003917 WO2022172815A1 (ja) 2021-02-15 2022-02-02 非水電解質二次電池用負極活物質及びその製造方法並びに非水電解質二次電池

Country Status (7)

Country Link
US (1) US20240109782A1 (ja)
EP (1) EP4293749A1 (ja)
JP (1) JP7412372B2 (ja)
KR (1) KR20230145351A (ja)
CN (1) CN116888766A (ja)
TW (1) TW202239709A (ja)
WO (1) WO2022172815A1 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325765A (ja) 1992-07-29 1994-11-25 Seiko Instr Inc 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2006114454A (ja) 2004-10-18 2006-04-27 Sony Corp 電池
JP2006164954A (ja) 2004-11-11 2006-06-22 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP2007234255A (ja) 2006-02-27 2007-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP2008251369A (ja) 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
JP2008282819A (ja) 2008-07-10 2008-11-20 Toshiba Corp 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2009070825A (ja) 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池
JP2009205950A (ja) 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP2009212074A (ja) 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2017195015A (ja) * 2016-04-18 2017-10-26 信越化学工業株式会社 負極活物質、混合負極活物質材料、負極活物質の製造方法
JP2020113495A (ja) * 2019-01-16 2020-07-27 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに、非水電解質二次電池用負極材の製造方法
WO2021153077A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 二次電池用負極活物質およびその製造方法、ならびに二次電池

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325765A (ja) 1992-07-29 1994-11-25 Seiko Instr Inc 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2006114454A (ja) 2004-10-18 2006-04-27 Sony Corp 電池
JP2006164954A (ja) 2004-11-11 2006-06-22 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP2007234255A (ja) 2006-02-27 2007-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP2008251369A (ja) 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
JP2009070825A (ja) 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池
JP2009212074A (ja) 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2009205950A (ja) 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP2008282819A (ja) 2008-07-10 2008-11-20 Toshiba Corp 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2017195015A (ja) * 2016-04-18 2017-10-26 信越化学工業株式会社 負極活物質、混合負極活物質材料、負極活物質の製造方法
JP2020113495A (ja) * 2019-01-16 2020-07-27 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに、非水電解質二次電池用負極材の製造方法
WO2021153077A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 二次電池用負極活物質およびその製造方法、ならびに二次電池

Also Published As

Publication number Publication date
TW202239709A (zh) 2022-10-16
KR20230145351A (ko) 2023-10-17
EP4293749A1 (en) 2023-12-20
JP7412372B2 (ja) 2024-01-12
CN116888766A (zh) 2023-10-13
JP2022124117A (ja) 2022-08-25
US20240109782A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
JP7265668B2 (ja) リチウムイオン二次電池、モバイル端末、自動車及び電力貯蔵システム
JP7186099B2 (ja) 非水電解質二次電池用負極活物質及びその製造方法
US11335905B2 (en) Negative electrode active material, mixed negative electrode active material, and method of producing negative electrode active material
JP6797739B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP6861565B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
WO2020149133A1 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに、非水電解質二次電池用負極材の製造方法
JP7084849B2 (ja) 負極活物質、混合負極活物質、水系負極スラリー組成物、及び、負極活物質の製造方法
WO2019026550A1 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
CN110679019B (zh) 负极活性物质、混合负极活性物质材料、以及负极活性物质颗粒的制造方法
WO2018061536A1 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
EP3444877A1 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing negative electrode for nonaqueous electrolyte secondary batteries
KR102335474B1 (ko) 부극 활물질, 혼합 부극 활물질 재료, 및 부극 활물질의 제조 방법
JP7186156B2 (ja) 負極活物質、負極及び負極活物質の製造方法
JP7285991B2 (ja) 非水電解質二次電池用負極及びその製造方法
WO2022239676A1 (ja) 負極活物質及びその製造方法
JP7175254B2 (ja) 非水電解質二次電池負極用添加剤、及び、非水電解質二次電池用水系負極スラリー組成物
WO2022172815A1 (ja) 非水電解質二次電池用負極活物質及びその製造方法並びに非水電解質二次電池
WO2023140072A1 (ja) 非水電解質二次電池用負極活物質及びその製造方法
WO2024024567A1 (ja) 非水電解質二次電池用負極活物質及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18276113

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280013993.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022752643

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022752643

Country of ref document: EP

Effective date: 20230915