WO2022168768A1 - 電子部品の製造方法 - Google Patents

電子部品の製造方法 Download PDF

Info

Publication number
WO2022168768A1
WO2022168768A1 PCT/JP2022/003487 JP2022003487W WO2022168768A1 WO 2022168768 A1 WO2022168768 A1 WO 2022168768A1 JP 2022003487 W JP2022003487 W JP 2022003487W WO 2022168768 A1 WO2022168768 A1 WO 2022168768A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
electronic component
layer
manufacturing
electrode
Prior art date
Application number
PCT/JP2022/003487
Other languages
English (en)
French (fr)
Inventor
克朋 有富
安彦 上田
芳正 吉野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022579514A priority Critical patent/JPWO2022168768A1/ja
Priority to CN202280012664.2A priority patent/CN116830224A/zh
Publication of WO2022168768A1 publication Critical patent/WO2022168768A1/ja
Priority to US18/361,124 priority patent/US20230368978A1/en
Priority to US18/361,057 priority patent/US20230371190A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4251Details of the casing
    • A47L15/4257Details of the loading door
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4293Arrangements for programme selection, e.g. control panels; Indication of the selected programme, programme progress or other parameters of the programme, e.g. by using display panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0017Casings, cabinets or drawers for electric apparatus with operator interface units
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0026Casings, cabinets or drawers for electric apparatus provided with connectors and printed circuit boards [PCB], e.g. automotive electronic control units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors

Definitions

  • the present invention relates to a method for manufacturing electronic components.
  • Patent Document 1 discloses a chip capacitor.
  • a metal film extending along the exposed surface is formed by plating on the exposed portion where the internal electrode provided inside the chip substrate is exposed, and then a conductive resin paste is applied to the exposed surface. form side electrodes.
  • Patent Document 2 discloses a solid electrolytic capacitor.
  • part of the anode body is exposed to the outside of the sealing body, the exposed portion is covered with a plating layer, and is electrically connected to the anode conductive elastic body via the plating layer. It is disclosed that there are
  • JP 2007-073883 A Japanese Patent No. 3276113
  • Patent Documents 1 and 2 use plating as means for connecting internal electrodes to external electrodes.
  • Plating requires immersion in a plating solution, and leakage current (LC) defects may occur due to the plating solution penetrating into unintended locations.
  • LC leakage current
  • an object of the present invention is to provide an electronic component manufacturing method that can suppress the occurrence of LC defects and that has a simple manufacturing process.
  • a method of manufacturing an electronic component according to the present invention comprises the steps of: preparing an electronic component element body having internal electrodes, the internal electrodes being exposed from an outer surface; and a first electrode layer forming step of forming the first electrode layer by injecting and colliding the metal fine particles in the state.
  • FIG. 1 is a perspective view schematically showing an example of an electrolytic capacitor.
  • FIG. 2 is a cross-sectional view of the electrolytic capacitor shown in FIG. 1 taken along the line AA.
  • FIG. 3 is a cross-sectional view schematically showing the vicinity of the valve action metal substrate on the first end face of the resin molded body.
  • FIG. 4 is a cross-sectional view schematically showing the vicinity of the cathode extraction layer on the second end face of the resin molded body.
  • FIG. 5 is a cross-sectional view schematically showing an example of a resin molding.
  • FIG. 6 is a schematic diagram showing a step of forming the first electrode layer by an aerosol deposition method.
  • FIG. 7 is a cross-sectional view schematically showing another example of an electrolytic capacitor.
  • FIG. 8 is a cross-sectional view schematically showing an example of a laminated ceramic electronic component.
  • a method for manufacturing an electronic component according to the present invention will be described below.
  • the present invention is not limited to the following configurations, and can be appropriately modified and applied without changing the gist of the present invention.
  • a combination of two or more desirable configurations of the embodiments of the present invention described below is also the present invention.
  • the electronic component base body that constitutes the electronic component is a resin molded body that includes a laminate including a capacitor element and a sealing resin that seals the periphery of the laminate. It preferably includes an anode having a valve-acting metal base on which a dielectric layer is formed, and a cathode facing the anode, and the anode and the cathode are the internal electrodes.
  • FIG. 1 is a perspective view schematically showing an example of an electrolytic capacitor.
  • FIG. 1 shows a resin molding 9 that constitutes the electrolytic capacitor 1.
  • the shape of the resin molding constituting the electrolytic capacitor is not particularly limited, and any three-dimensional shape can be adopted.
  • the shape of the resin molding is preferably rectangular parallelepiped.
  • the term "rectangular parallelepiped" does not mean a perfect rectangular parallelepiped. It may be in a shape that is
  • FIG. 1 shows a rectangular parallelepiped resin molding 9 .
  • the resin molding 9 has a length direction (L direction), a width direction (W direction), and a thickness direction (T direction).
  • the resin molding 9 has, as its outer surface, a first end surface 9a and a second end surface 9b facing each other in the length direction.
  • An anode external electrode 11 is formed on the first end surface 9a
  • a cathode external electrode 13 is formed on the second end surface 9b.
  • the resin molding 9 has, as its outer surfaces, a bottom surface 9c and a top surface 9d facing each other in the thickness direction.
  • the resin molding 9 has, as its outer surface, a first side surface 9e and a second side surface 9f facing each other in the width direction.
  • the resin molding corresponds to the electronic component element in the method for manufacturing an electronic component according to the present invention.
  • a surface along the length direction (L direction) and thickness direction (T direction) of an electrolytic capacitor or a resin molding is referred to as an LT surface, and the length direction (L direction) and width direction ( The plane along the W direction) is called the LW plane, and the plane along the width direction (W direction) and the thickness direction (T direction) is called the WT plane.
  • the surface on which the anode external electrode is provided is referred to as the first end face
  • the surface on which the cathode external electrode is provided is referred to as the second end face.
  • the anode external electrode and the cathode external electrode may be provided on the same surface on the outer surface of the resin molding.
  • FIG. 2 is a cross-sectional view of the electrolytic capacitor shown in FIG. 1 taken along the line AA.
  • Capacitor element 20 includes an anode 3 having a dielectric layer 5 thereon and a cathode 7 facing anode 3 .
  • a plurality of capacitor elements 20 are laminated to form a laminated body 30 , and the periphery of the laminated body 30 is sealed with a sealing resin 8 to form a resin molded body 9 .
  • the laminated capacitor elements 20 may be joined together via a conductive adhesive (not shown).
  • One capacitor element 20 may be included in the laminate 30 .
  • An anode external electrode 11 is formed on the first end face 9a of the resin molding 9, and the anode external electrode 11 is electrically connected to the anode 3 exposed from the first end face 9a.
  • a cathode external electrode 13 is formed on the second end face 9b of the resin molding 9, and the cathode external electrode 13 is electrically connected to the cathode 7 exposed from the second end face 9b.
  • the end portion of the valve-acting metal substrate 4 constituting the capacitor element 20 on the side of the second end surface 9b is sealed with a sealing resin 8, and the valve-acting metal substrate 4 and the solid electrolyte layer 7a or the conductive layer 7b are separated from each other. not in direct contact.
  • valve action metal substrate 4 on the side of the second end surface 9b when the end portion of the valve action metal substrate 4 on the side of the second end surface 9b is covered with the dielectric layer 5 or otherwise subjected to an insulating treatment, the valve action metal substrate 4 on the second end surface 9b side may be covered with the solid electrolyte layer 7a and the conductive layer 7b.
  • FIG. 3 is a cross-sectional view schematically showing the vicinity of the valve action metal substrate on the first end face of the resin molded body.
  • FIG. 3 is also a cross-sectional view schematically showing a region surrounded by a dotted line in the lower left portion of FIG.
  • the valve metal substrate 4 has a core portion 4a and a porous portion 4b formed along the surface of the core portion 4a. An end portion of the valve metal substrate 4 is exposed at the first end surface 9 a of the resin molded body 9 .
  • a dielectric layer 5 is formed on the surface of the porous portion 4b.
  • valve action metal that constitutes the valve action metal substrate
  • single metals such as aluminum, tantalum, niobium, titanium, zirconium, magnesium, and silicon, and alloys containing these metals.
  • aluminum or an aluminum alloy is preferred.
  • the shape of the valve-acting metal substrate is not particularly limited, but it is preferably flat plate-like, more preferably foil-like.
  • the porous portion is preferably an etching layer etched with hydrochloric acid or the like.
  • the thickness of the valve metal substrate before etching is preferably 60 ⁇ m or more, and preferably 180 ⁇ m or less.
  • the thickness of the valve-acting metal substrate (core portion) that is not etched after the etching treatment is preferably 10 ⁇ m or more, and preferably 70 ⁇ m or less.
  • the thickness of the porous portion is designed according to the withstand voltage and capacitance required for the electrolytic capacitor. is preferably
  • the dielectric layer is preferably made of an oxide film of the valve metal.
  • anodization in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or their sodium salts, ammonium salts, etc. is performed to form a dielectric layer.
  • a film can be formed.
  • the dielectric layer has pores (recesses) formed along the surface of the porous portion.
  • the thickness of the dielectric layer is designed according to the withstand voltage and capacitance required for the electrolytic capacitor, and is preferably 3 nm or more and preferably 200 nm or less.
  • the anode external electrode 11 is provided on the first end face 9 a of the resin molded body 9 .
  • the anode external electrode 11 includes a first electrode layer 11a that is in direct contact with the core portion 4a of the valve action metal substrate 4 .
  • the first electrode layer 11a is formed by the first electrode layer forming step in the electronic component manufacturing method of the present invention.
  • the cross-sectional shape of the first electrode layer is wedge-shaped in a cross section that is perpendicular to the main surface of the valve metal substrate and the outer surface of the resin molded body (the first end face of the resin molded body) and includes the first electrode layer.
  • FIG. 3 shows a wedge-shaped cross section of the first electrode layer 11a.
  • the term “wedge-shaped” means a shape having a bottom in contact with the valve action metal substrate, and a width perpendicular to the direction away from the bottom (height direction) gradually narrowing in the above-described cross-sectional shape. do.
  • the shape of the wedge-shaped apex is not particularly limited, and may be pointed, rounded, or flat. Also, the wedge-shaped apex may appear smooth in general, but may have irregularities when viewed microscopically.
  • the first electrode layer 11a is preferably an electrode layer containing at least one selected from the group consisting of Cu, Ni, Sn, Ag, Zn and Au.
  • the electrode layer preferably contains at least one of Cu and Ni.
  • the first electrode layer 11a is preferably an electrode layer formed on the first end surface 9a, which is the outer surface of the resin molding 9, by an aerosol deposition method. A method of forming the first electrode layer by an aerosol deposition method will be described later.
  • the anode external electrode 11 preferably further includes a second electrode layer 11b formed on the first electrode layer 11a.
  • the second electrode layer 11b can be formed by the second electrode layer forming step in the electronic component manufacturing method of the present invention.
  • the second electrode layer 11b is preferably a conductive resin electrode layer containing a conductive component and a resin component.
  • FIG. 2 shows the third electrode layer 11c, which is an outer plated layer provided on the surface of the second electrode layer 11b.
  • the third electrode layer is preferably a Ni-plated layer or a Sn-plated layer.
  • the third electrode layer consists of a first outer plating layer formed on the surface of the second electrode layer and a second outer plating layer formed on the surface of the first outer plating layer.
  • the first outer plated layer is preferably a Ni plated layer
  • the second outer plated layer is preferably a Sn plated layer.
  • the cathode 7 constituting the capacitor element 20 includes a solid electrolyte layer 7a formed on the dielectric layer 5, a conductive layer 7b formed on the solid electrolyte layer 7a, and a cathode extraction layer formed on the conductive layer 7b. 7c.
  • An electrolytic capacitor provided with a solid electrolyte layer as part of the cathode can be said to be a solid electrolytic capacitor.
  • Materials constituting the solid electrolyte layer include, for example, conductive polymers having pyrroles, thiophenes, anilines, etc. as their skeletons.
  • Examples of the conductive polymer having a thiophene skeleton include PEDOT [poly(3,4-ethylenedioxythiophene)], and PEDOT:PSS combined with polystyrene sulfonic acid (PSS) as a dopant.
  • a treatment liquid containing a monomer such as 3,4-ethylenedioxythiophene is used to form a polymer film such as poly(3,4-ethylenedioxythiophene) on the surface of the dielectric layer.
  • a dispersion of a polymer such as poly(3,4-ethylenedioxythiophene) is applied to the surface of the dielectric layer and dried. It is preferable to form an outer solid electrolyte layer that covers the entire dielectric layer after forming an inner solid electrolyte layer that fills the pores (recesses).
  • the solid electrolyte layer can be formed in a predetermined area by applying the above treatment liquid or dispersion onto the dielectric layer by sponge transfer, screen printing, spray coating, dispenser, inkjet printing, or the like.
  • the thickness of the solid electrolyte layer is preferably 2 ⁇ m or more, and preferably 20 ⁇ m or less.
  • the conductive layer is provided to electrically and mechanically connect the solid electrolyte layer and the cathode extraction layer.
  • a carbon layer, graphene layer, silver layer, copper layer, nickel layer, etc. formed by applying a conductive paste such as carbon paste, graphene paste, silver paste, copper paste, nickel paste, etc. is preferred.
  • the conductive layer can be formed by forming a conductive paste such as carbon paste on the solid electrolyte layer by sponge transfer, screen printing, spray coating, dispenser, inkjet printing, or the like. In addition, it is preferable to laminate the cathode extraction layer in the next step while the conductive layer is in a viscous state before drying.
  • the thickness of the conductive layer is preferably 2 ⁇ m or more, and preferably 20 ⁇ m or less.
  • the cathode extraction layer can be made of metal foil.
  • metal foil it is preferably made of at least one metal selected from the group consisting of Al, Cu, Ag and alloys containing these metals as main components.
  • ESR equivalent series resistance
  • the metal foil a metal foil whose surface is coated with carbon or titanium by a film forming method such as sputtering or vapor deposition may be used. It is more preferable to use a carbon-coated Al foil.
  • the thickness of the metal foil is not particularly limited, it is preferably 20 ⁇ m or more and preferably 50 ⁇ m or less from the viewpoint of handling in the manufacturing process, miniaturization, and reduction of ESR.
  • FIG. 4 is a cross-sectional view schematically showing the vicinity of the cathode extraction layer on the second end face of the resin molded body.
  • FIG. 4 is also a cross-sectional view schematically showing a region surrounded by a dotted line in the lower right portion of FIG.
  • the cathode lead layer 7c which is a metal foil, is exposed on the second end face 9b of the resin molded body 9. As shown in FIG.
  • the cathode external electrode 13 is provided on the second end face 9 b that is the outer surface of the resin molded body 9 .
  • the cathode external electrode 13 may include a first electrode layer 13a in direct contact with the cathode extraction layer 7c.
  • As the first electrode layer 13a one having the same structure as the first electrode layer 11a formed on the first end face 9a of the resin molding 9 can be used.
  • the cross-sectional shape of the first electrode layer is wedge-shaped in the cross section that is perpendicular to the main surface of the cathode extraction layer and the outer surface of the resin molded body (the second end surface of the resin molded body) and includes the first electrode layer. .
  • FIG. 4 shows a wedge-shaped cross section of the first electrode layer 13a.
  • the cathode external electrode 13 may include a second electrode layer 13b formed on the first electrode layer 13a, and may include a third electrode layer 13c.
  • the second electrode layer 13b and the third electrode layer 13c may have the same structure as the second electrode layer 11b and the third electrode layer 11c in the anode external electrode 11, respectively.
  • the sealing resin 8 forming the resin molded body 9 contains at least resin, preferably resin and filler.
  • the resin it is preferable to use insulating resin such as epoxy resin, phenol resin, polyimide resin, silicone resin, polyamide resin, and liquid crystal polymer.
  • the resin molded body 9 may be composed of two or more kinds of insulating resins.
  • both solid resin and liquid resin can be used. Inorganic particles such as silica particles, alumina particles, and metal particles are preferably used as the filler. It is more preferable to use materials containing silica particles in solid epoxy resins and phenolic resins.
  • a molding method of the resin molding when using a solid sealing material, it is preferable to use a resin mold such as a compression mold or a transfer mold, and it is more preferable to use a compression mold. Moreover, when a liquid sealing material is used, it is preferable to use a molding method such as a dispensing method or a printing method. It is preferable to seal the laminate 30 of the capacitor element 20 composed of the anode 3, the dielectric layer 5, and the cathode 7 with the sealing resin 8 by compression molding to form the resin molding 9.
  • a resin mold such as a compression mold or a transfer mold
  • a molding method such as a dispensing method or a printing method.
  • FIG. 5 is a cross-sectional view schematically showing an example of a resin molding.
  • the first electrode layer is formed by injecting and colliding fine metal particles onto the first end face, which is the outer surface of the electronic component element, under a pressure lower than the atmospheric pressure.
  • the external electrodes can be formed without using a plating process that tends to cause corrosion of the internal electrodes, so LC defects due to the plating solution can be suppressed.
  • the method of forming the first electrode layer is preferably an aerosol deposition method, a gas deposition method, or the like.
  • FIG. 6 is a schematic diagram showing a step of forming the first electrode layer by an aerosol deposition method.
  • FIG. 6 shows an aerosol deposition device 51 .
  • the aerosol deposition apparatus 51 includes a cylinder containing a carrier gas 52, an aerosol generator 54 into which the carrier gas 52 and metal fine particles 53 are introduced to generate an aerosol, a chamber 55 into which the aerosol is introduced, and an electronic component element.
  • 9 has a stage 57 fixed and arranged with the first end surface 9a facing upward.
  • the aerosol deposition method fine metal particles 53 are ejected from a nozzle 56 provided at the tip of an aerosol generator 54 and collide with the first end surface 9a of the electronic component element 9 to form the first electrode layer.
  • the thickness of the first electrode layer can be reduced and the bonding strength between the electronic component element and the first electrode layer can be increased.
  • the film can be formed at a low film-forming speed and at a low temperature, so that damage to the electronic component element can be reduced.
  • the first electrode layer forming step is performed in a state of less than atmospheric pressure.
  • the pressure inside the chamber can be reduced to less than atmospheric pressure. It is preferable to set the pressure in the chamber to 10 Pa or more and 1000 Pa or less.
  • the pressure inside the chamber can be adjusted by increasing or decreasing the gas flow rate. When the gas flow rate is increased so that the pressure in the chamber becomes, for example, 100 Pa or more, the film formation speed can be increased, and as a result, the film formation cost can be reduced.
  • the first electrode layer forming step is preferably performed at 100° C. or less, more preferably at room temperature. Since it is not necessary to raise the temperature, damage to the electronic component element can be reduced, and the apparatus can be simplified by carrying out the process at room temperature.
  • Normal temperature may be the temperature of the work environment, and may be, for example, 10° C. or higher and 30° C. or lower.
  • the fine metal particles are preferably fine particles containing at least one selected from the group consisting of Cu, Ni, Sn, Ag, Zn and Au, more preferably fine particles containing at least one of Cu and Ni.
  • the particle size of the fine metal particles preferably has a D50 of less than 5 ⁇ m, more preferably less than 3 ⁇ m.
  • the D50 of fine metal particles is the volume distribution-based median diameter measured by a laser diffraction/scattering method.
  • MT3300 manufactured by Microtrack Bell Co., Ltd. for example, can be used.
  • the first electrode layer having a thickness of 0.1 ⁇ m or more and 30 ⁇ m or less in the first electrode layer forming step. Further, it is more preferable to form the first electrode layer with a thickness of 1.0 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the first electrode layer is within the above range, the ESR of the electrolytic capacitor can be lowered, and the adhesion between the first electrode layer and the electronic component element can be increased.
  • the thickness of the first electrode layer may be measured at the thickest point in a cross-sectional photograph including the first electrode layer as shown in FIG.
  • a second electrode layer forming step of forming a second electrode layer containing a conductive component and a resin component on the first electrode layer may be performed.
  • the external electrodes can be made flatter than when the electrode paste is formed by dipping. That is, the film thickness uniformity of the external electrodes is improved.
  • the conductive component preferably contains Ag, Cu, Ni, Sn, etc. as main components, and the resin component preferably contains epoxy resin, phenol resin, etc. as main components.
  • the resin component preferably contains epoxy resin, phenol resin, etc. as main components.
  • the ESR can be reduced because Ag has a low specific resistance.
  • the electrode paste may contain an organic solvent, and it is preferable to use a glycol ether solvent as the organic solvent.
  • a glycol ether solvent examples include diethylene glycol monobutyl ether and diethylene glycol monophenyl ether.
  • the content of the additive is preferably less than 5% by weight with respect to the weight of the electrode paste.
  • a third electrode layer forming step of forming a third electrode layer by plating on the second electrode layer may be performed. If the first electrode layer is formed in advance on the electronic component base, it is possible to prevent LC defects from occurring even if the third electrode layer is formed by plating after that.
  • the third electrode layer forming step may be performed to form the third electrode layer by plating on the first electrode layer without forming the second electrode layer. Also in this case, if the first electrode layer is formed on the electronic component element in advance, it is possible to prevent LC defects from occurring even if the third electrode layer is formed by plating after that.
  • the second end surface of the electronic component element may also be subjected to the first electrode layer forming step in the same manner as the first end surface of the electronic component element to form the first electrode layer on the second end surface.
  • the first electrode layer 13a as shown in FIG. 4 can be formed on the second end surface 9b of the electronic component element.
  • the second electrode layer 13b and the third electrode layer 13c can be formed in the same manner as the first end face side of the electronic component element.
  • the cathode extraction layer is a metal foil
  • providing the first electrode layer by the first electrode layer forming step is effective because the adhesion between the metal foil and the first electrode layer can be improved.
  • the method for manufacturing an electronic component according to the present invention can be used as a method for manufacturing the electrolytic capacitor described above as an electronic component. can be used. Examples of these are described below.
  • FIG. 7 is a cross-sectional view schematically showing another example of an electrolytic capacitor.
  • the cathode lead-out layer 7c and the cathode lead-out portion 7d are formed of electrode paste instead of metal foil.
  • the electrode paste can be applied onto the conductive layer by sponge transfer, screen printing, spray coating, dispenser, ink jet printing, or the like to form the cathode extraction layer in a predetermined area.
  • the electrode paste an electrode paste containing Ag, Cu, or Ni as a main component is preferable.
  • the cathode extraction layer is formed from an electrode paste, the thickness of the cathode extraction layer can be made thinner than when a metal foil is used. is.
  • the second electrode layer 13b can be formed by screen printing the electrode paste without providing the first electrode layer on the cathode side.
  • the cathode lead-out layer 7c of each capacitor element 20 is put together as a cathode lead-out portion 7d in the vicinity of the second end face 9b and exposed at the second end face 9b.
  • the cathode lead-out portion 7d can also be formed from the same electrode paste as the cathode lead-out layer 7c.
  • the composition of the electrode pastes forming the cathode lead-out portion 7d and the cathode lead-out layer 7c may be different.
  • an insulating mask may be provided on the anode side.
  • the insulating mask may be provided on the surface of the dielectric layer.
  • a solid electrolyte layer is formed in a predetermined region by applying the treatment liquid or the dispersion liquid on the dielectric layer by dipping. good too.
  • the conductive layer may be formed by applying a conductive paste such as carbon paste onto the solid electrolyte layer by dipping.
  • the first electrode layer forming step is similarly performed on the first end face of the electronic component element as shown in FIG. 7 to form the first electrode layer. Further, a second electrode layer forming step and a third electrode layer forming step may be performed.
  • the electronic component base includes at least one ceramic layer selected from the group consisting of a dielectric ceramic layer, a magnetic ceramic layer, a piezoelectric ceramic layer and a semiconductor ceramic layer, and an internal electrode. It may be a rectangular parallelepiped laminate in which layers are laminated, and the internal electrode layer may be an internal electrode. In this configuration, the electronic component is a laminated ceramic electronic component.
  • laminated ceramic electronic components include laminated ceramic capacitors, laminated coils, laminated thermistors, laminated varistors, laminated LC filters, and laminated piezoelectric filters.
  • laminated ceramic capacitor as an example of a laminated ceramic electronic component will be described below.
  • FIG. 8 is a cross-sectional view schematically showing an example of a laminated ceramic electronic component.
  • a laminated ceramic capacitor 101 includes a laminate 109 in which dielectric ceramic layers 108, internal electrode layers 103, and internal electrode layers 105 are laminated.
  • the laminate 109 corresponds to an electronic component element.
  • the shape of the laminate that constitutes the multilayer ceramic electronic component is not particularly limited, and any three-dimensional shape can be adopted.
  • the laminate preferably has a rectangular parallelepiped shape. Further, the term "rectangular parallelepiped" does not mean a perfect rectangular parallelepiped. It may be in the shape of
  • FIG. 8 shows a rectangular parallelepiped laminate 109 .
  • the laminate 109 has a first end surface 109a, a second end surface 109b, a bottom surface 109c, a top surface 109d, and first and second side surfaces (not shown).
  • the dielectric ceramic layers that make up the laminate contain dielectric ceramic such as barium titanate.
  • a dielectric ceramic layer can be obtained by sheet forming a dielectric slurry containing a dielectric ceramic and an organic solvent.
  • the internal electrode layers forming the laminate can be obtained by printing an electrode paste containing a conductive component.
  • the internal electrode layers are preferably Ni electrode layers using Ni as a conductive component. Also, an Ag electrode layer, a Pd electrode layer, or a Cu electrode layer may be used instead of the Ni electrode layer.
  • the first electrode layer forming step is also performed on the first end surface 109a of the laminate 109 as shown in FIG. can be done.
  • the first electrode layer 113a connected to the internal electrode layer 105 which is an internal electrode, may be formed by performing the first electrode layer forming step on the second end face 109b of the laminate 109.
  • second electrode layers 111b and 113b and third electrode layers 111c and 113c may be formed. Through these steps, the anode external electrode 111 and the cathode external electrode 113 are formed.
  • the third electrode layers 111c and 113c may be formed on the first electrode layers 111a and 113a without forming the second electrode layers 111b and 113b.
  • Examples 1 to 8 A resin molding was obtained by sealing the laminate having the structure shown in FIGS. 1 and 2 with a sealing resin containing epoxy resin and silica particles.
  • a first electrode layer was formed on the first end surface of the resin molding by an aerosol deposition method (AD method). Cu particles were used as the metal fine particles, and the thickness of the first electrode layer was changed by changing the film formation conditions in the aerosol deposition method.
  • Table 1 shows the types of metal fine particles (metal types) and the thickness of the first electrode layer in each example.
  • a first electrode layer was also formed on the second end surface of the resin molding in the same manner as for the first end surface.
  • an electrode paste containing Ag was applied to the end faces (the first end face and the second end face) of the resin molding by screen printing and thermally cured to form the second electrode layer. Furthermore, an electrolytic capacitor was fabricated by forming a Ni plating layer and a Sn plating layer as a third electrode layer on the surface of the second electrode layer.
  • a zincate treatment was performed by etching the first end face and the second end face of the resin molding with an acid containing nitric acid as a main component to form a Zn coating.
  • Ni plating and Ag plating were performed to form a first electrode layer.
  • a second electrode layer and a third electrode layer were formed in the same manner as in Example 1 to produce an electrolytic capacitor.
  • the thickness of each of the Ni plating layer and the Ag plating layer was set to 5 ⁇ m.
  • the thickness of the first electrode layer of the electrolytic capacitor was measured non-destructively with a fluorescent X-ray film thickness meter (SFT9450, manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the thickness obtained by this measurement method is about half the physical thickness measured by SEM/EDS after polishing the cross section of the LT surface of the electrolytic capacitor. Therefore, Table 1 shows the thickness of the first electrode layer as twice the thickness obtained by the fluorescent X-ray film thickness gauge.
  • the electrolytic capacitor was mounted on a glass epoxy board, and the glass epoxy board was bent at 1 mm/sec until the displacement reached 10 mm, and the capacitance change rate was measured after holding for 5 seconds. If the bonding strength between the first electrode layer and the second electrode layer is weak, the capacitor element and the external electrode will open due to peeling, and the capacitance will change. Measurement of the adhesion strength of the two electrode layers can be substituted. As evaluation criteria, a rate of change in capacitance of 5% or less was indicated by ⁇ , a rate of change of capacitance of more than 5% to 10% or less was indicated by ⁇ , and a rate of change of more than 10% was indicated by x.
  • ESR ESR (m ⁇ ) at 100 kHz was measured with an LCR meter (E4980A manufactured by KEYSIGHT). The ESR was measured by averaging the results of measuring 10 electrolytic capacitors. As evaluation criteria, 30 m ⁇ or less was evaluated as ⁇ (particularly good), more than 30 m ⁇ and 40 m ⁇ or less as ⁇ (good), and more than 40 m ⁇ as ⁇ (practically acceptable). Table 1 shows the results of each of these evaluation tests.
  • Electrolytic capacitors (electronic parts) 3 Anode 4 Valve-acting metal substrate 4a Core portion 4b Porous portion 5 Dielectric layer 7 Cathode 7a Solid electrolyte layer 7b Conductive layer 7c Cathode lead-out layer 7d Cathode lead-out portion 8 Sealing resin 9 Resin molding (electronic component element) 9a First end face of resin molded body (outer surface of resin molded body) 9b Second end face of resin molded body (outer surface of resin molded body) 9c Bottom of resin molded body (outer surface of resin molded body) 9d Upper surface of resin molded body (outer surface of resin molded body) 9e First side of resin molded body (outer surface of resin molded body) 9f Second side of resin molded body (outer surface of resin molded body) 11 Anode external electrodes 11a, 13a First electrode layers 11b, 13b Second electrode layers 11c, 13c Third electrode layer 13 Cathode external electrode 20 Capacitor element 30 Laminate 51

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Washing And Drying Of Tableware (AREA)

Abstract

本発明の電子部品1の製造方法は、内部電極3を有し、上記内部電極3が外表面9aから露出する電子部品素体9を準備する工程と、上記電子部品素体9の上記外表面9aに、大気圧未満の状態で、金属微粒子53を噴射し、衝突させることにより第1電極層11aを形成する第1電極層形成工程と、を備える。

Description

電子部品の製造方法
 本発明は、電子部品の製造方法に関する。
 特許文献1には、チップ型コンデンサが開示されている。
 特許文献1では、チップ基板の内部に設けた内部電極が露出した露出部に、めっき処理によって露出面に沿って伸延させた金属膜を形成し、その後、露出面に導電性樹脂ペーストを塗布して側面電極を形成している。
 特許文献2には、固体電解コンデンサが開示されている。
 特許文献2では、陽極体の一部が封止体の外部に露出しており、その露出部がめっき層で被覆され、めっき層を介して陽極用導電性弾性体と電気的に接続されていることが開示されている。
特開2007-073883号公報 特許第3276113号公報
 特許文献1及び2に記載された技術では、内部電極を外部電極に接続するための手段としてめっき処理を用いている。めっき処理ではめっき液への浸漬が必要となるが、めっき液が意図しない箇所へ侵入することにより漏れ電流(LC)不良が生じることがあった。
 また、めっき処理を含むことにより工数が多くなり、製造プロセスが複雑になるという問題があった。
 そこで、本発明は、LC不良の発生を抑制することができ、製造プロセスが簡便である、電子部品の製造方法を提供することを目的とする。
 本発明の電子部品の製造方法は、内部電極を有し、上記内部電極が外表面から露出する電子部品素体を準備する工程と、上記電子部品素体の上記外表面に、大気圧未満の状態で、金属微粒子を噴射し、衝突させることにより第1電極層を形成する第1電極層形成工程と、を備えることを特徴とする。
 本発明によれば、LC不良の発生を抑制することができ、製造プロセスが簡便である、電子部品の製造方法を提供することができる。
図1は、電解コンデンサの一例を模式的に示す斜視図である。 図2は、図1に示す電解コンデンサのA-A線断面図である。 図3は、樹脂成形体の第1端面における弁作用金属基体の近傍を模式的に示す断面図である。 図4は、樹脂成形体の第2端面における陰極引き出し層の近傍を模式的に示す断面図である。 図5は、樹脂成形体の一例を模式的に示す断面図である。 図6は、エアロゾルデポジション法により第1電極層を形成する工程を示す模式図である。 図7は、電解コンデンサの別の一例を模式的に示す断面図である。 図8は、積層セラミック電子部品の一例を模式的に示す断面図である。
 以下、本発明の電子部品の製造方法について説明する。
 しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の各実施形態の望ましい構成を2つ以上組み合わせたものもまた本発明である。
 まず、本発明の電子部品の製造方法で製造する対象物の例である電解コンデンサについて説明する。
 この場合、電子部品を構成する電子部品素体は、コンデンサ素子を含む積層体と、上記積層体の周囲を封止する封止樹脂とを備える樹脂成形体であり、上記コンデンサ素子は、表面に誘電体層が形成された弁作用金属基体を有する陽極と、上記陽極と対向する陰極とを含み、上記陽極及び上記陰極が上記内部電極であることが好ましい。
 図1は、電解コンデンサの一例を模式的に示す斜視図である。
 図1には電解コンデンサ1を構成する樹脂成形体9を示している。
 電解コンデンサを構成する樹脂成形体の形状は特に限定されるものではなく、任意の立体形状を採用することができる。樹脂成形体の形状は直方体状であることが好ましい。また、直方体状とは完全な直方体であることを意味する語ではなく、樹脂成形体を形成する面が他の面と直交せずにテーパーを有していてもよく、また、角が面取りされている形状であってもよい。
 図1には、直方体状の樹脂成形体9を示している。
 樹脂成形体9は、長さ方向(L方向)、幅方向(W方向)、厚さ方向(T方向)を有している。樹脂成形体9はその外表面として長さ方向に対向する第1端面9a及び第2端面9bを備えている。第1端面9aには陽極外部電極11が形成され、第2端面9bには陰極外部電極13が形成されている。
 樹脂成形体9はその外表面として、厚さ方向に対向する底面9c及び上面9dを備えている。
 また、樹脂成形体9はその外表面として、幅方向に対向する第1側面9e及び第2側面9fを備えている。
 樹脂成形体は、本発明の電子部品の製造方法における電子部品素体に相当する。
 なお、本明細書においては、電解コンデンサ又は樹脂成形体の長さ方向(L方向)及び厚さ方向(T方向)に沿う面をLT面といい、長さ方向(L方向)及び幅方向(W方向)に沿う面をLW面といい、幅方向(W方向)及び厚さ方向(T方向)に沿う面をWT面という。
 また、以下の説明においては、樹脂成形体の外表面のうち陽極外部電極が設けられる面を第1端面、陰極外部電極が設けられる面を第2端面として説明する。なお、樹脂成形体の外表面において陽極外部電極と陰極外部電極が同一の面に設けられていてもよい。
 図2は、図1に示す電解コンデンサのA-A線断面図である。
 コンデンサ素子20は、表面に誘電体層5を有する陽極3と、陽極3と対向する陰極7とを含む。
 コンデンサ素子20が複数積層されて積層体30となり、積層体30の周囲が封止樹脂8で封止されて樹脂成形体9となっている。積層体30において、積層されたコンデンサ素子20の間は、導電性接着剤(図示しない)を介して互いに接合されていてもよい。積層体30に含まれるコンデンサ素子20は1つでもよい。
 樹脂成形体9の第1端面9aに陽極外部電極11が形成されていて、陽極外部電極11は第1端面9aから露出する陽極3と電気的に接続されている。
 樹脂成形体9の第2端面9bに陰極外部電極13が形成されていて、陰極外部電極13は第2端面9bから露出する陰極7と電気的に接続されている。
 コンデンサ素子20を構成する弁作用金属基体4の第2端面9b側の端部は、封止樹脂8により封止されており、弁作用金属基体4と、固体電解質層7a又は導電層7bとは直接接触していない。一方、弁作用金属基体4の第2端面9b側の端部が誘電体層5で覆われているなど、絶縁処理が施されている場合には、弁作用金属基体4の第2端面9b側の端部が、固体電解質層7a及び導電層7bで覆われていてもよい。
 図3は、樹脂成形体の第1端面における弁作用金属基体の近傍を模式的に示す断面図である。
 図3は、図2の左下部分に点線で囲った領域を模式的に示す断面図でもある。
 弁作用金属基体4は、芯部4aと芯部4aの表面に沿って形成される多孔質部4bとを有している。弁作用金属基体4の端部は樹脂成形体9の第1端面9aに露出している。
 多孔質部4bの表面に誘電体層5が形成されている。
 弁作用金属基体を構成する弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、マグネシウム、ケイ素等の金属単体、又は、これらの金属を含む合金等が挙げられる。これらの中では、アルミニウム又はアルミニウム合金が好ましい。
 弁作用金属基体の形状は特に限定されないが、平板状であることが好ましく、箔状であることがより好ましい。また、多孔質部は塩酸等によりエッチング処理されたエッチング層であることが好ましい。
 エッチング前の弁作用金属基体の厚さが60μm以上であることが好ましく、180μm以下であることが好ましい。また、エッチング処理後にエッチングされていない弁作用金属基体(芯部)の厚さが10μm以上であることが好ましく、70μm以下であることが好ましい。多孔質部の厚さは電解コンデンサに要求される耐電圧、静電容量に合わせて設計されるが、弁作用金属基体の両側の多孔質部を合わせて10μm以上であることが好ましく、120μm以下であることが好ましい。
 誘電体層は、上記弁作用金属の酸化皮膜からなることが好ましい。例えば、弁作用金属基体としてアルミニウム箔が用いられる場合、ホウ酸、リン酸、アジピン酸、又は、それらのナトリウム塩、アンモニウム塩等を含む水溶液中で陽極酸化することにより、誘電体層となる酸化皮膜を形成することができる。
 誘電体層は多孔質部の表面に沿って形成されることにより細孔(凹部)が形成されている。誘電体層の厚さは電解コンデンサに要求される耐電圧、静電容量に合わせて設計されるが、3nm以上であることが好ましく、200nm以下であることが好ましい。
 陽極外部電極11は、樹脂成形体9の第1端面9aに設けられる。
 陽極外部電極11は、弁作用金属基体4の芯部4aと直接接する第1電極層11aを含む。第1電極層11aは本発明の電子部品の製造方法における第1電極層形成工程により形成されたものである。
 弁作用金属基体の主面及び樹脂成形体の外表面(樹脂成形体の第1端面)にそれぞれ直交し、第1電極層を含む断面において、第1電極層の断面形状が楔形であることが好ましい。図3には第1電極層11aの断面形状が楔形である形状を示している。
 本明細書における楔形とは、上記の断面形状において、弁作用金属基体に接する底部を有し、底部から離れる方向(高さ方向)に沿って当該方向に直交する幅が次第に狭くなる形状を意味する。楔形の頂部の形状は特に限定されるものではなく、尖っていてもよく、丸みを帯びていてもよく、平坦であってもよい。また、楔形の頂部は、概略としては平滑に見えても微視的に見た場合に凹凸を有していてもよい。
 第1電極層11aは、Cu、Ni、Sn、Ag、Zn及びAuからなる群から選ばれる少なくとも1種を含む電極層であることが好ましい。特に、Cu及びNiのうち少なくとも一方を含む電極層であることが好ましい。
 第1電極層11aは、樹脂成形体9の外表面である第1端面9aにエアロゾルデポジション法により形成された電極層であることが好ましい。エアロゾルデポジション法により第1電極層を形成する方法については後述する。
 陽極外部電極11は、第1電極層11aの上に形成された第2電極層11bをさらに含むことが好ましい。第2電極層11bは本発明の電子部品の製造方法における第2電極層形成工程により形成することができる。
 第2電極層11bは、導電成分と樹脂成分とを含む導電性樹脂電極層であることが好ましい。
 第2電極層の表面には、外層めっき層が設けられていてもよい。図2には、第2電極層11bの表面に設けられた外層めっき層である第3電極層11cを示している。
 第3電極層としては、Niめっき層又はSnめっき層であることが好ましい。
 第3電極層が2層の場合、第3電極層は、第2電極層の表面に形成される第1外層めっき層と、第1外層めっき層の表面に形成される第2外層めっき層とを有していてもよい。
 第1外層めっき層は、Niめっき層であることが好ましく、第2外層めっき層は、Snめっき層であることが好ましい。
 ここまで陽極3に関連する構成を説明したが、続いて陰極7に関連する構成及び樹脂成形体を構成するその他の構成について図2を参照して説明する。
 コンデンサ素子20を構成する陰極7は、誘電体層5上に形成される固体電解質層7aと、固体電解質層7a上に形成される導電層7bと、導電層7b上に形成される陰極引き出し層7cとを積層してなる。
 陰極の一部として固体電解質層が設けられている電解コンデンサは、固体電解コンデンサであるといえる。
 固体電解質層を構成する材料としては、例えば、ピロール類、チオフェン類、アニリン類等を骨格とした導電性高分子等が挙げられる。チオフェン類を骨格とする導電性高分子としては、例えば、PEDOT[ポリ(3,4-エチレンジオキシチオフェン)]が挙げられ、ドーパントとなるポリスチレンスルホン酸(PSS)と複合化させたPEDOT:PSSであってもよい。
 固体電解質層は、例えば、3,4-エチレンジオキシチオフェン等のモノマーを含む処理液を用いて、誘電体層の表面にポリ(3,4-エチレンジオキシチオフェン)等の重合膜を形成する方法や、ポリ(3,4-エチレンジオキシチオフェン)等のポリマーの分散液を誘電体層の表面に塗布して乾燥させる方法等によって形成される。なお、細孔(凹部)を充填する内層用の固体電解質層を形成した後、誘電体層全体を被覆する外層用の固体電解質層を形成することが好ましい。
 固体電解質層は、上記の処理液または分散液を、スポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ、インクジェット印刷等によって誘電体層上に塗布することにより、所定の領域に形成することができる。固体電解質層の厚さは2μm以上であることが好ましく、20μm以下であることが好ましい。
 導電層は、固体電解質層と陰極引き出し層とを電気的におよび機械的に接続させるために設けられている。例えば、カーボンペースト、グラフェンペースト、銀ペースト、銅ペースト、ニッケルペーストなどのような導電性ペーストを付与することによって形成されてなるカーボン層、グラフェン層、銀層、銅層、ニッケル層などであることが好ましい。また、例えばカーボン層やグラフェン層の上に銀層、銅層又はニッケル層が設けられた複合層や、カーボンペーストやグラフェンペーストと、銀ペースト、銅ペースト又はニッケルペーストとが混合された混合ペーストを付与することによって形成されてなる混合層であってもよい。
 導電層は、カーボンペースト等の導電性ペーストをスポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ、インクジェット印刷等によって固体電解質層上に形成することにより形成することができる。なお、導電層が乾燥前の粘性のある状態で、次工程の陰極引き出し層を積層することが好ましい。導電層の厚みは2μm以上であることが好ましく、20μm以下であることが好ましい。
 陰極引き出し層は、金属箔により形成することができる。
 金属箔の場合は、Al、Cu、Ag及びこれらの金属を主成分とする合金からなる群より選択される少なくとも一種の金属からなることが好ましい。金属箔が上記の金属からなると、金属箔の抵抗値を低減させることができ、等価直列抵抗(ESR)を低減させることができる。
 また、金属箔として、表面にスパッタや蒸着等の成膜方法によりカーボンコートやチタンコートがされた金属箔を用いてもよい。カーボンコートされたAl箔を用いることがより好ましい。金属箔の厚みは特に限定されないが、製造工程でのハンドリング、小型化、およびESRを低減させる観点からは、20μm以上であることが好ましく、50μm以下であることが好ましい。
 図4は、樹脂成形体の第2端面における陰極引き出し層の近傍を模式的に示す断面図である。
 図4は、図2の右下部分に点線で囲った領域を模式的に示す断面図でもある。
 金属箔である陰極引き出し層7cは樹脂成形体9の第2端面9bに露出している。
 陰極外部電極13は、樹脂成形体9の外表面である第2端面9bに設けられる。
 陰極外部電極13は、陰極引き出し層7cと直接接する第1電極層13aを含んでいてもよい。この第1電極層13aとしては、樹脂成形体9の第1端面9aに形成する第1電極層11aと同様の構成のものを使用することができる。
 陰極引き出し層の主面及び樹脂成形体の外表面(樹脂成形体の第2端面)にそれぞれ直交し、第1電極層を含む断面において、第1電極層の断面形状が楔形であることが好ましい。図4には第1電極層13aの断面形状が楔形である形状を示している。
 陰極外部電極13は、陽極外部電極11と同様に、第1電極層13aの上に形成された第2電極層13bを含んでいてもよく、第3電極層13cを含んでいてもよい。
 第2電極層13bと第3電極層13cの構成も、陽極外部電極11における第2電極層11bと第3電極層11cの構成と同様の構成のものを使用することができる。
 樹脂成形体9を構成する封止樹脂8は、少なくとも樹脂を含み、好ましくは樹脂及びフィラーを含む。樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、シリコーン樹脂、ポリアミド樹脂、液晶ポリマー等の絶縁性樹脂を用いることが好ましい。また、樹脂成形体9は、2種類以上の絶縁性樹脂により構成されてもよい。封止樹脂8の形態は、固形樹脂、液状樹脂いずれも使用可能である。また、フィラーとしては、例えば、シリカ粒子、アルミナ粒子、金属粒子等の無機粒子を用いることが好ましい。固形エポキシ樹脂とフェノール樹脂にシリカ粒子を含む材料を用いることがより好ましい。
 樹脂成形体の成形方法としては、固形封止材を用いる場合は、コンプレッションモールド、トランスファーモールド等の樹脂モールドを用いることが好ましく、コンプレッションモールドを用いることがより好ましい。また、液状封止材を用いる場合は、ディスペンス法や印刷法等の成形方法を用いることが好ましい。コンプレッションモールドで陽極3、誘電体層5、および陰極7からなるコンデンサ素子20の積層体30を封止樹脂8で封止して樹脂成形体9とすることが好ましい。
 続いて、このような電解コンデンサを製造する場合を例にして、本発明の電子部品の製造方法について説明する。
 本発明の電子部品の製造方法では、内部電極を有し、内部電極が外表面から露出する電子部品素体を準備する。図2に示した電解コンデンサでは、樹脂成形体9が電子部品素体に相当する。
 以下には、電子部品素体としての樹脂成形体の外表面から陽極が露出しており、樹脂成形体の外表面のうち陽極が露出した外表面に対して第1電極層形成工程を行う形態について、樹脂成形体の外表面のうち陽極が露出した外表面を第1端面として説明する。
 図5は、樹脂成形体の一例を模式的に示す断面図である。
 第1電極層形成工程では、電子部品素体の外表面である第1端面に、大気圧未満の状態で、金属微粒子を噴射し、衝突させることにより第1電極層を形成する。
 この工程により第1電極層を形成すると、内部電極に腐食の生じやすいめっきプロセスを用いずに外部電極を形成できるので、めっき液によるLC不良を抑制することができる。
 第1電極層を形成する方法は、エアロゾルデポジション法、又はガスデポジション法などによることが好ましい。特に、電子部品素体の外表面にエアロゾルデポジション法により第1電極層を形成することが好ましい。
 図6は、エアロゾルデポジション法により第1電極層を形成する工程を示す模式図である。
 図6にはエアロゾルデポジション装置51を示している。エアロゾルデポジション装置51は、キャリアガス52が入ったボンベと、キャリアガス52及び金属微粒子53が導入されてエアロゾルが発生するエアロゾル発生器54と、エアロゾルが導入されるチャンバー55と、電子部品素体9が第1端面9aを上にして固定されて並べられるステージ57を有する。
 エアロゾルデポジション法では、金属微粒子53はエアロゾル発生器54の先端に設けられたノズル56から噴射され、電子部品素体9の第1端面9aに衝突することにより第1電極層となる。
 エアロゾルデポジション法により第1電極層を形成すると、第1電極層の厚さを薄くすることができるとともに、電子部品素体と第1電極層との接合強度を強くすることができる。さらに、エアロゾルデポジション法によると、成膜速度を遅く、温度を低くして成膜をすることができるので、電子部品素体に与えるダメージを少なくすることができる。
 第1電極層形成工程は、大気圧未満の状態で行われる。チャンバー内を真空引きすることにより、チャンバー内を大気圧未満とすることができる。チャンバー内の圧力を10Pa以上1000Pa以下とすることが好ましい。チャンバー内の圧力は、ガス流量の増減により調整することができる。チャンバー内の圧力が例えば100Pa以上となるようにガス流量を増やした場合、成膜速度を早くすることができ、その結果、成膜コストを下げることができる。
 第1電極層形成工程は、100℃以下で実施されることが好ましく、常温で実施されることがより好ましい。温度を高くする必要がないので、電子部品素体に与えるダメージを少なくすることができ、常温で実施することにより装置も簡便にすることができる。
 常温とは、作業環境の温度であればよいが例えば10℃以上、30℃以下とすることができる。
 金属微粒子としてはCu、Ni、Sn、Ag、Zn及びAuからなる群から選ばれる少なくとも1種を含む微粒子であることが好ましく、Cu及びNiの少なくとも一方を含む微粒子であることがより好ましい。
 金属微粒子の粒径、ノズルの走査スピード、単位時間当たりの金属微粒子の噴射量を変化させることにより、金属微粒子の付着のしやすさ及び第1電極層の厚さを調整することができる。
 金属微粒子の付着のしやすさ及び第1電極層の厚さの観点から、金属微粒子の粒径は、D50が5μm未満であることが好ましく、D50が3μm未満であることがより好ましい。
 金属微粒子のD50は、レーザー回折/散乱法で測定される体積分布基準のメジアン径である。
 金属微粒子のD50の測定装置として、例えばマイクロトラック・ベル株式会社製MT3300を使用することができる。
 第1電極層形成工程では、厚みが0.1μm以上、30μm以下の第1電極層を形成することが好ましい。また、厚さが1.0μm以上、30μm以下の第1電極層を形成することがより好ましい。第1電極層の厚さを上記範囲とすると、電解コンデンサのESRを低くすることができ、第1電極層と電子部品素体の密着力も高くすることができる。
 第1電極層の厚みは、図3に示すような第1電極層を含む断面写真において最も厚いところで測定すればよい。
 第1電極層を形成した後に、第1電極層の上に、導電成分と樹脂成分を含む第2電極層を形成する第2電極層形成工程を行ってもよい。
 第2電極層形成工程では、電極ペーストのスクリーン印刷を行って、第2電極層として印刷樹脂電極層を形成することが好ましい。
 第2電極層を電極ペーストのスクリーン印刷により行うと、電極ペーストをディップで形成する場合と比べて、外部電極を平坦にすることができる。すなわち、外部電極の膜厚均一性が向上する。
 導電成分としてはAg、Cu、Ni、Snなどを主成分として含むことが好ましく、樹脂成分としては、エポキシ樹脂、フェノール樹脂などを主成分として含むことが好ましい。
 特に、第2電極層としてAgを含む導電性樹脂電極層を形成することが好ましい。Agを含む導電性樹脂電極層であるとAgの比抵抗が小さいためESRを低減させることができる。
 電極ペーストは有機溶媒を含んでいてもよく、有機溶媒としてはグリコールエーテル系の溶媒を使用することが好ましい。例えばジエチレングリコールモノブチルエーテル、ジエチレングリコールモノフェニルエーテル等が挙げられる。
 また、必要に応じて添加剤を用いてもよい。添加剤は電極ペーストのレオロジー、特にチクソ性の調整に有用である。添加剤の含有量は、電極ペーストの重量に対して5重量%未満であることが好ましい。
 第2電極層を形成した後に、第2電極層の上に、めっきにより第3電極層を形成する第3電極層形成工程を行ってもよい。
 電子部品素体に第1電極層を予め形成しておくと、その後にめっきによる第3電極層の形成を行ったとしてもLC不良を生じにくくすることができる。
 また、第2電極層を形成することなく、第1電極層の上に、めっきにより第3電極層を形成する第3電極層形成工程を行ってもよい。
 この場合も、電子部品素体に第1電極層を予め形成しておくと、その後にめっきによる第3電極層の形成を行ったとしてもLC不良を生じにくくすることができる。
 電子部品素体の第2端面に対しても、電子部品素体の第1端面と同様に第1電極層形成工程を行って、第2端面に第1電極層を形成してもよい。
 当該工程により、図4に示すような第1電極層13aを電子部品素体の第2端面9bに形成することができる。
 その後、第2電極層13b、第3電極層13cを電子部品素体の第1端面側と同様に形成することができる。
 特に陰極引き出し層が金属箔である場合に、第1電極層形成工程により第1電極層を設けると金属箔と第1電極層の密着性を向上させることができるので有効である。
 本発明の電子部品の製造方法は、電子部品として上記の電解コンデンサを製造する方法に使用することができるが、その他の形態の電解コンデンサを製造する方法、積層セラミック電子部品を製造する方法にも使用することができる。これらの例について以下に説明する。
 図7は、電解コンデンサの別の一例を模式的に示す断面図である。
 図7に示す電解コンデンサ2では、陰極引き出し層7c及び陰極引き出し部7dを金属箔ではなく電極ペーストにより形成している。
 この場合は、電極ペーストをスポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ、インクジェット印刷等によって導電層上に塗布することにより、所定の領域に陰極引き出し層を形成することができる。電極ペーストとしては、Ag、Cu、またはNiを主成分とする電極ペーストが好ましい。陰極引き出し層を電極ペーストにより形成する場合、陰極引き出し層の厚さは金属箔を用いる場合よりも薄くすることが可能であり、スクリーン印刷の場合、2μm以上、20μm以下の厚さとすることも可能である。
 陰極引き出し層7c及び陰極引き出し部7dを電極ペーストにより形成する場合は、陰極側に第1電極層を設けることなく、第2電極層13bを電極ペーストのスクリーン印刷により形成することができる。
 各コンデンサ素子20の陰極引き出し層7cは、第2端面9b近傍において陰極引き出し部7dとしてまとめられて第2端面9bに露出する。
 陰極引き出し部7dも、陰極引き出し層7cと同様の電極ペーストにより形成することができる。また、陰極引き出し部7dと陰極引き出し層7cをそれぞれ構成する電極ペーストが異なる組成であってもよい。
 陰極引き出し層7c及び陰極引き出し部7dが電極ペーストにより形成されている場合、電極ペーストのスクリーン印刷で形成した第2電極層13bとの密着性が良好となる。
 また、図7には明示されていないが、陽極側に絶縁マスクを備えていてもよい。その場合、絶縁マスクは誘電体層の表面に設けられていてもよい。
 なお、図7に示された電解コンデンサの別の一例では、ディッピングによって前述の処理液または分散液を誘電体層上に塗布することにより、所定の領域に固体電解質層が形成されるようにしてもよい。また、同様にディッピングによってカーボンペースト等の導電性ペーストを固体電解質層上に塗布することにより、導電層が形成されるようにしてもよい。
 図7に示すような電子部品素体の第1端面に対しても同様に第1電極層形成工程を行い第1電極層を形成する。
 さらに第2電極層形成工程、第3電極層形成工程を行ってもよい。
 本発明の電子部品の製造方法において、電子部品素体は、誘電体セラミック層、磁性体セラミック層、圧電体セラミック層及び半導体セラミック層からなる群から選択された少なくとも1種のセラミック層と内部電極層が積層された直方体状の積層体であり、内部電極層が内部電極である構成であってもよい。この構成の場合、電子部品は積層セラミック電子部品となる。
 積層セラミック電子部品としては、積層セラミックコンデンサ、積層コイル、積層サーミスタ、積層バリスタ、積層LCフィルタ、積層圧電フィルタ等が挙げられる。以下には、積層セラミック電子部品の例としての積層セラミックコンデンサについて説明する。
 図8は、積層セラミック電子部品の一例を模式的に示す断面図である。
 積層セラミックコンデンサ101は、誘電体セラミック層108と、内部電極層103、内部電極層105が積層された積層体109を備える。
 積層体109が電子部品素体に相当する。
 積層セラミック電子部品を構成する積層体の形状は特に限定されるものではなく、任意の立体形状を採用することができる。積層体の形状は直方体状であることが好ましい。また、直方体状とは完全な直方体であることを意味する語ではなく、積層体を形成する面が他の面と直交せずにテーパーを有していてもよく、また、角が面取りされている形状であってもよい。
 図8には、直方体状の積層体109を示している。
 積層体109は、外表面である第1端面109a、第2端面109b、底面109c及び上面109dと、図示しない第1側面及び第2側面を有している。
 積層体を構成する誘電体セラミック層は、チタン酸バリウム等の誘電体セラミックを含む。誘電体セラミック層は、誘電体セラミックと有機溶媒を含む誘電体スラリーをシート成形することによって得ることができる。
 積層体を構成する内部電極層は、導電成分を含む電極ペーストを印刷することにより得ることができる。内部電極層は、導電成分としてNiを用いたNi電極層であることが好ましい。
また、Ni電極層に代えてAg電極層、Pd電極層、Cu電極層としてもよい。
 図8に示すような積層体109の第1端面109aに対しても、第1電極層形成工程を行うことにより内部電極である内部電極層103と接続される第1電極層111aを形成することができる。
 また、積層体109の第2端面109bに対して第1電極層形成工程を行うことにより内部電極である内部電極層105と接続される第1電極層113aを形成してもよい。
 第1電極層111a、113aに加えて、さらに第2電極層111b、113b及び第3電極層111c、113cの形成を行ってもよい。これらの工程により陽極外部電極111及び陰極外部電極113が形成される。
 また、第2電極層111b、113bを形成することなく、第1電極層111a、113aの上に第3電極層111c、113cの形成を行ってもよい。
 以下、本発明の電子部品である電解コンデンサにつき、LC不良、密着強度及びESRを評価した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。
(実施例1~8)
 図1及び図2に示す構成の積層体をエポキシ樹脂とシリカ粒子を含む封止樹脂で封止して樹脂成形体を得た。
 樹脂成形体の第1端面に対してエアロゾルデポジション法(AD法)により第1電極層を形成した。金属微粒子としてCu粒子を使用し、エアロゾルデポジション法における膜生成条件を変更して第1電極層の厚さを変更した。
 各実施例における金属微粒子の種類(金属種類)及び第1電極層の厚さを表1に示した。
 樹脂成形体の第2端面に対しても第1端面と同様に第1電極層を形成した。
 その後、樹脂成形体の端面(第1端面及び第2端面)にAgを含む電極ペーストをスクリーン印刷により塗布し、熱硬化することで第2電極層を形成した。さらに、第2電極層の表面に第3電極層であるNiめっき層及びSnめっき層を形成して電解コンデンサを作製した。
(比較例1)
 硝酸を主成分とする酸で樹脂成形体の第1端面及び第2端面をエッチングし、Zn被膜を形成することによりジンケート処理を行った。Niめっき及びAgめっきを行い第1電極層を形成した。
 第2電極層及び第3電極層を実施例1と同様に形成して電解コンデンサを作製した。
 Niめっき層及びAgめっき層の厚さはそれぞれ5μmとした。
[膜厚の測定]
 電解コンデンサの第1電極層の厚さは、蛍光X線膜厚計(株式会社日立ハイテクサイエンス製、SFT9450)により非破壊で測定した。この測定法で得られる厚さは、電解コンデンサのLT面を断面研磨し、SEM/EDSを用いて測定した物理厚さの約半分の値となる。そのため、蛍光X線膜厚計で得られた厚さの2倍を第1電極層の厚さとみなして表1に示した。
[LC不良の測定]
 各実施例又は比較例に係るそれぞれ1000個の電解コンデンサにつきLC不良が生じた割合、すなわちLC不良率(%)を求めた。
[密着強度の測定]
 電解コンデンサをガラスエポキシ基板に実装し、ガラスエポキシ基板を1mm/秒で変位が10mmとなるまでたわませて、5秒間保持した後の静電容量変化率を測定した。
 第1電極層と第2電極層の接合強度が弱いと剥離によりコンデンサ素子と外部電極がオープンとなり静電容量が変化するため、静電容量変化率を測定することにより、第1電極層と第2電極層の密着強度の測定に代えることができる。
 評価基準として、静電容量変化率が5%以下を◎、5%を超えて10%以下を○、10%を超えたものを×とした。
[ESRの測定]
 LCRメーター(KEYSIGHT製 E4980A)により100kHzにおけるESR(mΩ)を測定した。ESRの測定は電解コンデンサ10個を測定した結果の平均値とした。
 評価基準として、30mΩ以下を◎(特に良好)、30mΩを超えて40mΩ以下を○(良好)、40mΩを超えたものを△(実用上は差し支えない)とした。
 これらの各評価試験の結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 第1電極層がAD法で形成された各実施例ではLC不良が少ないが、第1電極層がめっきで形成された比較例1ではLC不良が多くなっていた。
 第1電極層の厚さが0.2μm以下と薄いと、ESRがやや高くなっていた。これは弁作用金属基体の上に成膜される第1電極層の形成が一部で不充分になるためと考えられる。
1、2 電解コンデンサ(電子部品)
3 陽極
4 弁作用金属基体
4a 芯部
4b 多孔質部
5 誘電体層
7 陰極
7a 固体電解質層
7b 導電層
7c 陰極引き出し層
7d 陰極引き出し部
8 封止樹脂
9 樹脂成形体(電子部品素体)
9a 樹脂成形体の第1端面(樹脂成形体の外表面)
9b 樹脂成形体の第2端面(樹脂成形体の外表面)
9c 樹脂成形体の底面(樹脂成形体の外表面)
9d 樹脂成形体の上面(樹脂成形体の外表面)
9e 樹脂成形体の第1側面(樹脂成形体の外表面)
9f 樹脂成形体の第2側面(樹脂成形体の外表面)
11 陽極外部電極
11a、13a 第1電極層
11b、13b 第2電極層
11c、13c 第3電極層
13 陰極外部電極
20 コンデンサ素子
30 積層体
51 エアロゾルデポジション装置
52 キャリアガス
53 金属微粒子
54 エアロゾル発生器
55 チャンバー
56 ノズル
57 ステージ
101 積層セラミックコンデンサ(電子部品)
103、105 内部電極層
108 誘電体セラミック層
109 積層体(電子部品素体)
109a 積層体の第1端面
109b 積層体の第2端面
109c 積層体の底面
109d 積層体の上面
111 陽極外部電極
111a、113a 第1電極層
111b、113b 第2電極層
111c、113c 第3電極層
113 陰極外部電極

 

Claims (15)

  1.  内部電極を有し、前記内部電極が外表面から露出する電子部品素体を準備する工程と、
     前記電子部品素体の前記外表面に、大気圧未満の状態で、金属微粒子を噴射し、衝突させることにより第1電極層を形成する第1電極層形成工程と、を備えることを特徴とする電子部品の製造方法。
  2.  前記第1電極層を形成する方法は、エアロゾルデポジション法である請求項1に記載の電子部品の製造方法。
  3.  前記第1電極層形成工程は、100℃以下で実施される請求項1又は2に記載の電子部品の製造方法。
  4.  前記第1電極層形成工程は、常温で実施される請求項3に記載の電子部品の製造方法。
  5.  前記金属微粒子は、D50が5μm未満である請求項1~4のいずれかに記載の電子部品の製造方法。
  6.  前記金属微粒子は、D50が3μm未満である請求項5に記載の電子部品の製造方法。
  7.  厚みが0.1μm以上、30μm以下の前記第1電極層を形成する請求項1~6のいずれかに記載の電子部品の製造方法。
  8.  厚みが1.0μm以上、30μm以下の前記第1電極層を形成する請求項7に記載の電子部品の製造方法。
  9.  前記第1電極層の上に、導電成分と樹脂成分を含む第2電極層を形成する第2電極層形成工程をさらに備える請求項1~8のいずれかに記載の電子部品の製造方法。
  10.  前記第2電極層の上に、めっきにより第3電極層を形成する第3電極層形成工程をさらに備える請求項9に記載の電子部品の製造方法。
  11.  前記第2電極層形成工程において、電極ペーストのスクリーン印刷を行い、前記第2電極層として印刷樹脂電極層を形成する請求項9又は10に記載の電子部品の製造方法。
  12.  前記第1電極層の上に、めっきにより第3電極層を形成する第3電極層形成工程をさらに備える請求項1~8のいずれかに記載の電子部品の製造方法。
  13.  前記電子部品素体は、コンデンサ素子を含む積層体と、前記積層体の周囲を封止する封止樹脂とを備える樹脂成形体であり、
     前記コンデンサ素子は、表面に誘電体層が形成された弁作用金属基体を有する陽極と、前記陽極と対向する陰極とを含み、前記陽極及び前記陰極が前記内部電極である請求項1~12のいずれかに記載の電子部品の製造方法。
  14.  前記樹脂成形体の前記外表面から前記陽極が露出しており、前記樹脂成形体の前記外表面のうち前記陽極が露出した前記外表面に対して前記第1電極層形成工程を行う、請求項13に記載の電子部品の製造方法。
  15.  前記電子部品素体は、誘電体セラミック層、磁性体セラミック層、圧電体セラミック層及び半導体セラミック層からなる群から選択された少なくとも1種のセラミック層と内部電極層が積層された直方体状の積層体であり、前記内部電極層が前記内部電極である請求項1~12のいずれかに記載の電子部品の製造方法。

     
PCT/JP2022/003487 2021-02-02 2022-01-31 電子部品の製造方法 WO2022168768A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022579514A JPWO2022168768A1 (ja) 2021-02-02 2022-01-31
CN202280012664.2A CN116830224A (zh) 2021-02-02 2022-01-31 电子部件的制造方法
US18/361,124 US20230368978A1 (en) 2021-02-02 2023-07-28 Method for manufacturing electronic component
US18/361,057 US20230371190A1 (en) 2021-02-02 2023-07-28 Mounting assembly for a printed circuit board within an appliance control panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-014978 2021-02-02
JP2021014978 2021-02-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US18/361,124 Continuation US20230368978A1 (en) 2021-02-02 2023-07-28 Method for manufacturing electronic component
US18/361,057 Continuation US20230371190A1 (en) 2021-02-02 2023-07-28 Mounting assembly for a printed circuit board within an appliance control panel

Publications (1)

Publication Number Publication Date
WO2022168768A1 true WO2022168768A1 (ja) 2022-08-11

Family

ID=82742231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003487 WO2022168768A1 (ja) 2021-02-02 2022-01-31 電子部品の製造方法

Country Status (4)

Country Link
US (2) US20230368978A1 (ja)
JP (1) JPWO2022168768A1 (ja)
CN (1) CN116830224A (ja)
WO (1) WO2022168768A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047961A1 (ja) * 2022-08-29 2024-03-07 株式会社村田製作所 コンデンサ、およびコンデンサの製造方法
WO2024101214A1 (ja) * 2022-11-11 2024-05-16 株式会社村田製作所 電解コンデンサ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291380A (ja) * 1993-03-31 1994-10-18 Olympus Optical Co Ltd 誘電体積層部品とその製造方法
JP2007208112A (ja) * 2006-02-03 2007-08-16 Kyocera Chemical Corp 積層セラミックコンデンサの製造方法および積層セラミックコンデンサ
JP2009076872A (ja) * 2007-08-29 2009-04-09 Panasonic Corp チップ形固体電解コンデンサ
JP2011108875A (ja) * 2009-11-18 2011-06-02 Tdk Corp 電子部品の製造方法及び電子部品
JP2011153329A (ja) * 2010-01-26 2011-08-11 Mitsubishi Materials Corp 電極又は配線パターンの形成方法
JP2020141059A (ja) * 2019-02-28 2020-09-03 株式会社村田製作所 電解コンデンサ及び電解コンデンサの実装構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291380A (ja) * 1993-03-31 1994-10-18 Olympus Optical Co Ltd 誘電体積層部品とその製造方法
JP2007208112A (ja) * 2006-02-03 2007-08-16 Kyocera Chemical Corp 積層セラミックコンデンサの製造方法および積層セラミックコンデンサ
JP2009076872A (ja) * 2007-08-29 2009-04-09 Panasonic Corp チップ形固体電解コンデンサ
JP2011108875A (ja) * 2009-11-18 2011-06-02 Tdk Corp 電子部品の製造方法及び電子部品
JP2011153329A (ja) * 2010-01-26 2011-08-11 Mitsubishi Materials Corp 電極又は配線パターンの形成方法
JP2020141059A (ja) * 2019-02-28 2020-09-03 株式会社村田製作所 電解コンデンサ及び電解コンデンサの実装構造

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047961A1 (ja) * 2022-08-29 2024-03-07 株式会社村田製作所 コンデンサ、およびコンデンサの製造方法
WO2024101214A1 (ja) * 2022-11-11 2024-05-16 株式会社村田製作所 電解コンデンサ

Also Published As

Publication number Publication date
US20230371190A1 (en) 2023-11-16
US20230368978A1 (en) 2023-11-16
CN116830224A (zh) 2023-09-29
JPWO2022168768A1 (ja) 2022-08-11

Similar Documents

Publication Publication Date Title
WO2022168769A1 (ja) 電解コンデンサ及び電解コンデンサの製造方法
US9251956B2 (en) Conductive resin composition and multilayer ceramic capacitor having the same
CN111383844B (zh) 电解电容器
WO2022168768A1 (ja) 電子部品の製造方法
US20210383976A1 (en) Electronic component and method for manufacturing electronic component
WO2021049056A1 (ja) 電解コンデンサ
WO2022168770A1 (ja) 電解コンデンサ
US20230119320A1 (en) Electronic component and method for manufacturing electronic component
US20220223350A1 (en) Electrolytic capacitor
US20220223349A1 (en) Electrolytic capacitor, and method for manufacturing electrolytic capacitor
US11810728B2 (en) Electrolytic capacitor
JP7200912B2 (ja) 電解コンデンサ
WO2024101214A1 (ja) 電解コンデンサ
WO2023153432A1 (ja) 電解コンデンサ素子
CN112466667B (zh) 固体电解电容器以及固体电解电容器的制造方法
WO2023090141A1 (ja) 電解コンデンサ素子
US20230038003A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JP2023098301A (ja) 電子部品及び電子部品の製造方法
JP2021044549A (ja) 固体電解コンデンサ、及び、固体電解コンデンサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579514

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280012664.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749640

Country of ref document: EP

Kind code of ref document: A1