WO2022170718A1 - 一种非对称性uv曝光方法 - Google Patents

一种非对称性uv曝光方法 Download PDF

Info

Publication number
WO2022170718A1
WO2022170718A1 PCT/CN2021/100610 CN2021100610W WO2022170718A1 WO 2022170718 A1 WO2022170718 A1 WO 2022170718A1 CN 2021100610 W CN2021100610 W CN 2021100610W WO 2022170718 A1 WO2022170718 A1 WO 2022170718A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable coating
asymmetric
exposure method
substrate
transparent substrate
Prior art date
Application number
PCT/CN2021/100610
Other languages
English (en)
French (fr)
Inventor
王钧
黄腾纬
刘江
江建国
Original Assignee
浙江鑫柔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江鑫柔科技有限公司 filed Critical 浙江鑫柔科技有限公司
Priority to CN202180003432.6A priority Critical patent/CN113906348B/zh
Priority to US17/769,291 priority patent/US20240152054A1/en
Publication of WO2022170718A1 publication Critical patent/WO2022170718A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor

Definitions

  • the present invention relates to an asymmetrical UV exposure method, and more particularly, to an asymmetrical UV exposure method that can be applied to an optically transparent substrate (whether or not it has a UV blocking function).
  • Metal mesh-based touch sensors offer the advantages of superior flexibility, excellent optical performance, and lower fabrication costs, in which optically transparent substrates are key components.
  • Current processes require optically transparent substrates with UV blocking capabilities (eg greater than 90% blocking at a certain UV wavelength) so that UV light from one side does not pass through the substrate to cure the coating on the other side.
  • UV blocking capabilities eg greater than 90% blocking at a certain UV wavelength
  • the same UV curable coating is applied on both sides of the substrate and exposed by UV light with the same peak wavelength (as shown in Figure 1).
  • the UV blocking function in the optically transparent substrate plays a key role in blocking UV light from passing through the substrate, allowing unique micropatterns to be formed on each side of the substrate.
  • UV blocking functionality In current manufacturing processes, the options available when choosing a substrate are very limited due to the mandatory requirement for UV blocking functionality in optically transparent substrates. Introducing UV blocking functionality into optically transparent substrates requires development work by the substrate supplier and often sacrifices the optical properties of the substrate, such as lower light transmittance and higher haze, which is critical for applications such as metal mesh touch sensors is not desired. Currently, few PET products have UV blocking capabilities, and emerging substrates such as COP and CPI have no UV blocking at all, hindering the development of flexible devices such as metal mesh touch sensors.
  • the purpose of the present invention is to overcome the above-mentioned drawbacks of the prior art, and to provide an asymmetric UV exposure method in which the UV blocking function of the optically transparent substrate is not necessary, thereby allowing more choices of the optically transparent substrate.
  • the present invention provides an asymmetric UV exposure method comprising applying UV curable coating #1 on one side of an optically clear substrate and applying UV curable coating #2 on the on the other side of the optically transparent substrate and simultaneously exposing both sides of the optically transparent substrate to UV light, wherein the UV curable coating #1 and the UV curable coating #2 are at different wavelengths has a UV absorption peak.
  • the wavelength difference between the UV absorption peaks of the UV-curable coating #1 and the UV-curable coating #2 is at least 10 nm.
  • the UV-curable coating #1 and the UV-curable coating #2 are each independently selected from the group consisting of a positive-working photoresist and a negative-working photoresist.
  • the positive photoresist includes a developer-soluble resin material after exposure
  • the negative photoresist includes a developer-insoluble resin material after exposure
  • the UV-curable coating #1 and the UV-curable coating #2 each comprise a photoinitiator.
  • the photoinitiators of the UV-curable coating #1 and the UV-curable coating #2 are each independently selected from the group consisting of acetophenones, benzophenones, triazines At least one of the group consisting of thioxanthones, thioxanthones and oxime esters.
  • the difference between the UV absorption peaks of the UV curable coating #1 and the UV curable coating #2 is achieved by using two different photoinitiators with UV absorption peaks at different wavelengths wavelength difference.
  • the optically transparent substrate is made of PET, COP, CPI, or other flexible or rigid materials.
  • the optically transparent substrate has no UV blocking function.
  • the present invention also provides a metal mesh touch sensor manufactured by the asymmetric UV exposure method according to the above.
  • Figure 1 shows a conventional UV exposure method in which the same UV curable coating is applied on both sides of the substrate and exposed by UV light with the same peak wavelength
  • Figure 2 shows the novel asymmetric UV exposure method of the present invention wherein UV curable coating #1 is applied on one side of an optically clear substrate and UV curable coating #2 is applied on the optically clear substrate on the other side of the substrate;
  • Fig. 3 shows the network structure of the first group of photoresists after development according to an embodiment of the present invention
  • FIG. 4 shows the copper mesh structure of the first group of photoresists after copper plating according to an embodiment of the present invention
  • Fig. 5 shows the network structure of the second group of photoresists after development according to an embodiment of the present invention
  • FIG. 6 shows the copper mesh structure of the second group of photoresists after copper plating according to an embodiment of the present invention
  • FIG. 7 shows the copper mesh structure formed on the side #1 after the third group of photoresists are exposed and copper-plated
  • FIG. 8 shows the copper mesh structure formed on the side #2 after the third group of photoresists are exposed and copper-plated
  • Fig. 9 shows the copper mesh structure formed on the side #1 after the exposure of the fourth group of photoresists after copper plating
  • FIG. 10 shows the copper mesh structure formed on the side #2 after the fourth group of photoresists are exposed and copper-plated
  • FIG. 11 shows the copper mesh structure formed on the side #1 after the fifth group of photoresists are exposed and copper-plated
  • Figure 12 shows the copper mesh structure formed on the side #2 after the fifth group of photoresists are exposed and copper-plated
  • FIG. 13 shows the copper mesh structure formed on the side #1 after the sixth group of photoresist is exposed and copper-plated
  • FIG. 14 shows the copper mesh structure formed on side #2 after exposure of the sixth group of photoresists after copper plating.
  • the present invention provides an asymmetric UV exposure method comprising applying UV curable coating #1 on one side of an optically clear substrate and applying UV curable coating #2 on the on the other side of the optically transparent substrate and simultaneously exposing both sides of the optically transparent substrate to UV light, wherein the UV curable coating #1 and the UV curable coating #2 are at different wavelengths has a UV absorption peak.
  • the asymmetric UV exposure method of the present invention does not require the optically transparent substrate to have UV blocking function, and due to the mismatch between the UV light wavelength and the absorption peak wavelength of the UV curable coating, the UV curable coating on the other side will not be cured by the UV light passing through the substrate.
  • both sides of an optically transparent substrate to which different UV-curable coatings eg, UV-curable coating #1 and UV-curable coating #2
  • UV-curable coating #1 and UV-curable coating #2 are applied can be implemented with the asymmetric UV exposure of the present invention.
  • UV blocking function refers to the ability of an optically transparent substrate to block the passage of ultraviolet light.
  • the UV absorption peak wavelength of the present invention is generally in the range of 190 nm to 400 nm.
  • the UV-curable coating #1 and the UV-curable coating #2 The wavelength difference between the UV absorption peaks can have a minimum value.
  • the wavelength difference between the UV absorption peaks of the UV-curable coating #1 and the UV-curable coating #2 may be at least 10 nm, such as 20 nm, 30 nm, 40 nm, 50 nm, 60 nm , 80nm or 100nm, etc.
  • the UV-curable coating of the present invention is not particularly limited, and may be a common photoresist in the art.
  • the UV-curable coating #1 and the UV-curable coating #2 are each independently selected from the group consisting of a positive-tone photoresist and a negative-tone photoresist.
  • both the UV-curable coating #1 and the UV-curable coating #2 may be positive photoresists; the UV-curable coating #1 and the UV-curable coating #2 Both layers #2 can be negative photoresists; or one of the UV curable coating #1 and the UV curable coating #2 is a positive photoresist and the other is Negative photoresist.
  • the type of the photoresist can be further selected according to actual needs.
  • the positive photoresist may preferably contain a developer-soluble resin material after exposure
  • the negative photoresist may preferably contain a developer-insoluble resin material after exposure.
  • the developer is usually an aqueous solution containing an alkaline compound and a surfactant.
  • the alkaline compound can be an inorganic or organic alkaline compound. These inorganic and organic alkaline compounds can be used alone or in combination of two or more; At least one selected from the group consisting of nonionic surfactants, anionic surfactants and cationic surfactants can be used, and these surfactants can be used alone or in combination of two or more.
  • the UV-curable coating #1 and the UV-curable coating #2 may each contain a photoinitiator (also known as a sensitizer or photosensitizer, etc.) in order to allow the UV-curable coating Layer #1 and the UV curable coating #2 have UV absorption peaks at different wavelengths.
  • a photoinitiator also known as a sensitizer or photosensitizer, etc.
  • the wavelength difference between the UV absorption peaks of the UV curable coating #1 and the UV curable coating #2 can be achieved by using two different UV absorption peaks at different wavelengths photoinitiator to achieve. Therefore, the UV-curable coating #1 and the UV-curable coating #2 of the present invention typically contain different photoinitiators.
  • the kind of the photoinitiator of the present invention is not particularly limited, and may be a common photoinitiator in the art.
  • the photoinitiators of the UV curable coating #1 and the UV curable coating #2 are each independently selected from the group consisting of acetophenone compounds, benzophenone compounds, At least one of the group consisting of triazine compounds, thioxanthone compounds and oxime ester compounds.
  • Specific examples of the acetophenone compound may include 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethoxyacetophenone, and 2-(4-methylbenzyl)-2- (Dimethylamino)-1-(4-morpholinophenyl)butan-1-one and the like.
  • benzophenone-based compound may include benzophenone, methyl phthaloyl benzoate, 4-benzoyl-4'-methyldiphenyl sulfide, and 2,4,6-trimethylbenzene benzophenone, etc.
  • triazine compound may include 2,4-bis(trichloromethyl)-6-(4-methoxyphenyl)-1,3,5-triazine, 2,4-bis(trichloromethyl) Methyl)-6-(4-methoxynaphthyl)-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-[2-(3,4-dimethoxy phenyl)vinyl]-1,3,5-triazine and 2,4-bis(trichloromethyl)-6-2-(4-diethylamino-2-methylphenyl)vinyl ]-1,3,5-triazine, etc.
  • thioxanthone compound may include 2-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, and 1-chloro-4-propoxythioxanthone Tonone, etc.
  • oxime ester compound may include o-ethoxycarbonyl- ⁇ -oxyimino-1-phenylpropan-1-one, 1,2-octanedione, 1-(4-phenylthio)benzene base and 2-(o-benzoyl oxime) and so on.
  • the transparent optical film may be a substrate having excellent transparency, mechanical strength, and thermal stability
  • the optically transparent substrate may be made of at least one selected from the group consisting of: Ester-based resins such as polyethylene terephthalate (PET), polyethylene naphthalate, polybutylene terephthalate, etc.; cellulose-based resins such as diacetyl cellulose and triacetic acid Cellulose, etc.; acrylic resins such as polymethyl(meth)acrylate and polyethyl(meth)acrylate, etc.; styrene-based resins such as polystyrene and acrylonitrile-styrene copolymer, etc.; polyolefin-based resins such as poly(meth)acrylate Ethylene, polypropylene, cyclic or norbornene-polyolefin and ethylene-polypropylene copolymers, etc.; vinyl chloride resins; amide
  • the UV blocking function of the optically transparent substrate is not necessary to allow more choices of the optically transparent substrate. Therefore, in a preferred embodiment, the optically transparent substrate may be a substrate without UV blocking function.
  • such a transparent optical film may suitably contain one or more types of additives.
  • the additives may be UV absorbers, antioxidants, lubricants, plasticizers, mold release agents, anti-colorants, flame retardants, surfactants, antistatic agents, pigments and colorants, and the like.
  • the thickness of such a transparent optical film can be appropriately determined, however, in general, the thickness can be determined between 1 ⁇ m and 500 ⁇ m in consideration of its strength, workability and thin-layer properties. In particular, a value between 1 ⁇ m and 300 ⁇ m is preferred, and a value between 5 ⁇ m and 200 ⁇ m is more preferred.
  • the described asymmetric UV exposure method can be applied to fabricate metal mesh touch sensors on optically transparent substrates without UV blocking capabilities.
  • the asymmetric UV exposure method is performed by first applying a UV curable coating #1 (eg, negative photoresist) on one side of an optically clear substrate and on the other side of the optically clear substrate UV curable coating #2 (eg negative photoresist), then during the UV exposure step, specific photomasks are placed on each side of the optically clear substrate to form the desired cured UV coating on each side
  • the optically transparent substrate with cured micropatterns on each side is then wet developed and metallized to form a metal mesh touch sensor.
  • the described asymmetric UV exposure method does not require UV blocking functionality in optically transparent substrates, thus allowing a greater choice of optically transparent substrates in applications including, but not limited to, the fabrication of metal mesh touch sensors.
  • a metal mesh touch sensor manufactured by an asymmetric UV exposure method according to any of the preceding claims.
  • the manufactured products may include, but are not limited to, metal mesh touch sensors, as well as other suitable optical materials or products.
  • the asymmetric UV exposure of the present invention not only allows a greater choice of optically transparent substrates for fabricating metal mesh touch sensors, but also enables better flexibility and improved optical properties (ie, higher light transmittance and lower haze).
  • a photoresist film was coated on the surface of each substrate using a Meyer rod or a gravure proofer, and then dried in an oven at a temperature of 50-100°C for 120 seconds to obtain a coating with a thickness of 500-1000 nm; in photolithography A layer of palladium colloid is applied on top of the film, followed by a protective film, and the photomask is UV exposed using different filters and energies; after exposure, the substrate is rinsed with a developer to remove the uncured coating, It is then dipped into an electroless copper plating bath to grow copper mesh wires. A total of six groups were set up for the experiment:
  • the first group coating a photoresist film BC002 on one surface of the substrate (containing 0.8% photoinitiator-1, the absorption peak wavelength is 314nm);
  • the second group coating a photoresist film BCK on one surface of the substrate (the absorption peak wavelength is 365nm);
  • the third group coating photoresist film BC001 (containing 1.26% photoinitiator-1, absorption peak wavelength is 314nm) on both surfaces of the substrate;
  • the fourth group coating the photoresist film BCK on both surfaces of the substrate;
  • the fifth group coating photoresist film BC002 on one surface of the substrate, and coating photoresist film BCK on the other surface;
  • the sixth group a photoresist film BC003 (containing 0.6% photoinitiator-1, absorption peak wavelength of 314 nm) was coated on one surface of the substrate, and a photoresist film BCK was coated on the other surface.
  • Figures 3 and 4 show the first set of photoresist meshes after development and the copper meshes after copper plating, respectively; and Figures 5 and 6 show the second set of photoresists, respectively The mesh structure of the glue after development and the copper mesh structure after copper plating. It can be seen that when only one surface of the substrate is coated with the photoresist film, a regular grid pattern can finally be formed.
  • FIGS. 7 and 8 respectively show the copper mesh structures formed on the side #1 and the side #2 after the third group of photoresists are exposed and copper-plated. It can be seen that the copper mesh structure formed on both sides is messy, this is because when the material with the same absorption peak wavelength (the absorption peak wavelength on both sides is 314nm) is applied on both sides of the substrate, the side #1 and the side #2 The photoresist on the substrate will be affected by the curing of UV light with the same wavelength on the other side, that is, the UV light will interfere with the photoresist on the other side of the substrate, which is not desirable for the fabrication of metal mesh touch sensors .
  • the absorption peak wavelength on both sides is 314nm
  • FIGS. 9 and 10 respectively show the copper mesh structures formed on the side #1 and side #2 after the exposure of the fourth group of photoresists after copper plating. It can be seen that the copper mesh structure formed on both sides is messy, because when the material with the same absorption peak wavelength (the absorption peak wavelength on both sides is 365nm) is applied on both sides of the substrate, the side #1 and the side #2 The photoresist on the other side will be affected by the curing of UV light with the same wavelength on the other side, that is to say, it is also confirmed that the UV light will interfere with the photoresist on the other side of the substrate, which is very important for the fabrication of metal mesh touch sensors. undesired.
  • the absorption peak wavelength on both sides is 365nm
  • FIG. 11 and FIG. 12 respectively illustrate copper mesh structures formed on side #1 and side #2 after the fifth group of photoresists are exposed and copper-plated. It can be seen that a regular grid pattern is formed on both sides, because when materials with different absorption peak wavelengths are applied on both sides of the substrate (the absorption peak wavelength of side #1 is 314 nm, and the absorption peak wavelength of side #2 is 365 nm), the side The photoresist on side #1 and side #2 is not affected by curing of UV light with a different wavelength on the other side, that is, asymmetric UV exposure eliminates the effect of UV light from the other side of the substrate.
  • FIG. 13 and FIG. 14 respectively show the copper mesh structures formed on the side #1 and side #2 of the sixth group of photoresists after exposure and copper plating. It can be seen that a regular grid pattern is formed on both sides, because when materials with different absorption peak wavelengths are applied on both sides of the substrate (the absorption peak wavelength of side #1 is 314 nm, and the absorption peak wavelength of side #2 is 365 nm), the side The photoresist on #1 and side #2 is not affected by curing of UV light with different wavelengths on the other side, that is, it is also confirmed that asymmetric UV exposure eliminates the effect of UV light from the other side of the substrate .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种非对称性UV曝光方法,以及使用它制造的金属网格传感器,包括将UV可固化涂层#1施加在光学透明基板的一侧上,并将UV可固化涂层#2施加在光学透明基板的另一侧上,并且将光学透明基板的两侧同时曝光于UV光,其中,UV可固化涂层#1与UV可固化涂层#2在不同的波长处具有UV吸收峰。不仅允许用于制造金属网格触摸传感器的光学透明基板的选择更大,而且还实现了更好的柔性和改善的光学特性。

Description

一种非对称性UV曝光方法
相关申请的交叉引用
本申请要求于2021年2月9日提交的申请号为CN202110178400.1、发明名称为“一种非对称性UV曝光方法”的专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本发明涉及一种非对称性UV曝光方法,更具体地,涉及一种可以应用于光学透明基板(不管是否有UV阻隔功能)的非对称性UV曝光方法。
背景技术
基于金属网格的触摸传感器提供了优越的柔性、优异的光学性能和较低的制造成本的优点,其中光学透明基板是关键部件。当前的工艺要求光学透明基材具有UV阻隔功能(例如某个UV波长的阻隔率大于90%),因此来自一侧的UV光不会穿过基板以固化另一侧的涂层。在当前的工艺中,将相同的UV可固化涂层涂覆在基板的两侧上,并通过具有相同峰值波长的UV光进行曝光(如图1中所示)。光学透明基板中的UV阻隔功能起着关键作用,可阻止紫外线穿过基板,从而允许在基板的每一侧形成独特的微图案。
在当前的制造过程中,由于对光学透明基板中的UV阻隔功能有强制性要求,因此选择基板时可用的选项非常有限。在光学透明基板中引入UV阻隔功能需要基板供应商的开发工作,并且通常会牺牲基板的光学性能,例如较低的透光率和较高的雾度,这对于诸如金属网格触摸传感器的应用是不希望的。目前,几乎没有PET产品具有UV阻隔功能,而新兴的基板(例如COP和CPI)根本没有UV阻隔,这阻碍了柔性设备(例如金属网格状触摸传感器)的发展。
发明内容
本发明的目的在于克服现有技术的上述缺陷,提供一种非对称性UV曝光方法,其中光学透明基板的UV阻隔功能不是必需的,并因此允许所述光学透明基板的更多选择。
在一方面,本发明提供了一种非对称性UV曝光方法,其包括将UV可固化涂层#1施加在光学透明基板的一侧上,并将UV可固化涂层#2施加在所述光学透明基板的另一侧上,并且将所述光学透明基板的两侧同时曝光于UV光,其中,所述UV可固化涂层#1与所述UV可固化涂层#2在不同的波长处具有UV吸收峰。
在一个实施方式中,所述UV可固化涂层#1与所述UV可固化涂层#2的UV吸收峰之间的波长差异为至少10nm。
在一个实施方式中,所述UV可固化涂层#1和所述UV可固化涂层#2各自独立地选自由正性光刻胶和负性光刻胶组成的组。
在一个实施方式中,所述正性光刻胶包含曝光后可溶于显影液的树脂材料,并且所述负光刻胶包含曝光后不溶于显影液的树脂材料。
在一个实施方式中,所述UV可固化涂层#1和所述UV可固化涂层#2各自包含光引发剂。
在一个实施方式中,所述UV可固化涂层#1和所述UV可固化涂层#2的光引发剂各自独立地为选自由苯乙酮类化合物、二苯甲酮类化合物、三嗪类化合物、噻吨酮类化合物和肟酯类化合物组成的组中的至少一种。
在一个实施方式中,通过使用在不同的波长下具有UV吸收峰的两种不同的光引发剂来实现所述UV可固化涂层#1与所述UV可固化涂层#2的UV吸收峰之间的波长差异。
在一个实施方式中,所述光学透明基板由PET、COP、CPI、或者其他柔性或刚性材料制成。
在一个实施方式中,所述光学透明基板不具有UV阻隔功能。
在另一方面,本发明还提供了一种金属网格触摸传感器,其通过根据上述 非对称性UV曝光方法制造。
本发明的技术方案的优点至少在于:(1)在光学透明基板中不需要UV阻隔功能;(2)允许光学透明基板的更多选择;(3)既适用于正性UV可固化光刻胶,又适用于负性UV可固化光刻胶;以及(4)使用其制造的产品诸如柔性设备具有改善的光学性能。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1示出了传统的UV曝光方法,其中将相同的UV可固化涂层施加在基板的两侧,并通过具有相同峰波长的UV光来曝光;
图2示出了本发明的新型的非对称性UV曝光方法,其中将UV可固化涂层#1施加在光学透明基板的一侧上,并将UV可固化涂层#2施加在该光学透明基板的另一侧上;
图3示出了根据本发明实施例的第一组光刻胶在显影后的网状结构;
图4示出了根据本发明实施例的第一组光刻胶在镀铜后的铜网状结构;
图5示出了根据本发明实施例的第二组光刻胶在显影后的网状结构;
图6示出了根据本发明实施例的第二组光刻胶在镀铜后的铜网状结构;
图7示出了第三组光刻胶在曝光镀铜后的侧面#1上形成的铜网状结构;
图8示出了第三组光刻胶在曝光镀铜后的侧面#2上形成的铜网状结构;
图9示出了第四组光刻胶在曝光镀铜后的侧面#1上形成的铜网状结构;
图10示出了第四组光刻胶在曝光镀铜后的侧面#2上形成的铜网状结构;
图11示出了第五组光刻胶在曝光镀铜后的侧面#1上形成的铜网状结构;
图12示出了第五组光刻胶在曝光镀铜后的侧面#2上形成的铜网状结构;
图13示出了第六组光刻胶在曝光镀铜后的侧面#1上形成的铜网状结构;
图14示出了第六组光刻胶在曝光镀铜后的侧面#2上形成的铜网状结构。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
应当理解,尽管术语“第一”,“第二”等在本文中可以用于描述各种元件,但是这些元件不应受这些术语限制。这些术语仅用于将一个元件与另一个元件区分开。例如,在不脱离本发明范围的情况下,第一元件可以被称为第二元件,并且类似地,第二元件可以被称为第一元件。
除非另有定义,本文使用的所有术语(包括技术和科学术语)具有与本发明所属领域的普通技术人员通常理解的相同的含义。还应当理解,诸如在通常使用的字典中定义的那些术语应该被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且不会以理想化或过度形式化的含义来解释,除非在此明确地定义。
在一方面,本发明提供了一种非对称性UV曝光方法,其包括将UV可固化涂层#1施加在光学透明基板的一侧上,并将UV可固化涂层#2施加在所述光学透明基板的另一侧上,并且将所述光学透明基板的两侧同时曝光于UV光,其中,所述UV可固化涂层#1与所述UV可固化涂层#2在不同的波长处具有UV吸收峰。
由于所述UV可固化涂层#1和所述UV可固化涂层#2在不同的波长处具有UV吸收峰,本发明的非对称性UV曝光方法并不需要所述光学透明基板具有UV阻隔功能,并且由于UV光波长与所述UV可固化涂层的吸收峰波长之间不匹配,另一侧上的UV可固化涂层不会被穿过基板的UV光固化。因此,在实施 本发明的非对称性UV曝光的情况下,施加有不同UV可固化涂层(例如UV可固化涂层#1和UV可固化涂层#2)的光学透明基板的两侧可各自曝光于与其对应的UV吸收波长(例如暴露于UV#1和UV#2),以实现光学透明基板两侧的同时曝光(如图2中所示)。如本文所用,术语“UV阻隔功能”表示光学透明基板阻挡紫外线穿越的能力。
如本领域中所知,本发明的UV吸收峰波长通常在190nm至400nm的范围内。另外,根据本发明,为了确保UV光波长和所述UV可固化涂层的吸收峰波长之间的一定不匹配程度,所述UV可固化涂层#1与所述UV可固化涂层#2的UV吸收峰之间的波长差异可以具有最小值。在一个优选的实施方式中,所述UV可固化涂层#1与所述UV可固化涂层#2的UV吸收峰之间的波长差异可以为至少10nm,例如20nm、30nm、40nm、50nm、60nm、80nm或100nm等。
根据本发明,本发明的UV可固化涂层没有特别限制,并且可以为本领域中常见的光刻胶。在一个优选的实施方式中,所述UV可固化涂层#1和所述UV可固化涂层#2各自独立地选自由正性光刻胶和负性光刻胶组成的组。换句话说,所述UV可固化涂层#1和所述UV可固化涂层#2两者可以均为正性光刻胶;所述UV可固化涂层#1和所述UV可固化涂层#2两者可以均为负性光刻胶;或者所述UV可固化涂层#1和所述UV可固化涂层#2中的一者为正性光刻胶,且另一者为负性光刻胶。
此外,所述光刻胶的类型可以根据实际需要进一步选择。在一个实施方式中,所述正性光刻胶可以优选地包含曝光后可溶于显影液的树脂材料,并且所述负光刻胶可以优选地包含曝光后不溶于显影液的树脂材料。所述显影液通常是含有碱性化合物和表面活性剂的水溶液,碱性化合物可以是无机或有机碱性化合物,这些无机和有机碱性化合物可以单独使用或两种以上组合使用;而作为表面活性剂,可以使用选自由非离子表面活性剂、阴离子表面活性剂和阳离子表面活性剂所组成的组中的至少一种,这些表面活性剂可以单独使用,也可以两种以上组合使用。
根据本发明,所述UV可固化涂层#1和所述UV可固化涂层#2可以各自包含光引发剂(也称为敏化剂或感光剂等),以便允许所述UV可固化涂层#1和所述UV可固化涂层#2在不同的波长处具有UV吸收峰。在一个实施方式中,所 述UV可固化涂层#1与所述UV可固化涂层#2的UV吸收峰之间的波长差异可以通过使用在不同的波长下具有UV吸收峰的两种不同的光引发剂来实现。因此,本发明的所述UV可固化涂层#1和所述UV可固化涂层#2通常包含不同的光引发剂。
进一步地,本发明的光引发剂的种类没有特别限制,并且可以为本领域中常见的光引发剂。在一个优选的实施方式中,所述UV可固化涂层#1和所述UV可固化涂层#2的光引发剂各自独立地为选自由苯乙酮类化合物、二苯甲酮类化合物、三嗪类化合物、噻吨酮类化合物和肟酯类化合物组成的组中的至少一种。苯乙酮类化合物的具体实例可以包括2-羟基-2-甲基-1-苯基丙-1-酮、二乙氧基苯乙酮和2-(4-甲基苄基)-2-(二甲基氨基)-1-(4-吗啉代苯基)丁-1-酮等。二苯甲酮类化合物的具体实例可以包括二苯甲酮、邻苯甲酰基苯甲酸甲酯、4-苯甲酰基-4'-甲基二苯基硫醚和2,4,6-三甲基二苯甲酮等。三嗪类化合物的具体实例可以包括2,4-双(三氯甲基)-6-(4-甲氧基苯基)-1,3,5-三嗪、2,4-双(三氯甲基)-6-(4-甲氧基萘基)-1,3,5-三嗪、2,4-双(三氯甲基)-6-[2-(3,4-二甲氧基苯基)乙烯基]-1,3,5-三嗪和2,4-双(三氯甲基)-6-2-(4-二乙基氨基-2-甲基苯基)乙烯基]-1,3,5-三嗪等。噻吨酮类化合物的具体实例可以包括2-异丙基噻吨酮、2,4-二乙基噻吨酮、2,4-二氯噻吨酮和1-氯-4-丙氧基噻吨酮等。肟酯类化合物的具体实例可以包括邻乙氧基羰基-α-氧基亚氨基-1-苯基丙-1-酮、1,2-辛二酮、1-(4-苯硫基)苯基和2-(邻苯甲酰肟)等。
根据本发明,所述透明光学薄膜可以为具有优异的透明性、机械强度、热稳定性的基板,并且作为具体示例,所述光学透明基板可以由选自以下中的至少一种制成:聚酯类树脂例如聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯和聚对苯二甲酸丁二醇酯等;纤维素类树脂例如二乙酰基纤维素和三乙酸纤维素等;丙烯酸类树脂例如聚(甲基)丙烯酸甲酯和聚(甲基)丙烯酸乙酯等;苯乙烯类树脂例如聚苯乙烯和丙烯腈苯乙烯共聚物等;聚烯烃类树脂例如聚乙烯、聚丙烯、环基或降冰片烯-聚烯烃和乙烯-聚丙烯共聚物等;氯乙烯类树脂;酰胺类树脂例如尼龙和芳族聚酰胺等;聚醚醚酮类树脂;聚苯硫醚类树脂;乙烯醇类树脂;聚偏二氯乙烯类树脂;乙烯醇缩丁醛类树脂;环氧类树脂,或一些其他新兴材料、例如环烯烃聚合物(COP)和透明聚酰亚胺(CPI)等。在 一个优选的实施方式中,所述光学透明基板由PET、COP、CPI、或者其他柔性或刚性材料制成。
根据本发明的非对称性UV曝光方法的优点,光学透明基板的UV阻隔功能不是必需的,以允许所述光学透明基板的更多选择。因此,在一个优选的实施方式中,所述光学透明基板可以为不具有UV阻隔功能的基板。
进一步地,这种透明光学膜可以适当地包含一种或多种类型的添加剂。对于添加剂,例如,所述添加剂可以为UV吸收剂、抗氧化剂、润滑剂、增塑剂、脱模剂、防着色剂、阻燃剂、表面活性剂、抗静电剂、颜料和着色剂等。
此外,这种透明光学薄膜的厚度可以适当地确定,然而,一般来说,考虑到其强度、可加工性和薄层性能,厚度可以确定在1μm和500μm之间。特别地,优选为1μm至300μm之间的值,更优选为5μm至200μm之间的值。
作为一个实例,所描述的非对称性UV曝光方法可以应用于在不具有UV阻隔功能的光学透明基板上制造金属网格触摸传感器。非对称性UV曝光方法通过以下执行:首先在光学透明基板的一侧上涂覆UV可固化涂层#1(例如负性光刻胶),并在该光学透明基板的另一测上涂覆UV可固化涂层#2(例如负性光刻胶),然后在UV曝光步骤中,将特定的光掩模放置在光学透明基板的各侧,以在各侧上形成所需的固化UV涂层的微图案;然后将各侧上都有固化的微图案的光学透明基板进行湿法显影和金属化处理,以形成金属网格触摸传感器。所描述的非对称性UV曝光方法不需要光学透明基板中的UV阻隔功能,因此可以在包括但不限于制造金属网格触摸传感器的应用中对光学透明基板进行更大的选择。
因此,在另一方面,一种金属网格触摸传感器,其通过根据前述权利要求中任一项所述的非对称性UV曝光方法制造。然而,应当注意的是,如上所述,所制造的产品可包括但不限于金属网格触摸传感器,以及其他合适的光学材料或产品。
由于在光学透明基板中引入UV阻隔功能需要基板供应商的开发工作,而且通常会牺牲基板的光学特性,例如较低的透光率和较高的雾度,而本发明的非对称性UV曝光方法不仅允许用于制造金属网格触摸传感器的光学透明基板的 选择更大,而且还实现了更好的柔性和改善的光学特性(即,更高的透光率和更低的雾度)。
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
使用Meyer棒或凹版校样机在各基板的表面上涂覆光刻胶膜,然后在烘箱中于50-100℃的温度下干燥120秒,以得到厚度为500-1000nm的涂层;在光刻胶膜的顶部涂一层钯胶体,然后再涂一层保护膜,使用不同的滤光片和能量对光掩模进行UV曝光;曝光后,用显影液冲洗基板以去除未固化的涂层,然后将其浸入化学镀铜浴中以生长铜网状线。共设置如下六个组进行试验:
第一组:在基板的一个表面上涂覆光刻胶膜BC002(含0.8%光引发剂-1,吸收峰波长为314nm);
第二组:在基板的一个表面上涂覆光刻胶膜BCK(吸收峰波长为365nm);
第三组:在基板的两个表面上均涂覆光刻胶膜BC001(含1.26%光引发剂-1,吸收峰波长为314nm);
第四组:在基板的两个表面上均涂覆光刻胶膜BCK;
第五组:在基板的一个表面上涂覆光刻胶膜BC002,并且另一个表面上涂覆光刻胶膜BCK;
第六组:在基板的一个表面上涂覆光刻胶膜BC003(含0.6%光引发剂-1,吸收峰波长为314nm),并且另一个表面上涂覆光刻胶膜BCK。
作为结果,图3和图4分别示出了第一组光刻胶在显影后的网状结构和镀铜后的铜网状结构;并且图5和图6分别示出了第二组光刻胶在显影后的网状结构和镀铜后的铜网状结构。可以看出,当只在基板的一个表面上涂覆光刻胶膜时,最终能够形成规整的网格图案。
另外,图7和图8分别示出了第三组光刻胶在曝光镀铜后的侧面#1和侧面#2上形成的铜网状结构。可以看出,两侧上形成的铜网状结构杂乱,这是因为当基板两侧施以吸收峰波长相同(两侧的吸收峰波长均为314nm)的材料时,侧面#1和侧面#2上的光刻胶均会受到另一侧具有相同波长的UV光的固化影响,也就是说,紫外线会干扰基板另一侧的光刻胶,这对于金属网状触摸传感器的制造是不希望的。
图9和图10分别示出了第四组光刻胶在曝光镀铜后的侧面#1和侧面#2上形成的铜网状结构。可以看出,两侧上形成的铜网状结构杂乱,这是因为当基板两侧施以吸收峰波长相同(两侧的吸收峰波长均为365nm)的材料时,侧面#1和侧面#2上的光刻胶均会受到另一侧具有相同波长的UV光的固化影响,也就是说,也证实了紫外线会干扰基板另一侧的光刻胶,这对于金属网状触摸传感器的制造是不希望的。
根据本发明的实施方式,图11和图12分别示出了第五组光刻胶在曝光镀铜后的侧面#1和侧面#2上形成的铜网状结构。可以看出,两侧上形成了规整的网格图案,这是因为当基板两侧施以吸收峰波长不同(侧面#1的吸收峰波长为314nm、侧面#2为365nm)的材料时,侧面#1和侧面#2上的光刻胶不会受到另一侧具有不同波长的UV光的固化影响,也就是说,不对称的紫外线曝光消除了来自基板另一侧的紫外线的影响。
同样地,图13和图14分别示出了第六组光刻胶在曝光镀铜后的侧面#1和侧面#2上形成的铜网状结构。可以看出,两侧上形成了规整的网格图案,这是因为当基板两侧施以吸收峰波长不同(侧面#1的吸收峰波长为314nm、侧面#2为365nm)的材料时,侧面#1和侧面#2上的光刻胶不会受到另一侧具有不同波长的UV光的固化影响,也就是说,也证实了不对称的紫外线曝光消除了来自基板另一侧的紫外线的影响。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重 复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (10)

  1. 一种非对称性UV曝光方法,其包括将UV可固化涂层#1施加在光学透明基板的一侧上,并将UV可固化涂层#2施加在所述光学透明基板的另一侧上,并且将所述光学透明基板的两侧同时曝光于UV光,其中,所述UV可固化涂层#1与所述UV可固化涂层#2在不同的波长处具有UV吸收峰。
  2. 根据权利要求1所述的非对称性UV曝光方法,其中,所述UV可固化涂层#1与所述UV可固化涂层#2的UV吸收峰之间的波长差异为至少10nm。
  3. 根据权利要求1所述的非对称性UV曝光方法,其中,所述UV可固化涂层#1和所述UV可固化涂层#2各自独立地选自由正性光刻胶和负性光刻胶组成的组。
  4. 根据权利要求3所述的非对称性UV曝光方法,其中,所述正性光刻胶包含曝光后可溶于显影液的树脂材料,并且所述负光刻胶包含曝光后不溶于显影液的树脂材料。
  5. 根据权利要求1所述的非对称性UV曝光方法,其中,所述UV可固化涂层#1和所述UV可固化涂层#2各自包含光引发剂。
  6. 根据权利要求5所述的非对称性UV曝光方法,其中,所述UV可固化涂层#1和所述UV可固化涂层#2的光引发剂各自独立地为选自由苯乙酮类化合物、二苯甲酮类化合物、三嗪类化合物、噻吨酮类化合物和肟酯类化合物组成的组中的至少一种。
  7. 根据权利要求5或6所述的非对称性UV曝光方法,其中,通过使用在不同的波长下具有UV吸收峰的两种不同的光引发剂来实现所述UV可固化涂层#1与所述UV可固化涂层#2的UV吸收峰之间的波长差异。
  8. 根据权利要求1所述的非对称性UV曝光方法,其中,所述光学透明基板由PET、COP、CPI、或者其他柔性或刚性材料制成。
  9. 根据权利要求1或8所述的非对称性UV曝光方法,其中,所述光学透明基板不需要具有UV阻隔功能。
  10. 一种金属网格触摸传感器,其通过根据前述权利要求中任一项所述的 非对称性UV曝光方法制造。
PCT/CN2021/100610 2021-02-09 2021-06-17 一种非对称性uv曝光方法 WO2022170718A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003432.6A CN113906348B (zh) 2021-02-09 2021-06-17 一种非对称性uv曝光方法
US17/769,291 US20240152054A1 (en) 2021-02-09 2021-06-17 Asymmetric uv exposure method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110178400.1 2021-02-09
CN202110178400 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022170718A1 true WO2022170718A1 (zh) 2022-08-18

Family

ID=82837459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100610 WO2022170718A1 (zh) 2021-02-09 2021-06-17 一种非对称性uv曝光方法

Country Status (1)

Country Link
WO (1) WO2022170718A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200935107A (en) * 2008-02-04 2009-08-16 Univ Nat Central Method of manufacturing optical film plate structure with pattern unit and structure thereof
CN102959471A (zh) * 2010-06-30 2013-03-06 麦克德米德印刷方案股份有限公司 改善柔性印刷版的印刷性能的方法
CN103838078A (zh) * 2012-11-23 2014-06-04 彩虹科技系统有限公司 改良的光成像
US20150168825A1 (en) * 2012-03-30 2015-06-18 Kabushiki Kaisha Toshiba Near-field exposure mask and pattern forming method
CN104903045A (zh) * 2013-01-22 2015-09-09 万佳雷射有限公司 用于在透明衬底相对两侧上的涂层内形成图案的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200935107A (en) * 2008-02-04 2009-08-16 Univ Nat Central Method of manufacturing optical film plate structure with pattern unit and structure thereof
CN102959471A (zh) * 2010-06-30 2013-03-06 麦克德米德印刷方案股份有限公司 改善柔性印刷版的印刷性能的方法
US20150168825A1 (en) * 2012-03-30 2015-06-18 Kabushiki Kaisha Toshiba Near-field exposure mask and pattern forming method
CN103838078A (zh) * 2012-11-23 2014-06-04 彩虹科技系统有限公司 改良的光成像
CN104903045A (zh) * 2013-01-22 2015-09-09 万佳雷射有限公司 用于在透明衬底相对两侧上的涂层内形成图案的方法和装置

Similar Documents

Publication Publication Date Title
CN105849641B (zh) 感光性树脂组合物、感光性元件、抗蚀图案的形成方法和印刷配线板的制造方法
US20070269738A1 (en) Photosensitive Film, Photosensitive Film Laminate and Photosensitive Film Roll
JP5417364B2 (ja) 固体撮像素子用硬化性組成物、並びに、これを用いた感光層、永久パターン、ウエハレベルレンズ、固体撮像素子、及び、パターン形成方法
KR102375653B1 (ko) 감광성 엘리먼트
WO2023045648A1 (zh) 一种基于光学透明基材进行双面图案化的方法
CN113906348B (zh) 一种非对称性uv曝光方法
TW201922815A (zh) 電路配線的製造方法、觸控面板的製造方法及附圖案基材的製造方法
KR102335614B1 (ko) 착색 감광성 수지 조성물, 이를 포함하는 컬러필터 및 화상표시장치
TWI671594B (zh) 感光性樹脂組成物、感光性元件、抗蝕劑圖案的形成方法及印刷配線板的製造方法
GB2499663A (en) Protective coatings for photo-resists that are separately applied with different solvents but removed together using same solvent
WO2022170718A1 (zh) 一种非对称性uv曝光方法
JP2011186208A (ja) 感光性樹脂組成物
JPS61143740A (ja) 導電回路の製造方法
CN114721229B (zh) 一种新型非对称性紫外曝光方法
CN107077068B (zh) 感光性树脂组合物、感光性元件、抗蚀图案的形成方法和印刷配线板的制造方法
JP7178301B2 (ja) 着色感光性樹脂組成物、これを利用して製造されたカラーフィルターおよび画像表示装置
KR101989198B1 (ko) 착색 감광성 수지 조성물 및 이를 이용하는 컬러필터
TW201930458A (zh) 組成物、包含其之絕緣材料及其製法
JP2003139938A (ja) 多色画像シートの製造方法、多色画像シート、及びカラーフィルター
KR20140145333A (ko) 착색 감광성 수지 조성물 및 이를 포함하는 컬러필터
US9383647B2 (en) Resist film and method of forming pattern
JP6785551B2 (ja) エッチング方法
JP5849554B2 (ja) 光導波路の製造方法
WO2020242385A1 (en) Method of manufacturing a master for a replication process
WO2018100640A1 (ja) 感光性樹脂組成物、感光性エレメント、レジストパターン付き基板の製造方法、及び、プリント配線板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17769291

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925115

Country of ref document: EP

Kind code of ref document: A1