WO2022166007A1 - 一种三维碳硅复合材料及其制备方法 - Google Patents

一种三维碳硅复合材料及其制备方法 Download PDF

Info

Publication number
WO2022166007A1
WO2022166007A1 PCT/CN2021/090376 CN2021090376W WO2022166007A1 WO 2022166007 A1 WO2022166007 A1 WO 2022166007A1 CN 2021090376 W CN2021090376 W CN 2021090376W WO 2022166007 A1 WO2022166007 A1 WO 2022166007A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
solution
preparing
silicon
carbon
Prior art date
Application number
PCT/CN2021/090376
Other languages
English (en)
French (fr)
Inventor
葛传长
仰永军
Original Assignee
广东凯金新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东凯金新能源科技股份有限公司 filed Critical 广东凯金新能源科技股份有限公司
Publication of WO2022166007A1 publication Critical patent/WO2022166007A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of electrode and negative electrode materials, in particular to a three-dimensional carbon-silicon composite material and a preparation method thereof.
  • Silicon carbon materials have become the main materials for future high specific energy density lithium-ion batteries due to their high specific capacity and wide range of raw material sources.
  • One of the measures to improve the electrical conductivity of its materials and improve its cycle performance is the doping of silicon-oxygen materials, carbon coating and other measures.
  • the current coating method mainly uses the CVD method to deposit carbon materials on the surface of silicon-oxygen, which has poor uniformity, agglomeration of silicon-oxygen materials, and network damage caused by the rupture of the carbon layer during the expansion process, resulting in serious deterioration of its rate and cycle performance. .
  • a three-dimensional carbon-silicon composite material and a preparation method thereof are provided.
  • nano-silicon, graphene oxide solution, and hydroxylated carbon nanotubes are formed into a three-dimensional network structure through the action of chemical bonds, And the amorphous carbon formed after carbonization of phenolic resin is doped in it, which improves the transfer rate of electrons and ions, and improves its cycle performance.
  • a three-dimensional carbon-silicon composite material is a core-shell structure, the inner core is nano-silicon, and the outer shell is a composite formed by carbon nanotubes, graphene and amorphous carbon, and the inner core: the thickness of the outer shell is 100:( 5 to 20).
  • a preparation method of a three-dimensional carbon-silicon composite material comprising the following steps:
  • solution A add the phenolic resin to deionized water to prepare a solution with a concentration of 2 to 10%, then add an aqueous solution of graphene oxide and an aqueous solution of hydroxylated carbon nanotubes, and ultrasonically disperse evenly to obtain a solution with a mass concentration of 1 to 5%.
  • solution A add the phenolic resin to deionized water to prepare a solution with a concentration of 2 to 10%, then add an aqueous solution of graphene oxide and an aqueous solution of hydroxylated carbon nanotubes, and ultrasonically disperse evenly to obtain a solution with a mass concentration of 1 to 5%.
  • solution B add the silane coupling agent to the ethanol/water mixture, stir evenly, add nano-silicon, and uniformly disperse by ultrasonic to obtain solution B with a mass concentration of 1-10%;
  • Preparation of composite material D add solution A and solution B to a three-necked flask, and at the same time add a catalyst solution with a mass concentration of 1 to 10%, and react at a temperature of 40 to 100 ° C for 1 to 24 hours, then filter and dry to obtain a composite material C, then transfer the composite material C into a tube furnace, pass in an inert atmosphere to exhaust the air in the tube, pass in a carbon source gas, and heat up to 800-1100 °C at a heating rate of 1-10 °C/min, and keep the temperature for 12- After 72 hours, the carbon source gas was stopped, and the inert gas was switched to, and the temperature was naturally cooled to room temperature, and the composite material D was obtained by crushing, and the composite material D was a three-dimensional carbon-silicon composite material.
  • the mass ratio of phenolic resin, graphene oxide, and hydroxylated carbon nanotubes is 100:(1-10):(1-10).
  • the mass concentrations of the graphene oxide aqueous solution and the hydroxylated carbon nanotube aqueous solution are both 1-10 g/L.
  • the volume ratio of ethanol to water is 9:1.
  • the mass ratio of the silane coupling agent to the nano-silicon is (1-10):100.
  • the silane coupling agent is N-( ⁇ -aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, ⁇ -amino One of propylmethyldiethoxysilane, ⁇ -aminopropyltrimethoxysilane and ⁇ -aminopropyltriethoxysilane.
  • the mass ratio of solution A, solution B, and catalyst solution is 1-10:100:0.1-1.
  • the catalyst in the step of preparing composite material D, is one of potassium persulfate, sodium persulfate, ammonium persulfate, dibenzoyl peroxide and azobisisobutyronitrile kind.
  • the carbon source is one of acetylene, ethylene, methane, and ethane.
  • the prepared solution of graphene oxide, hydroxylated carbon nanotubes and phenolic resin prepared by the present invention is weakly acidic, while the solution prepared by silane coupling agent and nano-silicon is weakly alkaline.
  • the reaction between acid and weak base can form a composite material connected by chemical bonds, which has good uniformity.
  • it adopts hydrothermal reaction synthesis material, which has controllable process and good reaction effect.
  • adding catalyst can accelerate the reaction process, improve the degree of reaction and improve the efficiency of the reaction. its quality.
  • the three-dimensional network structure can be used to embed silicon and oxygen into the network structure, which can inhibit charging on the one hand.
  • the expansion of silicon during the discharge process provides the conductive network structure provided by the three-dimensional structure, which improves the rate and cycling performance of its material.
  • FIG. 1 is a SEM image of Example 1 of the three-dimensional carbon-silicon composite material of the present invention.
  • a three-dimensional carbon-silicon composite material the composite material is a core-shell structure, the inner core is nano-silicon, and the outer shell is a composite formed by carbon nanotubes, graphene and amorphous carbon.
  • the thickness is 100:(5 ⁇ 20).
  • a preparation method of a three-dimensional carbon-silicon composite material comprising the following steps:
  • solution A add the phenolic resin to deionized water to prepare a solution with a concentration of 2 to 10%, then add an aqueous solution of graphene oxide and an aqueous solution of hydroxylated carbon nanotubes, and ultrasonically disperse evenly to obtain a solution with a mass concentration of 1 to 5%.
  • solution A add the phenolic resin to deionized water to prepare a solution with a concentration of 2 to 10%, then add an aqueous solution of graphene oxide and an aqueous solution of hydroxylated carbon nanotubes, and ultrasonically disperse evenly to obtain a solution with a mass concentration of 1 to 5%.
  • solution B add the silane coupling agent to the ethanol/water mixture, stir evenly, add nano-silicon, and uniformly disperse by ultrasonic to obtain solution B with a mass concentration of 1-10%;
  • Preparation of composite material D add solution A and solution B to a three-necked flask, and at the same time add a catalyst solution with a mass concentration of 1 to 10%, and react at a temperature of 40 to 100 ° C for 1 to 24 hours, then filter and dry to obtain a composite material C, then transfer the composite material C into a tube furnace, pass in an inert atmosphere to exhaust the air in the tube, pass in a carbon source gas, and heat up to 800-1100 °C at a heating rate of 1-10 °C/min, and keep the temperature for 12- After 72 hours, the carbon source gas was stopped, and the inert gas was switched to, and the temperature was naturally cooled to room temperature, and the composite material D was obtained by crushing, and the composite material D was a three-dimensional carbon-silicon composite material.
  • the mass ratio of phenolic resin, graphene oxide, and hydroxylated carbon nanotubes is 100:(1-10):(1-10).
  • the mass concentrations of the graphene oxide aqueous solution and the hydroxylated carbon nanotube aqueous solution are both 1-10 g/L.
  • the volume ratio of ethanol to water is 9:1.
  • the mass ratio of the silane coupling agent to the nano-silicon is (1-10):100.
  • the silane coupling agent is N-( ⁇ -aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropylmethyldiethoxy One of silane, ⁇ -aminopropyltrimethoxysilane and ⁇ -aminopropyltriethoxysilane.
  • the mass ratio of the solution A, the solution B, and the catalyst solution is 1-10:100:0.1-1.
  • the catalyst is one of potassium persulfate, sodium persulfate, ammonium persulfate, dibenzoyl peroxide and azobisisobutyronitrile.
  • the carbon source is one of acetylene, ethylene, methane, and ethane.
  • Preparation of composite material D Weigh 5 ml of solution A, add 100 ml of solution B to a three-necked flask, and add 10 ml of potassium persulfate solution with a mass concentration of 5% at the same time, and react at a temperature of 80 ° C for 12 hours, then filter and dry to obtain a composite material Material C, then transfer the composite material C to the tube furnace, pass in an argon inert atmosphere to exhaust the air in the tube, pass in methane gas, and heat up to 1000 °C at a heating rate of 5 °C/min, and keep it for 48 hours, then stop The methane gas was introduced, the argon inert gas was changed, the temperature was naturally cooled to room temperature, and the composite material D was obtained by crushing.
  • Preparation of composite material D Weigh 1 ml of solution A, add 100 ml of solution B to a three-necked flask, and at the same time add 10 ml of 1% sodium persulfate solution, and react at 40°C for 24 hours, then filter and dry to obtain composite material C Then, the composite material C was transferred to the tube furnace, and the inert atmosphere of argon was introduced to exhaust the air in the tube, and the acetylene carbon source gas was introduced, and the temperature was raised to 800 °C at a heating rate of 1 °C/min, and kept for 12 h, and then stopped. The acetylene carbon source gas was introduced, and the argon inert gas was changed, and the temperature was naturally cooled to room temperature, and the composite material D was obtained by crushing.
  • Preparation of composite material D Weigh 10 ml of solution A, add 100 ml of solution B to a three-necked flask, and at the same time add 10 ml of a catalyst solution with a mass concentration of 10%, and react at a temperature of 100 ° C for 1 hour, then filter and dry to obtain composite material C Then, the composite material C was transferred to the tube furnace, and the inert atmosphere of argon gas was introduced to exhaust the air in the tube, and ethylene gas was introduced, and the temperature was raised to 800 °C at a heating rate of 10 °C/min, and kept for 12 hours, and then stopped feeding The ethylene carbon source gas was changed to argon inert gas, and the temperature was naturally cooled to room temperature, and the composite material D was obtained by crushing.
  • the source gas is changed to argon inert gas, and the temperature is naturally cooled to room temperature, and the silicon carbon material is obtained by crushing.
  • Example 1 12.9 9.6
  • Example 2 11.8 9.1
  • Example 3 11.5 8.3 Comparative Example 1 3.9 1.5
  • the silicon-carbon composite material of the present invention improves the specific surface area and electrical conductivity of the material due to the network structure formed by carbon nanotubes and graphene growing on the surface.
  • the silicon-carbon composite materials of Examples 1 to 3 and the silicon-carbon composite material in Comparative Example 1 were used as active materials to prepare pole pieces respectively.
  • the specific preparation method was as follows: 9g of active material, 0.5g of conductive agent SP, 0.5g of binder LA123 was added to 220 mL of deionized water and stirred evenly to obtain a slurry; the slurry was coated on the copper foil current collector to obtain a slurry.
  • the pole piece with the silicon-carbon composite material of Example 1 and 50% doped artificial graphite as the active material is marked as A, and the silicon-carbon composite material of Example 2 and 50% doped artificial graphite is used as the active material.
  • the plate is marked as B, the pole piece of the silicon-carbon composite material of Example 3 and doped with 50% artificial graphite is marked as C, and the silicon-carbon composite material of Comparative Example 1 and the artificial graphite doped with 50% is marked as C.
  • the pole piece of the active substance is marked D.
  • the prepared pole piece was used as the positive electrode, and was assembled with lithium piece, electrolyte and separator in a glove box with oxygen and water content below 0.1 ppm to form a button battery.
  • the diaphragm is celegard 2400; the electrolyte is a solution of LiPF6, the concentration of LiPF6 is 1 mol/L, and the solvent is a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DMC) (weight ratio 1:1).
  • Label the button batteries as A-1, B-1, C-1, D-1, respectively.
  • the test conditions are: 0.1C rate charge and discharge, the voltage range is 0.05 ⁇ 2V, and the cycle stops after 3 weeks.
  • the test results are shown in Table 2.
  • the lithium-ion battery using the modified porous silicon-carbon composite material of the present invention is superior to the comparative example in terms of first efficiency and first discharge capacity, and the reason is that the example materials have high electrical conductivity, which is beneficial to the lithium ion battery. ion transport, thereby improving the gram capacity of the material.
  • a 5Ah soft pack battery was assembled with the positive ternary material (LiNi1/3Co1/3Mn1/3O2), the electrolyte and the separator.
  • the diaphragm is celegard 2400, and the electrolyte is LiPF6 solution (the solvent is a mixed solution of EC and DEC with a volume ratio of 1:1, and the concentration of LiPF6 is 1.3 mol/L).
  • the prepared pouch cells are marked as A-2, B-2, C-2, and D-2, respectively.
  • the expansion rate of the negative pole piece of the soft-pack lithium ion battery using the silicon-carbon composite material of the present invention is significantly lower than that of the comparative example.
  • the material of the present invention contains a network structure formed by carbon nanotubes and graphene with high mechanical strength, which buffers and expands during the charging and discharging process, and at the same time, carbon nanotubes and graphene have a high specific surface area, thereby improving its pole piece. suction capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

涉及电池负极材料领域,特别是涉及一种三维碳硅复合材料,复合材料为核壳结构,内核为纳米硅,外壳为碳纳米管、石墨烯及其无定形碳形成的复合体,其内核:外壳的厚度为100:(5~20)。提供一种三维碳硅复合材料及其制备方法,通过化学法,将纳米硅、氧化石墨烯溶液,羟基化碳纳米管通过化学键的作用形成三维网状结构,并使酚醛树脂碳化后形成的无定形碳掺杂在其中,提高其电子和离子的传导速率,并提高其循环性能。

Description

一种三维碳硅复合材料及其制备方法
相关申请的交叉引用。
本申请要求于2021年2月2日提交中国专利局,申请号为202110140830.4,发明名称为“一种三维碳硅复合材料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电极负极材料领域,特别是涉及一种三维碳硅复合材料及其制备方法。
背景技术
硅碳材料以其比容量高、原料来源广泛等优点而成为未来高比能量密度锂离子电池的主要材料,但是其材料自身电导率差,膨胀大、循环差等缺陷而限制其材料的应用推广。而提高其材料的电导率及其提高其循环性能措施之一是硅氧材料的掺杂、碳包覆等措施。
技术问题
但是目前的包覆方式主要是采用CVD法在硅氧表面沉积碳材料,其存在均匀性差、硅氧材料团聚及其在膨胀过程中,碳层破裂造成网络破坏造成其倍率及其循环性能严重恶化。
技术解决方案
根据本申请的各种实施例,提供一种三维碳硅复合材料及其制备方法,通过化学法,将纳米硅、氧化石墨烯溶液,羟基化碳纳米管通过化学键的作用形成三维网状结构,并使酚醛树脂碳化后形成的无定形碳掺杂在其中,提高其电子和离子的传到速率,并提高其循环性能.
一种三维碳硅复合材料,所述复合材料为核壳结构,内核为纳米硅,外壳为碳纳米管、石墨烯及其无定形碳形成的复合体,其内核:外壳的厚度为100:(5~20)。
一种三维碳硅复合材料的制备方法,包括如下步骤:
制备溶液A:将酚醛树脂添加到去离子水中配制成浓度为2~10%的溶液,之后添加氧化石墨烯水溶液、羟基化碳纳米管水溶液,超声分散均匀后得到质量浓度为1~5%的溶液A;
制备溶液B:将硅烷偶联剂添加到乙醇/水的混合液中,搅拌均匀后,添加纳米硅,并通过超声分散均匀得到质量浓度为1~10%的溶液B;
制备复合材料D:将溶液A和溶液B添加到三口烧瓶中,同时添加质量浓度为1~10%的催化剂溶液,并在温度为40~100℃反应1~24h,之后过滤,干燥得到复合材料C,之后将复合材料C转移到管式炉中,通入惰性气氛排出管内空气,通入碳源气体,并以升温速率为1~10℃/min升温到800~1100℃,并保温12~72h,之后停止通入碳源气体,改通惰性气体,并自然降温到室温,粉碎得到复合材料D,复合材料D即为三维碳硅复合材料。
在其中一个实施例中,,在所述制备溶液A步骤中,酚醛树脂、氧化石墨烯、羟基化碳纳米管的质量比为100:(1~10):(1~10)。
在其中一个实施例中,,在所述制备溶液A步骤中,所述氧化石墨烯水溶液、羟基化碳纳米管水溶液的质量浓度均为1~10g/L。
在其中一个实施例中,,在所述制备溶液B步骤中,所述乙醇与水的体积比为9:1。
在其中一个实施例中,,在所述制备溶液B步骤中,硅烷偶联剂与纳米硅的质量比为(1~10):100。
在其中一个实施例中,,在所述制备溶液B步骤中,所述硅烷偶联剂为N-(β-氨乙基)-γ-氨丙基甲基二甲氧基硅烷、γ-氨丙基甲基二乙氧基硅烷、γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷中的一种。
在其中一个实施例中,,在所述制备复合材料D步骤中,溶液A、溶液B、催化剂溶液的质量比为1~10:100:0.1~1。
在其中一个实施例中,,在所述制备复合材料D步骤中,所述催化剂为过硫酸钾、过硫酸钠、过硫酸铵、过氧化二苯甲酰、偶氮二异丁腈中的一种。
在其中一个实施例中,,在所述制备复合材料D步骤中,所述碳源为乙炔、乙烯、甲烷、乙烷中的一种。
有益效果
本发明配制成的氧化石墨烯、羟基化碳纳米管并与酚醛树脂配置成的溶液呈现弱酸性,而硅烷偶联剂与纳米硅配置成的溶液呈现弱碱性,通过水热反应,将弱酸性与弱碱性进行反应,可以形成化学键连接的复合材料,均匀性好,同时采用水热反应合成材料,具有过程可控、反应效果好,同时添加催化剂,可以加速反应进程,提高反应程度及其质量。最后通过热还原,降低材料的表面缺陷,提高材料的电导率、首次效率及其降低其副反应的发生机率;采用三维网状结构,可以将硅氧嵌入到网络结构内部,一方面可以抑制充放电过程中的硅的膨胀,另一方面,三维结构提供的导电网络结构,提高其材料的倍率和循环性能。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本发明的三维碳硅复合材料的实施例1的SEM图。
本发明的实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
请参考图1,一种三维碳硅复合材料,所述复合材料为核壳结构,内核为纳米硅,外壳为碳纳米管、石墨烯及其无定形碳形成的复合体,其内核:外壳的厚度为100:(5~20)。
一种三维碳硅复合材料的制备方法,包括如下步骤:
制备溶液A:将酚醛树脂添加到去离子水中配制成浓度为2~10%的溶液,之后添加氧化石墨烯水溶液、羟基化碳纳米管水溶液,超声分散均匀后得到质量浓度为1~5%的溶液A;
制备溶液B:将硅烷偶联剂添加到乙醇/水的混合液中,搅拌均匀后,添加纳米硅,并通过超声分散均匀得到质量浓度为1~10%的溶液B;
制备复合材料D:将溶液A和溶液B添加到三口烧瓶中,同时添加质量浓度为1~10%的催化剂溶液,并在温度为40~100℃反应1~24h,之后过滤,干燥得到复合材料C,之后将复合材料C转移到管式炉中,通入惰性气氛排出管内空气,通入碳源气体,并以升温速率为1~10℃/min升温到800~1100℃,并保温12~72h,之后停止通入碳源气体,改通惰性气体,并自然降温到室温,粉碎得到复合材料D,复合材料D即为三维碳硅复合材料。
在所述制备溶液A步骤中,酚醛树脂、氧化石墨烯、羟基化碳纳米管的质量比为100:(1~10):(1~10)。
在所述制备溶液A步骤中,所述氧化石墨烯水溶液、羟基化碳纳米管水溶液的质量浓度均为1~10g/L。
在所述制备溶液B步骤中,所述乙醇与水的体积比为9:1。
在所述制备溶液B步骤中,硅烷偶联剂与纳米硅的质量比为(1~10):100。
在所述制备溶液B步骤中,所述硅烷偶联剂为N-(β-氨乙基)-γ-氨丙基甲基二甲氧基硅烷、γ-氨丙基甲基二乙氧基硅烷、γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷中的一种。
在所述制备复合材料D步骤中,溶液A、溶液B、催化剂溶液的质量比为1~10:100:0.1~1。
在所述制备复合材料D步骤中,所述催化剂为过硫酸钾、过硫酸钠、过硫酸铵、过氧化二苯甲酰、偶氮二异丁腈中的一种。
在所述制备复合材料D步骤中,所述碳源为乙炔、乙烯、甲烷、乙烷中的一种。
实施例1
制备溶液A:称取100g酚醛树脂添加到2000g去离子中配制成浓度为1%的溶液,之后添加1000ml浓度为5g/l氧化石墨烯水溶液,1000ml浓度为5g/l羟基化碳纳米管水溶液,超声分散均匀后得到质量浓度为2.75%溶液A;
制备溶液B:将5gN-(β-氨乙基)-γ-氨丙基甲基二甲氧基硅烷添加到500ml乙醇/水的混合液中(体积比9:1),搅拌均匀后,添加100g纳米硅,并通过超声分散均匀得到质量浓度为5%溶液B;
制备复合材料D:称取5ml溶液A,100ml溶液B添加到三口烧瓶中,同时添加10ml,质量浓度为5%的过硫酸钾溶液,并在温度为80℃反应12h,之后过滤,干燥得到复合材料C,之后将复合材料C转移到管式炉中,通入氩气惰性气氛排出管内空气,通入甲烷气体,并以升温速率为5℃/min升温到1000℃,并保温48h,之后停止通入甲烷气体,改通氩气惰性气体,并自然降温到室温,粉碎得到复合材料D。
实施例2
制备溶液A:称取100g酚醛树脂添加到5000g去离子中配制成浓度为2%的溶液,之后添加1000ml浓度为1g/l氧化石墨烯水溶液,1000ml浓度为1g/l羟基化碳纳米管水溶液,超声分散均匀后得到质量浓度为1.5%溶液A;
制备溶液B:将1gγ-氨丙基甲基二乙氧基硅烷添加到1000ml乙醇/水的混合液中(体积比9:1),搅拌均匀后,添加100g纳米硅,并通过超声分散均匀得到质量浓度为1%溶液B;
制备复合材料D:称取1ml溶液A,100ml的溶液B添加到三口烧瓶中,同时添加10ml,1%的过硫酸钠溶液,并在温度为40℃反应24h,之后过滤,干燥得到复合材料C,之后将复合材料C转移到管式炉中,通入氩气惰性气氛排出管内空气,通入乙炔碳源气体,并以升温速率为1℃/min升温到800℃,并保温12h,之后停止通入乙炔碳源气体,改通氩气惰性气体,并自然降温到室温,粉碎得到复合材料D。
实施例3
制备溶液A:将100g酚醛树脂添加到1000ml去离子中配制成浓度为10%的溶液,之后添加1000ml,浓度为10g/l氧化石墨烯水溶液,1000ml,浓度为10g/l羟基化碳纳米管水溶液,超声分散均匀后得到质量浓度为4%溶液A;
制备溶液B:将10gγ-氨丙基三甲氧基硅烷添加到1100ml乙醇/水的混合液中(体积比9:1),搅拌均匀后,添加100g纳米硅,并通过超声分散均匀得到质量浓度为10%溶液B;
制备复合材料D:称取10ml溶液A,100ml溶液B添加到三口烧瓶中,同时 添加10ml,质量浓度为10%的催化剂溶液,并在温度为100℃反应1h,之后过滤,干燥得到复合材料C,之后将复合材料C转移到管式炉中,通入氩气惰性气氛排出管内空气,通入乙烯气体,并以升温速率为10℃/min升温到800℃,并保温12h,之后停止通入乙烯碳源气体,改通氩气惰性气体,并自然降温到室温,粉碎得到复合材料D。
对比例
将100g纳米硅转移到管式炉中,通入氩气惰性气氛排出管内空气,通入乙烯气体,并以升温速率为10℃/min升温到800℃,并保温12h,之后停止通入乙烯碳源气体,改通氩气惰性气体,并自然降温到室温,粉碎得到硅碳材料。
试验例1
对实施例1的硅碳复合材料进行SEM测试。测试结果如图1所示。由图1可知,硅碳复合材料的颗粒粒径大小为5~15μm,大小分布均匀、合理。
试验例2
按照国家标准GBT-245332009《锂离子电池石墨类负极材料》中的方法对实施例1~3的硅碳复合材料以及对比例1中的硅碳复合材料的比表面积、粉体电导率进行测试,测试结果如表1所示。
表1比表面积以及振实密度测试结果
样品 比表面积(m2/g) 电导率(S/CM)
实施例1 12.9 9.6
实施例2 11.8 9.1
实施例3 11.5 8.3
对比例1 3.9 1.5
由表1可知:本发明的硅碳复合材料由于表面生长有碳纳米管和石墨烯形成的网络结构,提高其材料的比表面积和电导率。
试验例3
将实施例1~3的硅碳复合材料以及对比例1中的硅碳复合材料分别作为活性材料制备极片,具体制备方法为:将9g活性物质、0.5g导电剂SP、0.5g粘结剂LA123加入到220mL去离子水中搅拌均匀,得浆料;将浆料涂膜于铜箔集流体上,即得。
将以实施例1的硅碳复合材料并掺杂50%的人造石墨为活性物质的极片标记为A,以实施例2的硅碳复合材料并掺杂50%的人造石墨为活性物质的极片标记为B,以实施例3的硅碳复合材料并掺杂50%的人造石墨为活性物质的极片标记为C,以对比例1的硅碳复合材料并掺杂50%的人造石墨为活性物质的极片标记为D。
然后将制得的极片作为正极,与锂片、电解液以及隔膜在氧气和水含量均低于0.1ppm的手套箱中组装成扣式电池。其中隔膜为celegard 2400;电解液为LiPF6的溶液,LiPF6的浓度为1mol/L,溶剂为碳酸乙烯酯(EC)和碳酸二乙酯(DMC)(重量比为1:1)的混合溶液。分别将扣式电池标记为A-1,B-1,C-1、D-1。然后采用蓝电测试仪测试扣式电池的性能,测试条件为:0.1C的倍率充放电,电压范围为0.05~2V,循环3周后停止。测试结果如表2所示。
表2性能测试结果
Figure PCTCN2021090376-appb-000001
由表2可知,采用本发明的改性多孔硅碳复合材料的锂离子电池在首次效率及其首次放电容量方面优于对比例,其原因为实施例材料具有高的电导率,有利于材料锂离子的传输,从而提高其材料克容量发挥。
试验例4
将极片A~D作为负极,与正极三元材料(LiNi1/3Co1/3Mn1/3O2)、电解液以及隔膜组装成5Ah的软包电池。其中隔膜为celegard 2400,电解液为LiPF6溶液(溶剂为体积比为1:1的EC和DEC的混合溶液,LiPF6的浓度为1.3mol/L)。将制得的软包电池分别标记为A-2、B-2、C-2、D-2。
对软包电池进行以下性能测试:
(1)对定容后的软包电池A-2~D-2解剖测试其负极极片的厚度D1,然后将各软包电池循环100次(1C/1C@25±3℃@2.8-4.2V)后对软包电池进行满电充电, 然后再次解剖测试循环后负极极片的厚度D2,然后计算膨胀率(膨胀率为
Figure PCTCN2021090376-appb-000002
测试结果如表3所示。同时测试其极片的吸液能力。详见表3。
表3负极极片膨胀率测试结果
Figure PCTCN2021090376-appb-000003
由表3可知,采用本发明的硅碳复合材料的软包锂离子电池的负极极片的膨胀率明显低于对比例。其原因是由于本发明的材料含有力学强度高的碳纳米管和石墨烯形成的网络结构,在充放电过程中缓冲膨胀,同时碳纳米管和石墨烯具有高的比表面积,从而提高其极片的吸液能力。
(2)对软包电池A-2~D-2进行循环性能测试,测试条件为:充放电电压范围为2.8~4.2V,温度为25±3.0℃,充放电倍率为1.0C/1.0C。测试结果如表4所示。
表4循环性能测试结果
Figure PCTCN2021090376-appb-000004
由表4可知,采用本发明的硅碳复合材料制备出的软包锂离子电池在循环的各个阶段的循环性能都优于对比例,其原因为,本发明的硅碳复合材料中的三维网络结构降低了其膨胀率,提高了循环性能。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范 围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

  1. 一种三维碳硅复合材料,其特征在于,所述复合材料为核壳结构,内核为纳米硅,外壳为碳纳米管、石墨烯及其无定形碳形成的复合体,其内核:外壳的厚度为100:(5~20)。
  2. 一种三维碳硅复合材料的制备方法,其特征在于,包括如下步骤:
    制备溶液A:将酚醛树脂添加到去离子水中配制成浓度为2~10%的溶液,之后添加氧化石墨烯水溶液、羟基化碳纳米管水溶液,超声分散均匀后得到质量浓度为1~5%的溶液A;
    制备溶液B:将硅烷偶联剂添加到乙醇/水的混合液中,搅拌均匀后,添加纳米硅,并通过超声分散均匀得到质量浓度为1~10%的溶液B;
    制备复合材料D:将溶液A和溶液B添加到三口烧瓶中,同时添加质量浓度为1~10%的催化剂溶液,并在温度为40~100℃反应1~24h,之后过滤,干燥得到复合材料C,之后将复合材料C转移到管式炉中,通入惰性气氛排出管内空气,通入碳源气体,并以升温速率为1~10℃/min升温到800~1100℃,并保温12~72h,之后停止通入碳源气体,改通惰性气体,并自然降温到室温,粉碎得到复合材料D,复合材料D即为三维碳硅复合材料。
  3. 根据权利要求2所述的三维碳硅复合材料的制备方法,其特征在于,在所述制备溶液A步骤中,酚醛树脂、氧化石墨烯、羟基化碳纳米管的质量比为100:(1~10):(1~10)。
  4. 根据权利要求2所述的三维碳硅复合材料的制备方法,其特征在于,在所述制备溶液A步骤中,所述氧化石墨烯水溶液、羟基化碳纳米管水溶液的质量浓度均为1~10g/L。
  5. 根据权利要求2所述的三维碳硅复合材料的制备方法,其特征在于,在所述制备溶液B步骤中,所述乙醇与水的体积比为9:1。
  6. 根据权利要求2所述的三维碳硅复合材料的制备方法,其特征在于,在所述制备溶液B步骤中,硅烷偶联剂与纳米硅的质量比为(1~10):100。
  7. 根据权利要求2所述的三维碳硅复合材料的制备方法,其特征在于,在所述制备溶液B步骤中,所述硅烷偶联剂为N-(β-氨乙基)-γ-氨丙基甲基二甲氧基硅烷、γ-氨丙基甲基二乙氧基硅烷、γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷中的一种。
  8. 根据权利要求2所述的三维碳硅复合材料的制备方法,其特征在于,在所述制备复合材料D步骤中,溶液A、溶液B、催化剂溶液的质量比为1~10:100:0.1~1。
  9. 根据权利要求2所述的三维碳硅复合材料的制备方法,其特征在于,在所述制备复合材料D步骤中,所述催化剂为过硫酸钾、过硫酸钠、过硫酸铵、过氧化二苯甲酰、偶氮二异丁腈中的一种。
  10. 根据权利要求2所述的三维碳硅复合材料的制备方法,其特征在于,在所述制备复合材料D步骤中,所述碳源为乙炔、乙烯、甲烷、乙烷中的一种。
PCT/CN2021/090376 2021-02-02 2021-04-28 一种三维碳硅复合材料及其制备方法 WO2022166007A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110140830.4A CN112886015B (zh) 2021-02-02 2021-02-02 一种三维碳硅复合材料
CN202110140830.4 2021-02-02

Publications (1)

Publication Number Publication Date
WO2022166007A1 true WO2022166007A1 (zh) 2022-08-11

Family

ID=76052513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090376 WO2022166007A1 (zh) 2021-02-02 2021-04-28 一种三维碳硅复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN112886015B (zh)
WO (1) WO2022166007A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115849381A (zh) * 2022-11-18 2023-03-28 浙江新安化工集团股份有限公司 一种三维多孔硅碳复合材料及其制备方法和应用
CN116536629A (zh) * 2023-04-19 2023-08-04 青岛新泰和纳米科技有限公司 一种中间相碳微球-硅碳复合材料及其制备方法
CN117199331A (zh) * 2023-11-08 2023-12-08 深圳特新界面科技有限公司 一种硅/石墨烯/碳纤维复合负极材料及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540423A (zh) * 2021-07-15 2021-10-22 洛阳月星新能源科技有限公司 一种高稳定性硅碳复合负极材料及其制备方法、锂离子电池
CN114122372B (zh) * 2021-11-10 2024-03-29 云南中晟新材料有限责任公司 一种锂离子电池所用低膨胀硅碳负极材料及其制备方法
CN114242987B (zh) * 2021-12-22 2023-09-26 格龙新材料科技(常州)有限公司 一种三维多孔硅碳复合材料的制备方法
CN114628684B (zh) * 2022-04-17 2022-09-09 晖阳(贵州)新能源材料有限公司 一种高能量密度快充石墨复合材料及其制备方法
CN114976008A (zh) * 2022-06-10 2022-08-30 洛阳联创锂能科技有限公司 一种锂离子电池用低膨胀硅碳负极材料及其制备方法
CN114899384B (zh) * 2022-06-10 2023-12-15 洛阳联创锂能科技有限公司 一种三维多孔硅氧负极复合材料及其制备方法
CN115332496B (zh) * 2022-07-15 2023-05-02 胜华新材料集团股份有限公司 一种锂离子电池所用硅氧复合材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077049A1 (de) * 2007-12-18 2009-06-25 Merck Patent Gmbh Silizium/siox/kohlenstoff-komposit für lithiumionenbatterien
CN104701512A (zh) * 2013-12-09 2015-06-10 纳米及先进材料研发院有限公司 用于锂离子高性能阳极的Si@C核/壳纳米材料
CN107204445A (zh) * 2017-05-26 2017-09-26 郑州中科新兴产业技术研究院 一种锂离子电池用三维多孔硅碳负极材料及其制备方法
CN107565102A (zh) * 2017-07-12 2018-01-09 成都巴特瑞科技有限公司 一种包覆硅纳米球的方法
CN108063232A (zh) * 2017-12-15 2018-05-22 徐军红 一种硅碳复合负极材料及其制备方法、锂离子电池
CN109524643A (zh) * 2018-11-01 2019-03-26 贵州梅岭电源有限公司 一种多层碳壳核壳结构硅基负极材料的制备方法及其应用
CN111816862A (zh) * 2020-07-31 2020-10-23 广东凯金新能源科技股份有限公司 一种高稳定的硅碳负极材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070888B (zh) * 2015-07-09 2017-11-14 山东玉皇新能源科技有限公司 偶联的碳纳米管‑石墨烯复合三维网络结构包覆的三元材料及其制备方法
CN106505200B (zh) * 2016-12-27 2019-12-10 电子科技大学 碳纳米管/石墨烯/硅复合锂电池负极材料及其制备方法
CN109638229A (zh) * 2017-10-09 2019-04-16 珠海市三顺纳米新材料有限公司 硅碳复合负极材料及其制备方法和锂离子电池
KR102250814B1 (ko) * 2019-05-17 2021-05-12 한국과학기술연구원 탄소 코팅된 그래핀, 실리콘 나노입자, 탄소나노튜브를 포함하는 리튬이차전지 음극재용 복합체, 이의 제조방법
CN111628156B (zh) * 2020-06-29 2021-08-27 蜂巢能源科技有限公司 一种钼掺杂多孔硅碳复合材料及其制备方法和锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077049A1 (de) * 2007-12-18 2009-06-25 Merck Patent Gmbh Silizium/siox/kohlenstoff-komposit für lithiumionenbatterien
CN104701512A (zh) * 2013-12-09 2015-06-10 纳米及先进材料研发院有限公司 用于锂离子高性能阳极的Si@C核/壳纳米材料
CN107204445A (zh) * 2017-05-26 2017-09-26 郑州中科新兴产业技术研究院 一种锂离子电池用三维多孔硅碳负极材料及其制备方法
CN107565102A (zh) * 2017-07-12 2018-01-09 成都巴特瑞科技有限公司 一种包覆硅纳米球的方法
CN108063232A (zh) * 2017-12-15 2018-05-22 徐军红 一种硅碳复合负极材料及其制备方法、锂离子电池
CN109524643A (zh) * 2018-11-01 2019-03-26 贵州梅岭电源有限公司 一种多层碳壳核壳结构硅基负极材料的制备方法及其应用
CN111816862A (zh) * 2020-07-31 2020-10-23 广东凯金新能源科技股份有限公司 一种高稳定的硅碳负极材料及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115849381A (zh) * 2022-11-18 2023-03-28 浙江新安化工集团股份有限公司 一种三维多孔硅碳复合材料及其制备方法和应用
CN116536629A (zh) * 2023-04-19 2023-08-04 青岛新泰和纳米科技有限公司 一种中间相碳微球-硅碳复合材料及其制备方法
CN116536629B (zh) * 2023-04-19 2024-03-19 青岛新泰和纳米科技有限公司 一种中间相碳微球-硅碳复合材料及其制备方法
CN117199331A (zh) * 2023-11-08 2023-12-08 深圳特新界面科技有限公司 一种硅/石墨烯/碳纤维复合负极材料及其制备方法
CN117199331B (zh) * 2023-11-08 2024-01-16 深圳特新界面科技有限公司 一种硅/石墨烯/碳纤维复合负极材料及其制备方法

Also Published As

Publication number Publication date
CN112886015A (zh) 2021-06-01
CN112886015B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2022166007A1 (zh) 一种三维碳硅复合材料及其制备方法
WO2021120155A1 (zh) 一种纳米锡硅复合负极材料及其制备方法和应用
WO2022062320A1 (zh) 一种含有金属元素梯度掺杂的负极材料及其应用
WO2021088354A1 (zh) 核壳状铁酸镍及制备方法、铁酸镍@c材料及制备方法与应用
WO2022121281A1 (zh) 一种自填充包覆硅基复合材料、其制备方法及其应用
WO2024031867A1 (zh) 氮掺杂石墨烯包覆硅碳复合材料及其制备方法和应用
CN114122372B (zh) 一种锂离子电池所用低膨胀硅碳负极材料及其制备方法
CN112133896A (zh) 一种高容量石墨-硅-氧化亚硅复合材料及其制备方法、应用
WO2022002057A1 (zh) 硅氧复合负极材料、负极和锂离子电池及其制备方法
CN111129428A (zh) 一种多层正极片电极结构及其制备方法、正负极电池结构
CN112751075A (zh) 一种锂离子电池及其制备方法
CN114447305A (zh) 一种多元碳基快充负极复合材料及其制备方法
CN115911326A (zh) 一种低膨胀、长寿命硅碳复合材料及其制备方法
CN111146410A (zh) 负极活性材料及电池
CN113889594A (zh) 一种硼掺杂锆酸镧锂包覆石墨复合材料的制备方法
CN115714170A (zh) 一种高能量密度快充负极材料的制备方法
CN115207329A (zh) 一种高能量密度硅碳/中间相碳微球复合材料的制备方法
CN114695894A (zh) 一种高容量硬碳快充负极材料及其制备方法和应用
CN114300671A (zh) 一种石墨复合负极材料及其制备方法和应用
CN111326721A (zh) 一种复合负极预嵌锂材料的制备方法
WO2021189338A1 (zh) 负极材料、负极极片、电化学装置和电子装置
CN116544376A (zh) 一种低膨胀硅碳材料及其制备方法
CN114122392B (zh) 一种高容量快充石墨复合材料及其制备方法
CN112467137B (zh) 一种硅基石墨烯复合材料
CN113258053B (zh) 一种硅基负极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924015

Country of ref document: EP

Kind code of ref document: A1