WO2022166825A1 - 可固化的环氧树脂组合物 - Google Patents

可固化的环氧树脂组合物 Download PDF

Info

Publication number
WO2022166825A1
WO2022166825A1 PCT/CN2022/074707 CN2022074707W WO2022166825A1 WO 2022166825 A1 WO2022166825 A1 WO 2022166825A1 CN 2022074707 W CN2022074707 W CN 2022074707W WO 2022166825 A1 WO2022166825 A1 WO 2022166825A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
composition according
weight
component
Prior art date
Application number
PCT/CN2022/074707
Other languages
English (en)
French (fr)
Inventor
宋志勇
刘栋梁
张小燕
Original Assignee
Sika技术股份公司
宋志勇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sika技术股份公司, 宋志勇 filed Critical Sika技术股份公司
Publication of WO2022166825A1 publication Critical patent/WO2022166825A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to the field of curable epoxy resin compositions. Furthermore, it concerns the use of epoxy resin compositions as adhesives, sealants or potting compounds, especially for electronic products and their components.
  • Epoxy resins are used in a variety of applications, for example as adhesives, coatings, sealants or molding compositions for making molded articles.
  • inorganic fillers are often added to epoxy resins to affect the properties of the curable resin or cured plastic material. Inorganic fillers, for example, improve the strength of the epoxy resin or the adhesion of the resin to the substrate. Inorganic fillers in epoxy resins also fulfill many other functions such as flame retardants, insulators, viscosity modifiers or dyes (as pigments). Another purpose is to save expensive epoxy resin and thus save costs.
  • the epoxy resin also needs to react with the curing agent to form a network-like cross-linked polymer to obtain a cured epoxy resin.
  • Curing agents commonly used for epoxy resins include many types, such as polyamines such as aliphatic and aromatic polyamines and other nitrogen-containing compounds and polyamides, as well as curing agents based on organic acids or anhydrides, and Guanidine or amidine compounds, etc.
  • the type and amount of curing agent are usually related to the mechanical properties of epoxy resin after final curing, such as impact resistance and brittleness, and weather resistance.
  • CN106281174A discloses an epoxy potting compound with high toughness, impact resistance and high flexibility, which especially comprises toughened epoxy resin, bisphenol A epoxy resin, alumina and a special curing agent component.
  • the curing agent component includes a compound of hyperbranched polyethyleneimine and isophorone diamine and a polyetheramine curing agent.
  • CN106318298A discloses a curing agent component system for preparing a room temperature curing anti-cracking epoxy potting glue, wherein the curing agent component is based on modified aromatic amines, aliphatic amines and imidazole compounds.
  • CN109401708A discloses a room temperature curing potting glue, which includes epoxy resin, room temperature curing agent and thermal conductive filler, wherein the thermal conductive filler is composed of silicon nitride/or boron nitride and aluminum oxide.
  • CN106634752A discloses a kind of epoxy resin potting compound specially used for ignition coil including two components A and B, wherein component A includes bisphenol A epoxy resin, PEO-PPO-PEO triblock copolymer, Carboxyl-terminated liquid nitrile rubber, microsilica, aluminum hydroxide, etc.
  • the microsilica generally acts as a thixotropic agent or rheology modifier and has a particle size of less than 1 micron.
  • the object of the present invention is to provide an epoxy resin composition for use as a potting material, which is curable in particular at medium or room temperature (ie in the temperature range of about 10-80° C.).
  • the epoxy resin composition should have good mechanical properties while also having low viscosity, excellent cold/thermal shock resistance, low volatility and good adhesion.
  • epoxy resin compositions according to the present invention have beneficial resistance to aging after being subjected to high and low temperature cycling (eg -40°C to 80°C) and high temperature and high humidity cycling (eg 80°C/95% relative humidity). Cracking performance.
  • the compositions according to the invention have very good adhesion on many substrates, such as Al-Mg alloy substrates, Cu and polycarbonate substrates.
  • the inventors have surprisingly found that by comprising two specific curing agents and two specific filler combinations, the epoxy resin composition according to claim 1 is able to achieve the above-mentioned task.
  • a first aspect of the present invention relates to a curable two-component epoxy resin composition
  • a curable two-component epoxy resin composition comprising
  • a curing agent comprising a polyamide PA and a polyoxyethylene-based polyetheramine PEA, and the weight ratio of the polyamide PA to the polyetheramine PEA is 1.3-5:1, preferably 1.5-4.5:1 , more preferably in the range of 2-4:1;
  • a filler comprising alumina and silica.
  • poly/poly refer to substances that formally contain two or more of the functional groups that appear in their names per molecule.
  • the compounds may be monomers, oligomers or polymers.
  • polyamines are compounds having two or more amine groups.
  • Polyepoxides are compounds having two or more epoxy groups.
  • polyamines Amine compounds having two or more amino groups per molecule are hereinafter referred to as "polyamines". If the polyamines are polymers, they contain on average at least two amine groups per molecule.
  • the average molecular weight is understood to mean the number average molecular weight determined using conventional methods, preferably gel permeation chromatography (GPC) at 35°C, typically using polystyrene as Angstrom, 1000 Angstrom and 10000 Angstrom porosity styrene-divinylbenzene as column and tetrahydrofuran as solvent.
  • GPC gel permeation chromatography
  • the epoxy resin composition includes a crosslinkable epoxy resin having an average of more than one epoxy group per molecule. They react with suitable curing agents to form chemical bonds.
  • the epoxy resins are preferably oligomeric or polymeric compounds.
  • Epoxy resins are also sometimes used with so-called reactive diluents. Reactive diluents are mono- or polyepoxides. The reactive diluent has a lower viscosity than the epoxy resin used and serves to reduce the viscosity of the epoxy resin used.
  • Optional reactive diluents are likewise incorporated into the organic binder matrix and are therefore included in the epoxy resin here when determining the organic binder content.
  • the epoxy equivalent weight (EEW) can be determined according to DIN 53188 and reported in g/Eq.
  • NH equivalents can be determined according to DIN 16945 and reported in g/Eq.
  • the stoichiometric ratio of epoxy functional groups to amine functional groups is the quotient of epoxy equivalents and active hydrogens in the amine, ie, NH (amine hydrogen) equivalents, and is often reported in %.
  • the NH equivalents are based on active hydrogens, ie amine hydrogens. Primary amines, for example, have two active amine hydrogens.
  • the composition of the present invention is a two-component composition, ie the composition comprises two individual components which are only mixed with each other at the time of use.
  • the components are stored separately in two separate containers (eg, cartridges, buckets, bags, pouches, bins, cartridges, etc.) prior to use to avoid spontaneous reactions.
  • the components are mixed with each other. After mixing, an organic crosslinking reaction can optionally begin, which ultimately results in curing of the mixture.
  • the proportion of a particular component depends on the proportion of such component in the components involved and the mixing ratio of said components.
  • the ratios or ratios of specific ingredients specified herein relate to reasonable or suitable weight ratios or ratios of said ingredients in the component mixture of the multi-component composition, unless otherwise stated. This is obtained, for example, by mixing the components in suitable mixing ratios according to the instructions for use.
  • epoxy resin of component A one epoxy resin or a mixture of two or more epoxy resins can be used. All epoxy resins customary in epoxy chemistry can be used as epoxy resins. Epoxy resins can be prepared, for example, in a known manner from the oxidation of the corresponding olefins or from the reaction of epichlorohydrin with the corresponding polyols or polyphenols.
  • Epoxy resins can be subdivided into liquid epoxy resins and solid epoxy resins.
  • the epoxy resin may, for example, have an epoxy equivalent weight of 156-500 g/Eq.
  • the epoxy resin is preferably a diepoxide.
  • the epoxy resin may be an aromatic epoxy resin.
  • a suitable example for this purpose is a liquid epoxy resin of formula (III):
  • R' and R" are each independently a hydrogen atom or a methyl group, and s is an average value of 0 to less than 2 and preferably 0 to 1.
  • Preferred are those liquid resins of formula (III) wherein the index s is less than 0.2 average of.
  • the epoxy resins of formula (III) are diglycidyl ethers of bisphenol A, bisphenol F and bisphenol A/F, wherein A represents acetone and F represents formaldehyde, which are used as reactants for the preparation of these bisphenols.
  • Such liquid epoxy resins are commercially available, for example, under the following names: from Huntsman from Dow from Momentive from CVC Chem from Cognis or from Cytec
  • bisphenols or polyphenols such as bis(4-hydroxy-3-methylphenyl)methane, 2,2-bis(4-hydroxy-3-methylphenyl)propane (bisphenol C), bis( 3,5-Dimethyl-4-hydroxyphenyl)methane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, 2,2-bis(3,5-dibromo) -4-Hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-tert-butylphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane (bisphenol B), 3 , 3-bis(4-hydroxyphenyl)pentane, 3,4-bis(4-hydroxyphenyl)hexane, 4,4-bis(4-hydroxyphenyl)heptane, 2,4-bis(4-hydroxyphenyl)heptane 4-Hydroxyphenyl)-2-methylbutane, 2,4-bis(3,5-di
  • Aromatic amines such as aniline, toluidine, 4-aminophenol, 4,4'-methylenediphenyldiamine (MDA), 4,4'-methylenediphenylbis(N-methyl) Amine, 4,4'-[1,4-phenylenebis(1-methylethylene)]bisaniline (bisaniline-P), 4,4'-[1,3-phenylenebis( 1-Methylethylene)] dianiline (dianiline M).
  • the epoxy resin may be an aliphatic or cycloaliphatic epoxy resin, such as
  • Glycidyl ethers of saturated or unsaturated, branched or unbranched, cyclic or open-chain C2-C30 diols such as ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, caprylyl glycol, poly Propylene glycol, dimethylolcyclohexane, neopentyl glycol;
  • Glycidyl ethers of tri- or tetrafunctional saturated or unsaturated branched or unbranched cyclic or open-chain polyols such as castor oil, trimethylolpropane, trimethylolethyl alkanes, pentaerythritol, sorbitol or glycerol, and alkoxylated glycerol or alkoxylated trimethylolpropane;
  • N-glycidyl derivatives of amides or heterocyclic nitrogenous bases such as triglycidyl cyanurate and triglycidyl isocyanurate, and the reaction products of epichlorohydrin and hydantoin.
  • epoxy resins prepared by the oxidation of olefins, for example from vinylcyclohexene, dicyclopentadiene, cyclohexadiene, cyclododecadiene , cyclododecatriene, isoprene, hex-1,5-diene, butadiene, polybutadiene, or the oxidation of divinylbenzene.
  • useful epoxy resins are solid bisphenol A, F or A/F resins, which are constructed in the same manner as the liquid epoxy resins of formula (III) above, except that the value of the index s is 2-12 . Further examples are all the aforementioned epoxy resins that have been hydrophilically modified by reaction with at least one polyoxyalkylene polyol.
  • Preferred epoxy resins are bisphenol A, F or A/F solid or liquid resins, such as those commercially available from Dow, Huntsman, Momentive, HEXION or Nanya, Taiwan and for example from Changchun Chemical (Jiangsu) Co., Ltd. or Hongchang Electronics Market those sold.
  • the epoxy resins used are particularly preferably diepoxides of bisphenol A diglycidyl ether, bisphenol F diglycidyl ether and bisphenol A/F diglycidyl ether, in particular with an epoxy equivalent weight of 156-250 g /Eq, such as commercially available products GY250, PY304, GY282 (commercially available from Huntsman); (commercially available from Dow); (commercially available from Momentive), and N,N-diglycidylaniline and polyethylene glycol diglycidyl ether, preferably the epoxy equivalent is 170-340 g/Eq, such as commercially available products and (commercially available from Dow).
  • At least one reactive diluent for the epoxy resin in the epoxy resin composition may be advantageous to also include at least one reactive diluent for the epoxy resin in the epoxy resin composition. As stated, it counts towards the epoxy resin for the organic binder content.
  • One or more reactive diluents can be used. Suitable reactive diluents are mono- and polyepoxides. The addition of reactive diluents to epoxy resins results in a drop in viscosity.
  • reactive diluents are mono- or polyhydric phenols and glycidyl ethers of aliphatic or cycloaliphatic alcohols, such as in particular of the diols or polyols already mentioned as aliphatic or cycloaliphatic epoxy resins.
  • Polyglycidyl ethers such as butanediol diglycidyl ether, and also in particular phenyl glycidyl ether, tolyl glycidyl ether, p-n-butylphenyl glycidyl ether, p-tert-butylphenyl ether Glycidyl ether, nonylphenyl glycidyl ether, allyl glycidyl ether, butyl glycidyl ether, hexyl glycidyl ether, 2-ethylhexyl glycidyl ether, and glycidyl ethers of natural alcohols Glyceryl ethers, such as C8- to C10-alkyl glycidyl ethers, C12- to C14-alkyl glycidyl ethers or C13- to C15-alkyl glycidyl ethers, as
  • the content of epoxy resin is 2.5-30 wt %, more preferably 5-25 wt %, especially for example 10-25 wt %, based on the weight of the whole composition.
  • the curable epoxy resin composition according to the present invention also includes a curing agent, and the selection of the curing agent is critical in the present invention.
  • the curing agent component according to the invention comprises a combination of polyamide PA and polyoxyethylene-based polyetheramine PEA.
  • the curing agent consists of polyamide PA and polyoxyethylene-based polyetheramine PEA.
  • the curing agent polyamide PA for epoxy resins is a polyamide-based polyamine, which is the reaction product of a mono- or polycarboxylic acid or its ester or anhydride, especially dimerized fatty acid and chemical Reaction products of aliphatic, cycloaliphatic or aromatic polyamines used in metered excess, especially polyalkyleneamines such as DETA or triethylenetetramine (TETA), especially commercially available polyamines based on polyamides 100, 125, 140 and 150 (from Cognis), 125, 140, 223, 250 and 848 (from Huntsman), 3607, 530 (from Huntsman), EH 651, EH 654, EH 655, EH 661 and EH 663 (from Cytec).
  • polyamide-based polyamine which is the reaction product of a mono- or polycarboxylic acid or its ester or anhydride, especially dimerized fatty acid and chemical Reaction products of aliphatic, cycloaliphatic or aromatic polyamines used in metered excess
  • the polyamide PA has an active H equivalent of 125-300, preferably 180-250 g/Eq. This is advantageous for further improving the weather resistance. Furthermore, it is also advantageous that the molecular weight of the polyamide PA is in the range from 500 to 1200 g/mol, preferably from 650 to 1000 g/mol.
  • polyetheramine has a structure based on a polyether or polyoxyalkylene backbone, also known as polyether polyamine or polyoxyalkylene polyamine, which has many on one, preferably two or three or more amine groups, wherein the polyether or polyoxyalkylene backbone is based on ethylene oxide.
  • said "polyoxyethylene-based" polyetheramine PEA means in particular that the polyether chains or polyoxyalkylene chains in the polyetheramine comprise at least 80% by weight, preferably at least 90% by weight. % by weight, more preferably 95% or 100% of oxyethylene (EO) units, based on the total weight of all oxyalkylene units (ie the entire polyether chain or polyoxyalkylene chain).
  • EO oxyethylene
  • the polyetheramine PEA according to the invention may also contain small amounts of other oxyalkylene units, such as oxypropylene or oxybutylene units. An excessively low content of oxyethylene units is disadvantageous in particular for weather resistance such as crack resistance.
  • the molecular weight of the polyetheramine PEA is in the range of 140-350 g/mol, preferably 160-300 g/mol.
  • polyetheramine PEAs examples include, for example, 4,7,10-trioxatridecane-1-13-diamine and polyetheramines based on polyoxyethylenediamine such as those commercially available , which are usually products from the amination of polyoxyethylene glycols, such as EDR-148 and EDR-176 et al.
  • the polyetheramine PEA is more preferably a polyoxyethylene diamine or triamine, especially preferably a polyoxyethylene based on the consideration of curing rate, mechanical properties and in consideration of the complexation with the polyamide PA. Diamine.
  • the content of the curing agent is 5-30 wt %, preferably 7.5-20 wt %, based on the weight of the entire composition. More preferably, the curing agent comprises at least 90 wt%, preferably at least 95 wt%, more preferably at least 98 wt% and especially preferably at least 99 wt% of the combination of said polyamide PA and polyetheramine PEA. Particularly preferably, the curing agent consists entirely of the polyamide PA and the polyetheramine PEA, ie no further curing agents are used in this case.
  • the weight ratio of the polyamide PA to the polyetheramine PEA is in the range of 1.3-5:1, preferably 1.5-4.5:1, more preferably 2-4:1. If the ratio of the two is lower than 1.3:1, it may lead to poor mechanical properties and weather resistance of the epoxy resin composition; while if the ratio of the two is too high, such as higher than 5:1, it may lead to curing
  • the viscosity of the agent components is unduly too high and allows the cured product to emit more volatiles under high temperature or heating conditions, and is also detrimental to mechanical properties and curing.
  • the curing agent component of the present invention may also contain a small amount of other amine-containing curing agents.
  • polyamines suitable as curing agents are, for example:
  • - aliphatic or araliphatic primary diamines such as ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 2-methyl-1,2-propanediamine, 2,2-propanediamine Dimethyl-1,3-propanediamine, 1,3-butanediamine, 1,4-butanediamine, 1,3-pentanediamine (DAMP), 1,5-pentanediamine, 1,5 -Diamino-2-methylpentane (MPMD), 2-butyl-2-ethyl-1,5-pentanediamine (C11-new diamine), 1,6-hexanediamine, 2,5- Dimethyl-1,6-hexanediamine, 2,2,4- and 2,4,4-trimethylhexamethylenediamine (TMD), 1,7-heptanediamine, 1,8 -Octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,8-menthane
  • polyamines containing secondary amino groups for example, diethylenetriamine (DETA), N,N-bis-(2-aminoethyl)-ethylenediamine, dipropylenetriamine (DPTA), Bis-hexamethylenetriamine (BHMT), 3-(2-aminoethyl)-aminopropylamine, triethylenetetramine, tetraethylenepentamine, N3-(3-aminopentyl)- 1,3-Pentanediamine, N5-(3-aminopropyl)-2-methyl-1,5-pentanediamine, N5-(3-amino-1-ethylpropyl)-2-methyl -1,5-Pentanediamine, N,N'-dibutylethylenediamine;N,N'-di-tert-butylethylenediamine,N,N'-diethyl-1,6 -Hexanediamine, 1-(1-methylethylamino)-3-(1-(1
  • - amine/polyepoxide adducts in particular adducts of the abovementioned polyamines in a molar ratio of at least 2/1 to diepoxide, in particular in a molar ratio of 2/1 to 10/1;
  • PEI Polyethyleneimine
  • Suitable polyethyleneimines generally have an average molecular weight of 250-25000 g/mol and contain tertiary, secondary and primary amino groups.
  • Polyethyleneimine is available, for example, under the trade name (from BASF), e.g. WF, FG, G20 and PR 8515 obtained.
  • Mannich bases ie amines with other functional groups, which can be obtained by Mannich reactions, in which aminoalkylation of CH-acidic compounds with aldehydes and ammonia, or primary or secondary amines, takes place.
  • the curing agent does not contain aliphatic or aromatic polyamines from the viewpoint of both curing efficiency and user health risk. , such as primary diamines, triamines and tetraamines.
  • the epoxy resin composition according to the present invention must also contain fillers, preferably inorganic fillers.
  • the inorganic filler is preferably a mineral filler.
  • Inorganic fillers can be of natural origin or artificially produced. Suitable fillers are known in the art and are commercially available. Fillers can be synthetic fillers or naturally occurring minerals. They are preferably oxygenates. Typically, oxides, mixed oxides or metals and semimetals are used.
  • As filler it is possible to use powder as well as the form of hollow spheres (for example made of glass or ceramic) or fibers.
  • the inventors of the present invention have found that, in the epoxy resin composition of the present invention, if alumina and silica are included in the filler, excellent crack resistance can be provided, especially after aging at high and low temperatures and high temperature and high humidity .
  • the content of the filler is 20-80 wt %, preferably 25-75 wt %, more preferably 35-70 wt %.
  • the sum of said alumina and silica is at least 50wt%, preferably at least 60wt%, more preferably at least 70wt% and especially preferably at least 90wt% or 100wt% of the total weight of the filler .
  • the alumina suitable for the filler of the present invention is a stable oxide of aluminum commonly used in the industry, the chemical formula is Al 2 O 3 , and is also called bauxite.
  • Alumina fillers are commercially available, for example, from Guangdong Lotto and Zibo Nuoda Chemical.
  • the silicon oxide is a filler, which can be for example in the form of quartz, for example quartz powder or quartz sand, and generally has a particle size of more than 1 ⁇ m, preferably more than 1.5 ⁇ m, thus distinguishing it from so-called micro- Silica fume such as fumed silica, etc.
  • the latter generally have more than 80% of the powders with a particle size of less than 1 ⁇ m, with an average particle size between 0.1-0.5 or 0.1-0.3 ⁇ m, and are usually used as rheology modifiers.
  • Silica fillers are also commercially available, for example, from Guangdong Lotto and Shanghai Baitu.
  • the silica and/or alumina suitable for the present invention is a granular powder with a particle size (D50) of 2-20 ⁇ m, preferably 3-15 ⁇ m, such as 4-10 ⁇ m.
  • D50 particle size
  • the particle size or average particle size refers to the D50 value, which can be measured by laser diffraction, preferably using a Mastersizer 2000 apparatus (trademark of Malvern Instruments Ltd, GB).
  • the alumina:silica weight ratio is in the range of 4:6 to 8:2, preferably 1:1 to 8:3, more preferably 1.5:1 to 8:4. If the ratio of the two is too low, such as less than 4:6, it may lead to poor crack resistance of the epoxy resin composition; and if the ratio of the two is too high, such as higher than 8:2, it may lead to product failure. Settling becomes severe and costs are high.
  • the fillers especially the alumina and silica particles, may be surface-treated, such as with a silane coupling agent. Such surface treatments are known.
  • fillers that may be added include, for example, metal oxides such as titanium dioxide, iron oxide, zinc oxide and magnesium oxide; metal carbonates such as calcium carbonate or dolomite; metal sulfates such as Calcium sulfate (gypsum) and barium sulfate; metal hydroxides such as aluminium hydroxide, aluminium nitride or aluminium carbide, clay minerals such as kaolin, fly ash, cement, glass and ceramic materials.
  • metal oxides such as titanium dioxide, iron oxide, zinc oxide and magnesium oxide
  • metal carbonates such as calcium carbonate or dolomite
  • metal sulfates such as Calcium sulfate (gypsum) and barium sulfate
  • metal hydroxides such as aluminium hydroxide, aluminium nitride or aluminium carbide, clay minerals such as kaolin, fly ash, cement, glass and ceramic materials.
  • the epoxy resin composition according to the present invention may also contain other conventional additives.
  • Various additives are well known in the art of epoxy resins that affect the properties of a curable composition or cured epoxy resin.
  • Additives other than epoxy resins, curing agents, fillers may be included in the epoxy resin composition in proportions (including solvents) such as up to 50 wt %, up to 20 wt %, up to 5 wt % or up to 2 wt %.
  • At least one other additive is selected from reactive diluents, film formers, fillers, catalysts, accelerators, rheology modifiers, tackifiers, stabilizers, defoamers , air release agents, flame retardants, surfactants, biocides, organic dyes and pigments and other dispersants.
  • reactive diluents film formers, fillers, catalysts, accelerators, rheology modifiers, tackifiers, stabilizers, defoamers , air release agents, flame retardants, surfactants, biocides, organic dyes and pigments and other dispersants.
  • acids or compounds that can be hydrolyzed to form acids such as organic carboxylic acids such as acetic acid, benzoic acid, salicylic acid, 2-nitrobenzoic acid, lactic acid, organic sulfonic acids Acids such as methanesulfonic acid, p-toluenesulfonic acid or 4-dodecylbenzenesulfonic acid, sulfonic acid esters, other organic or inorganic acids such as phosphoric acid, or mixtures of the aforementioned acids and acid esters; in addition, tertiary amines such as 1,4 - diazabicyclo[2.2.2]octane, benzyldimethylamine, alpha-methylbenzyldimethylamine, triethanolamine, dimethylaminopropylamine, salts of these tertiary amines, quaternary ammonium salts such as Benzyltrimethylammonium chlor
  • - rheology modifiers such as in particular thickeners such as layered silicates such as bentonites, castor oil derivatives, hydrogenated castor oil, polyurethanes, urea compounds, fumed silica, cellulose ethers and hydrophobically modified of polyoxyethylene;
  • thickeners such as layered silicates such as bentonites, castor oil derivatives, hydrogenated castor oil, polyurethanes, urea compounds, fumed silica, cellulose ethers and hydrophobically modified of polyoxyethylene;
  • Tackifiers such as organoalkoxysilanes such as 3-glycidoxypropyltrimethoxysilane, 3-aminopropyl-trimethoxysilane, N-(2-aminoethyl)-3-aminopropyl yl-trimethoxysilane, N-(2-aminoethyl)-N'-[3-(trimethoxysilyl)-propyl]-ethylenediamine, 3-ureidopropyltrimethoxysilane , 3-chloropropyltrimethoxysilane, vinyltrimethoxysilane, or the corresponding organosilane with ethoxy or (poly)etheroxy instead of methoxy;
  • organoalkoxysilanes such as 3-glycidoxypropyltrimethoxysilane, 3-aminopropyl-trimethoxysilane, N-(2-aminoethyl)-3-aminopropyl
  • flame retardants especially some compounds such as aluminium hydroxide (Al(OH) 3 ; also known as ATH for "aluminum trihydrate”), magnesium hydroxide (Mg(OH) 2 ; also known as MDH for "dihydrate” Magnesium hydrate”), ammonium sulfate ((NH) 2 SO 4 ), boric acid (B(OH) 3 ), zinc borate, melamine borate and melamine cyanurate; phosphorus-containing compounds such as ammonium phosphate ((NH 4 ) 3 PO 4 ), ammonium polyphosphate, melamine phosphate, melamine pyrophosphate, triphenyl phosphate, diphenyl cresyl phosphate, tricresyl phosphate, triethyl phosphate, tris(2-ethylhexyl) phosphate, Trioctyl phosphate, mono-, bis- and tri-(isopropylphenyl) phosphate, res
  • surfactants such as wetting agents, leveling agents, deaerators or defoamers
  • Biocides such as algaecides, fungicides or fungal growth inhibitors.
  • the epoxy resin composition according to the present invention can be provided as a two-component system.
  • the composition includes two separate components.
  • the components are kept separate, especially in order to avoid spontaneous reactions.
  • the components can be assembled together as a package. In use, the components are combined with each other. When the components are mixed together, the curing reaction begins, allowing the composition to be processed within the open time after mixing the components.
  • Curable epoxy resin compositions are often offered to users as two-component systems.
  • the epoxy resin and the curing agent are usually contained in different components, so the curing reaction can only proceed when the user mixes the components.
  • Fillers can be part of one or both of these components.
  • the epoxy resin composition according to the present invention is two-component, wherein the first component comprises the epoxy resin and at least a portion of the filler, and the second component comprises the curing agent and An optional part of the filler preferably comprises a curing agent and a part of the filler.
  • the first component comprises 5-60wt%, preferably 10-50wt% of the epoxy resin and 20-80wt%, preferably 25-75wt%, based on 100 parts by weight of the total weight of the first component , more preferably 35-70 wt % of the filler; and the second component, based on 100 parts by weight of the total weight of the second component, comprising 10-60 wt %, preferably 15-50 wt % of the curing agent and 20- 80wt%, preferably 25-75wt%, more preferably 35-70wt% of said filler.
  • the first component and the second component can be used in approximately equal weight ratios, i.e. both The weight ratio is in the range of 0.85-1.15:1, preferably 0.9-1.1:1. This greatly facilitates the formulation and application of the composition.
  • Yet another aspect of the present invention relates to a method of bonding or sealing substrates, comprising:
  • first substrate and the second substrate are made of the same or different materials.
  • the two components can be mixed in the preferred weight ratio as described above, eg, 1:1, and stirred well.
  • the applied composition may optionally be degassed prior to application to the substrate, eg, vacuum degassed and uniformly coated on the substrate. Subsequently, pressure may optionally be applied to the first and second substrates while they are in contact with each other.
  • the curing of the composition can be carried out under the conditions of heating and/or normal temperature, for example, it can be carried out at a temperature of 50-70°C.
  • the preferred substrate can be selected from aluminum-magnesium alloys, copper, stainless steel, polycarbonate, and the like.
  • the present invention also relates to products, in particular electronic products and parts thereof, obtained after bonding, sealing or potting by adhesives, sealants or potting compounds comprising epoxy resin compositions as described above.
  • Viscosity test test with a Brookfield viscometer under the conditions of 23° C. and 50% relative humidity, select a No. 6 rotor, and rotate at 20 rpm.
  • Tensile shear strength is measured according to ASTM D1002-10.
  • Hardness is measured according to ASTM D 2240-86.
  • the preparation of the first component add epoxy resin, thinner and other auxiliary agents in advance in the reaction kettle with the consumption shown in the following table 1, and stir 10min at low speed. Then add the mixed filler of silica and alumina in the amount shown in Table 1, and stir at high speed for 40min. Finally, clean the residual material on the wall of the reaction kettle and the stirring paddle, start vacuuming and stir at high speed for 20min, and discharge the material as the first component.
  • the preparation of the second component add polyamide PA, polyetheramine PEA and other auxiliary agents in advance in the reaction kettle with the dosage shown in the following table 1, and stir at low speed for 10min. Then add the mixed filler of silica and alumina in the amount shown in Table 1, and stir at high speed for 40min. Finally, clean the residual material on the wall of the reaction kettle and the stirring paddle, start vacuuming and stir at a high speed for 20 minutes, and discharge the material as the second component.
  • the prepared two components were mixed and stirred at a weight ratio of 1:1 for about 2 minutes until the components of the adhesive were mixed uniformly, and the mixture was uniformly coated on two S5754AI sheets for adhesion. Then, the curing pressure was contact pressure, and the curing conditions were 1 hour at 60°C, and then placed at room temperature for 3 days. The measured results are listed in Table 2.
  • the prepared two components were mixed and stirred at a weight ratio of 1:1 for about 2 minutes until the components of the adhesive were mixed evenly. After vacuum defoaming, poured into the hardness ring. The curing conditions were 1 hour at 60°C and 3 days at room temperature. The measured results are listed in Table 2.
  • the weather resistance test was carried out as follows: the two components prepared were mixed and stirred at a weight ratio of 1:1 for about 2 minutes until the components were mixed uniformly, and after vacuum defoaming, poured into the device to be tested. The curing conditions were 1 hour at 60°C and then placed at room temperature for 3 days. The samples were then subjected to weather resistance testing under high and low temperature cycling and high temperature and high humidity cycling conditions as described below:
  • High and low temperature cycle conditions hold at -40°C for 12h, then heat up to 80°C for 12h; then cool down to -40°C and hold for 2h, then 1.5h and then rise to 80°C and hold for 2h; then drop to -40°C after 1.5h 40°C and kept for 2h. The above cycle is performed again.
  • High temperature and high humidity cycle conditions hold at 25°C/95% r.h for 9h; rise to 80°C after 3h and hold for 9h, then drop to 25°C after 3h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种可固化的环氧树脂组合物,其包含 A)环氧树脂; B)固化剂,其包含聚酰胺PA和基于聚氧亚乙基的聚醚胺PEA,并且所述聚酰胺PA与聚醚胺PEA的重量比在1.3-5:1、优选1.5-4.5:1、更优选2-4:1的范围内;和 C)填料,其包含氧化铝和氧化硅。此外,本发明还涉及包含该环氧树脂组合物的粘合剂、密封剂或灌封胶,其特别可用于电子产品及其部件。

Description

可固化的环氧树脂组合物 发明领域
本发明涉及可固化的环氧树脂组合物的领域。此外,还涉及环氧树脂组合物作为粘合剂、密封剂或灌封胶的应用,特别是用于电子产品及其部件。
发明背景
环氧树脂被用于各种应用,例如用作制备模制品的粘结剂、涂料、密封剂或模塑组合物。在加工过程中,通常将无机填料加入环氧树脂中以影响可固化树脂或固化塑料材料的性能。无机填料例如改善了环氧树脂的强度或树脂对于基材的粘附性。在环氧树脂中的无机填料也满足许多其他功能例如阻燃剂、绝缘体、粘度改性剂或染料(作为颜料)。另一个目的是节省昂贵的环氧树脂,从而节约成本。
此外,环氧树脂也需要与固化剂发生反应形成网状的交联的聚合物从而得到固化的环氧树脂。通常用于环氧树脂的固化剂包括很多种类,例如多胺类,如脂族多胺和芳族多胺以及其他含氮化合物和聚酰胺等,还有基于有机酸或酸酐的固化剂,以及胍或脒化合物等。固化剂的种类和用量通常关乎着环氧树脂最终固化之后的机械性能如耐冲击性和脆性,以及耐候性等。
CN106281174A公开了一种高韧性、耐冲击、高柔性的环氧灌封胶,其尤其包含增韧环氧树脂、双酚A型环氧树脂、氧化铝以及一种特殊的固化剂组分。该固化剂组分包括超支化聚乙烯亚胺与异佛尔酮二胺的复配物以及聚醚胺类固化剂。
CN106318298A则公开了一种用于制备常温固化抗开裂环氧灌封胶的固化剂组分体系,其中所述固化剂组分基于改性芳香胺、脂肪胺和咪唑类化合物。
CN109401708A公开了一种常温固化灌封胶,其包括环氧树脂、常温固化剂和导热填料,其中所述导热填料由氮化硅/或氮化硼与氧化铝组成。
CN106634752A中公开了一种点火线圈专用的包括A和B两个组分的环氧树脂灌封胶,其中A组分包括双酚A型环氧树脂、PEO-PPO-PEO三嵌段共聚物、端羧基液体丁腈橡胶、微硅粉、氢氧化铝等。在此,微硅粉通常起到触变剂或流变改性剂的作用并具有小于1微米的粒径。
然而,这些现有技术中都没有特意关注特定的固化剂与填料的复配有可能进一步改善环氧树脂组合物的抗老化性和机械性能。
发明概述
本发明的任务在于提供一种尤其能在中温或室温(即,在约10-80℃的温度范围)下可固化的、用作灌注材料的环氧树脂组合物。该环氧树脂组合物应当具有良好的机械性能,同时还具有低的粘度、优异的冷/热冲击耐受性、低挥发性和良好的粘附性。
特别的,根据本发明的环氧树脂组合物在历经高温和低温循环(例如-40℃到80℃)以及高温高湿循环(如80℃/95%相对湿度)的老化之后仍具有有益的抗开裂性能。另外,根据本发明的组合物在很多基材上,例如Al-Mg合金基材、Cu和聚碳酸酯基材上都具有非常良好的粘附性。
发明人令人惊讶地发现,通过包含两种特定的固化剂以及两种特定的填料组合,如权利要求1所述的环氧树脂组合物能够实现上述任务。
本发明的其它方面为其它独立权利要求的主题。本发明的特别优选的实施方案为从属权利要求的主题。
发明详述
本发明的第一方面涉及一种可固化的双组分的环氧树脂组合物,包含
A)环氧树脂;
B)固化剂,其包含聚酰胺PA和基于聚氧亚乙基的聚醚胺PEA,并且所述聚酰胺PA与聚醚胺PEA的重量比在1.3-5:1、优选1.5-4.5:1、 更优选2-4:1的范围内;和
C)填料,其包含氧化铝和氧化硅。
以“聚/多”开始的化合物名称指的是这样的物质,其在形式上每个分子中包含两个或者更多个它们名称中出现的官能团。所述化合物可以是单体,低聚物或者聚合物。例如多胺是具有两个或者更多个胺基的化合物。多环氧化物是具有两个或者更多个环氧基团的化合物。
每分子具有两个或更多个氨基的胺化合物在下文中称为“多胺”。如果多胺是聚合物,它们每分子平均含有至少两个胺基。
如果没有另外说明,平均分子量应理解为是指使用常规方法,优选通常使用凝胶渗透色谱法(GPC)在35℃下测定的数均分子量,其中通常使用聚苯乙烯作为标准物,使用具有100埃、1000埃和10000埃的孔隙率的苯乙烯-二乙烯基苯作为柱和四氢呋喃作为溶剂。
环氧树脂组合物包括每分子具有平均多于一个环氧基团的可交联环氧树脂。它们与合适的固化剂反应形成化学键。环氧树脂优选是低聚或者聚合的化合物。环氧树脂有时候也与所谓的反应性稀释剂一起使用。反应性稀释剂是单或者多环氧化物。反应性稀释剂的粘度低于所用的环氧树脂,并且用于降低所用的环氧树脂的粘度。任选的反应性稀释剂同样被结合入有机粘结剂基质中并因此在此在确定有机粘结剂含量时计入环氧树脂中。
环氧当量(EEW)可以根据DIN 53188测定和以g/Eq报告。NH当量可以根据DIN16945测定和以g/Eq报告。环氧官能团与胺官能团的化学计量比比率是环氧当量与胺中的活性氢,即NH(胺氢)当量的商,并且经常以%报告。NH当量在此基于活性氢,即胺氢计。伯胺例如具有两个活性胺氢。
本发明的组合物是双组分组合物,即所述组合物包含两种单个组分,其在使用时才彼此混合在一起。组分在使用前分别存储在两个分开的容器(如筒、桶、袋、囊、仓、料盒等)中来避免自发反应。对于使用来说,所述组分彼此混合。在混合后,可以任选地开始有机交联反应,其最终导致混合物固化。
很显然在所述组分的混合物中,特定成分的比例取决于这种成分 在所涉及组分中的比例和所述组分的混合比率。在此规定的特定成分的比例或者比率如无其他说明则涉及所述成分在所述多组分组合物的组分混合物中合理的或者合适的重量比例或者重量比率。这例如通过根据使用说明将组分以合适的混合比混合来获得。
作为组分A)的环氧树脂,可以使用一种环氧树脂或者两种或者更多种环氧树脂的混合物。作为环氧树脂可以使用环氧化学中常规的所有环氧树脂。环氧树脂可以例如以已知的方式,由相应的烯烃氧化或者由表氯醇与相应的多元醇或者多酚反应来制备。
环氧树脂可以再分成液体环氧树脂和固体环氧树脂。所述环氧树脂可以例如具有156-500g/Eq的环氧当量。所述环氧树脂优选是二环氧化物。
在一种实施方案中,所述环氧树脂可以是芳族环氧树脂。用于这个目的的合适的例子是式(III)的液体环氧树脂:
Figure PCTCN2022074707-appb-000001
其中R'和R”各自独立地是氢原子或甲基,和s是0到小于2的平均值和优选0-1。优选的是式(III)的那些液体树脂,其中指数s是小于0.2的平均值。
式(III)的环氧树脂是双酚A,双酚F和双酚A/F的二缩水甘油基醚,其中A表示丙酮和F表示甲醛,其用作制备这些双酚的反应物。这样的液体环氧树脂是市售可得的,例如在下面的名称下市售的:来自于Huntsman的
Figure PCTCN2022074707-appb-000002
来自于Dow的
Figure PCTCN2022074707-appb-000003
来自于Momentive的
Figure PCTCN2022074707-appb-000004
来自于CVC的
Figure PCTCN2022074707-appb-000005
来自于Cognis的Chem
Figure PCTCN2022074707-appb-000006
或者来自于Cytec的
Figure PCTCN2022074707-appb-000007
另外的合适的芳族环氧树脂是下面的物质的缩水甘油化产物:
-二羟基苯衍生物例如间苯二酚、对苯二酚和焦儿茶酚;
-其他的双酚或者多酚例如双(4-羟基-3-甲基苯基)甲烷,2,2-双(4-羟基-3-甲基苯基)丙烷(双酚C),双(3,5-二甲基-4-羟基苯基)甲烷,2,2-双(3,5-二甲基-4-羟基苯基)丙烷,2,2-双(3,5-二溴-4-羟基苯基)丙烷,2,2-双(4-羟基-3-叔丁基苯基)丙烷,2,2-双(4-羟基苯基)丁烷(双酚B),3,3-双(4-羟基苯基)戊烷,3,4-双(4-羟基苯基)己烷,4,4-双(4-羟基苯基)庚烷,2,4-双(4-羟基苯基)-2-甲基丁烷,2,4-双(3,5-二甲基-4-羟基苯基)-2-甲基丁烷,1,1-双(4-羟基苯基)环己烷(双酚Z),1,1-双(4-羟基苯基)-3,3,5-三甲基环己烷(双酚TMC),1,1-双(4-羟基苯基)-1-苯基乙烷,1,4-双[2-(4-羟基苯基)-2-丙基]苯(双酚P),1,3-双[2-(4-羟基苯基)-2-丙基]苯(双酚M),4,4'-二羟基联苯(DOD),4,4'-二羟基苯甲酮,双(2-羟基萘-1-基)甲烷,双(4-羟基萘-1-基)甲烷,1,5-二羟基萘,三(4-羟基苯基)甲烷,1,1,2,2-四(4-羟基苯基)乙烷,双(4-羟基苯基)醚,双(4-羟基苯基)砜;
-在酸性条件下获得的酚与甲醛的缩合产物,例如酚醛清漆树脂或者甲酚酚醛清漆树脂;
-芳族胺例如苯胺,甲苯胺、4-氨基酚、4,4'-亚甲基二苯基二胺(MDA)、4,4'-亚甲基二苯基二(N-甲基)胺、4,4'-[1,4-亚苯基双(1-甲基亚乙基)]双苯胺(双苯胺-P)、4,4'-[1,3-亚苯基双(1-甲基亚乙基)]双苯胺(双苯胺M)。
在另一实施方案中,所述环氧树脂可以是脂肪族或者脂环族环氧树脂,例如
-二缩水甘油醚;
-饱和或者不饱和、支化或者非支化的环状或者开链的C2-C30二醇的缩水甘油基醚,例如乙二醇、丙二醇、丁二醇、己二醇、辛二醇、聚丙二醇、二羟甲基环己烷、新戊二醇;
-三或者四官能的饱和或者不饱和支化或者非支化的环状或者开链的多元醇的缩水甘油基醚,所述多元醇例如蓖麻油、三羟甲基丙烷、三羟甲基乙烷、季戊四醇、山梨糖醇或者甘油,以及烷氧基化甘油或者烷氧基化三羟甲基丙烷;
-氢化液体双酚A,F或者A/F树脂,或者氢化双酚A,F或者 A/F的缩水甘油化产物;
-酰胺或者杂环含氮碱的N-缩水甘油基衍生物,例如三缩水甘油基氰尿酸酯和三缩水甘油基异氰尿酸酯,以及表氯醇和乙内酰脲的反应产物。
可用的环氧树脂另外的例子是这样的环氧树脂,其是由烯烃的氧化来制备的,例如由乙烯基环己烯、二环戊二烯、环己二烯、环十二碳二烯、环十二碳三烯、异戊二烯、己-1,5-二烯、丁二烯、聚丁二烯或者二乙烯基苯的氧化来制备。
可用的环氧树脂另外的例子是固体双酚A,F或者A/F树脂,其是以与前述式(III)的液体环氧树脂相同的方式构成的,除了指数s的值是2-12。另外的例子是已经通过与至少一种聚氧亚烷基多元醇反应而进行了亲水改性的全部前述的环氧树脂。
优选的环氧树脂是双酚A,F或者A/F固体或者液体树脂,例如由Dow,Huntsman、Momentive、HEXION或者台湾南亚市售的那些以及例如由长春化工(江苏)有限公司或宏昌电子市售的那些。所用的环氧树脂特别优选是双酚A二缩水甘油基醚、双酚F二缩水甘油基醚和双酚A/F二缩水甘油基醚的二环氧化物,特别是环氧当量156-250g/Eq的那些,例如市售产品
Figure PCTCN2022074707-appb-000008
GY250,
Figure PCTCN2022074707-appb-000009
PY304,
Figure PCTCN2022074707-appb-000010
GY282(市售自Huntsman);
Figure PCTCN2022074707-appb-000011
(市售自Dow);
Figure PCTCN2022074707-appb-000012
(市售自Momentive),和N,N-二缩水甘油基苯胺和聚乙二醇二缩水甘油基醚,优选环氧当量是170-340g/Eq,例如市售产品
Figure PCTCN2022074707-appb-000013
Figure PCTCN2022074707-appb-000014
(市售自Dow)。
可能有利的是所述环氧树脂组合物中还包含至少一种环氧树脂的反应性稀释剂。如所述的,对于有机粘结剂含量来说其计入环氧树脂。可以使用一种或多种反应性稀释剂。合适的反应性稀释剂是单和多环氧化物。将反应性稀释剂加入环氧树脂导致粘度下降。
反应性稀释剂的例子是单或者多羟基酚和脂肪族或者脂环族醇的缩水甘油基醚,例如特别是已经作为脂肪族或者脂环族环氧树脂提及的二元醇或者多元醇的多缩水甘油基醚如丁二醇二缩水甘油醚,以及还有特别是苯基缩水甘油基醚、甲苯基缩水甘油基醚、对正丁基苯 基缩水甘油基醚、对叔丁基苯基缩水甘油基醚、壬基苯基缩水甘油基醚、烯丙基缩水甘油基醚、丁基缩水甘油基醚、己基缩水甘油基醚、2-乙基己基缩水甘油基醚、以及天然醇的缩水甘油基醚,例如C8-到C10-烷基缩水甘油基醚、C12-到C14-烷基缩水甘油基醚或者C13-到C15-烷基缩水甘油基醚,其作为
Figure PCTCN2022074707-appb-000015
GE-7,
Figure PCTCN2022074707-appb-000016
GE-8(来自于CVC)或者作为
Figure PCTCN2022074707-appb-000017
P13-19(来自于Leuna)市购可得。
优选的,以整个组合物的重量计,环氧树脂的含量为2.5-30wt%、更优选5-25wt%,尤其例如10-25wt%。
根据本发明的可固化的环氧树脂组合物中还包含固化剂,固化剂的选择在本发明中是关键的。根据本发明的固化剂组分包含聚酰胺PA和基于聚氧亚乙基的聚醚胺PEA的组合。优选的,所述固化剂由聚酰胺PA和基于聚氧亚乙基的聚醚胺PEA组成。
根据本发明,所述用于环氧树脂的固化剂聚酰胺PA是一种聚酰胺基的多胺,其为单或多元羧酸或其酯或酸酐的反应产物,特别是二聚脂肪酸与化学计量过量使用的脂肪族、脂环族或芳香多胺的反应产物,特别是聚亚烷基胺如DETA或三亚乙基四胺(TETA),特别是可商购获得的基于聚酰胺的多胺
Figure PCTCN2022074707-appb-000018
100、125、140和150(来自Cognis),
Figure PCTCN2022074707-appb-000019
125、140、223、250和848(来自Huntsman)、
Figure PCTCN2022074707-appb-000020
3607、
Figure PCTCN2022074707-appb-000021
530(来自Huntsman)、
Figure PCTCN2022074707-appb-000022
EH 651、EH 654、EH 655、EH 661和EH 663(来自Cytec)。
在一个优选的实施方式中,所述聚酰胺PA具有125-300,优选180-250g/Eq的活性H当量。这对于进一步改善耐候性是有利的。此外,还有利的是所述聚酰胺PA的分子量在500-1200g/mol,优选650-1000g/mol的范围内。
另一种用于环氧树脂的固化剂聚醚胺PEA具有基于聚醚或聚氧化亚烷基主链的结构,也被称为聚醚多胺或聚氧亚烷基多胺,其具有多于一个、优选两个或三个或更多个胺基,其中所述聚醚或聚氧化亚烷基主链是基于氧化亚乙基的。
在本申请范畴内,所述“基于聚氧亚乙基的”聚醚胺PEA特别指的是该聚醚胺中的聚醚链或聚氧亚烷基链包含至少80重量%、优选至 少90重量%、更优选95%或100%的氧亚乙基(EO)单元,基于所有氧亚烷基单元的总重量(即整个聚醚链或聚氧亚烷基链)计。除了所述氧亚乙基单元外,根据本发明的聚醚胺PEA中还可以含有少量的其他氧亚烷基单元,如氧亚丙基或氧亚丁基单元。过低的氧亚乙基单元含量特别对于耐候性如抗开裂性是不利的。
此外,有利的,所述聚醚胺PEA的分子量在140-350g/mol,优选160-300g/mol的范围内。
这样的聚醚胺PEA的实例包括例如4,7,10-三氧杂十三烷-1-13-二胺以及诸如市售可得的那些的基于聚氧亚乙基二胺的聚醚胺,其通常是来自聚氧亚乙基二醇的胺化的产物,如
Figure PCTCN2022074707-appb-000023
EDR-148和
Figure PCTCN2022074707-appb-000024
EDR-176等。
出于固化速率、机械性能方面的考虑以及考虑到与聚酰胺PA的配合,所述聚醚胺PEA更优选是聚氧亚乙基的二胺或三胺,尤其优选是聚氧亚乙基的二胺。
根据本发明,以整个组合物的重量计,所述固化剂的含量为5-30wt%、优选7.5-20wt%。更优选的,所述固化剂包含至少90wt%、优选至少95wt%、更优选至少98wt%和尤其优选至少99wt%的所述聚酰胺PA和聚醚胺PEA的组合。尤其优选,所述固化剂完全由所述聚酰胺PA和聚醚胺PEA组成,即在此情况下不使用其他固化剂。
在本发明中,在固化剂成分中,所述聚酰胺PA与聚醚胺PEA的重量比在1.3-5:1、优选1.5-4.5:1、更优选2-4:1的范围内。如果两者的比例低于1.3:1,则有可能导致环氧树脂组合物的机械性能较差和耐候性也劣化;而如果两者比例过高,如高于5:1,则可能导致固化剂组分粘度不适当地过高并使得固化后的产品在高温或加热的情况下散发出更多挥发物,同时也不利于机械性能和固化。
如上所述,除了所述的聚酰胺PA和聚醚胺PEA之外,本发明的固化剂成分中还可以包含少量的其他的含胺固化剂。
其它适用作固化剂的多胺例如为:
-脂肪族或芳脂族的伯二胺,例如乙二胺、1,2-丙二胺、1,3-丙二胺、2-甲基-1,2-丙二胺、2,2-二甲基-1,3-丙二胺、1,3-丁二胺、 1,4-丁二胺、1,3-戊二胺(DAMP)、1,5-戊二胺、1,5-二氨基-2-甲基戊(MPMD)、2-丁基-2-乙基-1,5-戊二胺(C11-新二胺)、1,6-己二胺、2,5-二甲基-1,6-己二胺、2,2,4-和2,4,4-三甲基六亚甲基二胺(TMD)、1,7-庚烷二胺、1,8-辛烷二胺、1,9-壬烷二胺、1,10-癸烷二胺、1,11-十一烷二胺、1,12-十二烷二胺、1,8-薄荷烷二胺,3,9-双-(3-氨基丙基)-2,4,8,10-四氧杂螺[5.5]十一烷以及1,3-和1,4-亚二甲苯基二胺;
-含仲氨基的多胺,例如,二亚乙基三胺(DETA)、N,N-双-(2-氨基乙基)-亚乙基二胺、二亚丙基三胺(DPTA)、双-六亚甲基三胺(BHMT)、3-(2-氨基乙基)-氨基丙基胺、三亚乙基四胺、四亚乙基五胺、N3-(3-氨基戊基)-1,3-戊二胺、N5-(3-氨基丙基)-2-甲基-1,5-戊二胺、N5-(3-氨基-1-乙基丙基)-2-甲基-1,5-戊二胺、N,N'-二丁基亚乙基二胺;N,N'-二叔丁基亚乙基二胺、N,N'-二乙基-1,6-己烷二胺、1-(1-甲基乙基氨基)-3-(1-甲基乙基-氨基甲基)-3,5,5-三甲基环己烷(
Figure PCTCN2022074707-appb-000025
754,来自Huntsman)、N4-环己基-2-甲基-N2-(2-甲基丙基)-2,4-戊二胺、N,N'-二烷基-1,3-亚二甲苯基二胺、双-(4-(N-烷基氨基)-环己基)-甲烷、4,4'-三亚甲基二哌啶,N-烷基化聚醚胺,例如,
Figure PCTCN2022074707-appb-000026
类型SD-231、SD-401、SD-404和SD-2001(来自Huntsman);
-胺/聚环氧化物加合物;特别是上述多胺与二环氧化物的摩尔比为至少2/1,特别地摩尔比为2/1至10/1的加合物;
-聚亚乙基亚胺(PEI),其是来自亚乙基亚胺聚合的支化的聚合物胺。合适的聚亚乙基亚胺通常具有250-25000g/mol的平均分子量并且含有叔、仲和伯氨基。聚亚乙基亚胺例如可以商品名
Figure PCTCN2022074707-appb-000027
(来自BASF)、例如
Figure PCTCN2022074707-appb-000028
WF、
Figure PCTCN2022074707-appb-000029
FG、
Figure PCTCN2022074707-appb-000030
G20和
Figure PCTCN2022074707-appb-000031
PR 8515获得。
-曼尼希碱;即具有其它官能团的胺,其可通过曼尼希反应获得,其中发生CH-酸性化合物与醛和氨,或伯胺或仲胺的氨基烷基化。
但是,从兼顾固化效率和使用者健康风险的角度来看,在本发明 的环氧树脂组合物的一个优选的实施方式中,有利的是所述固化剂不包含脂肪族或芳族的多胺,如伯二胺、三胺和四胺。
此外,根据本发明的环氧树脂组合物还必须包含填料,优选无机填料。无机填料优选为矿物填料。无机填料可以是天然来源的或人工生产的。合适的填料在现有技术中是已知的并且可商购获得。填料可以是合成填料或天然存在的矿物。它们优选为含氧化合物。通常,使用氧化物、混合氧化物或金属和半金属。作为填料,可以使用粉末以及空心球(例如由玻璃或陶瓷制成)或纤维的形式。
本发明的发明人发现,在本发明的环氧树脂组合物中,如果填料中包含氧化铝和氧化硅,则能够提供优异的抗开裂性,特别是在历经高低温度和高温高湿的老化之后。
优选的,以整个组合物的重量计,所述填料的含量为20-80wt%、优选25-75wt%、更优选35-70wt%。优选的,为了保证优异的抗开裂性,所述氧化铝和氧化硅二者的总和占填料总重量的至少50wt%、优选至少60wt%、更优选至少70wt%和尤其优选至少90wt%或100wt%。
适用于本发明的填料中的氧化铝是工业上常用的铝的稳定氧化物,化学式为Al 2O 3,又被称为矾土。氧化铝填料可市购获得,例如以从广东乐途和淄博诺达化工等处购得。
在本发明范畴内,所述氧化硅是一种填料,其可以是例如石英,例如石英粉或石英砂的形式的,并且通常具有超过1μm、优选超过1.5μm的粒径,因此区别于所谓微硅粉如气相二氧化硅等。后者通常80%以上的粉末具有小于1μm的粒径,平均粒径在0.1-0.5或0.1-0.3μm之间,并通常用作流变改性剂。氧化硅填料同样可市购获得,例如从广东乐途和上海百图等处购得。
优选的,适合本发明的所述氧化硅和/或氧化铝是粒径(D50)在2-20μm、优选3-15μm、如4-10μm的颗粒状粉末。在本发明范畴内,所述粒径或平均粒径指的是D50值,其可以通过激光衍射测量,优选地使用Mastersizer 2000装置(Malvern Instruments Ltd,GB的商标)测量。
在本发明中优选的,所述氧化铝:氧化硅的重量比在4:6到8:2、优选1:1到8:3、更优选1.5:1到8:4的范围内。如果两者的比例过低如低于4:6,则有可能导致环氧树脂组合物的抗开裂性能变差;而如果两者比例过高,如高于8:2,则可能导致产品的沉降性变得严重以及成本偏高。
根据本发明已经发现,可以将简单的非表面处理的无机填料掺入环氧树脂组合物中。尽管不是必需,但是在本发明的一个优选的实施方式中,可以对填料,特别是氧化铝和氧化硅颗粒进行表面处理,例如用硅烷偶联剂进行表面处理。这样的表面处理是已知的。
除了上述的氧化铝和氧化硅之外,可以添加的填料还包括例如金属氧化物,如二氧化钛、氧化铁、氧化锌和氧化镁;金属碳酸盐如碳酸钙或白云石;金属硫酸盐,如硫酸钙(石膏)和硫酸钡;金属氢氧化物如氢氧化铝、氮化铝或碳化铝,粘土矿物如高岭土、飞灰、水泥、玻璃和陶瓷材料。
根据本发明的环氧树脂组合物还可含有其他常规添加剂。多种添加剂在环氧树脂的技术领域中是众所周知的,其影响可固化的组合物或固化的环氧树脂的性质。除了环氧树脂、固化剂、填料之外包含在环氧树脂组合物中的添加剂比例可以(包括溶剂)例如最高达50wt%,高达20wt%,高达5wt%或高达2wt%。在本发明一个优选的实施方案中,至少一种其它添加剂选自反应性稀释剂、成膜剂、填充剂、催化剂、促进剂、流变改性剂、增粘剂、稳定剂、消泡剂、脱气剂、阻燃剂、表面活性剂、杀生物剂、有机染料和颜料以及其它分散剂。这些例如包括:
-有机染料;
-促进氨基和环氧基之间反应的促进剂,例如,可水解形成酸的酸或化合物,例如有机羧酸如乙酸、苯甲酸、水杨酸、2-硝基苯甲酸、乳酸、有机磺酸例如甲烷磺酸、对甲苯磺酸或4-十二烷基苯磺酸、磺酸酯、其他有机或无机酸如磷酸,或上述酸和酸酯的混合物;此外,叔胺如1,4-二氮杂双环[2.2.2]辛烷、苄基二甲基胺、α-甲基苄基二甲基胺、三乙醇胺、二甲基氨基丙胺、这些叔胺的盐、季铵盐例 如苄基三甲基氯化铵,苯酚,特别地双酚、酚醛树脂和曼尼希碱如2-(二甲基氨基甲基)-苯酚和2,4,6-三-(二甲基氨基甲基)-苯酚、亚磷酸酯例如亚磷酸二苯基酯和亚磷酸三苯基酯,以及上面已经提到的那些含巯基的化合物;催化剂;
-流变改性剂,例如特别是增稠剂,例如层状硅酸盐,如膨润土、蓖麻油衍生物、氢化蓖麻油、聚氨酯、脲化合物、气相二氧化硅、纤维素醚和疏水改性的聚氧乙烯;
-增粘剂,例如有机烷氧基硅烷如3-缩水甘油氧基丙基三甲氧基硅烷、3-氨基丙基-三甲氧基硅烷、N-(2-氨基乙基)-3-氨基丙基-三甲氧基硅烷、N-(2-氨基乙基)-N'-[3-(三甲氧基甲硅烷基)-丙基]-乙二胺、3-脲基丙基三甲氧基硅烷、3-氯丙基三甲氧基硅烷、乙烯基三甲氧基硅烷,或相应的具有乙氧基或(聚)醚氧基代替甲氧基的有机硅烷;
-抗氧化、热、光和紫外线辐射的稳定剂;
-阻燃剂,特别是一些化合物例如氢氧化铝(Al(OH) 3;也被称作ATH代表"三水合铝")、氢氧化镁(Mg(OH) 2;也称作MDH代表"二水合镁")、硫酸铵((NH) 2SO 4),硼酸(B(OH) 3),硼酸锌、三聚氰胺硼酸盐和三聚氰胺氰脲酸盐;含磷化合物如磷酸铵((NH 4) 3PO 4)、多磷酸铵、磷酸三聚氰胺、焦磷酸三聚氰胺、磷酸三苯酯、磷酸二苯基甲苯基酯、磷酸三甲苯酯、磷酸三乙酯、三(2-乙基己基)磷酸酯、磷酸三辛酯、磷酸单-、双-和三-(异丙基苯基)酯、间苯二酚-双-(二苯基磷酸酯)、间苯二酚二磷酸酯低聚物、四苯基-间苯二酚二磷酸酯、乙二胺二磷酸酯和双酚A-双-(磷酸二苯酯));含卤素的化合物,如氯代烷基磷酸酯,特别是三-(氯乙基)磷酸酯、三-(氯丙基)磷酸酯和三-(二氯异丙基)磷酸酯、多溴代二苯醚特别是十溴二苯醚、多溴代二苯氧化物、三[3-溴-2,2-双-(溴甲基)-丙基]磷酸酯、四溴双酚A、双酚A的双-(2,3-二溴丙基醚)、溴化环氧树脂、亚乙基-双-(四溴邻苯二甲酰亚胺)、亚乙基-双-(二溴降冰片烷-二甲酰亚胺)、1,2-双-(三溴苯氧基)乙烷、三-(2,3-二溴丙基)异氰脲酸酯、三溴苯酚、六溴环十二烷、二-(六氯环戊二烯基)环辛烷和氯 化石蜡;
-表面活性剂,如润湿剂、流平剂、脱气剂或消泡剂;
-杀生物剂,如灭藻剂、杀菌剂或真菌生长抑制剂。
根据本发明的环氧树脂组合物可以作为双组分体系提供。因此,组合物包括两个单独的组分。所述组分分开存放,尤其是为了避免自发反应。然而,组分可以作为一个包装组装在一起。使用时,组分彼此组合。当组分混合在一起时,开始固化反应,使得在混合组分后在开放时间内加工组合物。
可固化环氧树脂组合物经常作为双组分体系提供给用户。在这种情况下,例如环氧树脂和固化剂通常包含在不同的组分中,因此固化反应可以仅在使用者混合组分时进行。填料可以是这些组分中的一种或两种的一部分。
在一个优选的实施方式中,根据本发明的环氧树脂组合物是双组分的,其中第一组分包含所述环氧树脂和至少一部分所述填料,和第二组分包含固化剂和任选的一部分所述填料,优选包含固化剂和一部分所述填料。更优选的,第一组分基于100重量份的第一组分的总重量计,包含5-60wt%、优选10-50wt%的所述环氧树脂和20-80wt%、优选25-75wt%、更优选35-70wt%的所述填料;以及第二组分基于100重量份的第二组分的总重量计,包含10-60wt%、优选15-50wt%的所述固化剂和20-80wt%、优选25-75wt%、更优选35-70wt%的所述填料。
非常令人惊讶地发现,当将本发明的环氧树脂组合物配制成双组分体系时,所述第一组分与所述第二组分可以以大约相等的重量比使用,即二者的重量比在0.85-1.15:1、优选0.9-1.1:1的范围内。这就非常便利于组合物的配制和施用。
本发明的再一个方面涉及粘合或密封基材的方法,包括:
a)将如上所述的组合物或其一部分施加在第一基材上;
b)提供第二基材,该基材上任选地施加了如上所述的组合物或其一部分;
c)将第一和第二基材彼此接触并使组合物固化;
其中所述第一基材和第二基材由相同或不同的材料制成。
当将组合物配制成双组分组合物的形式时,可以按照如上所述的优选重量比例如1:1混合两个组分并将其搅拌均匀。在施涂于基材上之前,可以视需要使施加的组合物脱气,例如将其进行真空脱泡后均匀涂布于基材上。随后,在第一和第二基材彼此接触时可以任选地对其施加压力。组合物的固化可以在加热和/或常温的条件下,例如可以在50-70℃的温度下进行。在此,优选的基材可以选自铝镁合金,铜,不锈钢以及聚碳酸酯等。
最后,本发明还涉及由包含如上所述的环氧树脂组合物的粘合剂、密封剂或灌封胶进行粘合、密封或灌封之后得到的产品,特别是电子产品及其部件。
实施例
下文描述实施例,所述实施例更详细地解释本发明。本发明当然不限于所描述的实施例。
主要原料列表
Figure PCTCN2022074707-appb-000032
Figure PCTCN2022074707-appb-000033
测试方法
粘度测试:在23℃和50%相对湿度条件下用Brookfield粘度仪测试,选用6号转子,转速为20rpm。
拉伸剪切强度根据ASTM D1002-10进行测量。
硬度根据ASTM D 2240-86进行测量。
表面平整性:目测固化物表面是否有褶皱,凸起,鼓泡等外观。如果基本上没有凸起或鼓泡很小且少于3个,则可以评价为平整;否则评价为不平整。
耐候性测试:如下详述的冷热冲击老化测试。在经过不同的循环条件处理后目视评价表面开裂情况:若表面没有任何裂纹,则评价为“不开裂”;若表面能观察到不多于2条的细小裂纹,则评价为“少量裂纹”;若表面多于2条裂纹或者有大裂纹,则评价为“开裂”。
实验过程
第一组分的制备:按下表1中所示用量在反应釜中预先加入环氧树脂、稀释剂及其他助剂,并低速搅拌10min。再加入如表1中所示用量的氧化硅与氧化铝的混合填料,并高速搅拌40min。最后,清理反应釜壁和搅拌桨上的残料,开始抽真空并高速搅拌20min,出料作为第一组分。
第二组分的制备:按下表1中所示用量在反应釜中预先加入聚酰胺PA、聚醚胺PEA及其他助剂,并低速搅拌10min。再加入如表1中所示用量的氧化硅与氧化铝的混合填料,并高速搅拌40min。最后,清理反应釜壁和搅拌桨上的残料,开始抽真空并高速搅拌20min,出料作为第二组分。
为进行拉伸剪切强度测试,将制得的两种组分按重量比1:1混合搅拌约2min至粘合剂各组分混合均匀后,将混合物均匀涂布于两个S5754AI片上进行粘接,固化压力为接触压力,固化条件为60℃下1小时,再室温放置3天。测得的结果列于表2中。
为进行硬度测试,将制得的两种组分按重量比1:1混合搅拌约2min至粘合剂各组分混合均匀,真空脱泡后,倒入硬度圆环中。固化 条件为60℃下1小时,再室温放置3天。测得的结果列于表2中。
如下进行耐候性测试:将制得的两种组分按重量比1:1混合搅拌约2min至各组分混合均匀,真空脱泡后,倒入待测试的器件中。固化条件为60℃下1小时,再室温放置3天。随后将样品置于如下所述的高低温循环和高温高湿循环条件下进行耐候性测试:
高低温循环条件:在-40℃保持12h,然后升温到80℃保持12h;再降温到-40℃并保持2h,然后1.5h后升到80℃并保持2h;接着在1.5h后降到-40℃并保持2h。再进行一次上述循环。
高温高湿循环条件:在25℃/95%r.h保持9h;在3h后升到80℃并保持9h,随后于3h后降到25℃。
表格
Figure PCTCN2022074707-appb-000034
Figure PCTCN2022074707-appb-000035

Claims (19)

  1. 可固化的环氧树脂组合物,包含
    A)环氧树脂;
    B)固化剂,其包含聚酰胺PA和基于聚氧亚乙基的聚醚胺PEA,并且所述聚酰胺PA与聚醚胺PEA的重量比在1.3-5:1、优选1.5-4.5:1、更优选2-4:1的范围内;和
    C)填料,其包含氧化铝和氧化硅。
  2. 根据权利要求1的环氧树脂组合物,其特征在于,所述环氧树脂组合物是双组分组合物,其中第一组分包含所述环氧树脂和至少一部分所述填料,和第二组分包含固化剂和任选的一部分所述填料,优选包含固化剂和一部分所述填料。
  3. 根据前述权利要求任一项的环氧树脂组合物,其特征在于,所述聚酰胺PA具有125-300、优选180-250g/Eq的活性H当量。
  4. 根据前述权利要求任一项的环氧树脂组合物,其特征在于,所述聚醚胺PEA的分子量在140-350g/mol,优选160-300g/mol的范围内。
  5. 根据前述权利要求任一项的环氧树脂组合物,其特征在于,所述氧化硅和/或氧化铝是粒径在2-20μm、优选3-15μm、如4-10μm的颗粒状粉末。
  6. 根据前述权利要求任一项的环氧树脂组合物,其特征在于,所述氧化硅和/或氧化铝是经表面处理的,优选用硅烷偶联剂处理。
  7. 根据前述权利要求任一项的环氧树脂组合物,其特征在于,所述氧化铝:氧化硅的重量比在4:6到8:2、优选1:1到8:3、更优选1.5:1到8:4的范围内。
  8. 根据前述权利要求任一项的环氧树脂组合物,其特征在于,以整个组合物的重量计,环氧树脂的含量为2.5-30wt%、优选5-25wt%,尤其例如10-25wt%。
  9. 根据前述权利要求任一项的环氧树脂组合物,其特征在于,以整个组合物的重量计,所述固化剂的含量为5-30wt%、优选7.5-20wt%。
  10. 根据前述权利要求任一项的环氧树脂组合物,其特征在于,以整个组合物的重量计,所述填料的含量为20-80wt%、优选25-75wt%、更优选35-70wt%。
  11. 根据前述权利要求任一项的环氧树脂组合物,其特征在于,所述第一组分与所述第二组分的重量比在0.85-1.15:1、优选0.9-1.1:1的范围内。
  12. 根据前述权利要求任一项的环氧树脂组合物,其特征在于,所述组合物还进一步包含选自气相二氧化硅、硅烷偶联剂和流变助剂的助剂。
  13. 根据前述权利要求任一项的环氧树脂组合物,其特征在于,第一组分基于100重量份的第一组分的总重量计,包含5-60wt%、优选10-50wt%的所述环氧树脂和20-80wt%、优选25-75wt%、更优选35-70wt%的所述填料;以及第二组分基于100重量份的第二组分的总重量计,包含 10-60wt%、优选15-50wt%的所述固化剂和20-80wt%、优选25-75wt%、更优选35-70wt%的所述填料。
  14. 根据前述权利要求任一项的环氧树脂组合物,其特征在于,所述固化剂不包含脂肪族或芳族的多胺。
  15. 根据前述权利要求任一项的环氧树脂组合物,其特征在于,所述固化剂包含至少90wt%、优选至少95wt%的所述聚酰胺PA和聚醚胺PEA的组合,更优选地完全由所述聚酰胺PA和聚醚胺PEA组成。
  16. 粘合剂、密封剂或灌封胶,其包含权利要求1至15任一项所述的环氧树脂组合物。
  17. 根据前述权利要求1至15任一项所述的环氧树脂组合物或根据权利要求16的粘合剂、密封剂或灌封胶的应用,用于电子产品及其部件。
  18. 粘合或密封基材的方法,包括:
    a)将如权利要求1至15任一项所述的组合物或其一部分施加在第一基材上;
    b)提供第二基材,该基材上任选地施加了如权利要求1至15任一项所述的组合物或其一部分;
    c)将第一和第二基材彼此接触并使组合物固化;
    其中所述第一基材和第二基材由相同或不同的材料制成。
  19. 包含如权利要求16所述的粘合剂、密封剂或灌封胶,或者根据权利要求18所述的方法获得的制品,特别是电子产品及其部件。
PCT/CN2022/074707 2021-02-08 2022-01-28 可固化的环氧树脂组合物 WO2022166825A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110180553.XA CN112812721B (zh) 2021-02-08 2021-02-08 可固化的环氧树脂组合物
CN202110180553.X 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022166825A1 true WO2022166825A1 (zh) 2022-08-11

Family

ID=75864927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074707 WO2022166825A1 (zh) 2021-02-08 2022-01-28 可固化的环氧树脂组合物

Country Status (2)

Country Link
CN (1) CN112812721B (zh)
WO (1) WO2022166825A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115819794A (zh) * 2022-12-23 2023-03-21 长春永固科技有限公司 一种改性环氧树脂及其制备方法、uv环氧树脂灌封胶

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112812721B (zh) * 2021-02-08 2022-12-06 Sika技术股份公司 可固化的环氧树脂组合物

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101851481A (zh) * 2010-05-22 2010-10-06 东方电气集团东方汽轮机有限公司 一种用于制造风力发电机叶片的环氧树脂胶粘剂及其制备方法
US20120029115A1 (en) * 2009-02-27 2012-02-02 Haiping Wu Room-temperature curable epoxy structural adhesive composition and preparation method thereof
CN102533192A (zh) * 2011-12-28 2012-07-04 烟台德邦电子材料有限公司 一种阻燃的高导热环氧树脂电子粘接胶
CN103270073A (zh) * 2010-12-23 2013-08-28 3M创新有限公司 可固化粘合剂组合物
CN105593264A (zh) * 2013-09-30 2016-05-18 气体产品与化学公司 环氧树脂液体固化剂组合物
CN108124448A (zh) * 2015-09-17 2018-06-05 Sika技术股份公司 用于低排放环氧树脂组合物的胺
CN108485567A (zh) * 2018-03-16 2018-09-04 韩德辉 一种超低温胶水及其制备方法
CN109135638A (zh) * 2018-06-26 2019-01-04 中国林业科学研究院林产化学工业研究所 一种刚柔并济环氧导电胶及其制备方法
CN109385242A (zh) * 2018-10-30 2019-02-26 湖南柯盛新材料有限公司 一种环氧填缝剂及其制备方法
CN110437781A (zh) * 2019-08-15 2019-11-12 中国工程物理研究院化工材料研究所 一种室温固化在温冲环境条件下使用的环氧灌封胶及其制备方法
US20190359816A1 (en) * 2017-01-26 2019-11-28 Huntsman Advanced Materials Licensing (Switzerland) Gmbh Thermosetting Epoxy Resin Composition for the Preparation of Articles for Electrical Engineering, and the Articles Obtained Therefrom
CN110819283A (zh) * 2019-12-12 2020-02-21 湖南柯盛新材料有限公司 一种多组份密封胶及其制备方法
CN112143426A (zh) * 2020-06-22 2020-12-29 上海回天新材料有限公司 一种双组份环氧胶粘剂及其制备方法与应用
CN112812721A (zh) * 2021-02-08 2021-05-18 Sika技术股份公司 可固化的环氧树脂组合物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739469B2 (ja) * 1987-11-30 1995-05-01 東芝ケミカル株式会社 封止用樹脂組成物およびその製造方法
GB2291426B (en) * 1994-07-19 1998-05-06 Sumitomo Chemical Co Epoxy resin composition process for producing the same and resin-sealed semiconductor device
JPH09202850A (ja) * 1995-11-20 1997-08-05 Matsushita Electric Works Ltd 封止用エポキシ樹脂組成物、それを用いた半導体装置、及びその封止用エポキシ樹脂組成物の製造方法
EP2128210B1 (de) * 2008-05-28 2013-09-04 Sika Technology AG Epoxidharz enthaltende Haftvermittlerzusammensetzung
JP2016501928A (ja) * 2012-11-12 2016-01-21 ジーカ テクノロジー アクチェンゲゼルシャフト 耐衝突性2剤エポキシ接着剤用のアミン組成物
EP3002314A1 (de) * 2014-10-01 2016-04-06 Sika Technology AG Zweikomponentige Zusammensetzung
CN111019580B (zh) * 2019-12-26 2022-05-24 广州市白云化工实业有限公司 一种环氧树脂胶黏剂及其制备方法和应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120029115A1 (en) * 2009-02-27 2012-02-02 Haiping Wu Room-temperature curable epoxy structural adhesive composition and preparation method thereof
CN101851481A (zh) * 2010-05-22 2010-10-06 东方电气集团东方汽轮机有限公司 一种用于制造风力发电机叶片的环氧树脂胶粘剂及其制备方法
CN103270073A (zh) * 2010-12-23 2013-08-28 3M创新有限公司 可固化粘合剂组合物
CN102533192A (zh) * 2011-12-28 2012-07-04 烟台德邦电子材料有限公司 一种阻燃的高导热环氧树脂电子粘接胶
CN105593264A (zh) * 2013-09-30 2016-05-18 气体产品与化学公司 环氧树脂液体固化剂组合物
CN108124448A (zh) * 2015-09-17 2018-06-05 Sika技术股份公司 用于低排放环氧树脂组合物的胺
US20190359816A1 (en) * 2017-01-26 2019-11-28 Huntsman Advanced Materials Licensing (Switzerland) Gmbh Thermosetting Epoxy Resin Composition for the Preparation of Articles for Electrical Engineering, and the Articles Obtained Therefrom
CN108485567A (zh) * 2018-03-16 2018-09-04 韩德辉 一种超低温胶水及其制备方法
CN109135638A (zh) * 2018-06-26 2019-01-04 中国林业科学研究院林产化学工业研究所 一种刚柔并济环氧导电胶及其制备方法
CN109385242A (zh) * 2018-10-30 2019-02-26 湖南柯盛新材料有限公司 一种环氧填缝剂及其制备方法
CN110437781A (zh) * 2019-08-15 2019-11-12 中国工程物理研究院化工材料研究所 一种室温固化在温冲环境条件下使用的环氧灌封胶及其制备方法
CN110819283A (zh) * 2019-12-12 2020-02-21 湖南柯盛新材料有限公司 一种多组份密封胶及其制备方法
CN112143426A (zh) * 2020-06-22 2020-12-29 上海回天新材料有限公司 一种双组份环氧胶粘剂及其制备方法与应用
CN112812721A (zh) * 2021-02-08 2021-05-18 Sika技术股份公司 可固化的环氧树脂组合物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115819794A (zh) * 2022-12-23 2023-03-21 长春永固科技有限公司 一种改性环氧树脂及其制备方法、uv环氧树脂灌封胶

Also Published As

Publication number Publication date
CN112812721A (zh) 2021-05-18
CN112812721B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
ES2637367T3 (es) Agentes de curado de poliamina bencilada
US8318309B2 (en) Benzylated aminopropylated alkylenediamines and uses thereof
JP5400516B2 (ja) ベンジル化ポリアルキレンポリアミン及びその使用
RU2418816C2 (ru) Эпоксидные смолы, содержащие отверждающий агент на основе циклоалифатического диамина
ES2672521T3 (es) Polialquileno poliaminas alquiladas y sus usos
US8198395B2 (en) Alkylated aminopropylated ethylenediamines and uses thereof
US10155841B2 (en) Curing agent composition
JP6289486B2 (ja) エポキシ樹脂用の分散剤として使用されるポリカルボキシレートエーテル
WO2022166825A1 (zh) 可固化的环氧树脂组合物
JP2016509111A (ja) 長いポットライフ、速い硬化特性及び低い収縮特性を有する二剤型エポキシセルフレベリング化合物において使用される水性エポキシ硬化剤を製造する組成物及び方法
JP2021521162A (ja) フェナルカミンを製造する方法
JP2021075720A (ja) メチレン架橋ポリ(シクロヘキシル−芳香族)アミンからのフェナルカミンエポキシ硬化剤及びこれを含有するエポキシ樹脂組成物
EP2151463B1 (en) Alkylated aminopropylated methylene-di-(cyclohexylamine) and uses thereof
US20220298296A1 (en) Waterborne epoxy curing agent
JP2019503430A (ja) アミドアミンおよびポリアミド硬化剤、組成物、ならびに方法
EP3735434B1 (en) Curing agents for epoxy resins with low tendency to the formation of carbamates
CN116848086A (zh) 含有酚醛胺的组合物及其制备方法
TW202334355A (zh) 膠黏劑組合物中的bhm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749104

Country of ref document: EP

Kind code of ref document: A1