WO2022172625A1 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- WO2022172625A1 WO2022172625A1 PCT/JP2021/048123 JP2021048123W WO2022172625A1 WO 2022172625 A1 WO2022172625 A1 WO 2022172625A1 JP 2021048123 W JP2021048123 W JP 2021048123W WO 2022172625 A1 WO2022172625 A1 WO 2022172625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor layer
- nitride semiconductor
- active region
- substrate
- gate
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 238
- 239000012535 impurity Substances 0.000 claims abstract description 19
- 150000004767 nitrides Chemical class 0.000 claims description 157
- 239000000758 substrate Substances 0.000 claims description 43
- 230000005533 two-dimensional electron gas Effects 0.000 claims description 22
- 230000005669 field effect Effects 0.000 claims description 21
- 239000007772 electrode material Substances 0.000 claims 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 59
- 229910002601 GaN Inorganic materials 0.000 description 58
- 238000010586 diagram Methods 0.000 description 21
- 230000004048 modification Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 229910002704 AlGaN Inorganic materials 0.000 description 11
- 230000004888 barrier function Effects 0.000 description 10
- 239000000969 carrier Substances 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- -1 nitride compound Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/8252—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0605—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/095—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being Schottky barrier gate field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1066—Gate region of field-effect devices with PN junction gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41758—Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66446—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
- H01L29/66462—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66848—Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66893—Unipolar field-effect transistors with a PN junction gate, i.e. JFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
- H01L29/808—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
- H01L29/812—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
Definitions
- the present disclosure relates to a semiconductor device having a nitride semiconductor layer, and more particularly to a semiconductor device used in a switching power supply circuit that operates at high voltage and high frequency.
- GaN gallium nitride
- Nitride semiconductors can form various mixed crystals, and can easily form heterojunction interfaces.
- a nitride semiconductor heterojunction is characterized in that a high-concentration two-dimensional electron gas layer (2DEG layer) is generated at the junction interface by spontaneous polarization and piezoelectric polarization.
- a field effect transistor (FET) using this high-concentration 2DEG layer as a carrier is attracting attention as a high-frequency and high-power device.
- FETs using nitride semiconductors are expected to be applied to high-output power sources that operate at high voltages and high frequencies, taking advantage of their large bandgap and high electron mobility.
- JP 2012-69966 A Japanese Patent Publication No. 2017-526169
- FIG. 12 shows a plan view of a conventional FET 9 using a nitride semiconductor
- FIG. 12 shows a cross section taken along line AA of (a) of FIG.
- a plurality of active regions 910 having FETs which are composed of a source electrode 911, a drain electrode 912, a P-type nitride semiconductor layer 913 and a gate electrode 914, are arranged in parallel and separated from each other.
- the inactive region 990 is a region necessary for defining the active region 910, isolating it from other elements, and reducing parasitic capacitance in formation regions such as electrode pads and wiring.
- the P-type nitride semiconductor layer 913 and the gate electrode 914 extend from the active region 910 to the inactive region 990 .
- the source electrode 911 is connected to the collective source wiring 975 via the source wiring 915
- the drain electrode 912 is connected to the collective drain wiring 976 via the drain wiring 916
- the gate electrode 914 is connected to the collective gate wiring 974.
- a plurality of FETs 9 are connected in parallel.
- the FET 9 made of a nitride semiconductor in FIG. 12(a) has a problem that the drain leakage current is large when the gate voltage is equal to or lower than the threshold voltage. Considering the power supply application of FET, it is necessary to make the drain leak current sufficiently small.
- FIG. 12(c) shows a BB section of FIG. 12(a).
- the carrier concentration is controlled by the potential of the P-type nitride semiconductor layer 913 on the two-dimensional electron gas 905 to create an ON/OFF state.
- FIG. 12(d) shows a CC cross section of FIG. 12(a). Carriers remaining at the interface 980 shown in (c) of FIG. 12 are connected to the source electrode 911 via the two-dimensional electron gas 905 shown in (d) of FIG. 12, and this is observed as drain leak current.
- an object of the present disclosure is to provide a semiconductor device that suppresses drain leak current in an FET using a nitride semiconductor.
- a semiconductor device includes a substrate, a first nitride semiconductor layer formed on the substrate, and a band higher than the first nitride semiconductor layer.
- a second nitride semiconductor layer having a large gap and formed on the first nitride semiconductor layer; a first field effect transistor;
- the compound semiconductor layer and the second nitride semiconductor layer have a first active region in which a two-dimensional electron gas is formed, a second active region, and an inert region in which a two-dimensional electron gas is not formed.
- the first field effect transistor being included in the first active region and extending in a first direction in a plan view with respect to the substrate; a first P-type nitride semiconductor layer extending in the first direction in plan view with respect to the substrate, the first P-type nitride semiconductor layer being between the first source electrode and the first drain electrode; and a first gate electrode formed on a nitride semiconductor layer, wherein the second field effect transistor is included in the second active region and extends in the first direction in plan view with respect to the substrate.
- the layer further includes the first active region and the second active region in a second direction different from the first direction at both ends of the first active region and the second active region in the first direction.
- a third active region connected to the second active region and formed with a two-dimensional electron gas in plan view with respect to the substrate; a third nitride semiconductor layer having p-type impurities extending in two directions;
- the P-type nitride semiconductor layer and the second P-type nitride semiconductor layer are connected via the third nitride semiconductor layer. That is, in the semiconductor device, active regions are connected at both end portions of fingers of a plurality of separated FETs, and a third nitride semiconductor layer containing P-type impurities is formed on the active regions.
- the semiconductor device of the present disclosure has the effect of suppressing the drain leak current by suppressing the two-dimensional electron gas under the third nitride semiconductor layer containing the P-type impurity.
- FIG. 1 is a diagram showing an example of a semiconductor device according to a first embodiment.
- FIG. 2 is a boxplot of drain leakage currents of a conventional semiconductor device and a semiconductor device of the present disclosure.
- FIG. 3 is a diagram showing another example of the semiconductor device according to the first embodiment.
- FIG. 4 is a diagram showing another example of the semiconductor device according to the first embodiment.
- FIG. 5 is a diagram showing another example of the semiconductor device according to the first embodiment.
- FIG. 6 is a diagram showing another example of the semiconductor device according to the first embodiment.
- FIG. 7 is a diagram showing another example of the semiconductor device according to the first embodiment.
- FIG. 8 is a diagram illustrating an example of a semiconductor device in a first modification of the first embodiment;
- FIG. 8 is a diagram illustrating an example of a semiconductor device in a first modification of the first embodiment; FIG.
- FIG. 9 is a diagram showing an example of a semiconductor device in a second modification of the first embodiment
- FIG. 10 is a diagram showing an example of a semiconductor device according to the second embodiment.
- FIG. 11 is a diagram showing an example of a semiconductor device according to the third embodiment.
- FIG. 12 is a diagram showing an example of a conventional semiconductor device.
- FIG. 1 is a diagram showing an example of a semiconductor device according to a first embodiment.
- FIG. 1(a) shows a plan view of the semiconductor device 1 according to the first embodiment.
- a first active region 110 and a second active region 120 are formed in the semiconductor device 1 .
- a finger-like first source electrode 111 and a first drain electrode 112 (that is, extending in the first direction as the long side) are formed in the first active region 110, and the first P-type GaN layer is formed.
- first P-type nitride semiconductor layer 113 and the first gate electrode 114 straddle the interface between the first active region 110 and the inactive region 190 from the first active region 110 , and the inactive region 190 1st FET11 is formed by extending to. Further, a finger-shaped second source electrode 121 and a second drain electrode 122 are formed in the second active region 120, and a second P-type GaN layer (of the second P-type nitride semiconductor layer) is formed. For example) 123 and the second gate electrode 124 are extended from the second active region 120 across the interface between the second active region 120 and the inactive region 190 to the inactive region 190 to form the second gate electrode 124 . FET 12 is formed.
- the first active region 110 and the second active region 120 are regions in which two-dimensional electron gas is formed, and are formed side by side in the short side direction of the fingers (that is, the second direction).
- a non-active region 190 is formed between the first active region 110 and the second active region 120 where no two-dimensional electron gas is formed.
- the first source electrode 111 and the second source electrode 121 are connected to the collective source wiring 175 via the first source wiring 115 and the second source wiring 125, respectively, and the first drain electrode 112 and the second drain electrode
- the electrodes 122 are connected to the collective drain wiring 176 via the first drain wiring 116 and the second drain wiring 126, respectively, and the first gate electrodes 114 and the second gate electrodes 124 are each connected to the collective gate wiring 174.
- the first FET 11 and the second FET 12 are connected in parallel.
- FIG. 1(b) shows a cross-sectional view taken along line AA of FIG. 1(a).
- a buffer layer 102, a GaN channel layer (an example of a first nitride semiconductor layer) 103, and an AlGaN barrier layer (a second nitride semiconductor layer) having a bandgap larger than that of the GaN channel layer 103 are formed on a substrate 101 made of Si.
- Example) 104 are formed in this order.
- the buffer layer 102 has a multi-layered structure made of AlN and AlGaN, for example, and the total film thickness is, for example, about 2.1 ⁇ m.
- the composition of the AlGaN barrier layer 104 is, for example, Al 0.17 Ga 0.83 N, and the layer thickness is, for example, about 60 nm.
- a high-concentration 2DEG layer 105 is formed at the interface between the GaN channel layer 103 and the AlGaN barrier layer 104 due to the effects of piezoelectric polarization and spontaneous polarization.
- the inactive region 190 is the GaN channel layer 103 and the AlGaN barrier layer 104 whose resistance is increased by ion implantation of non-conductive impurities or the like.
- a first source electrode 111 , a first drain electrode 112 and a first P-type GaN layer 113 are formed on the AlGaN barrier layer 104 in the first active region 110 , and on the first P-type GaN layer 113
- the first FET 11 is formed by forming the first gate electrode 114 on the .
- a second source electrode 121, a second drain electrode 122, and a second P-type GaN layer 123 are formed on the AlGaN barrier layer 104 in the second active region 120, and the second P-type GaN layer 123 is formed.
- a second FET 12 is formed by forming a second gate electrode 124 thereon.
- the first source electrode 111, the first drain electrode 112, the second source electrode 121, and the second drain electrode 122 are, for example, a laminate of titanium (Ti) and aluminum (Al). make ohmic contact.
- the first gate electrode 114 and the second gate electrode 124 are, for example, a laminate of titanium (Ti) and aluminum (Al). are in ohmic contact.
- a two-dimensional electron gas is formed at both ends in the longitudinal direction of the finger between the first FET 11 and the second FET 12.
- a third active region 130 is formed to connect the first active region 110 and the second active region 120 .
- a third nitride semiconductor layer 131 containing P-type impurities is formed on the third active region 130 , and the first active region 110 , the second active region 120 and the third active region 130 are formed in the same manner as the first active region 110 .
- the third nitride semiconductor layer 131 is internally connected to the first P-type GaN layer 113 and the second P-type GaN layer 123 .
- the third nitride semiconductor layer 131 containing P-type impurities is preferably made of the same material as the first P-type GaN layer 113 and the second P-type GaN layer 123 .
- FIG. 1 shows the BB cross section of (a) of FIG.
- a first P-type GaN layer 113 and a first gate electrode 114 of the first FET 11 are formed on the AlGaN barrier layer 104 . It extends from the first active region 110 to the inactive region 190 across the interface 180 between the first active region 110 and the inactive region 190 .
- the second FET 12 also has a second P-type GaN layer 123 and a second gate electrode 124 extending from the second active region 120 to the inactive region 190 .
- FIG. 1(d) shows a CC cross section of FIG. 1(a).
- a third nitride semiconductor layer 131 is formed on the AlGaN barrier layer 104 in the first active region 110 connected to the third active region 130 .
- a third nitride semiconductor layer 131 extends to the inactive region 190 .
- the FET When the gate voltage Vgs with respect to the source is equal to or lower than the threshold voltage Vth, the FET is turned off, and as shown in FIG. 2DEG layer 105 does not occur. Further, as shown in FIGS. 1(c) and 1(d), no distinct carriers remain at the interface 180 between the first active region 110 and the inactive region 190, but carriers may be generated by ion implantation or the like. A leak path is generated through the crystal defects that have formed. A leak current flows through this leak path in an off state in which a high electric field is generated. On the other hand, as shown in FIG.
- the P-type third nitride semiconductor layer 105 disappears due to the depletion layer generated from 131 . Therefore, the leak path generated between the interface 180 and the 2DEG layer 105 under the first drain electrode 112 and the first source electrode 111 is not connected as a current path in the off state. As a result, the drain leak current can be significantly suppressed as compared with the conventional example.
- FIG. 2 is a box-and-whisker diagram of the drain leakage current of the semiconductor device according to the conventional example and the present embodiment. In the semiconductor device according to the present embodiment, it is confirmed that the drain leakage current is reduced by about one digit as compared with the conventional example.
- FIG. 3 is a diagram showing another example of the semiconductor device according to the first embodiment.
- the third gate electrode 132 is formed on the third nitride semiconductor layer 131, and the third gate electrode 132 is A structure in which the first gate electrode 114 and the second gate electrode 124 are connected may be employed.
- FIG. 3(b) shows a cross-sectional view along AA in FIG. 3(a).
- FIG. 3(c) shows a BB section of FIG. 3(a).
- FIG. 3(d) shows a CC cross section of FIG. 3(a).
- an inactive region 190 is preferably formed as the first inactive region.
- An inactive region 190 as a first inactive region is surrounded by the first active region 110 , the second active region 120 and the third active region 130 in plan view with respect to the substrate 101 . By doing so, it is possible to separate the heat generating region of the FET and suppress the temperature rise of the semiconductor device.
- FIG. 4 is a diagram showing another example of the semiconductor device according to the first embodiment.
- the finger-shaped first P-type GaN layer 113 terminates inside the first active region 110 and the second P-type GaN layer 113 terminates inside the first active region 110 .
- a structure in which the type GaN layer 123 terminates inside the second active region 120 may be employed.
- the third nitride semiconductor layer 131 forms the first P-type GaN layer 113 and the second P-type GaN layer inside the first active region 110 , the second active region 120 , and the third active region 130 . 123 may be used.
- FIG. 4(b) shows a cross-sectional view along AA in FIG. 4(a).
- FIG. 4(c) shows a BB section of FIG. 4(a).
- FIG. 4(d) is a CC cross section of FIG. 4(a).
- Generation of the 2DEG layer 105 in the first active region 110 under the third nitride semiconductor layer 131 can be suppressed, as shown in FIG. 4D. In this way, the leak path leading from the first drain electrode 112 to the first source electrode 111 via the 2DEG layer 105 is suppressed, so drain leak current can be suppressed as compared with the conventional example.
- the length La of the fingers of the first P-type GaN layer 113 in the longitudinal direction is longer than the length Lb of the nitride semiconductor layer 131 (that is, the length in the second direction).
- the parasitic capacitance generated between the third nitride semiconductor layer 131 and the first source electrode 111 and between the third nitride semiconductor layer 131 and the second source electrode 121 can be reduced. can be suppressed, and an increase in gate drive power can be suppressed.
- the FET is normally off. Normally-off means that Vth>0 [V].
- the 2DEG layer 105 does not occur under the .
- the FET can be turned off by shorting the gate and source outside the FET with a pull-down resistor or the like, and the FET can be easily protected.
- FIG. 5 is a diagram showing another example of the semiconductor device according to the first embodiment.
- Recess structures 117 , 127 and 137 may be formed in the AlGaN barrier layer 104 under the P-type GaN layer 123 and the third nitride semiconductor layer 131 . By doing so, the FET can be normally turned off.
- Recess structures 117 and 137 are preferably formed and connected continuously, and recess structures 127 and 137 are preferably formed and connected continuously.
- 5(c) and 5(d) respectively show the BB cross section and the CC cross section of FIG. 5(a). As shown in FIG.
- the recess structure 117 extends from the active region to the inactive region, and as shown in FIG. 5(d), the recess structure 137 extends from the active region to the inactive region. It is desirable to be With such a structure, a leak path through the interface 180 between the active region and the inactive region can be reliably suppressed.
- FIG. 6 is a diagram showing another example of the semiconductor device according to the first embodiment.
- (n+1) for example, three) first source electrodes 111, n
- a number for example, two) of first drain electrodes 112 , 2 ⁇ n (for example, four) of first P-type GaN layers 113 and a first gate electrode 114 are formed, and a second active region 120 is formed.
- (n+1) for example, 3) second source electrodes 121, n (for example, 2) second drain electrodes 122, 2 ⁇ n (for example, 4) second P-type GaN
- a plurality of source, drain and gate electrodes may be formed in finger-like fashion in one active region such that layer 123 and second gate electrode 124 are formed. With such a configuration, it is possible to secure the drain current capability of the FET and distribute the heat generation area at the same time.
- first source electrodes 111 constituting the FET 11 (n ⁇ 1) (for example, one) first source electrodes 111 sandwiched between the first drain electrodes 112 are: It is desirable that the inside of the first active region 110 is surrounded by the first P-type GaN layer 113 .
- the (n ⁇ 1) (for example, one) second source electrode 121 sandwiched between the second drain electrodes 122 is preferably surrounded by a second P-type GaN layer 123 inside the second active region 120 .
- FIG. 7 is a diagram showing another example of the semiconductor device according to the first embodiment.
- the third FET 14 formed in the fourth active region 140, which is the region where the two-dimensional electron gas is formed at both ends of the semiconductor device 1 among the plurality of aligned active regions state.
- a finger-like third source electrode 141 and a third drain electrode 142 are formed in the fourth active region 140, and a third P-type GaN layer (third 143 and the third gate electrode 144 extend from the fourth active region 140 to the inactive region 190 across the interface between the fourth active region 140 and the inactive region 190.
- the fourth FET 14 is formed.
- FIG. 7(b) shows the AA section of FIG. 7(a).
- the third P-type GaN layer 143 located at the end in the direction in which the plurality of active regions are arranged is adjacent to the third P-type GaN layer 143 (that is, , the third source electrode 141 located at the end in the second direction).
- FIG. 7(c) shows a BB section of FIG. 7(a)
- FIG. 7(d) shows a CC section of FIG. 7(a).
- the electrode widths of the third source electrode 141 and the first source electrode 111 are equal.
- the resistances of the source electrodes of the FETs 14 at both ends and the other FETs can be made uniform, and the drain currents flowing through the respective FETs can be made uniform, thereby suppressing the concentration of heat generation in the FETs.
- FIG. 8 is a diagram illustrating an example of a semiconductor device in a first modification of the first embodiment;
- FIG. 8(a) shows a plan view of a semiconductor device 1 according to a first modification of the first embodiment.
- a gate wiring 152 is formed between the first FET 11 formed in the first active region 110 and the second FET 12 formed in the second active region 120, and the third gate electrode 132 and both ends of the fingers are connected. connected at the Also, the gate wiring 152 may be connected to the gate-intensive wiring 174 .
- the gate electrodes 114 and 132 are connected to the gate from both ends of the fingers of the first gate electrode 114 and the second gate electrode 132 via the gate wiring 152 and the third gate electrode 132 .
- a voltage can be applied, and the FET can be switched at high speed.
- FIG. 8B which is a cross-sectional view taken along AA in FIG. It is preferably formed over the inactive region 190 as a region.
- the inactive region 190 as the second inactive region is formed between the first active region 110 and the second active region 120 in plan view with respect to the substrate 101, and is formed between the first active region 110 and the second active region 120. 120 and a third active region 130 .
- the material of the gate wiring 152 is the same as that of the first gate electrode 114 .
- the gate wiring 152 and the first gate electrode 114 can be formed in the same process, and the gate wiring 152 can be formed easily.
- the length of the gate wiring 152 in the short side direction is longer than the length of the first gate electrode 114 in the short side direction. Long is desirable. By doing so, the resistance per unit length of the gate wiring 152 can be reduced, and the switching speed of the FET can be increased.
- a third nitride semiconductor layer 151 containing P-type impurities is formed under the gate wiring 152 as shown in FIG. 8(a). By doing so, a step between the gate wiring 152 and the third gate electrode 132 is suppressed, so disconnection of the gate wiring 152 can be suppressed.
- FIG. 9 is a diagram showing an example of a semiconductor device in a second modification of the first embodiment;
- the gate wiring 152 is made of the same material as the first source wiring 115, as shown in FIG. 9A.
- FIG. 9(b) shows a cross-sectional view along AA in FIG. 9(a). Since the resistance per unit length of the first source wiring 115 is generally lower than that of the first gate electrode 114, the gate wiring 152 is formed of the same material as the first source wiring 115. , the resistance of the gate wiring 152 can be lowered, and the switching speed of the FET can be increased.
- FIG. 10 shows a plan view of a semiconductor device 1 according to the second embodiment.
- a plurality of first active regions 110 and second active regions 120 are formed spaced apart in the longitudinal direction of the finger.
- An inactive region 190 is formed as a third inactive region between the plurality of first active regions 110 , and a fourth inactive region is formed between the plurality of second active regions 120 .
- An inactive region 190 is formed as an active region.
- a first FET 11 is formed in each of the plurality of first active regions 110
- a second FET 12 is formed in each of the plurality of second active regions 120 .
- a plurality of third active regions 130 and third nitride semiconductor layers 131 containing P-type impurities are formed separately in the longitudinal direction of the fingers to form the first active region 110, the second active region 120 and the third active region 120.
- the third nitride semiconductor layer 131 is connected to the first P-type GaN layer 113 and the second P-type GaN layer 123 .
- a plurality of first source electrodes 111 are connected via one first source wiring 115, and a plurality of first drain electrodes 112 are connected to one first source wiring 115.
- a plurality of first P-type GaN layers 113 extending in the longitudinal direction of the fingers and connected, and a plurality of first gate electrodes 114 extending in the longitudinal direction of the fingers. connected.
- the plurality of second source electrodes 121 are connected via one second source wiring 125
- the plurality of second drain electrodes 122 are connected via one second drain wiring 126
- a plurality of second P-type GaN layers 123 are formed continuously in the longitudinal direction of the fingers
- a plurality of first gate electrodes 114 are formed continuously in the longitudinal direction of the fingers.
- the first FET 11 and the second FET 12 By forming the first FET 11 and the second FET 12 separately in the longitudinal direction of the fingers, the heat generating regions of the FETs can be distributed, and the temperature rise of the semiconductor device 1 can be suppressed.
- the longitudinal direction of the finger is reduced. It is possible to suppress an increase in the drain leak current of each of the FETs divided in the direction.
- a single first source wiring 115 connects a plurality of first source electrodes
- a single first drain wiring 116 connects a plurality of first drain electrodes.
- the first P-type GaN layer 113 extends in the longitudinal direction of the finger and is connected. Since the first gate electrode 114 is formed on the first gate electrode 114, the step of the first gate electrode 114 is eliminated, and the reliability of the first gate electrode 114 is improved.
- FIG. 11 is a diagram showing an example of a semiconductor device according to the third embodiment.
- FIG. 11(a) shows a plan view of a semiconductor device 2 according to the third embodiment.
- FIG. 11(b) shows the AA section of FIG. 11(a).
- a first active region 210 , a second active region 220 and a third active region 230 are formed in the semiconductor device 2 .
- a finger-like first source electrode 211 and a second source electrode 212 are formed in the first active region 210, and a first P-type GaN layer (an example of a first P-type nitride semiconductor layer) 213 is formed. and the first gate electrode 214 extends to the inactive region 290 across the interface between the first active region 210 and the inactive region 290, forming a second P-type GaN layer (second P-type nitride semiconductor layer).
- Example) 215 and the second gate electrode 216 straddle the interface between the first active region 210 and the inactive region 290 and extend to the inactive region 290 to form the first double gate type FET 21. be.
- a finger-like third source electrode 221 and a fourth source electrode 222 are formed in the second active region 220, and a third P-type GaN layer (an example of a third P-type nitride semiconductor layer) 223 is formed. and a third gate electrode 224 extending to the inactive region 290 across the interface between the second active region 220 and the inactive region 290, forming a fourth P-type GaN layer (fourth P-type nitride semiconductor layer Example) 225 and the fourth gate electrode 226 straddle the interface between the second active region 220 and the inactive region 290 and extend to the inactive region 290 to form the second double gate type FET 22. be.
- a finger-like fifth source electrode 231 and a sixth source electrode 232 are formed in the third active region 230, and a fifth P-type GaN layer (an example of a fifth P-type nitride semiconductor layer) 233 is formed. and a fifth gate electrode 234 extending to the inactive region 290 across the interface between the third active region 230 and the inactive region 290, forming a sixth P-type GaN layer (sixth P-type nitride semiconductor layer Example)
- the third double gate type FET 23 is formed by extending the gate electrode 235 and the sixth gate electrode 236 across the interface between the third active region 230 and the inactive region 290 to the inactive region 290. be.
- the first active region 210, the second active region 220, and the third active region 230 are formed side by side in the short side direction of the finger, and the first active region 210 and the second active region are formed in parallel. 220 and between the second active region 220 and the third active region 230, an inactive region 290 is formed.
- the first source electrode 211, the third source electrode 221, and the fifth source electrode 231 are connected to the first source-collection via the first source wiring 217, the third source wiring 227, and the fifth source wiring 237, respectively.
- the second source electrode 212, the fourth source electrode 222, and the sixth source electrode 232 are connected to the wiring 277 through the second source wiring 218, the fourth source wiring 228, and the sixth source wiring 238, respectively.
- the first gate electrode 214, the third gate electrode 224, and the fifth gate electrode 234 are connected to the first gate aggregate wiring 274, respectively, and the second gate electrode is connected to the second gate aggregate wiring 278.
- the fourth gate electrode 226, and the sixth gate electrode 236 are connected to the second gate aggregate wiring 276, respectively, to form the first double gate FET 21, the second double gate FET 22, and the third gate electrode 226.
- the double gate type FETs 23 are connected in parallel.
- a fourth active region 240 is formed and connects the first active region 210 and the second active region 220 .
- a third nitride semiconductor layer 241 containing P-type impurities is formed on the fourth active region 240 , and the first active region 210 , the second active region 220 and the fourth active region 240 are formed in the same manner as the first active region 210 .
- the third nitride semiconductor layer 241 is internally connected to the second P-type GaN layer 215 and the fourth P-type GaN layer 225 .
- a fifth active region 250 which is a region in which a two-dimensional electron gas is formed, is formed at both ends in the longitudinal direction of the fingers between the second double-gate type FET 22 and the third double-gate type FET 23, A fifth active region 250 connects the second active region 220 and the third active region 230 .
- a fourth nitride semiconductor layer 251 containing P-type impurities is formed on the fifth active region 250 , and the second active region 220 , the third active region 230 and the fifth active region 250 are formed.
- the fourth nitride semiconductor layer 251 is internally connected to the third P-type GaN layer 223 and the fifth P-type GaN layer 233 .
- the operation of the FET will be described using the second double gate type FET 22 as an example.
- the double gate type FET 22 is turned off.
- the fourth nitride semiconductor layer 251 is connected to the third P-type GaN layer 223, a 2DEG layer 205 is generated in the second active region 220 under the fourth nitride semiconductor layer 251. do not do.
- the semiconductor device 2 according to the third embodiment can suppress bidirectional leak current.
- the seventh gate electrode 242 is formed on the third nitride semiconductor layer 241, and the seventh gate electrode 242 is formed between the second gate electrode 216 and the fourth gate electrode 216.
- the eighth gate electrode 252 is formed on the fourth nitride semiconductor layer 251, and the eighth gate electrode 252 is connected to the third gate electrode 224 and the fifth gate. It may be configured to be connected to the electrode 234 . With such a configuration, the potentials of the third nitride semiconductor layer 241 and the fourth nitride semiconductor layer 251 are stabilized, and bidirectional leak current can be reliably prevented.
- a semiconductor device can be used in a switching power supply circuit that operates at high voltage and high frequency.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
図1は、第1の実施形態における半導体装置の一例を示す図である。図1の(a)は第1の実施形態にかかる半導体装置1の平面図を示す。半導体装置1には第1の活性領域110と第2の活性領域120が形成される。フィンガー状の(つまり、第1の方向を長辺として延伸する)第1のソース電極111及び第1のドレイン電極112が第1の活性領域110の中に形成され、第1のP型GaN層(第1のP型窒化物半導体層の一例)113及び第1のゲート電極114が第1の活性領域110から第1の活性領域110と不活性領域190との界面をまたぎ、不活性領域190まで延設されることにより第1のFET11が形成される。また、フィンガー状の第2のソース電極121及び第2のドレイン電極122が、第2の活性領域120の中に形成され、第2のP型GaN層(第2のP型窒化物半導体層の一例)123及び第2のゲート電極124が第2の活性領域120から第2の活性領域120と不活性領域190との界面をまたぎ、不活性領域190まで延設されることにより、第2のFET12が形成される。ここで、第1の活性領域110と第2の活性領域120は、2次元電子ガスが形成される領域であり、フィンガーの短辺方向(つまり、第2の方向)に並んで形成されており、第1の活性領域110と第2の活性領域120との間には、2次元電子ガスが形成されない不活性領域190が形成される。
第1の実施形態の第1の変形例について述べる。図8は、第1の実施形態の第1の変形例における半導体装置の一例を示す図である。図8の(a)は第1の実施形態の第1の変形例にかかる半導体装置1の平面図を示す。第1の活性領域110に形成される第1のFET11と第2の活性領域120に形成される第2のFET12との間にゲート配線152が形成され、第3のゲート電極132とフィンガーの両端部で接続されている。また、ゲート配線152はゲート集約配線174と接続されていてもよい。
図9は、第1の実施形態の第2の変形例における半導体装置の一例を示す図である。第1の実施形態の第2の変形例においては、図9の(a)に示すようにゲート配線152が第1のソース配線115と同一の材料で形成されている。図9の(b)は、図9の(a)のA-Aにおける断面図を示している。一般的に第1のゲート電極114よりも第1のソース配線115の方が単位長さ当たりの抵抗が小さいため、ゲート配線152が第1のソース配線115と同一の材料で形成されることにより、ゲート配線152の抵抗を下げることができ、FETのスイッチングを高速にすることができる。
第2の実施形態にかかる半導体装置1について述べる。図10は第2の実施形態にかかる半導体装置1の平面図を示す。第1の活性領域110及び第2の活性領域120がフィンガーの長手方向に複数離隔して形成されている。複数形成される第1の活性領域110の間には、第3の不活性領域として、不活性領域190が形成され、複数形成される第2の活性領域120の間には、第4の不活性領域として、不活性領域190が形成される。複数の第1の活性領域110のそれぞれに第1のFET11が形成され、複数の第2の活性領域120のそれぞれに第2のFET12が形成される。第3の活性領域130とP型不純物を含む第3の窒化物半導体層131がフィンガーの長手方向に複数離隔して形成され、第1の活性領域110と第2の活性領域120と第3の活性領域130の内部で第3の窒化物半導体層131は第1のP型GaN層113及び第2のP型GaN層123に接続されている。
第3の実施形態にかかる半導体装置について述べる。図11は、第3の実施形態における半導体装置の一例を示す図である。図11の(a)は第3の実施形態にかかる半導体装置2の平面図を示す。図11の(b)は図11の(a)のA-A断面を示す。半導体装置2には第1の活性領域210と第2の活性領域220と第3の活性領域230が形成される。
101 基板
102 バッファ層
103 GaNチャネル層(第1の窒化物半導体層の一例)
104 AlGaNバリア層(第2の窒化物半導体層の一例)
105 2DEG層
11 第1のFET(第1の電界効果トランジスタ)
110 第1の活性領域
111 第1のソース電極
112 第1のドレイン電極
113 第1のP型GaN層(第1のP型窒化物半導体層の一例)
114 第1のゲート電極
115 第1のソース配線
116 第1のドレイン配線
117 リセス構造
12 第2のFET(第2の電界効果トランジスタ)
120 第2の活性領域
121 第2のソース電極
122 第2のドレイン電極
123 第2のP型GaN層(第2のP型窒化物半導体層の一例)
124 第2のゲート電極
125 第2のソース配線
126 第2のドレイン配線
127 リセス構造
130 第3の活性領域
131 P型不純物を含む第3の窒化物半導体層
132 第3のゲート電極
137 リセス構造
14 第3のFET
140 第4の活性領域
141 第3のソース電極
142 第3のドレイン電極
143 第3のP型GaN層(第3のP型窒化物半導体層の一例)
144 第3のゲート電極
145 第3のソース配線
146 第3のドレイン配線
151 P型不純物を含む第3の窒化物半導体層
152 ゲート配線
174 ゲート集約配線
175 ソース集約配線
176 ドレイン集約配線
180 活性領域と不活性領域との界面
190 不活性領域
2 半導体装置
205 2DEG層
21 第1のダブルゲート型FET
210 第1の活性領域
211 第1のソース電極
212 第2のソース電極
213 第1のP型GaN層(第1のP型窒化物半導体層の一例)
214 第1のゲート電極
215 第2のP型GaN層(第2のP型窒化物半導体層の一例)
216 第2のゲート電極
217 第1のソース配線
218 第2のソース配線
22 第2のダブルゲート型FET
220 第2の活性領域
221 第3のソース電極
222 第4のソース電極
223 第3のP型GaN層(第3のP型窒化物半導体層の一例)
224 第3のゲート電極
225 第4のP型GaN層(第4のP型窒化物半導体層の一例)
226 第4のゲート電極
227 第3のソース配線
228 第4のソース配線
23 第3のダブルゲート型FET
230 第3の活性領域
231 第5のソース電極
232 第6のソース電極
233 第5のP型GaN層(第5のP型窒化物半導体層の一例)
234 第5のゲート電極
235 第6のP型GaN層(第6のP型窒化物半導体層の一例)
236 第6のゲート電極
237 第5のソース配線
238 第6のソース配線
240 第4の活性領域
241 P型不純物を含む第3の窒化物半導体層
242 第7のゲート電極
250 第5の活性領域
251 P型不純物を含む第4の窒化物半導体層
252 第8のゲート電極
274 第1のゲート集約配線
276 第2のゲート集約配線
277 第1のソース集約配線
278 第2のソース集約配線
290 不活性領域
Claims (19)
- 基板と、
前記基板の上に形成された第1の窒化物半導体層と、
前記第1の窒化物半導体層よりもバンドギャップが大きく、前記第1の窒化物半導体層の上に形成された第2の窒化物半導体層と、
第1の電界効果トランジスタと、
第2の電界効果トランジスタとを備え、
前記第1の窒化物半導体層及び前記第2の窒化物半導体層は、前記基板に対する平面視で、2次元電子ガスが形成される第1の活性領域、第2の活性領域及び2次元電子ガスが形成されない不活性領域を有し、
前記第1の電界効果トランジスタは、前記基板に対する平面視で前記第1の活性領域に含まれ、前記基板に対する平面視で第1の方向に延伸する第1のソース電極及び第1のドレイン電極と、前記基板に対する平面視で前記第1のソース電極と前記第1のドレイン電極との間にある前記第1の方向に延伸する第1のP型窒化物半導体層と、前記第1のP型窒化物半導体層の上に形成される第1のゲート電極とを備え、
前記第2の電界効果トランジスタは、前記基板に対する平面視で前記第2の活性領域に含まれ、前記基板に対する平面視で前記第1の方向に延伸する第2のソース電極及び第2のドレイン電極と、前記基板に対する平面視で前記第2のソース電極と前記第2のドレイン電極との間にある前記第1の方向に延伸する第2のP型窒化物半導体層と、前記第2のP型窒化物半導体層の上に形成される第2のゲート電極とを備え、
前記第1の窒化物半導体層及び前記第2の窒化物半導体層は、さらに、前記第1の活性領域及び前記第2の活性領域の前記第1の方向の両端部において、前記基板に対する平面視で、前記第1の方向とは異なる第2の方向で前記第1の活性領域と前記第2の活性領域とに接続され、2次元電子ガスが形成される第3の活性領域を有し、
前記第3の活性領域は、前記第2の方向に延伸する、p型不純物を有する第3の窒化物半導体層を含み、
前記第1の活性領域と前記第2の活性領域と前記第3の活性領域の内部において、前記第1のP型窒化物半導体層と前記第2のP型窒化物半導体層は、前記第3の窒化物半導体層を介して接続される、
半導体装置。 - 前記第3の窒化物半導体層の上に第3のゲート電極が形成され、
前記第1のゲート電極及び前記第2のゲート電極は前記第3のゲート電極を介して接続される、
請求項1に記載の半導体装置。 - 前記第3の窒化物半導体層が、前記不活性領域まで延設されている、
請求項1又は2に記載の半導体装置。 - 前記基板に対する平面視で、前記第1の活性領域と前記第2の活性領域との間に前記不活性領域の一部として第1の不活性領域が形成され、
前記基板に対する平面視で、前記第1の不活性領域が前記第1の活性領域と前記第2の活性領域と前記第3の活性領域で囲まれる、
請求項1~3のいずれか1項に記載の半導体装置。 - 前記第1のP型窒化物半導体層の延伸する方向の長さが前記第3の窒化物半導体層の前記第2の方向の長さよりも長い
請求項1~4のいずれか1項に記載の半導体装置。 - 前記第1のソース電極に対して前記第1のゲート電極の電位差が0Vであり、且つ前記第2のソース電極に対して前記第2のゲート電極の電位差が0Vの時に、前記第1のP型窒化物半導体層の下部の前記第1の活性領域、前記第2のP型窒化物半導体層の下部の前記第2の活性領域、及び、前記第3の窒化物半導体層の下部の前記第3の活性領域において2次元電子ガスが形成されない、
請求項1~5のいずれか1項に記載の半導体装置。 - 前記第1のP型窒化物半導体層と前記第2のP型窒化物半導体層と前記第3の窒化物半導体層の下部の前記第2の窒化物半導体層とにリセスが形成される、
請求項6に記載の半導体装置。 - 前記第3の窒化物半導体層の下部に形成される前記リセスが、前記不活性領域まで延設されている、
請求項7に記載の半導体装置。 - nを2以上の整数とした場合に、
前記第1のソース電極は、(n+1)本あり、
前記第1のドレイン電極は、n本あり、
前記第1のP型窒化物半導体層は、(2×n)本あり、
前記第1のゲート電極は、(2×n)本あり、
前記第2のソース電極は、(n+1)本あり、
前記第2のドレイン電極は、n本あり、
前記第2のP型窒化物半導体層は、(2×n)本あり、
前記第2のゲート電極は、(2×n)本ある、
請求項1~8のいずれか1項に記載の半導体装置。 - (n+1)本の前記第1のソース電極のうち、前記第1のドレイン電極に挟まれている前記第1のソース電極は、前記第1の活性領域の内部において前記第1のP型窒化物半導体層で囲まれており、
(n+1)本の前記第2のソース電極のうち、前記第2のドレイン電極に挟まれている前記第2のソース電極は、前記第2の活性領域の内部において前記第2のP型窒化物半導体層で囲まれている、
請求項9に記載の半導体装置。 - 前記第1の窒化物半導体層及び前記第2の窒化物半導体層は、さらに、前記基板に対する平面視で、前記第1の活性領域と前記第2の活性領域とは離隔した前記第2の方向の延長線上の両端に形成され、2次元電子ガスが形成される第4の活性領域を有し、
前記第4の活性領域には、
前記基板に対する平面視で前記第1の方向に延伸する第3のソース電極及び第3のドレイン電極と、
前記第3のソース電極と前記第3のドレイン電極との間にある、前記基板に対する平面視で前記第1の方向に延伸する第3のP型窒化物半導体層と、
前記第3のP型窒化物半導体層の上に形成される第4のゲート電極とが形成され、
前記第4の活性領域の内部において、
前記第2の方向の端部に位置する前記第3のP型窒化物半導体層が、前記第2の方向の端部に位置する前記第3のソース電極を囲む、
請求項1に記載の半導体装置。 - 前記第3のソース電極の幅と前記第1のソース電極の幅が等しい、
請求項11に記載の半導体装置。 - 前記基板に対する平面視で、前記第1の電界効果トランジスタと前記第2の電界効果トランジスタとの間にゲート配線が形成され、
前記ゲート配線は前記第3のゲート電極と電気的に接続される
請求項2に記載の半導体装置。 - 前記基板に対する平面視で、前記第1の活性領域と前記第2の活性領域との間に前記不活性領域の一部として第2の不活性領域が形成され、
前記基板に対する平面視で、前記第2の不活性領域が前記第1の活性領域と前記第2の活性領域と前記第3の活性領域で囲まれ、
前記ゲート配線が前記第2の不活性領域の上に形成される、
請求項13に記載の半導体装置。 - 前記ゲート配線の短辺方向の長さが前記第1のゲート電極の短辺方向の長さよりも長い、
請求項13又は14に記載の半導体装置。 - 前記第1のソース電極の上に電気的に接続される第1のソース配線を備え、
前記ゲート配線の電極材料が前記第1のソース配線の電極材料と等しい、
請求項13~15のいずれか1項に記載の半導体装置。 - 前記第1の活性領域に形成される前記第1の電界効果トランジスタ、前記第2の活性領域に形成される前記第2の電界効果トランジスタ、及び、前記第3の活性領域に形成される前記第3の窒化物半導体層からなる単位セルが前記第1の方向に離間して複数形成され、
それぞれ離間した複数の前記第1のソース電極は1本の第1のソース配線で接続され、
それぞれ離間した複数の前記第1のドレイン電極が1本の第1のドレイン配線で接続され、
複数の前記第1のP型窒化物半導体層がそれぞれ前記第1の方向に接続され、
複数の前記第1のゲート電極がそれぞれ前記第1の方向に接続され、
それぞれ離間した複数の前記第2のソース電極は1本の第2のソース配線で接続され、
それぞれ離間した複数の前記第2のドレイン電極が1本の第2のドレイン配線で接続され、
複数の前記第2のP型窒化物半導体層がそれぞれ前記第1の方向に接続され、
複数の前記第2のゲート電極がそれぞれ前記第1の方向に接続される、
請求項1に記載の半導体装置。 - 前記第1の方向に複数形成される前記第1の活性領域の間に、前記不活性領域の一部として第3の不活性領域が形成され、
前記第1の方向に複数形成される前記第2の活性領域の間に、前記不活性領域の一部として第4の不活性領域が形成される、
請求項17に記載の半導体装置。 - 基板と、
前記基板の上に形成された第1の窒化物半導体層と、
前記第1の窒化物半導体層よりもバンドギャップが大きく、且つ前記第1の窒化物半導体層の上に形成された第2の窒化物半導体層と、
第1のダブルゲート型電界効果トランジスタと、
第2のダブルゲート型電界効果トランジスタと、
第3のダブルゲート型電界効果トランジスタとを備え、
前記第1の窒化物半導体層及び前記第2の窒化物半導体層は、前記基板に対する平面視で、2次元電子ガスが形成される第1の活性領域、第2の活性領域、第3の活性領域及び2次元電子ガスが形成されない不活性領域を有し、
前記第1のダブルゲート型電界効果トランジスタは、前記第1の活性領域に含まれ、前記基板に対する平面視で第1の方向に延伸する第1のソース電極及び第2のソース電極と、前記第1のソース電極と前記第2のソース電極との間に離間して形成される、前記基板に対する平面視で前記第1の方向に延伸する第1のP型窒化物半導体層及び第2のP型窒化物半導体層と、前記第1のP型窒化物半導体層の上に形成される第1のゲート電極と、前記第2のP型窒化物半導体層の上に形成される第2のゲート電極とを備え、
前記第2のダブルゲート型電界効果トランジスタは、前記第2の活性領域に含まれ、前記基板に対する平面視で前記第1の方向に延伸する第3のソース電極及び第4のソース電極と、前記第3のソース電極と前記第4のソース電極との間に離間して形成される、前記基板に対する平面視で前記第1の方向に延伸する第3のP型窒化物半導体層及び第4のP型窒化物半導体層と、前記第3のP型窒化物半導体層の上に形成される第3のゲート電極と、前記第4のP型窒化物半導体層の上に形成される第4のゲート電極とを備え、
前記第3のダブルゲート型電界効果トランジスタは、前記第3の活性領域に含まれ、前記基板に対する平面視で前記第1の方向に延伸する第5のソース電極及び第6のソース電極と、前記第5のソース電極と前記第6のソース電極との間に離間して形成される、前記基板に対する平面視で前記第1の方向に延伸する第5のP型窒化物半導体層及び第6のP型窒化物半導体層と、前記第4のP型窒化物半導体層の上に形成される第5のゲート電極と、前記第6のP型窒化物半導体層の上に形成される第6のゲート電極とを備え、
前記第1の窒化物半導体層及び前記第2の窒化物半導体層は、さらに、前記基板に対する平面視で、前記第1の活性領域及び前記第2の活性領域の前記第1の方向の両端部において、前記第1の方向とは異なる第2の方向に延伸する矩形を有し、前記第1の活性領域と前記第2の活性領域を接続され、2次元電子ガスが形成される第4の活性領域を有し、
前記第4の活性領域は、前記基板に対する平面視で前記第2の方向に延伸するp型不純物を有する第3の窒化物半導体層を含み、
前記第1の活性領域と前記第2の活性領域と前記第4の活性領域の内部において、前記第2のP型窒化物半導体層と前記第4のP型窒化物半導体層は、前記第3の窒化物半導体層を介して接続され、
前記第1の窒化物半導体層及び前記第2の窒化物半導体層は、さらに、前記基板に対する平面視で、前記第2の活性領域及び前記第3の活性領域の前記第1の方向の両端部において、前記第2の方向に延伸し、前記第2の活性領域と前記第3の活性領域を接続され、2次元電子ガスが形成される第5の活性領域を有し、
前記第5の活性領域は、前記基板に対する平面視で前記第2の方向に延伸するP型不純物を有する第4の窒化物半導体層を含み、
前記第2の活性領域と前記第3の活性領域と前記第5の活性領域の内部において、前記第3のP型窒化物半導体層と前記第5のP型窒化物半導体層は、前記第4の窒化物半導体層を介して接続される
半導体装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022581231A JPWO2022172625A1 (ja) | 2021-02-15 | 2021-12-24 | |
US18/264,561 US20240304630A1 (en) | 2021-02-15 | 2021-12-24 | Semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-021550 | 2021-02-15 | ||
JP2021021550 | 2021-02-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022172625A1 true WO2022172625A1 (ja) | 2022-08-18 |
Family
ID=82838642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/048123 WO2022172625A1 (ja) | 2021-02-15 | 2021-12-24 | 半導体装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240304630A1 (ja) |
JP (1) | JPWO2022172625A1 (ja) |
WO (1) | WO2022172625A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009111016A (ja) * | 2007-10-26 | 2009-05-21 | Toshiba Corp | 半導体装置 |
JP2012064900A (ja) * | 2010-09-17 | 2012-03-29 | Panasonic Corp | 半導体装置 |
WO2014041731A1 (ja) * | 2012-09-12 | 2014-03-20 | パナソニック株式会社 | 半導体装置 |
JP2018186142A (ja) * | 2017-04-25 | 2018-11-22 | 株式会社村田製作所 | 半導体装置 |
-
2021
- 2021-12-24 JP JP2022581231A patent/JPWO2022172625A1/ja active Pending
- 2021-12-24 US US18/264,561 patent/US20240304630A1/en active Pending
- 2021-12-24 WO PCT/JP2021/048123 patent/WO2022172625A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009111016A (ja) * | 2007-10-26 | 2009-05-21 | Toshiba Corp | 半導体装置 |
JP2012064900A (ja) * | 2010-09-17 | 2012-03-29 | Panasonic Corp | 半導体装置 |
WO2014041731A1 (ja) * | 2012-09-12 | 2014-03-20 | パナソニック株式会社 | 半導体装置 |
JP2018186142A (ja) * | 2017-04-25 | 2018-11-22 | 株式会社村田製作所 | 半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022172625A1 (ja) | 2022-08-18 |
US20240304630A1 (en) | 2024-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4645313B2 (ja) | 半導体装置 | |
JP5457046B2 (ja) | 半導体装置 | |
US8497553B2 (en) | Semiconductor device | |
JP5530682B2 (ja) | 窒化物半導体装置 | |
US8164117B2 (en) | Nitride semiconductor device | |
TWI450382B (zh) | Semiconductor device | |
US11881479B2 (en) | Nitride semiconductor device | |
JP2007150282A (ja) | 電界効果トランジスタ | |
US9905563B2 (en) | Semiconductor device | |
US10134850B2 (en) | Semiconductor device | |
JPWO2006132419A1 (ja) | 電界効果トランジスタ | |
JP2011071206A (ja) | Iii族窒化物半導体からなる半導体装置およびその製造方法、電力変換装置 | |
JP2007059589A (ja) | 窒化物半導体素子 | |
JP2010103158A (ja) | 双方向スイッチ | |
WO2016098391A1 (ja) | 電界効果トランジスタ | |
JP2013062298A (ja) | 窒化物半導体装置 | |
JPWO2020174956A1 (ja) | 窒化物半導体装置 | |
JPWO2019187789A1 (ja) | 窒化物半導体装置 | |
WO2014196187A1 (ja) | 半導体装置 | |
US10475802B2 (en) | Semiconductor device | |
JP5985162B2 (ja) | 窒化物系半導体装置 | |
WO2019097813A1 (ja) | 窒化物半導体装置 | |
WO2022172625A1 (ja) | 半導体装置 | |
JP6575268B2 (ja) | 窒化物半導体装置 | |
US20240313059A1 (en) | Nitride semiconductor device and nitride semiconductor module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21925868 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022581231 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18264561 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21925868 Country of ref document: EP Kind code of ref document: A1 |