WO2022171065A1 - 一种光驱动光催化反应器及其制备方法 - Google Patents

一种光驱动光催化反应器及其制备方法 Download PDF

Info

Publication number
WO2022171065A1
WO2022171065A1 PCT/CN2022/075448 CN2022075448W WO2022171065A1 WO 2022171065 A1 WO2022171065 A1 WO 2022171065A1 CN 2022075448 W CN2022075448 W CN 2022075448W WO 2022171065 A1 WO2022171065 A1 WO 2022171065A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
isopropylacrylamide
graphene oxide
photocatalytic reactor
hydrogel
Prior art date
Application number
PCT/CN2022/075448
Other languages
English (en)
French (fr)
Inventor
刘天西
秦静静
赖飞立
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2022171065A1 publication Critical patent/WO2022171065A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties

Definitions

  • the invention relates to a light-driven photocatalytic reactor and a preparation method thereof, and belongs to the technical field of novel energy conversion materials.
  • Stimuli-responsive hydrogels refer to a class of hydrogels that can undergo physical or chemical changes under the stimulation of the external environment, such as temperature, pH, light, electricity, and magnetic fields. Therefore, stimuli-responsive hydrogels are promising materials for the preparation of phototaxis materials.
  • Poly-N-isopropylacrylamide hydrogels are a very important class of thermosensitive hydrogels that have attracted attention due to their reversible phase transition properties.
  • the hydrogel When the ambient temperature is lower than the low critical solution temperature of the hydrogel (32°C), the hydrogel will absorb water and swell, and when the temperature is higher than the low critical solution temperature, the hydrogel will shrink by loss of water, making the hydrogel Significant reduction in volume occurred. Therefore, based on the above principles, some researchers simulate the asymmetric growth of plants, add photothermal conversion materials inside the hydrogel, build a feedback loop, and propose a general principle for the preparation of phototaxis hydrogels.
  • a light-driven photocatalytic reactor of the present invention is composed of two kinds of poly-N-isopropylacrylamide-based hydrogels, inspired by sunflower, and the bottom is columnar reduced graphene oxide-poly-N-isopropylacrylamide The hydrogel is used to simulate the neck of sunflower; the poly-N-isopropylacrylamide hydrogel containing photocatalyst with a flower-shaped sheet on the top is used to simulate the flower disc of sunflower.
  • the preparation process of the two is similar, and both are prepared by dispersing and reducing graphene oxide and photocatalyst in the precursor of poly-N-isopropylacrylamide hydrogel, and then preparing by ultraviolet light polymerization.
  • the preparation process of the light-driven photocatalytic reactor includes ultraviolet photopolymerization technology.
  • the present invention provides a preparation method of a light-driven photocatalytic reactor, and the specific steps are as follows:
  • N-isopropylacrylamide monomer is recrystallized with the mixed solution of n-hexane and acetone;
  • step (2) dissolving the recrystallized N-isopropylacrylamide monomer, N,N'-methylenebisacrylamide and 2-hydroxy-2-methylpropiophenone obtained in step (1) in dimethyl acetone base sulfoxide, then adding graphene oxide in the solution, and dispersing to obtain graphene oxide/N-isopropylacrylamide dispersion;
  • step (2) (4) injecting the dispersion obtained in step (2) and step (3) into a mold, and polymerizing under ultraviolet light to obtain graphene oxide-poly-N-isopropylacrylamide hydrogel and poly-N containing photocatalyst respectively -Isopropylacrylamide hydrogel, denoted as GO-PNIPAAm and P-PNIPAAm, respectively;
  • the volume ratio of n-hexane and acetone in the mixed solution in step (1) is 2:1 to 20:1, preferably 10:1.
  • the mass proportion of each component in step (2) is: N-isopropylacrylamide after recrystallization accounts for 35-45%; N,N'-methylenebispropylene Amide accounts for 1.5-2.5%, preferably 2%; 2-hydroxy-2-methylpropiophenone accounts for 0.5-0.7%; graphene oxide accounts for 0.25-0.5%, and the rest is dimethyl sulfoxide.
  • the mass proportion of each component in step (3) is: N-isopropylacrylamide after recrystallization accounts for 35-45%; N,N'-methylenebispropylene Amide accounts for 1.5-2.5%, preferably 2%; 2-hydroxy-2-methylpropiophenone accounts for 0.5-0.7%; photocatalyst content is 0.1-6%, preferably 2-5%, and the rest is dimethyl methylene sulfone.
  • the photocatalyst is a general term for semiconductor materials with photocatalytic ability represented by nano-scale titanium dioxide, which can generate strong oxidizing substances under illumination and then trigger corresponding chemical reactions.
  • the photocatalyst is any photocatalyst, including but not limited to cadmium sulfide/reduced graphene oxide photocatalyst, polymer carbon nitride, titanium dioxide, zinc oxide, tin oxide, zirconium dioxide, cadmium sulfide, carbon nitride, and carbon nitride.
  • the shape of the prepared graphene oxide-poly-N-isopropylacrylamide hydrogel in step (4) is any shape that can support cadmium sulfide/reduced graphene oxide-poly-N-isopropyl
  • the shape of the base acrylamide hydrogel is preferably an elongated rod-like shape such as a cylindrical body or a cuboid, and when it is a cylindrical body, it is preferably a cylindrical body with a diameter of 0.5 to 2 mm and a height of 1 to 3 cm; preparation of cadmium sulfide/
  • the shape of the reduced graphene oxide-polyN-isopropylacrylamide hydrogel is any shape, preferably a sheet shape, a thickness of 0.5-2 mm, preferably a diameter of 3-15 mm, and the arrangement is preferably a flower-shaped sheet.
  • the light-driven photocatalytic reactor is preferably sunflower-shaped, so as to increase the contact area with light.
  • the ultraviolet light polymerization time is 50-150s, preferably 70-150s, and the ultraviolet light power is 500-1500W, wherein the ultraviolet light power and the ultraviolet light polymerization time should be adapted.
  • the concentration of the hydrazine hydrate solution in step (5) is 0.1-0.5M.
  • step (6) the ratio of the P-PNIPAAm to rGO-PNIPAAm is not fixed, as long as rGO-PNIPAAm can support P-PNIPAAm.
  • the present invention also provides the light-driven photocatalytic reactor prepared by the above preparation method.
  • the present invention provides the application of the above-mentioned light-driven photocatalytic reactor in the field of photocatalysis.
  • the present invention provides a method for producing hydrogen peroxide.
  • the method uses the above-mentioned light-driven photocatalytic reactor as a reactor, wherein the photocatalyst is cadmium sulfide/reduced graphene oxide.
  • the present invention has significant advantages:
  • the light-driven photocatalytic reactor prepared by the present invention can effectively recover the energy loss of oblique irradiation, can autonomously follow the direction of the light source in actual irradiation, and improve the utilization rate of light energy and the photocatalytic efficiency.
  • the method of the present invention is conducive to realizing the recovery of the photocatalyst, and the hydrogel can be taken out after the reaction is completed.
  • the light-driven photocatalytic reactor prepared by the present invention is simple in preparation method, low in price of raw materials, and has good application prospect and commercial value.
  • FIG. 1 is a schematic diagram of the preparation process of a light-driven photocatalytic reactor prepared in the present invention.
  • Example 2 is a photo (a) and SEM photos (b-c) of a light-driven photocatalytic reactor prepared in Example 1 of the present invention, wherein b is cadmium sulfide/reduced graphene oxide-polyN-isopropyl SEM image of acrylamide hydrogel, c is the SEM image of reduced graphene oxide-N-isopropylacrylamide hydrogel.
  • Example 3 is a TEM photograph of the cadmium sulfide/reduced graphene oxide prepared in Example 1 of the present invention.
  • Example 4 is a phototaxis angle diagram and a recovery diagram of a light-driven photocatalytic reactor prepared in Example 1 of the present invention.
  • Figure 5 is a performance diagram of the production of hydrogen peroxide by a light-driven photocatalytic reactor prepared in Example 1 of the present invention.
  • the preparation method of cadmium sulfide/reduced graphene oxide dissolve 0.1589 g of cadmium acetate and 0.1848 g of thiourea in 60 mL of deionized water, then disperse 20 mg of graphene oxide in the above solution to obtain a uniform dispersion, and transfer the dispersion to In a 100 mL hydrothermal kettle with a polytetrafluoroethylene lining, the reaction was carried out at 180 °C for 12 h. The obtained product was centrifuged and washed with deionized water and ethanol, and finally the finished product was obtained by freeze-drying.
  • FIG. 1 is a schematic diagram of a light-driven photocatalytic reactor, and the present embodiment uses cadmium sulfide/reduced graphene oxide as an example of a photocatalyst for producing hydrogen peroxide, comprising the following steps:
  • N-isopropylacrylamide monomer Take 3g of N-isopropylacrylamide monomer, stir and dissolve it in 30mL of a mixed solution of n-hexane and acetone with a volume ratio of 10:1 at 30°C, then cool at -10°C to separate out crystals, pump After filtration and drying, purified N-isopropylacrylamide monomer was obtained.
  • the dispersion liquid of step (2) is injected into a capillary tube with an inner diameter of 1 mm and a height of 2 cm, and the dispersion liquid of step (3) is injected into a flower-shaped mold with a diameter of 7 mm and a thickness of 1.5 mm, and polymerized under ultraviolet light for 70 s to the columnar graphene oxide-polyN-isopropylacrylamide hydrogel and the flower-shaped sheet-like cadmium sulfide/reduced graphene oxide-polyN-isopropylacrylamide hydrogel, respectively, denoted as GO- PNIPAAm and CdS/rGO-PNIPAAm;
  • step (6) combining the cadmium sulfide/reduced graphene oxide-polyN-isopropylacrylamide hydrogel in step (4) and the reduced graphene oxide-polyN-isopropylacrylamide water obtained in step (5)
  • the gels stick together, resulting in a light-driven photocatalytic reactor, designated PPR.
  • the photocatalytic test results show that, compared with the anisotropic photocatalytic reactor (Comparative Example 1), the photocatalytic efficiency of the light-driven photocatalytic reactor hardly changes due to the change of the illumination angle, and it is always maintained at the vertical illumination.
  • the activity level and stable photocatalytic rate indicate that it can effectively recover the oblique incident energy density loss.
  • the photocatalytic efficiency of the light-driven photocatalytic reactor is more than 3 times higher than that of the aphototropic material, see Fig. 5 .
  • Example 1 The cadmium sulfide/reduced graphene oxide in Example 1 was changed to polymer carbon nitride, and the rest were the same as those of Example 1, and the finally obtained light-driven photocatalytic reactor was denoted as PPR-1. After testing, it was found that PPR-1 can stably follow the direction of oblique incident light as described above, ensuring its maximum captured light energy. In addition, the bending process of PPR-1 is reversible, and it can basically return to the upright state in about 30 min under the 90° bending state.
  • Example 1 The concentration of cadmium sulfide/reduced graphene oxide in Example 1 was changed to 2.5wt%, that is, the mass was changed to 0.075g, and the quality of dimethyl sulfoxide was changed to 1.65g accordingly, and the rest were the same as in Example 1.
  • the final obtained light The driving photocatalytic reactor is denoted as PPR-2. After testing, it was found that PPR-2 can bend towards light within about 50s under oblique illumination, following the direction of incident light. Again, recovery occurred around 30 min.
  • This comparative example takes cadmium sulfide/reduced graphene oxide as a photocatalyst as an example, which is used to produce hydrogen peroxide, which is the control sample of Example 1, including the following steps:
  • N-isopropylacrylamide monomer Take 3g of N-isopropylacrylamide monomer, stir and dissolve it in 30mL of a mixed solution of n-hexane and acetone with a volume ratio of 10:1 at 30°C, then cool at -10°C to separate out crystals, pump After filtration and drying, purified N-isopropylacrylamide monomer was obtained.
  • step (3) inject the dispersion liquid obtained in step (2) into a pattern mold with a diameter of 7 mm and a thickness of 1.5 mm, and polymerize it under ultraviolet light for 70 s to obtain patterned cadmium sulfide/reduced graphene oxide-polyN- Isopropylacrylamide hydrogel, denoted as CdS/rGO-PNIPAAm;
  • step (3) the sheet-like cadmium sulfide/reduced graphene oxide-poly-N-isopropylacrylamide hydrogel obtained in step (3) is fixed on the top of a capillary tube with a diameter of 1 mm and a height of 2 cm to obtain no Phototropic photocatalytic reactor (control sample).
  • N-isopropylacrylamide monomer Take 3g of N-isopropylacrylamide monomer, stir and dissolve it in 30mL of a mixed solution of n-hexane and acetone with a volume ratio of 10:1 at 30°C, then cool at -10°C to separate out crystals, pump After filtration and drying, purified N-isopropylacrylamide monomer was obtained.
  • N-isopropylacrylamide monomer Take 3g of N-isopropylacrylamide monomer, stir and dissolve it in 30mL of a mixed solution of n-hexane and acetone with a volume ratio of 10:1 at 30°C, then cool at -10°C to separate out crystals, pump After filtration and drying, purified N-isopropylacrylamide monomer was obtained.
  • step (2) Inject the dispersion liquid in step (2) into cylindrical containers with diameters of 0.5, 1, 2 and 3 mm, respectively, with a height of 2 cm, and polymerize under ultraviolet light for 70 s to obtain columnar graphene oxide-N-isolated graphene oxide with different diameters.
  • Propyl acrylamide hydrogel The dispersion liquid in the step (3) is injected into a container with a diameter of 7mm, and the same ultraviolet polymerization for 70s obtains a flower-shaped cadmium sulfide/reduced graphene oxide-poly-N-isopropylacrylamide hydrogel, which is respectively recorded as GO-PNIPAAm and CdS/rGO-PNIPAAm;
  • step (6) combining the cadmium sulfide/reduced graphene oxide-polyN-isopropylacrylamide hydrogel in step (4) and the reduced graphene oxide-polyN-isopropylacrylamide water obtained in step (5)
  • the gels were connected together to obtain light-driven photocatalytic reactors with different diameters, which were denoted as PPR-5-0.5, PPR-5-1, PPR-5-2, and PPR-5-3, respectively.
  • the diameter of the gel is preferably in the range of 0.5-2mm, while the reduced graphene oxide/N-isopropylacrylamide hydrogel in the bionic sunflower PPR-5-0.5 of 0.5mm is too fine to support the cadmium sulfide/N-isopropylacrylamide hydrogel on the top.
  • N-isopropylacrylamide monomer Take 3g of N-isopropylacrylamide monomer, stir and dissolve it in 30mL of a mixed solution of n-hexane and acetone with a volume ratio of 10:1 at 30°C, then cool at -10°C to separate out crystals, pump After filtration and drying, purified N-isopropylacrylamide monomer was obtained.
  • step (2) The dispersion liquid of step (2) is respectively injected into a cylindrical container with a diameter of 1 mm and a height of 2 cm, and polymerized under ultraviolet light for 70 s to obtain a columnar graphene oxide/N-isopropylacrylamide hydrogel.
  • the dispersion in step (3) was injected into a container with a diameter of 7 mm, and UV-polymerized for 70 s to obtain flower-shaped cadmium sulfide/reduced graphene oxide-polyN-isopropylacrylamide hydrogels, respectively denoted as GO - PNIPAAm and CdS/rGO-PNIPAAm;
  • step (6) combining the cadmium sulfide/reduced graphene oxide-polyN-isopropylacrylamide hydrogel in step (4) and the reduced graphene oxide-polyN-isopropylacrylamide water obtained in step (5)
  • the gels stuck together to obtain a light-driven photocatalytic reactor, denoted as PPR-6-0, PPR-6-0.3, PPR-6-3, PPR-6-6, PPR-6-9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

一种光驱动光催化反应器及其制备方法,以聚N-异丙基丙烯酰胺水凝胶为基础,在水凝胶前驱体中分别添加还原氧化石墨烯和光催化剂,制备出两种水凝胶,并将其组合得到光驱动光催化反应器。两种水凝胶分别用于模拟向日葵的颈部和花盘,保证光照时该光驱动光催化反应器能自主趋光并始终保持花盘面垂直于光源入射方向。

Description

一种光驱动光催化反应器及其制备方法 技术领域
本发明涉及一种光驱动光催化反应器及其制备方法,属于新型能源转换材料技术领域。
背景技术
自然界许多生物都有面向光源等自我定向的能力,即趋光性。如向日葵,它们可以自适应环境中太阳光入射角的改变来最大地获取能量,进而能减少光因倾斜照射而造成的能量损失,从而满足生长和繁殖的需求。倾斜入能量损失是指光以一定的角度照射到平面时而导致的入射能量密度产生减少的现象,可以用公式P=P max·cosθ来简单表示。因此,对于确定强度的光来说,角度越大,能量损失也越多。例如,当倾斜角为60°时,能量损失为50%。所以如果实现人工向光性,则有望如向日葵一样,使得光催化效率不会因为光源的倾斜而发生减弱。
近年来水凝胶由于具有互联多孔的网络结构而吸引了人们的广泛关注。随着研究深入,人们发现了一系列刺激响应型水凝胶,它们已逐渐成为发展智能材料的重要选择。刺激响应性水凝胶是指在外部环境的刺激下可以发生物理或化学变化的一类水凝胶,如:温度、pH、光、电、磁场等。因此刺激响应水凝胶是有望制备趋光材料的重要材料。聚N-异丙基丙烯酰胺水凝胶是一类非常重要的温敏水凝胶,由于其具有可逆的相转变的特性而吸引了人们的关注。当环境温度低于水凝胶低临界溶解温度(32℃)时,水凝胶会发生吸水溶胀,而当温度高于低临界溶解温度时,水凝胶会发生失水收缩,使得水凝胶体积发生明显缩小。因此基于以上原理,有研究者模拟植物的不对称生长,在水凝胶内部添加光热转换材料,构建一个反馈回路,提出一种制备趋光水凝胶的通用原理。
然而趋光水凝胶作为光催化反应器还未见有人报道。近几十年随着工业快速发展和人口的增长,人们面临化石燃料短缺和水污染等问题。基于太阳光作为能量来源的光催化技术可以实现物质的转化和污染物的降解,且具有能耗低和效率高的优点吸引了人们的关注。随着研究的深入,人们已经克服了单一催化剂只能吸收紫外光的缺点,利用氙灯等来模拟太阳光,实现了可见光下的光催化反应。但是人们普遍默认的就是光能直接照射反应装置,但是在实际情况下,受倾斜入射能量损失的影响,太阳光在一天之内不断移动,它和照射平面存在夹角而产生的能量损失一直存在,也不应该被忽略。因此如何避免这种能量损失,充分利用光能是有必要解决的问题。
发明内容
为了解决上述问题,本发明以向日葵为灵感,利用趋光水凝胶的自主趋光能力,设计出 一种光驱动光催化反应器,以硫化镉/还原氧化石墨烯生产双氧水为例,可以有效地恢复能量入射密度损失。通过这种催化方式,不仅能够最大捕获光能,还能有效解决光催化剂不易回收的问题。本发明设计的一种光驱动光催化反应器简单可行,制备简单,极具有商业化前景。
本发明的一种光驱动光催化反应器由两种聚N-异丙基丙烯酰胺基水凝胶所构成,以向日葵为灵感,底部为柱状还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶,用于模拟向日葵的颈;顶部为花型片状的含有光催化剂的聚N-异丙基丙烯酰胺水凝胶,用于模拟向日葵的花盘。二者的制备过程类似,均是在聚N-异丙基丙烯酰胺水凝胶的前驱体中相应分散还原氧化石墨烯和光催化剂,再通过紫外光聚合的方法制备而得。总体而言,该光驱动光催化反应器制备过程包括紫外光聚合技术。
具体的,首先,本发明提供了一种光驱动光催化反应器的制备方法,具体步骤如下:
(1)将N-异丙基丙烯酰胺单体用正己烷和丙酮的混合溶液重结晶;
(2)将步骤(1)得到的重结晶后的N-异丙基丙烯酰胺单体、N,N'-亚甲基双丙烯酰胺、2-羟基-2-甲基苯丙酮溶于二甲基亚砜中,然后在溶液中加入氧化石墨烯,分散得到氧化石墨烯/N-异丙基丙烯酰胺分散液;
(3)将重结晶后的N-异丙基丙烯酰胺单体、N,N'-亚甲基双丙烯酰胺、2-羟基-2-甲基苯丙酮溶于二甲基亚砜中,然后在溶液中加光催化剂,分散得到光催化剂/N-异丙基丙烯酰胺分散液;
(4)将步骤(2)和步骤(3)得到的分散液注入模具中,在紫外光下聚合分别得到氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶和含有光催化剂的聚N-异丙基丙烯酰胺水凝胶,分别记为GO-PNIPAAm和P-PNIPAAm;
(5)将步骤(4)中得到的氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶浸泡在水合肼溶液中,至水凝胶颜色变黑,得到还原氧化石墨烯-N-异丙基丙烯酰胺水凝胶,记为rGO-PNIPAAm;
(6)取步骤(4)中的P-PNIPAAm和步骤(5)得到的rGO-PNIPAAm连接在一起,其中,P-PNIPAAm位于rGO-PNIPAAm的上方,即可得所述光驱动光催化反应器,记为PPR;其中,步骤(2)和(3)的顺序不定。
本发明的一种实施方式中,步骤(1)中所述混合溶液中正己烷和丙酮体积比为2:1~20:1,优选为10:1。
本发明的一种实施方式中,步骤(2)中各组分的质量占比为:重结晶后的N-异丙基丙烯酰胺占35-45%;N,N'-亚甲基双丙烯酰胺占1.5~2.5%,优选为2%;2-羟基-2-甲基苯丙酮占0.5-0.7%;氧化石墨烯占0.25~0.5%,其余为二甲基亚砜。
本发明的一种实施方式中,步骤(3)中各组分的质量占比为:重结晶后的N-异丙基丙烯酰胺占35~45%;N,N'-亚甲基双丙烯酰胺占1.5~2.5%,优选为2%;2-羟基-2-甲基苯丙酮占0.5-0.7%;光催化剂含量为0.1~6%,优选为2~5%,其余为二甲基亚砜。
本发明的一种实施方式中,所述光催化剂是以纳米级二氧化钛为代表的具有光催化能力的半导体材料的总称,它能够在光照下产生强氧化性的物质继而引发相应化学反应,本发明所述的光催化剂为任意光催化剂,包括但不限于硫化镉/还原氧化石墨烯光催化剂、聚合物氮化碳、二氧化钛、氧化锌、氧化锡、二氧化锆、硫化镉、氮化碳以及具有光催化功能的一系列复合材料等。
本发明的一种实施方式中,步骤(4)中所述制备氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶形状为任意能够支撑硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶的形状,优选为圆柱状体或长方体等细长棒状形状,当为圆柱状体时,优选为直径0.5~2mm,高为1~3cm的圆柱状体;制备硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶形状为任意形状,优选为片状,厚度为0.5~2mm,优选为直径为3~15mm,排布方式优选为花片状。
在本发明的一种实施方式中,所述光驱动光催化反应器优选为向日葵状,以便于增大与光的接触面积。
本发明的一种实施方式中,紫外光聚合时间为50~150s,优选为70~150s,紫外光功率为500-1500W,其中紫外光功率和紫外光聚合时间要相适配。
本发明的一种实施方式中,步骤(5)中所述水合肼溶液的浓度为0.1~0.5M。
在本发明的一种实施方式中,步骤(6)中,所述P-PNIPAAm和rGO-PNIPAAm的比例不定,只要rGO-PNIPAAm能够支撑P-PNIPAAm即可。
其次,本发明还提供了上述制备方法制备得到的光驱动光催化反应器。
再者,本发明提供了上述光驱动光催化反应器在光催化领域中的应用。
最后,本发明提供了一种生产双氧水的方法,所述方法以上述光驱动光催化反应器作为反应器,其中,光催化剂为硫化镉/还原氧化石墨烯。
本发明与现有技术相比,其具有显著的优点:
(1)本发明制备得到的光驱动光催化反应器能够有效恢复倾斜照射能量损失,能够在实际照射中自主追随光源的方向,提高光能利用率以及光催化效率。(2)本发明方法有利于实现光催化剂的回收,待反应结束后将水凝胶取出即可。(3)本发明制备得到的光驱动光催化反应器制备方法简单,原料价格低廉,具有良好的应用前景和商业价值。
附图说明
图1是本发明中所制备的一种光驱动光催化反应器制备过程示意图。
图2是本发明中实施例1所制备的一种光驱动光催化反应器的照片(a)以及SEM照片(b-c),其中,b为硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶的SEM图,c为还原氧化石墨烯-N-异丙基丙烯酰胺水凝胶的SEM图。
图3是本发明中实施例1所制备的硫化镉/还原氧化石墨烯的TEM照片。
图4是本发明中实施例1所制备的一种光驱动光催化反应器的趋光角度图以及恢复图。
图5是本发明中实施例1所制备的一种光驱动光催化反应器生产过氧化氢的性能图。
具体实施方式
下面结合具体实施例,进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明做各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
硫化镉/还原氧化石墨烯的制备方法:将0.1589g乙酸镉和0.1848g硫脲溶于60mL去离子水中,然后将20mg氧化石墨烯分散在上述溶液中得均匀的分散液,将分散液转移至100mL带有聚四氟乙烯内衬的水热釜中,在180℃反应12h。得到的产物用去离子水和乙醇进行离心和洗涤,最后通过冷冻干燥得到成品。
实施例1
图1为一种光驱动光催化反应器示意图,本实施例以硫化镉/还原氧化石墨烯作为光催化剂为例,用于生产双氧水,包括以下步骤:
(1)取3g N-异丙基丙烯酰胺单体,在30mL体积比为10:1的正己烷和丙酮的混合溶液中于30℃下搅拌溶解,然后在-10℃下冷却析出晶体,抽滤后干燥得到纯化后的N-异丙基丙烯酰胺单体。
(2)以总质量3g为准,分别称取1.2g步骤(1)得到的N-异丙基丙烯酰胺单体,0.06g的N,N'-亚甲基双丙烯酰胺和0.015g 2-羟基-2-甲基苯丙酮溶于1.7145g二甲基亚砜中,然后将0.0105g氧化石墨烯加到混合溶液中,超声分散得到氧化石墨烯/N-异丙基丙烯酰胺分散液。
(3)同理以总质量3g为准,分别称取1.2g步骤(1)得到的N-异丙基丙烯酰胺单体,0.06g的N,N'-亚甲基双丙烯酰胺和0.015g 2-羟基-2-甲基苯丙酮溶于于1.635g二甲基亚砜中,然后将0.09g硫化镉/还原氧化石墨烯加到混合溶液中,超声分散得到硫化镉/还原氧化石墨烯/N-异丙基丙烯酰胺分散液。
(4)将步骤(2)分散液注入内径为1mm、高度为2cm的毛细管中,步骤(3)的分散液注入直径为7mm、厚度为1.5mm的花型模具中,在紫外光下聚合70s分别到柱状的氧化石 墨烯-聚N-异丙基丙烯酰胺水凝胶和花型片状的硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶,分别记为GO-PNIPAAm和CdS/rGO-PNIPAAm;
(5)将步骤(4)中得到的柱状氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶浸泡在浓度为0.3M的水合肼溶液中,至水凝胶颜色变黑,得到还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶,记为rGO-PNIPAAm;
(6)将步骤(4)中的硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶和步骤(5)得到的还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶粘连在一起,得到一种光驱动光催化反应器,记为PPR。
使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)表征本发明的形结构形貌,使用氙灯作为能量来源对催化活性进行评价,其结果如下:
(1)SEM测试结果表明,还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶和硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶都呈现出较为均匀的多孔结构,参见附图2。
(2)TEM测试结果表明,硫化镉均匀分散在还原氧化石墨烯的表面,表明硫化镉/还原氧化石墨烯复合材料制备成功,参见附图3。
(3)对光驱动光催化反应器不同光照角度下的弯曲情况和90°弯曲下的恢复情况进行追踪,可以看出光驱动光催化反应器可以跟随入射角从0°到99°变化的光照方向。此外,在90°弯曲下,光驱动光催化反应器可以于30min左右基本恢复直立状态。表明水凝胶的弯曲是可逆的,参见附图4。
(4)进行光催化测试:采用300W氙灯作为光源,将光驱动光催化反应器于反应容器底部,去离子水作为反应溶剂。光照前,预先用通氧气30min提供一个氧气平衡环境。通过调节氙灯的入射角度来模拟不同角度下生成过氧化氢的情况(照射时间为1h)。
光催化测试结果表明,相比于无向光性光催化反应器(对比例1),光驱动光催化反应器的光催化效率几乎不会因光照角度的改变而改变,始终维持在垂直照射时的活性水平,稳定的光催化速率,表明其可以有效恢复倾斜入射能量密度损失。当光照入射角度为90°时,光驱动光催化反应器的光催化效率比无向光性材料高出3倍多,参见附图5。
实施例2
将实施例1中的硫化镉/还原氧化石墨烯改成聚合物氮化碳,其余均同实施例1,最终所得的光驱动光催化反应器记为PPR-1。经过测试,发现PPR-1可以如前所述一样,能够稳定追随倾斜入射光的方向,保证其最大捕获光能。另外,PPR-1的弯曲过程是可逆的,它可以在90°弯曲状态下,在30min左右基本恢复直立状态。
实施例3
将实施例1中的硫化镉/还原氧化石墨烯浓度改为2.5wt%,即质量改为0.075g,二甲基亚砜质量相应改为1.65g,其余均同实施例1,最终所得的光驱动光催化反应器记为PPR-2。经测试,发现PPR-2在倾斜光照下可以在约50s内发生向光弯曲,追随入射光的方向。同样地,在30min左右发生恢复。
对比例1
本对比例以硫化镉/还原氧化石墨烯作为光催化剂为例,用于生产双氧水,为实施例1的对照样,包括以下步骤:
(1)取3g N-异丙基丙烯酰胺单体,在30mL体积比为10:1的正己烷和丙酮的混合溶液中于30℃下搅拌溶解,然后在-10℃下冷却析出晶体,抽滤后干燥得到纯化后的N-异丙基丙烯酰胺单体。
(2)以总质量3g为准,分别称取1.2g步骤(1)得到的N-异丙基丙烯酰胺单体,0.06g的N,N'-亚甲基双丙烯酰胺和0.015g 2-羟基-2-甲基苯丙酮溶于于1.635g二甲基亚砜中,然后将0.09g硫化镉/还原氧化石墨烯加到混合溶液中,超声分散得到硫化镉/还原氧化石墨烯/氧化石墨烯/N-异丙基丙烯酰胺分散液。
(3)将步骤(2)得到的分散液注入直径为7mm,厚度为1.5mm的花型模具中,在紫外光下聚合70s得到花型片状的硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶,记为CdS/rGO-PNIPAAm;
(4)将步骤(3)中得到的片状的硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶固定在一根直径为1mm,高为2cm的毛细管顶端,得到无向光性光催化反应器(对照样品)。
对比例2
(1)取3g N-异丙基丙烯酰胺单体,在30mL体积比为10:1的正己烷和丙酮的混合溶液中于30℃下搅拌溶解,然后在-10℃下冷却析出晶体,抽滤后干燥得到纯化后的N-异丙基丙烯酰胺单体。
(2)以总质量3g为准,分别称取1.2g步骤(1)得到的N-异丙基丙烯酰胺单体,0.06g的N,N'-亚甲基双丙烯酰胺和0.015g 2-羟基-2-甲基苯丙酮溶于1.7145g二甲基亚砜中,然后将0.0105g氧化石墨烯加到混合溶液中,超声分散得到氧化石墨烯/N-异丙基丙烯酰胺分散液。
(3)同理以总质量3g为准,分别称取1.2g步骤(1)得到的N-异丙基丙烯酰胺单体,0.06g的N,N'-亚甲基双丙烯酰胺和0.015g 2-羟基-2-甲基苯丙酮溶于1.635g二甲基亚砜中,然后将0.09g硫化镉/还原氧化石墨烯加到混合溶液中,超声分散得到硫化镉/还原氧化石 墨烯/N-异丙基丙烯酰胺分散液。
(4)将步骤(2)分散液注入直径为1mm的毛细管中,液体高度为2cm,然后在其中一端注入步骤(3)分散液,液面高度为5mm,在紫外光下聚合70s得到柱状的还原氧化石墨烯-N-异丙基丙烯酰胺水凝胶水凝胶
(5)将(4)中得到的柱状水凝胶在0.3M的水合肼溶液中放置至颜色变黑,得到一种光驱动光催化反应器,记为PPR-4。
通过这种方法,得到的PPR-4中硫化镉/还原氧化石墨烯-N-异丙基丙烯酰胺水凝胶和还原氧化石墨烯-N-异丙基丙烯酰胺水凝胶的界线不清晰,在两种水凝胶交界处有互相溶解的现象。在进行光催化过氧化氢生成时,由于顶部垂直接触到光的部分是柱的上表面,其直径只有1mm,因此由于照射面积小,所生成的过氧化氢量也相应少,因而仿生向日葵的这种一体化的制作方法并不适用。
对比例3
(1)取3g N-异丙基丙烯酰胺单体,在30mL体积比为10:1的正己烷和丙酮的混合溶液中于30℃下搅拌溶解,然后在-10℃下冷却析出晶体,抽滤后干燥得到纯化后的N-异丙基丙烯酰胺单体。
(2)以总质量3g为准,分别称取1.2g步骤(1)得到的N-异丙基丙烯酰胺单体,0.06g的N,N'-亚甲基双丙烯酰胺和0.015g 2-羟基-2-甲基苯丙酮溶于1.7145g二甲基亚砜中,然后将0.0105g氧化石墨烯加到混合溶液中,超声分散得到氧化石墨烯/N-异丙基丙烯酰胺分散液。
(3)同理以总质量3g为准,分别称取1.2g步骤(1)得到的N-异丙基丙烯酰胺单体,0.06g的N,N'-亚甲基双丙烯酰胺和0.015g 2-羟基-2-甲基苯丙酮溶于1.635g二甲基亚砜中,然后将0.09g硫化镉/还原氧化石墨烯加到混合溶液中,超声分散得到硫化镉/还原氧化石墨烯/N-异丙基丙烯酰胺分散液。
(4)将步骤(2)分散液分别注入直径为0.5,1,2和3mm的圆柱形容器中,高度为2cm,在紫外光下聚合70s得到不同直径的柱状的氧化石墨烯-N-异丙基丙烯酰胺水凝胶。将步骤(3)中的分散液注入直径为7mm的容器中,同样紫外聚合70s得到花型片状的硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶,分别记为GO-PNIPAAm和CdS/rGO-PNIPAAm;
(5)将步骤(4)中得到的柱状氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶浸泡在浓度为0.3M的水合肼溶液中,至水凝胶颜色变黑,得到不同直径的还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶,记为rGO-PNIPAAm;
(6)将步骤(4)中的硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶和步骤(5) 得到的还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶连在一起,得到不同直径的光驱动光催化反应器,分别记为PPR-5-0.5,PPR-5-1,PPR-5-2,PPR-5-3
实验发现直径为3mm的水凝胶PPR-5-3无法被紫外光完全聚合,因为内部的液体无法被紫外光照射,制备出成型较好的柱状氧化石墨烯/N-异丙基丙烯酰胺水凝胶的直径优选的范围为0.5-2mm,而0.5mm的仿生向日葵PPR-5-0.5中还原氧化石墨烯/N-异丙基丙烯酰胺水凝胶过于细,不利于支撑顶部的硫化镉/还原氧化石墨烯/N-异丙基丙烯酰胺水凝胶,对于直径为2mm的柱状仿生向日葵PPR-5-2来说,其趋光的响应时间比PPR-5-1略长,其弯曲时间大概是PPR-5-1的1.5-2倍。因此最佳的仿生向日葵柱直径在1-2mm之间。
对比例4
(1)取3g N-异丙基丙烯酰胺单体,在30mL体积比为10:1的正己烷和丙酮的混合溶液中于30℃下搅拌溶解,然后在-10℃下冷却析出晶体,抽滤后干燥得到纯化后的N-异丙基丙烯酰胺单体。
(2)以总质量3g为准,分别称取1.2g步骤(1)得到的N-异丙基丙烯酰胺单体,0.06g的N,N'-亚甲基双丙烯酰胺和0.015g 2-羟基-2-甲基苯丙酮溶于1.7145g二甲基亚砜中,然后将0.0105g氧化石墨烯加到混合溶液中,超声分散得到氧化石墨烯/N-异丙基丙烯酰胺分散液。
(3)同理以总质量3g为准,分别称取1.2g步骤(1)得到的N-异丙基丙烯酰胺单体,0.06g的N,N'-亚甲基双丙烯酰胺和0.015g 2-羟基-2-甲基苯丙酮,并向其中分别添加质量分数为0%,0.1%,3%,6%,9%的硫化镉/还原氧化石墨烯,其余为二甲基亚砜,超声分散得到不同浓度的硫化镉/还原氧化石墨烯/N-异丙基丙烯酰胺分散液.
(4)将步骤(2)分散液分别注入直径为1mm的圆柱形容器中,高度为2cm,在紫外光下聚合70s得到柱状的氧化石墨烯/N-异丙基丙烯酰胺水凝胶。将步骤(3)中的分散液注入直径为7mm的容器中,紫外聚合70s得到花型片状的硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶,分别记为GO-PNIPAAm和CdS/rGO-PNIPAAm;
(5)将步骤(4)中得到的柱状氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶浸泡在浓度为0.3M的水合肼溶液中,至水凝胶颜色变黑,得到还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶,记为rGO-PNIPAAm;
(6)将步骤(4)中的硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶和步骤(5)得到的还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶粘连在一起,得到一种光驱动光催化反应器,记为PPR-6-0,PPR-6-0.3,PPR-6-3,PPR-6-6,PPR-6-9。
实验表明,PPR-6-9中的硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶不能很好 聚合,原因是其中硫化镉/还原氧化石墨含量超过了能完全聚合的范围。而PPR-6-6可以实现较好的聚合,但是其表面容易产生一些裂纹,所以硫化镉/还原氧化石墨烯的含量上限约为6%;对于光驱动光催化反应器来说,顶部的硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶中的硫化镉/还原氧化石墨烯起到光催化作用,因此其中必须含有硫化镉/还原氧化石墨烯时才能有光催化效果,所以PPR-6-0是不具有光催化效果的,因此硫化镉/还原氧化石墨烯含量的范围为0.1-6%。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (14)

  1. 一种光驱动光催化反应器的制备方法,其特征在于,所述方法包括以下步骤:
    (1)将N-异丙基丙烯酰胺单体用正己烷和丙酮的混合溶液重结晶;
    (2)将步骤(1)得到的重结晶后的N-异丙基丙烯酰胺单体、N,N'-亚甲基双丙烯酰胺、2-羟基-2-甲基苯丙酮溶于二甲基亚砜中,然后在溶液中加入氧化石墨烯,分散得到氧化石墨烯/N-异丙基丙烯酰胺分散液;
    (3)将重结晶后的N-异丙基丙烯酰胺单体、N,N'-亚甲基双丙烯酰胺、2-羟基-2-甲基苯丙酮溶于二甲基亚砜中,然后在溶液中加光催化剂,分散得到光催化剂/N-异丙基丙烯酰胺分散液;
    (4)将步骤(2)和步骤(3)得到的分散液注入模具中,在紫外光下聚合分别得到氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶和含有光催化剂的聚N-异丙基丙烯酰胺水凝胶,分别记为GO-PNIPAAm和P-PNIPAAm;
    (5)将步骤(4)中得到的氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶浸泡在水合肼溶液中,至水凝胶颜色变黑,得到还原氧化石墨烯-N-异丙基丙烯酰胺水凝胶,记为rGO-PNIPAAm;
    (6)取步骤(4)中的P-PNIPAAm和步骤(5)得到的rGO-PNIPAAm连接在一起,其中,P-PNIPAAm位于rGO-PNIPAAm的上方,即可得所述光驱动光催化反应器;
    其中,步骤(2)和(3)的顺序不定。
  2. 根据权利要求1所述的一种光驱动光催化反应器的制备方法,其特征在于,步骤(2)中各组分的质量占比为:重结晶后的N-异丙基丙烯酰胺占35-45%;N,N'-亚甲基双丙烯酰胺占1.5~2.5%;2-羟基-2-甲基苯丙酮占0.5-0.7%;氧化石墨烯占0.25~0.5%,其余为二甲基亚砜。
  3. 根据权利要求1所述的一种光驱动光催化反应器的制备方法,其特征在于,步骤(3)中各组分的质量占比为:重结晶后的N-异丙基丙烯酰胺占35~45%;N,N'-亚甲基双丙烯酰胺占1.5~2.5%;2-羟基-2-甲基苯丙酮占0.5-0.7%;光催化剂含量为0.1~6%,其余为二甲基亚砜。
  4. 根据权利要求1~3任一项所述的一种光驱动光催化反应器的制备方法,其特征在于,所述光催化剂是指具有光催化能力的半导体材料。
  5. 根据权利要求4所述的一种光驱动光催化反应器的制备方法,其特征在于,所述光催化剂包括硫化镉/还原氧化石墨烯光催化剂、聚合物氮化碳、二氧化钛、氧化锌、氧化锡、二氧化锆、硫化镉、氮化碳的任一种。
  6. 根据权利要求1~3任一项所述的一种光驱动光催化反应器的制备方法,其特征在于,步骤(4)中所述制备氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶形状为柱状体或长方体;制备硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶形状为片状。
  7. 根据权利要求6所述的一种光驱动光催化反应器的制备方法,其特征在于,当制备氧 化石墨烯-聚N-异丙基丙烯酰胺水凝胶形状为圆柱状体时,直径0.5~2mm,高为1~3cm。
  8. 根据权利要求6所述的一种光驱动光催化反应器的制备方法,其特征在于,当制备硫化镉/还原氧化石墨烯-聚N-异丙基丙烯酰胺水凝胶形状为花片状时,厚度为0.5~2mm,直径为3~15mm。
  9. 根据权利要求1~3任一项所述的一种光驱动光催化反应器的制备方法,其特征在于,紫外光聚合时间为50~150s,紫外光功率为500-1500W。
  10. 根据权利要求9所述的一种光驱动光催化反应器的制备方法,其特征在于,紫外光聚合时间为70~100s。
  11. 根据权利要求1~3任一项所述的一种光驱动光催化反应器的制备方法,其特征在于,步骤(5)中所述水合肼溶液的浓度为0.1~0.5M。
  12. 权利要求1~11任一项所述的一种光驱动光催化反应器的制备方法制备得到的光驱动光催化反应器。
  13. 权利要求12所述的光驱动光催化反应器在光催化领域中的应用。
  14. 一种生产双氧水的方法,其特征在于,所述方法以上述权利要求12所述的光驱动光催化反应器作为反应器,其中,光催化剂为硫化镉/还原氧化石墨烯。
PCT/CN2022/075448 2021-02-09 2022-02-08 一种光驱动光催化反应器及其制备方法 WO2022171065A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110178541.3 2021-02-09
CN202110178541.3A CN112934146B (zh) 2021-02-09 2021-02-09 一种光驱动光催化反应器及其制备方法

Publications (1)

Publication Number Publication Date
WO2022171065A1 true WO2022171065A1 (zh) 2022-08-18

Family

ID=76244874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075448 WO2022171065A1 (zh) 2021-02-09 2022-02-08 一种光驱动光催化反应器及其制备方法

Country Status (2)

Country Link
CN (1) CN112934146B (zh)
WO (1) WO2022171065A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115975121A (zh) * 2023-02-07 2023-04-18 安徽理工大学 一种双层复合材料仿生运动行为驱动器的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112934146B (zh) * 2021-02-09 2023-01-31 江南大学 一种光驱动光催化反应器及其制备方法
CN115521400B (zh) * 2021-12-27 2023-11-14 青岛大学 一种聚n-异丙基丙烯酰胺3d自变形水凝胶的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077752A (ja) * 1998-08-28 2000-03-14 Sony Corp 光触媒励起装置
CN106215952A (zh) * 2016-07-15 2016-12-14 湖北科技学院 量子点/TiO2纳米复合水凝胶软反应器及其原位辐射制备方法
CN108484937A (zh) * 2018-04-02 2018-09-04 吉林大学 一种近红外光驱动4d智能变形材料的制备方法
CN108837828A (zh) * 2018-07-12 2018-11-20 湖北科技学院 一种纳米金属单质/TiO2-水凝胶基光催化材料的一步辐射合成法
CN110479232A (zh) * 2019-08-20 2019-11-22 中国航发北京航空材料研究院 一种还原氧化石墨烯基光催化气凝胶珠的制备方法
CN112934146A (zh) * 2021-02-09 2021-06-11 江南大学 一种光驱动光催化反应器及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2399374Y (zh) * 1998-12-31 2000-10-04 武汉大学 废水光催化处理器
TWI445939B (zh) * 2012-06-29 2014-07-21 Nat Applied Res Laboratories 平板波導傳遞光損耗檢測方法
CN102872768B (zh) * 2012-09-26 2014-09-03 天津城市建设学院 太阳光自动跟踪光热催化-膜分离反应系统
CN103861542A (zh) * 2012-12-18 2014-06-18 中国科学院大连化学物理研究所 一种利用太阳能光催化制氢的反应装置
CN103359686B (zh) * 2013-07-15 2015-04-22 中盈长江国际新能源投资有限公司 一种采集太阳光的光催化反应系统
CN104610566B (zh) * 2015-01-15 2017-09-29 陕西科技大学 一种纳米TiO2改性复合水凝胶的制备方法
CN205061655U (zh) * 2015-10-19 2016-03-02 徐志兵 一种可调节角度的光催化装置
CN105727998B (zh) * 2016-02-01 2018-04-27 浙江工商大学 一种复合二氧化钛纳米花光电催化材料及其制备和应用
CN106317263B (zh) * 2016-08-23 2017-12-22 浙江理工大学 一种医用光固化水凝胶中可见光引发体系及其光固化方法
CN106492882B (zh) * 2016-10-20 2019-04-05 南京大学 具酰胺基且负载纳米硫化镉光催化剂复合水凝胶的制备方法和应用
CN107051586B (zh) * 2017-05-25 2020-02-21 南京大学 一种负载光催化剂的水凝胶及其制备方法和应用
CN107176646B (zh) * 2017-06-15 2020-10-23 陕西科技大学 一种光驱动用于环境修复的微型机器人的制备方法
CN107349937B (zh) * 2017-06-28 2020-07-28 西安交通大学 一种石墨烯基双金属硫化物纳米复合光催化剂的制备方法
CN108126682B (zh) * 2017-12-20 2020-11-20 河北燕园众欣石墨烯科技有限公司 一种石墨烯杂化光催化剂水凝胶
CN209428321U (zh) * 2018-11-08 2019-09-24 山东化工职业学院 一种日光跟踪聚光光催化反应装置
CN110252398A (zh) * 2019-05-21 2019-09-20 江苏大学 一种温敏响应型PNIPAM@Ag/Ag3PO4/CN复合光催化剂的制备方法及应用
CN110280195A (zh) * 2019-05-28 2019-09-27 浙江工业大学 一种光催化反应系统及其在人工固氮过程中的应用
CN111054395B (zh) * 2019-12-10 2021-06-25 中国环境科学研究院 一种可见光催化剂及其制备方法和应用
CN111889137B (zh) * 2020-07-03 2023-08-04 湖北科技学院 全太阳光谱响应型双网络水凝胶基光催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077752A (ja) * 1998-08-28 2000-03-14 Sony Corp 光触媒励起装置
CN106215952A (zh) * 2016-07-15 2016-12-14 湖北科技学院 量子点/TiO2纳米复合水凝胶软反应器及其原位辐射制备方法
CN108484937A (zh) * 2018-04-02 2018-09-04 吉林大学 一种近红外光驱动4d智能变形材料的制备方法
CN108837828A (zh) * 2018-07-12 2018-11-20 湖北科技学院 一种纳米金属单质/TiO2-水凝胶基光催化材料的一步辐射合成法
CN110479232A (zh) * 2019-08-20 2019-11-22 中国航发北京航空材料研究院 一种还原氧化石墨烯基光催化气凝胶珠的制备方法
CN112934146A (zh) * 2021-02-09 2021-06-11 江南大学 一种光驱动光催化反应器及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALBERT SERRÀ ET AL.: "Photocatalytic treatment of natural waters. Reality or hype? The case of cyanotoxins remediation", WATER RESEARCH, vol. 188, no. 116543, 22 October 2020 (2020-10-22), XP086387218, DOI: 10.1016/j.watres.2020.116543 *
HOU HUILIN, ZENG XIANGKANG, ZHANG XIWANG: "Production of Hydrogen Peroxide by Photocatalytic Processes", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 59, no. 40, 28 September 2020 (2020-09-28), pages 17356 - 17376, XP055957132, ISSN: 1433-7851, DOI: 10.1002/anie.201911609 *
QIN JINGJING, CHU KAIBIN, HUANG YUNPENG, ZHU XIANGMIAO, HOFKENS JOHAN, HE GUANJIE, PARKIN IVAN P., LAI FEILI, LIU TIANXI: "The bionic sunflower: a bio-inspired autonomous light tracking photocatalytic system", ENERGY & ENVIRONMENTAL SCIENCE, vol. 14, no. 7, 14 July 2021 (2021-07-14), Cambridge , pages 3931 - 3937, XP055959492, ISSN: 1754-5692, DOI: 10.1039/D1EE00587A *
XIAOSHI QIAN ET AL.: "Artificial phototropism for omnidirectional tracking and harvesting of light", NATURE NANOTECHNOLOGY SUPPLEMENTARY INFORMATION, vol. 14, 4 November 2019 (2019-11-04), XP036920945, DOI: 10.1038/s41565-019-0562-3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115975121A (zh) * 2023-02-07 2023-04-18 安徽理工大学 一种双层复合材料仿生运动行为驱动器的制备方法
CN115975121B (zh) * 2023-02-07 2024-06-04 安徽理工大学 一种双层复合材料仿生运动行为驱动器的制备方法

Also Published As

Publication number Publication date
CN112934146A (zh) 2021-06-11
CN112934146B (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2022171065A1 (zh) 一种光驱动光催化反应器及其制备方法
WO2020037845A1 (zh) 一种可高效活化过硫酸盐的石墨烯基中空硫化钴纳米晶及其制备方法
CN108963282A (zh) 一种溶剂热法还原的燃料电池碳载铂基催化剂及其制备方法与应用
CN106252616A (zh) 一种硒化镍/中空碳纤维复合材料及其制备方法
WO2023202204A1 (zh) 硬碳负极材料的制备方法及其应用
CN105869911A (zh) 一种用于超级电容器的多孔硫化物/石墨烯复合电极材料及其制备方法
CN114392734B (zh) 一种氧化钨复合材料及其制备方法和应用
CN106076303A (zh) 氧化石墨烯/二氧化钛纳米针复合材料及其制备方法和应用
CN108940255A (zh) 一种氧化锌催化材料及其制备方法与应用
CN108448104A (zh) 一种五氧化二铌/碳双量子点纳米复合材料及其制备方法和应用
CN114602508A (zh) 具有光催化性能的MnS@ZnS核壳空心球制备及其应用
CN106825553B (zh) 一种钴-氮-碳核壳杂化空心多孔碳球的制备方法
CN110649258B (zh) 一种三维多孔氧化锡石墨烯复合电极材料的制备方法
CN106783235B (zh) 同取向的纳米晶粒组成的类单晶介孔氮氧化钛纳米线及其制备方法和应用
US20230264174A1 (en) Catalyst for photocatalytic reaction for the production of hydrogen by hydrolysis and preparation method thereof
CN103570065A (zh) 一种介孔TiO2球的双模板制备方法
CN106450236B (zh) 一种锂离子电池负极材料的制备方法
CN110918085A (zh) 一种多孔wo3/c纳米片介孔复合光催化剂的制备方法
CN114380338B (zh) 一种磁性氧化钴介孔纳米球的制备方法及其产品和应用
CN109659574A (zh) 复合正极材料及其制备方法、锂空气电池
CN114850488A (zh) 生物质衍生铜纳米线制备方法及铜集流体制备方法
CN111111725A (zh) 石墨状氮化碳负载镍钴硫颗粒复合材料、制备方法及其用途
WO2020258960A1 (zh) 一种基于水热法快速生长ZnO纳米多孔薄膜的方法
CN109107611A (zh) 一种聚吡咯/生物质碳/SnO2-x纳米复合光催化材料的制备方法
CN110698574B (zh) 一种超级电容活性物质的形貌诱导剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752226

Country of ref document: EP

Kind code of ref document: A1