WO2022170639A1 - 聚三环戊二烯ptcpd纤维复合材料及其制备方法 - Google Patents

聚三环戊二烯ptcpd纤维复合材料及其制备方法 Download PDF

Info

Publication number
WO2022170639A1
WO2022170639A1 PCT/CN2021/076942 CN2021076942W WO2022170639A1 WO 2022170639 A1 WO2022170639 A1 WO 2022170639A1 CN 2021076942 W CN2021076942 W CN 2021076942W WO 2022170639 A1 WO2022170639 A1 WO 2022170639A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
polytricyclopentadiene
ptcpd
composite material
catalyst
Prior art date
Application number
PCT/CN2021/076942
Other languages
English (en)
French (fr)
Inventor
王丽杰
Original Assignee
上海东杰汽车装饰件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海东杰汽车装饰件有限公司 filed Critical 上海东杰汽车装饰件有限公司
Publication of WO2022170639A1 publication Critical patent/WO2022170639A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2345/00Characterised by the use of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to the technical field of composite materials, in particular to a polytricyclopentadiene PTCPD fiber composite material and a preparation method thereof.
  • Polydicyclopentadiene PDCPD polymer material is a homopolymer or copolymer of dicyclopentadiene DCPD, which is a cross-linked three-dimensional network structure engineering plastic.
  • Polydicyclopentadiene PDCPD is a material with good heat resistance, creep resistance, dimensional stability, shape memory, corrosion resistance, light weight, etc. Value-added, high-end fine products.
  • the embodiments of the present application solve the technical problem of insufficient rigidity of polydicyclopentadiene PTCPD and its composite materials in the prior art by providing a polytricyclopentadiene PTCPD fiber composite material.
  • the polytricyclopentadiene PTCPD fiber composite material The strength of the material is high, and it has the advantages of small dielectric constant, light weight, low cost, and strong corrosion resistance.
  • the embodiment of the present application provides a polytricyclopentadiene PTCPD fiber composite material, and the polytricyclopentadiene PTCPD fiber composite material includes:
  • the fibers and/or fiber fabrics are combined with the polytricyclopentadiene resin system.
  • the polytricyclopentadiene resin system comprises the following components:
  • Tricyclopentadiene TCPD Tricyclopentadiene
  • the weight percentage of the tricyclopentadiene TCPD in the polytricyclopentadiene resin system is greater than or equal to 50% and less than 100%.
  • the components of the polytricyclopentadiene resin system further include one or more of cyclopentadiene, dicyclopentadiene, tetracyclopentadiene and pentacyclopentadiene.
  • the fibers include one or more of carbon fibers, glass fibers, ultra-high molecular weight polyethylene fibers, aramid fibers, basalt fibers, and Kevlar fibers.
  • the surface of the fiber is provided with a sizing agent coating, and the fiber and the polytricyclopentadiene PTCPD are connected through the sizing agent coating.
  • the surface of the fiber is treated with a coupling agent, and the fiber is combined with the polytricyclopentadiene PTCPD through a coupling agent that can connect the two phases.
  • the surface of the fiber is etched to generate grooves or depressions on the surface of the fiber, and the polytricyclopentadiene PTCPD penetrates into the grooves and depressions on the surface of the fiber and combines with the surface of the fiber.
  • the surface of the fiber is etched to generate grooves or depressions on the surface of the fiber; then the surface of the fiber is treated with a coupling agent, and the polytricyclopentadiene PTCPD penetrates into the grooves and depressions on the surface of the fiber, It is connected with the coupling agent on the fiber surface through chemical bonds to form an interpenetrating network structure.
  • the coupling agent is one or more of a silane coupling agent, a titanate coupling agent, and a zirconium coupling agent.
  • the etching treatment includes acid etching treatment, alkali etching treatment, and supercritical carbon dioxide etching treatment.
  • the catalyst includes a main catalyst and a co-catalyst
  • the main catalyst is one or more of a tungsten-based catalyst, a molybdenum-based catalyst, a ruthenium-based catalyst, a titanium-based catalyst, and a rhenium-based catalyst;
  • the co-catalyst is one or more of metal-organic compounds of aluminum, magnesium, tin, zinc and silicon.
  • the application also provides a method for preparing a polytricyclopentadiene PTCPD fiber composite material, characterized in that the steps are:
  • the polytricyclopentadiene PTCPD raw material is formulated into two components, A and B, the A component contains tricyclopentadiene TCPD and a cocatalyst, and the B component contains tricyclopentadiene TCPD and a main catalyst;
  • the fiber is compounded with the polytricyclopentadiene PTCPD polymer material to form a new high-strength composite material, which solves the problem of insufficient strength of the polydicyclopentadiene PDCPD in the prior art.
  • polytricyclopentadiene PTCPD is non-polar
  • the content of active groups on the surface of the fiber is increased, the roughness and specific surface area of the fiber surface are increased, and the fiber and polytricyclopentadiene can be improved.
  • the wettability of the alkene PTCPD thereby improving the bonding ability between the fiber and the polytricyclopentadiene PTCPD interface, increases the strength of the composite material.
  • the polytricyclopentadiene PTCPD fiber composite material provided in the embodiment of the present application has light weight, low polarity and small dielectric constant, and can meet the requirements of reliability and miniaturization of electronic integrated devices.
  • the composite material formed by the two also has the advantage of low cost.
  • the polytricyclopentadiene PTCPD fiber composite material provided in this application also has the characteristics of resistance to seawater corrosion, and is suitable for underwater equipment, such as ships, submarines and other fields, and has a wide range of applications.
  • the embodiments of the present application solve the technical problem of insufficient rigidity of polydicyclopentadiene PDCPD and its composite materials in the prior art by providing a polytricyclopentadiene PTCPD fiber composite material.
  • a new polytricyclopentadiene PTCPD fiber composite material is designed, which is composed of polytricyclopentadiene PTCPD polymer material and fibers.
  • the polytricyclopentadiene PTCPD polymer material is formed by polymerizing tricyclopentadiene TCPD under the action of a catalyst.
  • the fibers include one or more of carbon fibers, glass fibers, ultra-high molecular weight polyethylene fibers, aramid fibers, and basalt fibers.
  • the catalyst includes a main catalyst and a co-catalyst
  • the main catalyst is one or more of a tungsten-based catalyst, a molybdenum-based catalyst, a ruthenium-based catalyst, a titanium-based catalyst, and a rhenium-based catalyst;
  • the co-catalyst is one or more of metal-organic compounds of aluminum, magnesium, tin, zinc and silicon.
  • polytricyclopentadiene PTCPD is non-polar
  • the content of active groups on the surface of the fiber is increased, the roughness and specific surface area of the fiber surface are increased, and the fiber and polytricyclopentadiene PTCPD can be improved.
  • the wettability of the composite material is increased, thereby improving the bonding ability between the fiber and the polytricyclopentadiene PTCPD interface and increasing the strength of the composite material.
  • the methods of modifying the fiber surface include: disposing a sizing agent coating on the fiber surface, treating the fiber surface with a coupling agent, etching the fiber surface, or a combination of the above methods.
  • a polytricyclopentadiene PTCPD fiber composite material the raw material components of the composite material include:
  • the ultra-high molecular weight polyethylene fiber is compositely connected with the polytricyclopentadiene resin system.
  • the polytricyclopentadiene resin system includes:
  • Tricyclopentadiene TCPD Tricyclopentadiene
  • the weight percentage of the tricyclopentadiene TCPD in the polytricyclopentadiene resin system is 50%.
  • the preparation method of polytricyclopentadiene PTCPD fiber composite material is as follows:
  • Step S1 setting a sizing agent coating on the surface of the ultra-high molecular weight polyethylene fiber
  • Step S2 placing the ultra-high molecular weight polyethylene fiber provided with the sizing agent coating in a vacuum-sealed mold;
  • Step S3 The polytricyclopentadiene PTCPD raw material is formulated into two components, A and B, the A component contains tricyclopentadiene TCPD and alkyl aluminum cocatalyst, and the B component contains tricyclopentadiene TCPD and tungsten system catalyst;
  • Step S4 mixing the two components A and B, and injecting them into the cavity of the above-mentioned mold on which the ultra-high molecular weight polyethylene fibers are placed; heating, the mixture of the two components A and B is polymerized, and cross-linked and solidified to obtain a Polytricyclopentadiene UHMWPE fiber composite products.
  • the micro-mechanical pull-out test was carried out on the prepared material, and the results showed that the strength of the polytricyclopentadiene ultra-high molecular weight polyethylene fiber composite material product prepared in this example was very high, and the ultra-high molecular weight polyethylene fiber content was 0.25 %, the tensile strength reaches 61MPa.
  • a polytricyclopentadiene PTCPD fiber composite material the raw material components of the composite material include:
  • the glass fiber fabric is compositely connected with the polytricyclopentadiene resin system.
  • the polytricyclopentadiene resin system includes:
  • Tricyclopentadiene TCPD Tricyclopentadiene
  • the weight percentage of the tricyclopentadiene TCPD in the polytricyclopentadiene resin system is 70%.
  • the preparation method of polytricyclopentadiene PTCPD fiber composite material is as follows:
  • Step S1 performing hydrochloric acid etching treatment on the surface of the glass fiber fabric.
  • the glass fibers were dried at a temperature of 250 °C for 40 min.
  • the hydrochloric acid treatment temperature was 20°C and the time was 2h.
  • the hydrochloric acid etching treatment produces grooves or depressions on the surface of the glass fiber, thereby increasing the specific surface area of the glass fiber fabric, so that when the polytricyclopentadiene is compounded with the glass fiber fabric, it is easier to penetrate into the grooves on the surface of the glass fiber fabric. and recessed.
  • the grooves and depressions on the surface of the glass fiber fabric can play an anchoring role, which not only increases the content of active groups on the surface of the glass fiber fabric, but also improves the wettability of the glass fiber fabric and polytricyclopentadiene, thereby making the composite material more durable. Interface performance has been improved;
  • Step S2 placing the glass fiber fabric etched with hydrochloric acid in a vacuum-sealed mold
  • Step S3 The polytricyclopentadiene PTCPD raw material is formulated into two components, A and B, the A component contains tricyclopentadiene TCPD and (CH 3 ) 4 Sn cocatalyst, and the B component contains tricyclopentadiene TCPD and ReCls main catalysts;
  • Step S4 mixing the two components A and B, and injecting them into the cavity of the above-mentioned mold on which the glass fiber fabric is placed; heating, the mixture of the two components A and B is polymerized, and cross-linked and solidified to obtain a polytricyclic ring Pentadiene glass fiber composite products.
  • the micromechanical pull-out test was carried out on the prepared material, and the results showed that the strength of the polytricyclopentadiene glass fiber composite product prepared in this example was very high, and when the glass fiber content was 0.3%, the tensile strength reached 65MPa .
  • a polytricyclopentadiene PTCPD fiber composite material the raw material components of the composite material include:
  • the basalt fiber is compositely connected with the polytricyclopentadiene resin system.
  • the polytricyclopentadiene resin system includes:
  • Tricyclopentadiene TCPD Tricyclopentadiene
  • the weight percentage of the tricyclopentadiene TCPD in the polytricyclopentadiene resin system is 80%.
  • the preparation method of polytricyclopentadiene PTCPD fiber composite material is as follows:
  • Step S1 treating the surface of the basalt fiber with a silane coupling agent
  • the concentration of the silane coupling agent was 0.8 wt%, and the treatment was performed at room temperature for 4 hours;
  • the silane coupling agent is grafted on the surface of the basalt fiber, which increases the surface roughness of the basalt fiber, and forms a stress transmission interface layer between the surface of the basalt fiber and the polytricyclopentadiene, which is convenient for the basalt fiber and the polytricyclopentadiene. better compound;
  • Step S2 placing the basalt fiber treated with the coupling agent in a vacuum-sealed mold
  • Step S3 The polytricyclopentadiene PTCPD raw material is formulated into two components, A and B, the A component contains tricyclopentadiene TCPD and CH 3 MgI cocatalyst, and the B component contains tricyclopentadiene TCPD and CpTiCl 2 main catalyst;
  • Step S4 mixing the two components A and B, and injecting them into the cavity of the above-mentioned mold on which the basalt fiber is placed; heating, the mixture of the two components A and B is polymerized, and cross-linked and solidified to obtain polytricyclopentane Diene basalt fiber composite products.
  • the micro-mechanical pull-out test was carried out on the prepared material, and the results showed that the strength of the polytricyclopentadiene basalt fiber composite product prepared in this example was very high, and when the basalt fiber content was 0.4%, the tensile strength reached 68MPa .
  • a polytricyclopentadiene PTCPD fiber composite material the raw material components of the composite material include:
  • the aramid fiber is compositely connected with the polytricyclopentadiene resin system.
  • the polytricyclopentadiene resin system includes:
  • Tricyclopentadiene TCPD Tricyclopentadiene
  • the preparation method of polytricyclopentadiene PTCPD fiber composite material is as follows:
  • Step S1 the surface of the aramid fiber is first subjected to hydrochloric acid etching treatment, and then treated with a silane coupling agent;
  • the aramid fibers were dried at 200°C for 30min.
  • the hydrochloric acid treatment temperature was 20°C and the time was 1.5h.
  • the concentration of the silane coupling agent is 0.7wt%, and the treatment is carried out at room temperature for 3h;
  • Step S2 placing the surface-treated aramid fiber in a vacuum-sealed mold
  • Step S3 The polytricyclopentadiene PTCPD raw material is formulated into two components, A and B, the A component contains tricyclopentadiene TCPD and AlEt 2 Cl cocatalyst, and the B component contains tricyclopentadiene TCPD and WCl 6 main catalyst;
  • Step S4 mixing the two components A and B, and injecting them into the cavity of the above-mentioned mold on which the aramid fiber is placed; heating, the mixture of the two components A and B is polymerized, and cross-linked and solidified to obtain a polytricyclic ring Pentadiene aramid fiber composite products.
  • the micromechanical pull-out test was carried out on the prepared material, and the results showed that the strength of the polytricyclopentadiene aramid fiber composite material product prepared in this example was very high, and when the aramid fiber content was 0.4%, the tensile strength up to 71MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明公开了一种聚三环戊二烯PTCPD纤维复合材料及其制备方法,所述复合材料包括:聚三环戊二烯树脂体系;纤维和/或纤维织物;所述纤维和/或纤维织物与所述聚三环戊二烯树脂体系复合连接。通过对纤维表面进行改性处理,使纤维表面活性基团含量增加,提高纤维与聚三环戊二烯界面之间的结合能力。对纤维表面进行改性处理的方式包括:在纤维表面设置上浆剂涂层,将纤维表面经偶联剂处理,将纤维表面进行刻蚀处理,或者以上方式的结合。本发明提供的聚三环戊二烯PTCPD纤维复合材料,解决了现有技术中聚双环戊二烯PDCPD复合材料刚度不足的技术问题,具有强度大、介电常数小、质量轻、成本低、耐腐蚀性强等优势。

Description

聚三环戊二烯PTCPD纤维复合材料及其制备方法 技术领域
本发明涉及复合材料技术领域,尤其涉及一种聚三环戊二烯PTCPD纤维复合材料及其制备方法。
背景技术
聚双环戊二烯PDCPD高分子材料为双环戊二烯DCPD之均聚物或共聚物,是一种交联三维网状结构工程塑料。聚双环戊二烯PDCPD是一种具有较好的耐热性、抗蠕变性、尺寸稳定性、形状记忆性、耐腐蚀性、轻质等特性的材料,可用于制造各种高性能、高附加值、高档精细产品。如:交通运输业中的汽车保险杠、护板、侧板、缓冲板、仪表板、挡泥板、发动机罩和车身壳体等;电气设备中的电动机、空调机等大型电气设备的壳体;运动器械中的摩托雪橇、冲浪板、高尔夫球车等的构件以及农业机械、土木建筑材料等。
但本申请发明人在实现本申请实施例中发明技术方案的过程中,发现上述技术至少存在如下技术问题:
虽然聚双环戊二烯PDCPD具有较好的综合性能,但是其强度还不能满足某些特定工程领域里的较高要求。
发明内容
本申请实施例通过提供一种聚三环戊二烯PTCPD纤维复合材料,解决了现有技术中聚双环戊二烯PDCPD及其复合材料刚度不足的技术问题,聚三环戊二烯PTCPD纤维复合材料的强度大,且具有 介电常数小、质量轻、成本低、耐腐蚀性强等优势。
本申请实施例提供了一种聚三环戊二烯PTCPD纤维复合材料,所述聚三环戊二烯PTCPD纤维复合材料包括:
聚三环戊二烯树脂体系;
纤维和/或纤维织物;
所述纤维和/或纤维织物与所述聚三环戊二烯树脂体系复合连接。
优选地,所述聚三环戊二烯树脂体系包括以下组分制成:
三环戊二烯TCPD;
催化剂;
所述三环戊二烯TCPD占所述聚三环戊二烯树脂体系的重量百分比大于等于50%且小于100%。
优选地,所述聚三环戊二烯树脂体系的组分还包括环戊二烯、双环戊二烯、四环戊二烯、五环戊二烯中的一种或几种。
优选地,所述纤维包括碳纤维、玻璃纤维、超高分子量聚乙烯纤维、芳纶纤维、玄武岩纤维、凯夫拉纤维中的一种或几种。
优选地,所述纤维表面设有上浆剂涂层,所述纤维与聚三环戊二烯PTCPD通过所述上浆剂涂层连接。
优选地,所述纤维表面经偶联剂处理,所述纤维与聚三环戊二烯PTCPD通过可使两相连接的偶联剂复合连接。
优选地,所述纤维表面经刻蚀处理,使纤维表面产生沟槽或者凹陷,聚三环戊二烯PTCPD渗入所述纤维表面的沟槽和凹陷中,与纤维表面结合。
优选地,所述纤维表面经刻蚀处理,使纤维表面产生沟槽或者凹陷;再将纤维表面用偶联剂处理,聚三环戊二烯PTCPD渗入所述纤 维表面的沟槽和凹陷中,并与纤维表面的偶联剂通过化学键连接,形成互穿网络结构。
进一步地,所述偶联剂为硅烷偶联剂、钛酸脂耦联剂、锆类偶联剂中的一种或多种。
进一步地,所述刻蚀处理包括酸刻蚀处理、碱刻蚀处理、超临界二氧化碳刻蚀处理。
优选地,所述催化剂包括主催化剂和助催化剂;
所述主催化剂为钨系催化剂、钼系催化剂、钌系催化剂、钛系催化剂、铼系催化剂中的一种或几种;
所述助催化剂为铝、镁、锡、锌、硅的金属有机化合物中的一种或几种。
本申请还提供了一种聚三环戊二烯PTCPD纤维复合材料的制备方法,其特征在于,步骤为:
对纤维表面进行处理;
将经表面处理的纤维置于密封真空的模具中;
将聚三环戊二烯PTCPD原料配制成A、B两组分,A组分包含三环戊二烯TCPD和助催化剂,B组分包含三环戊二烯TCPD和主催化剂;
将所述A、B两组分混合,并注射到所述模具的型腔中;加热,所述A、B两组分的混合物聚合,并交联固化成型,得到聚三环戊二烯纤维复合材料产品。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
1、本申请实施例将纤维与聚三环戊二烯PTCPD高分子材料复合,形成新的高强度的复合材料,解决了现有技术中聚双环戊二烯 PDCPD的强度不足的问题。
2、由于聚三环戊二烯PTCPD无极性,通过对纤维表面进行改性处理,使纤维表面活性基团含量增加,增加纤维表面的粗糙度和比表面积,可以提高纤维与聚三环戊二烯PTCPD的浸润性,从而提高纤维与聚三环戊二烯PTCPD界面之间的结合能力,使复合材料的强度增加。
3、本申请实施例提供的聚三环戊二烯PTCPD纤维复合材料的质量轻、极性低、介电常数小,能满足电子集成器件可靠性及小型化的需求。
4、由于纤维与聚三环戊二烯PTCPD高分子材料的成本都很低,因此二者复合形成的复合材料也具有成本低的优势。
5、本申请提供的聚三环戊二烯PTCPD纤维复合材料还具有耐海水腐蚀的特性,适用于水下设备,如船、潜水艇等领域,应用范围广泛。
具体实施方式
本申请实施例通过提供一种聚三环戊二烯PTCPD纤维复合材料,解决了现有技术中聚双环戊二烯PDCPD及其复合材料刚度不足的技术问题。
本申请实施例中的技术方案为解决上述串扰的问题,总体思路如下:
设计一种新的聚三环戊二烯PTCPD纤维复合材料,该材料由聚三环戊二烯PTCPD高分子材料与纤维复合而成。
所述聚三环戊二烯PTCPD高分子材料由三环戊二烯TCPD在催化剂作用下聚合而成。
所述纤维包括碳纤维、玻璃纤维、超高分子量聚乙烯纤维、芳纶 纤维、玄武岩纤维中的一种或几种。
所述催化剂包括主催化剂和助催化剂;
所述主催化剂为钨系催化剂、钼系催化剂、钌系催化剂、钛系催化剂、铼系催化剂中的一种或几种;
所述助催化剂为铝、镁、锡、锌、硅的金属有机化合物中的一种或几种。
由于聚三环戊二烯PTCPD无极性,通过对纤维表面进行改性处理,使纤维表面活性基团含量增加,增加纤维表面的粗糙度和比表面积,可以提高纤维与聚三环戊二烯PTCPD的浸润性,从而提高纤维与聚三环戊二烯PTCPD界面之间的结合能力,使复合材料的强度增加。
对纤维表面进行改性处理的方式包括:在纤维表面设置上浆剂涂层,将纤维表面经偶联剂处理,将纤维表面进行刻蚀处理,或者以上方式的结合。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
实施例一
一种聚三环戊二烯PTCPD纤维复合材料,所述复合材料的原料组分包括:
聚三环戊二烯树脂体系;
超高分子量聚乙烯纤维;
所述超高分子量聚乙烯纤维与所述聚三环戊二烯树脂体系复合连接。
所述聚三环戊二烯树脂体系包括:
三环戊二烯TCPD;
双环戊二烯DCPD;
钨催化剂;
烷基铝助催化剂;
所述三环戊二烯TCPD占所述聚三环戊二烯树脂体系的重量百分比为50%。
聚三环戊二烯PTCPD纤维复合材料的制备方法如下:
步骤S1:在超高分子量聚乙烯纤维表面设置上浆剂涂层;
步骤S2:将设有上浆剂涂层的超高分子量聚乙烯纤维置于密封真空的模具中;
步骤S3:将聚三环戊二烯PTCPD原料配制成A、B两组分,A组分包含三环戊二烯TCPD和烷基铝助催化剂,B组分包含三环戊二烯TCPD和钨系催化剂;
步骤S4:将A、B两组分混合,并注射到上述放有超高分子量聚乙烯纤维的模具的型腔中;加热,A、B两组分的混合物聚合,并交联固化成型,得到聚三环戊二烯超高分子量聚乙烯纤维复合材料产品。
对所制备的材料进行微型机械拔出测试,结果表明,本实施例制备的聚三环戊二烯超高分子量聚乙烯纤维复合材料产品的强度很高,在超高分子量聚乙烯纤维含量为0.25%时,拉伸强度达到61MPa。
实施例二
一种聚三环戊二烯PTCPD纤维复合材料,所述复合材料的原料组分包括:
聚三环戊二烯树脂体系;
玻璃纤维织物;
所述玻璃纤维织物与所述聚三环戊二烯树脂体系复合连接。
所述聚三环戊二烯树脂体系包括:
三环戊二烯TCPD;
双环戊二烯DCPD;
ReCls主催化剂;
(CH 3) 4Sn助催化剂;
所述三环戊二烯TCPD占所述聚三环戊二烯树脂体系的重量百分比为70%。
聚三环戊二烯PTCPD纤维复合材料的制备方法如下:
步骤S1:对玻璃纤维织物表面进行盐酸刻蚀处理。
将玻璃纤维在250℃温度下干燥40min。盐酸处理温度为20℃,时间为2h。
盐酸刻蚀处理使玻璃纤维表面产生沟槽或者凹陷,从而增加了玻璃纤维织物的比表面积,使聚三环戊二烯与玻璃纤维织物进行复合时,更容易渗入到玻璃纤维织物表面的沟槽和凹陷中。玻璃纤维织物表面的沟槽和凹陷可以起到锚固的作用,不但使玻璃纤维织物表面活性基团含量增加,同时提高了玻璃纤维织物与聚三环戊二烯的浸润性,从而使复合材料的界面性能得到提高;
步骤S2:将经过盐酸刻蚀处理的玻璃纤维织物置于密封真空的模具中;
步骤S3:将聚三环戊二烯PTCPD原料配制成A、B两组分,A组分包含三环戊二烯TCPD和(CH 3) 4Sn助催化剂,B组分包含三环戊二烯TCPD和ReCls主催化剂;
步骤S4:将A、B两组分混合,并注射到上述放有玻璃纤维织 物的模具的型腔中;加热,A、B两组分的混合物聚合,并交联固化成型,得到聚三环戊二烯玻璃纤维复合材料产品。
对所制备的材料进行微型机械拔出测试,结果表明,本实施例制备的聚三环戊二烯玻璃纤维复合材料产品的强度很高,在玻璃纤维含量为0.3%时,拉伸强度达到65MPa。
实施例三
一种聚三环戊二烯PTCPD纤维复合材料,所述复合材料的原料组分包括:
聚三环戊二烯树脂体系;
玄武岩纤维;
所述玄武岩纤维与所述聚三环戊二烯树脂体系复合连接。
所述聚三环戊二烯树脂体系包括:
三环戊二烯TCPD;
双环戊二烯DCPD;
四环戊二烯;
CpTiCl 2主催化剂;
CH 3MgI助催化剂;
所述三环戊二烯TCPD占所述聚三环戊二烯树脂体系的重量百分比为80%。
聚三环戊二烯PTCPD纤维复合材料的制备方法如下:
步骤S1:对玄武岩纤维表面用硅烷偶联剂进行处理;
硅烷偶联剂的浓度为0.8wt%,室温下处理4h;
硅烷偶联剂接枝在玄武岩纤维表面,使玄武岩纤维表面粗糙度增 加,在玄武岩纤维表面与聚三环戊二烯之间形成一层传输应力界面层,便于玄武岩纤维与聚三环戊二烯更好地复合;
步骤S2:将经过偶联剂处理的玄武岩纤维置于密封真空的模具中;
步骤S3:将聚三环戊二烯PTCPD原料配制成A、B两组分,A组分包含三环戊二烯TCPD和CH 3MgI助催化剂,B组分包含三环戊二烯TCPD和CpTiCl 2主催化剂;
步骤S4:将A、B两组分混合,并注射到上述放有玄武岩纤维的模具的型腔中;加热,A、B两组分的混合物聚合,并交联固化成型,得到聚三环戊二烯玄武岩纤维复合材料产品。
对所制备的材料进行微型机械拔出测试,结果表明,本实施例制备的聚三环戊二烯玄武岩纤维复合材料产品的强度很高,在玄武岩纤维含量为0.4%时,拉伸强度达到68MPa。
实施例四
一种聚三环戊二烯PTCPD纤维复合材料,所述复合材料的原料组分包括:
聚三环戊二烯树脂体系;
芳纶纤维;
所述芳纶纤维与所述聚三环戊二烯树脂体系复合连接。
所述聚三环戊二烯树脂体系包括:
三环戊二烯TCPD;
WCl 6主催化剂;
AlEt 2Cl助催化剂。
聚三环戊二烯PTCPD纤维复合材料的制备方法如下:
步骤S1:对芳纶纤维表面首先进行盐酸刻蚀处理,然后用硅烷偶联剂进行处理;
将芳纶纤维在200℃温度下干燥30min。盐酸处理温度为20℃,时间为1.5h。硅烷偶联剂的浓度为0.7wt%,室温下处理3h;
步骤S2:将经过表面处理的芳纶纤维置于密封真空的模具中;
步骤S3:将聚三环戊二烯PTCPD原料配制成A、B两组分,A组分包含三环戊二烯TCPD和AlEt 2Cl助催化剂,B组分包含三环戊二烯TCPD和WCl 6主催化剂;
步骤S4:将A、B两组分混合,并注射到上述放有芳纶纤维的模具的型腔中;加热,A、B两组分的混合物聚合,并交联固化成型,得到聚三环戊二烯芳纶纤维复合材料产品。
对所制备的材料进行微型机械拔出测试,结果表明,本实施例制备的聚三环戊二烯芳纶纤维复合材料产品的强度很高,在芳纶纤维含量为0.4%时,拉伸强度达到71MPa。
以上所述,仅为本申请的较佳实施例,并非对本申请任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本申请方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本申请的保护范围。凡熟悉本专业的技术人员,在不脱离本申请的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本申请的等效实施例;同时,凡依据本申请的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本申请的技术方案的范围内。

Claims (10)

  1. 一种聚三环戊二烯PTCPD纤维复合材料,其特征在于,所述复合材料包括:
    聚三环戊二烯树脂体系;
    纤维和/或纤维织物;
    所述纤维和/或纤维织物与所述聚三环戊二烯树脂体系复合连接。
  2. 如权利要求1所述的聚三环戊二烯PTCPD纤维复合材料,其特征在于,所述聚三环戊二烯树脂体系包括以下组分制成:
    三环戊二烯TCPD;
    催化剂;
    所述三环戊二烯TCPD占所述聚三环戊二烯树脂体系的重量百分比大于等于50%且小于100%。
  3. 如权利要求2所述的聚三环戊二烯PTCPD纤维复合材料,其特征在于,所述聚三环戊二烯树脂体系的组分还包括环戊二烯、双环戊二烯、四环戊二烯、五环戊二烯中的一种或几种。
  4. 如权利要求1所述的聚三环戊二烯PTCPD纤维复合材料,其特征在于,所述纤维包括碳纤维、玻璃纤维、超高分子量聚乙烯纤维、芳纶纤维、玄武岩纤维、凯夫拉纤维中的一种或几种。
  5. 如权利要求1所述的聚三环戊二烯PTCPD纤维复合材料,其特征在于,所述纤维表面设有上浆剂涂层,所述纤维与聚三环戊二烯PTCPD通过所述上浆剂涂层连接。
  6. 如权利要求1所述的聚三环戊二烯PTCPD纤维复合材料,其特征在于,所述纤维表面经刻蚀处理,使纤维表面产生沟槽或者凹陷, 聚三环戊二烯PTCPD渗入所述纤维表面的沟槽和凹陷中,与纤维表面结合。
  7. 如权利要求1所述的聚三环戊二烯PTCPD纤维复合材料,其特征在于,所述纤维表面经刻蚀处理,使纤维表面产生沟槽或者凹陷;再将纤维表面用偶联剂处理,聚三环戊二烯PTCPD渗入所述纤维表面的沟槽和凹陷中,并与纤维表面的偶联剂通过化学键连接,形成互穿网络结构。
  8. 如权利要求6或7所述的聚三环戊二烯PTCPD纤维复合材料,其特征在于,所述刻蚀处理包括酸刻蚀处理、碱刻蚀处理、超临界二氧化碳刻蚀处理。
  9. 如权利要求1所述的聚三环戊二烯PTCPD纤维复合材料,其特征在于,所述催化剂包括主催化剂和助催化剂;
    所述主催化剂为钨系催化剂、钼系催化剂、钌系催化剂、钛系催化剂、铼系催化剂中的一种或几种;
    所述助催化剂为铝、镁、锡、锌、硅的金属有机化合物中的一种或几种。
  10. 一种聚三环戊二烯PTCPD纤维复合材料的制备方法,其特征在于,步骤为:
    对纤维表面进行处理;
    将经表面处理的纤维置于密封真空的模具中;
    将聚三环戊二烯PTCPD原料配制成A、B两组分,A组分包含三环戊二烯TCPD和助催化剂,B组分包含三环戊二烯TCPD和主催化剂;
    将所述A、B两组分混合,并注射到所述模具的型腔中;加热,所述A、B两组分的混合物聚合,并交联固化成型,得到聚三环戊二 烯纤维复合材料产品。
PCT/CN2021/076942 2021-02-10 2021-02-19 聚三环戊二烯ptcpd纤维复合材料及其制备方法 WO2022170639A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110185315.8 2021-02-10
CN202110185315.8A CN112980130A (zh) 2021-02-10 2021-02-10 聚三环戊二烯ptcpd纤维复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2022170639A1 true WO2022170639A1 (zh) 2022-08-18

Family

ID=76393090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076942 WO2022170639A1 (zh) 2021-02-10 2021-02-19 聚三环戊二烯ptcpd纤维复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN112980130A (zh)
WO (1) WO2022170639A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4703098A (en) * 1987-02-26 1987-10-27 Hercules Incorporated Metathesis polymerization of thermally oligomerized dicyclopentadiene
EP0271007A2 (en) * 1986-12-08 1988-06-15 Hercules Incorporated Conversion of solid dicyclopentadiene to a liquid monomer for use in reaction injection molding
JPH02269028A (ja) * 1989-04-11 1990-11-02 Teijin Ltd メタセシス重合体成形物
JPH04161176A (ja) * 1990-10-25 1992-06-04 Mizuno Corp ゴルフクラブヘッド及びその製造方法
JPH11302400A (ja) * 1998-04-22 1999-11-02 Hitachi Chem Co Ltd Frp成形品の製造法
JPH11322905A (ja) * 1998-03-17 1999-11-26 Hitachi Chem Co Ltd シクロオレフィン類の重合方法及び成形品の製造方法
US20140329017A1 (en) * 2011-06-17 2014-11-06 Materia, Inc. Adhesion promoters and gel-modifiers for olefin metathesis compositions
CN105492489A (zh) * 2013-07-03 2016-04-13 马特里亚公司 液体模制组合物
EP3202813A1 (en) * 2016-02-05 2017-08-09 Telene SAS Curable composition and molded article comprising the composition
CN107109034A (zh) * 2014-08-07 2017-08-29 特伦尼有限公司 可固化组合物和包含所述组合物的模制品
CN107207679A (zh) * 2015-02-12 2017-09-26 马特里亚公司 包含官能弹性体的环烯烃树脂组合物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0271007A2 (en) * 1986-12-08 1988-06-15 Hercules Incorporated Conversion of solid dicyclopentadiene to a liquid monomer for use in reaction injection molding
US4703098A (en) * 1987-02-26 1987-10-27 Hercules Incorporated Metathesis polymerization of thermally oligomerized dicyclopentadiene
JPH02269028A (ja) * 1989-04-11 1990-11-02 Teijin Ltd メタセシス重合体成形物
JPH04161176A (ja) * 1990-10-25 1992-06-04 Mizuno Corp ゴルフクラブヘッド及びその製造方法
JPH11322905A (ja) * 1998-03-17 1999-11-26 Hitachi Chem Co Ltd シクロオレフィン類の重合方法及び成形品の製造方法
JPH11302400A (ja) * 1998-04-22 1999-11-02 Hitachi Chem Co Ltd Frp成形品の製造法
US20140329017A1 (en) * 2011-06-17 2014-11-06 Materia, Inc. Adhesion promoters and gel-modifiers for olefin metathesis compositions
CN105492489A (zh) * 2013-07-03 2016-04-13 马特里亚公司 液体模制组合物
CN107109034A (zh) * 2014-08-07 2017-08-29 特伦尼有限公司 可固化组合物和包含所述组合物的模制品
CN107207679A (zh) * 2015-02-12 2017-09-26 马特里亚公司 包含官能弹性体的环烯烃树脂组合物
EP3202813A1 (en) * 2016-02-05 2017-08-09 Telene SAS Curable composition and molded article comprising the composition

Also Published As

Publication number Publication date
CN112980130A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
Lin et al. Random copolymer membrane coated PBO fibers with significantly improved interfacial adhesion for PBO fibers/cyanate ester composites
Sever et al. The mechanical properties of γ-methacryloxypropyltrimethoxy silane-treated jute/polyester composites
JPH0229439A (ja) 強化重合体構造物の製造方法
JP5522049B2 (ja) 重合性組成物、架橋性成形体、架橋成形体、及び架橋成形体複合体
WO2016102666A1 (en) Composition comprising a multistage polymer, it method of preparation and its use
CN111676699B (zh) 一种MXene/聚酰胺酰亚胺复合上浆剂及其制备方法和应用
WO2022170639A1 (zh) 聚三环戊二烯ptcpd纤维复合材料及其制备方法
CN1654736A (zh) 阴离子接枝法改性芳纶纤维表面
CN111286052A (zh) 一种纤维原位增强聚双环戊二烯复合材料及其制备方法
EP3063220A1 (en) Process for increasing the adhesion of a reinforcing inorganic material in a polymeric matrix, a reinforcing inorganic material, a process for obtaining a thermoplastic composite material, a thermoplastic composite material, and a thermoplastic composite article
Lan et al. Poly (glycidyl methacrylate) grafted to carbon fiber surface by RAFT polymerization for enhancing interface adhesion and mechanical properties of carbon fiber/epoxy composites
CN113150333A (zh) 高透湿含氟超疏油微孔膜的制备方法
CN111253512A (zh) 四氟乙烯-丙烯酸烷基酯-全氟烷基乙烯基醚分散树脂及其制备的微多孔膜
CN116903929A (zh) 一种玄武岩纤维的表面改性方法
JP2011037002A (ja) 金属/繊維強化樹脂複合体およびその製造方法
Shi et al. Manufacture and performance of textile-ramie fiber reinforced anionic polyamide 6 composites
CN113402639B (zh) 醋酸乙烯含量高的树脂的氯化改性方法
CN107759813A (zh) 一种改性超高分子质量聚乙烯的制备方法
CN110951185A (zh) 一种聚氯乙烯改性材料的制备方法
CN108485116A (zh) 一种高强度玻璃纤维改性聚氯乙烯材料地板及其制备方法
Li et al. Preparation of robust aramid/epoxy composites through enhancing the interface performance by nanocoating solution
CN117382226B (zh) 一种pbo纤维复合材料高压气瓶及其制备方法
JP2015206012A (ja) 炭素繊維プリプレグおよびその積層体
JP2858415B2 (ja) 硬化塗膜を有する繊維強化樹脂成形品およびその製造方法
EP4230695A1 (en) Fibre-reinforced polymers based on thermoplastic matrices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925296

Country of ref document: EP

Kind code of ref document: A1