WO2022160547A1 - 一种碳化硅外延炉反应室 - Google Patents

一种碳化硅外延炉反应室 Download PDF

Info

Publication number
WO2022160547A1
WO2022160547A1 PCT/CN2021/098529 CN2021098529W WO2022160547A1 WO 2022160547 A1 WO2022160547 A1 WO 2022160547A1 CN 2021098529 W CN2021098529 W CN 2021098529W WO 2022160547 A1 WO2022160547 A1 WO 2022160547A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing flange
reaction chamber
silicon carbide
sealing
carbide epitaxial
Prior art date
Application number
PCT/CN2021/098529
Other languages
English (en)
French (fr)
Inventor
巴赛
胡凡
陈国钦
袁祖浩
巩小亮
林伯奇
龙长林
Original Assignee
中国电子科技集团公司第四十八研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第四十八研究所 filed Critical 中国电子科技集团公司第四十八研究所
Publication of WO2022160547A1 publication Critical patent/WO2022160547A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the invention relates to semiconductor manufacturing equipment, in particular to a silicon carbide epitaxial furnace reaction chamber.
  • SiC Silicon Carbide
  • CVD chemical vapor deposition
  • the reaction temperature is often required to be as high as about 1650 °C, and the reaction atmosphere pressure is maintained at a low pressure of 50 mbar.
  • the reaction chamber of the SiC epitaxial furnace is usually a quartz tube with a water-cooled interlayer.
  • the water-cooled interlayer of the quartz tube is easily broken by force, the water-cooled interlayer of the quartz tube cannot extend to the sealing ring.
  • the sealing ring at the tail gas end of the quartz tube continues to receive the heat from the high-temperature gas inside and fails.
  • the sealing ring fails, the low-pressure environment of the reaction chamber cannot be maintained, resulting in the destruction of the process conditions and the inability to obtain high-quality epitaxy. and the dangerous process gas in the reaction chamber will be released to cause harm to the surrounding personnel, and at the same time, the high-temperature exhaust gas will also have an adverse effect on the components on the subsequent vacuum pipeline.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, and to provide a silicon carbide epitaxial furnace reaction chamber with a simple and reliable structure, which is beneficial to prevent the high temperature failure of the sealing ring.
  • the present invention adopts the following technical solutions:
  • a silicon carbide epitaxial furnace reaction chamber includes a quartz tube, a first sealing flange, a second sealing flange and a sealing member.
  • the flange is sleeved on the outer circumference of the quartz tube and is in contact with the water cooling jacket, the second sealing flange is connected with the first sealing flange, and the sealing element is sandwiched between the first sealing flange and the first sealing flange.
  • a heat insulating cylinder is arranged in the second sealing flange, and the end of the heat insulating cylinder is in contact with the reaction device.
  • annular graphite carbon felt is arranged in the heat insulating cylinder, and the sealing member is located on the outer periphery of the annular graphite carbon felt.
  • the inner diameter of the annular graphite carbon felt gradually increases from the middle to both sides.
  • the heat insulating cylinder is a frosted quartz cylinder.
  • a protection ring is sleeved on the outer periphery of the heat insulating cylinder, and the end of the protection ring is in contact with the end of the quartz tube.
  • the second sealing flange is provided with an exhaust gas graphite cylinder, and the exhaust gas graphite cylinder is communicated with the heat insulation cylinder.
  • the first sealing flange and the second sealing flange are both water-cooled flanges.
  • the advantages of the present invention are: in the reaction chamber of the silicon carbide epitaxial furnace disclosed in the present invention, the water-cooling jacket on the outer periphery of the quartz tube abuts and contacts with the first sealing flange, which can be cooled by the cooling inside the water-cooling jacket.
  • the water takes away more heat of the exhaust gas and reduces the temperature of the first sealing flange and the sealing member.
  • the second sealing flange is provided with a heat insulation cylinder, and the end of the heat insulation cylinder extends to abut and contact the reaction device in the quartz tube.
  • the graphite end cover of the reaction device can prevent the graphite end cover of the reaction device from being blown down by the exhaust gas, and on the other hand, it can effectively isolate the high-temperature exhaust gas, and block the heat transfer of the high-temperature exhaust gas to the seal, which is beneficial to prevent the high temperature failure of the seal, and the overall structure is simple and reliable.
  • FIG. 1 is a schematic structural diagram of the reaction chamber of the silicon carbide epitaxial furnace of the present invention.
  • FIG. 1 shows an embodiment of the silicon carbide epitaxial furnace reaction chamber of the present invention.
  • the silicon carbide epitaxial furnace reaction chamber of this embodiment includes a quartz tube 1 , a first sealing flange 2 , a second sealing flange 3 and a sealing Part 4, the outer periphery of the quartz tube 1 is provided with a water-cooled jacket 11 and the interior is provided with a reaction device 12, the first sealing flange 2 is sleeved on the outer periphery of the quartz tube 1 and is in contact with the water-cooled jacket 11, and the second sealing flange 3 is connected to the The first sealing flange 2 is connected, the sealing member 4 is sandwiched between the first sealing flange 2 and the second sealing flange 3, and the second sealing flange 3 is provided with a heat insulating cylinder 31, and the end of the heat insulating cylinder 31 is Abutted against the reaction device 12 .
  • the sealing member 4 may be, for example, a common O-ring or the like.
  • the water-cooling jacket 11 on the outer periphery of the quartz tube 1 abuts and contacts the first sealing flange 2, and more exhaust heat can be taken away by the cooling water inside the water-cooling jacket 11, thereby reducing the first sealing flange 2.
  • the temperature of the sealing flange 2 and the sealing member 4, a heat insulating cylinder 31 is arranged inside the second sealing flange 3, and the end of the heat insulating cylinder 31 (the right end in FIG.
  • the overall structure is simple and reliable.
  • annular graphite carbon felt 5 is provided in the heat insulating cylinder 31 , and the sealing member 4 is located on the outer periphery of the annular graphite carbon felt 5 .
  • the graphite carbon felt has excellent thermal insulation performance, and the annular graphite carbon felt 5 arranged on the inner side of the sealing member 4 can further reduce the heat transfer of the exhaust gas to the outer sealing member 4 .
  • the inner diameter of the annular graphite carbon felt 5 gradually increases from the middle to both sides.
  • the annular graphite carbon felt 5 with this cross-sectional structure has high structural strength, can withstand the impact of high-temperature exhaust gas, and can effectively reduce the conduction of exhaust heat.
  • the heat insulating cylinder 31 is a frosted quartz cylinder.
  • the frosted quartz cylinder has high temperature resistance, corrosion resistance and good thermal insulation performance, which can further effectively reduce the conduction of exhaust heat.
  • a protection ring 6 is sleeved on the outer periphery of the heat insulating cylinder 31 , and the end of the protection ring 6 is in contact with the end of the quartz tube 1 .
  • the protection ring 6 can protect the heat insulation cylinder 31 to increase the service life of the heat insulation cylinder 31 , and can also be used as a second layer of heat insulation structure to reduce the heat transfer of the high temperature exhaust gas to the second sealing flange 3 .
  • the protection ring 6 is preferably a quartz glass ring, which has high temperature resistance, corrosion resistance and good heat insulation performance.
  • the second sealing flange 3 is provided with an exhaust gas graphite cylinder 7 , and the exhaust gas graphite cylinder 7 is communicated with the heat insulation cylinder 31 .
  • the exhaust gas graphite tube 7 can fully absorb the unreacted process exhaust gas and heat by using its adsorption and heat absorption properties, further reduce the exhaust gas temperature, and reduce the impact of the exhausted exhaust gas on subsequent vacuum pipes and components.
  • the first sealing flange 2 and the second sealing flange 3 are both water-cooled flanges, and the cooling water can take away the first sealing flange 2 and the second sealing flange 3 heat, thereby ensuring that both sides of the seal 4 are at a lower temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种碳化硅外延炉反应室,包括石英管(1)、第一密封法兰(2)、第二密封法兰(3)以及密封件(4),所述石英管(1)外周设有水冷夹套(11)且内部设有反应装置(12),所述第一密封法兰(2)套设于所述石英管(1)外周并与所述水冷夹套(11)抵接,所述第二密封法兰(3)与所述第一密封法兰(2)相连,所述密封件(4)夹设于第一密封法兰(2)与第二密封法兰(3)之间,所述第二密封法兰(3)内设有隔热筒(31),所述隔热筒(31)端部与所述反应装置(12)抵接。该装置具有结构简单、可靠,有利于防止密封圈高温失效等优点。

Description

一种碳化硅外延炉反应室
相关申请的交叉引用
本申请以申请日为“2021-2-1”、申请号为“202110137060.8”、发明创造名称为“一种碳化硅外延炉反应室”的中国专利申请为基础,并主张其优先权,该中国专利申请的全文在此引用至本申请中,以作为本申请的一部分。
【技术领域】
本发明涉及半导体制造设备,尤其涉及一种碳化硅外延炉反应室。
【背景技术】
SiC(碳化硅)作为第三代新型宽禁带半导体材料的代表,由于具有十分出色的物理、化学和电性能特性,使其在功率半导体器件领域,特别是大功率、高电压和一些特殊环境,例如高温、高辐射等环境中有着非常重要的地位和良好的应用前景。制备SiC外延片的方法较多,目前最为主流的方法是化学气相沉积法(CVD),即在高温低压环境下,工艺气体裂解生成的C、Si原子在衬底上重新生成SiC。
为了实现快速同质外延,获得大厚度SiC外延片,往往要求反应温度高达1650℃左右、反应气氛压力维持在低压50mbar以下。为了避免密封反应室的密封圈受高温失效,通常SiC外延炉反应室外为带水冷夹层的石英管,但由于石英管水冷夹层受力易破裂,故石英管的水冷夹层无法延伸至密封圈处,导致石英管尾气端的密封圈处仍持续接受着内部高温气体所传来的热量而发生失效现象,一旦密封圈失效,就无法继续维持反应室的低压环境,导致工艺条件被破坏而无法获得优质外延片,并且反应室内的危险性工艺气体将释放出来对周围人员产生危害,与此同时高温尾气也会对后续真空管道上的元器件带来不良影响。
【发明内容】
本发明要解决的技术问题是克服现有技术的不足,提供一种结构简单、可靠,有利于防止密封圈高温失效的碳化硅外延炉反应室。
为解决上述技术问题,本发明采用以下技术方案:
一种碳化硅外延炉反应室,包括石英管、第一密封法兰、第二密封法兰以及密封件,所述石英管外周设有水冷夹套且内部设有反应装置,所述第一密封法兰套设于所述石英管外周并与所述水冷夹套抵接,所述第二密封法兰与所述第一密封法兰相连,所述密封件夹设于第一密封法兰与第二密封法兰之间,所述第二密封法兰内设有隔热筒,所述隔热筒端 部与所述反应装置抵接。
作为上述技术方案的进一步改进:所述隔热筒内设有环形石墨碳毡,所述密封件位于所述环形石墨碳毡的外周。
作为上述技术方案的进一步改进:所述环形石墨碳毡的内径由中部向两侧逐渐增加。
作为上述技术方案的进一步改进:所述隔热筒为磨砂石英筒。
作为上述技术方案的进一步改进:所述隔热筒外周套设有保护环,所述保护环端部与所述石英管端部抵接。
作为上述技术方案的进一步改进:所述第二密封法兰上设有尾气石墨筒,所述尾气石墨筒与所述隔热筒连通。
作为上述技术方案的进一步改进:所述第一密封法兰和第二密封法兰均为水冷法兰。
与现有技术相比,本发明的优点在于:本发明公开的碳化硅外延炉反应室,石英管外周的水冷夹套与第一密封法兰抵靠、接触,可通过水冷夹套内部的冷却水带走更多的尾气热量,降低第一密封法兰、密封件的温度,第二密封法兰内部设置隔热筒,隔热筒端部延伸至与石英管内的反应装置抵靠、接触,一方面可以防止反应装置的石墨端盖被尾气吹倒,另一方面可以对高温尾气进行有效隔离,阻隔高温尾气的热量传递至密封件,有利于防止密封件高温失效,整体结构简单、可靠。
【附图说明】
图1是本发明碳化硅外延炉反应室的结构示意图。
图中各标号表示:1、石英管;11、水冷夹套;12、反应装置;2、第一密封法兰;3、第二密封法兰;31、隔热筒;4、密封件;5、环形石墨碳毡;6、保护环;7、尾气石墨筒。
【具体实施方式】
以下结合说明书附图和具体实施例对本发明作进一步详细说明。
图1示出了本发明碳化硅外延炉反应室的一种实施例,本实施例的碳化硅外延炉反应室,包括石英管1、第一密封法兰2、第二密封法兰3以及密封件4,石英管1外周设有水冷夹套11且内部设有反应装置12,第一密封法兰2套设于石英管1外周并与水冷夹套11抵接,第二密封法兰3与第一密封法兰2相连,密封件4夹设于第一密封法兰2与第二密封法兰3之间,第二密封法兰3内设有隔热筒31,隔热筒31端部与反应装置12抵接。其中,密封件4例如可以是常用的O型密封圈等。
该碳化硅外延炉反应室,石英管1外周的水冷夹套11与第一密封法兰2抵靠、接触,可通过水冷夹套11内部的冷却水带走更多的尾气热量,降低第一密封法兰2、密封件4的温度,第二密封法兰3内部设置隔热筒31,隔热筒31端部(图1中为右端)延伸至与石 英管1内的反应装置12抵靠、接触,一方面可以防止反应装置12的石墨端盖被尾气吹倒,另一方面可以对高温尾气进行有效隔离,阻隔高温尾气的热量传递至外周的密封件4,有利于防止密封件4高温失效,整体结构简单、可靠。
进一步地,本实施例中,隔热筒31内设有环形石墨碳毡5,密封件4位于环形石墨碳毡5的外周。石墨碳毡具有优异的保温隔热性能,设于密封件4内侧的环形石墨碳毡5,能够进一步减少尾气热量传递至外侧的密封件4上。
作为优选的技术方案,本实施例中,环形石墨碳毡5的内径由中部向两侧逐渐增加。该种截面结构的环形石墨碳毡5,自身结构强度高,能够承受高温尾气的冲击,同时能够有效地减少尾气热量的传导。
作为优选的技术方案,本实施例中,隔热筒31为磨砂石英筒。磨砂石英筒耐高温、耐腐蚀、隔热性能好,能够进一步有效地减少尾气热量的传导。
进一步地,本实施例中,隔热筒31外周套设有保护环6,保护环6端部与石英管1端部抵接。保护环6可对隔热筒31进行保护,提高隔热筒31的使用寿命,同时也可作为第二层隔热结构,减少高温尾气的热量传递至第二密封法兰3。保护环6优选采用石英玻璃环,耐高温、耐腐蚀且隔热性能好。
进一步地,本实施例中,第二密封法兰3上设有尾气石墨筒7,尾气石墨筒7与隔热筒31连通。尾气石墨筒7可以利用其吸附、吸热性能,充分吸收未反应完全的工艺尾气以及热量,进一步降低尾气温度,减少排放后的尾气对后续真空管道和元器件的影响。
作为优选的技术方案,本实施例中,第一密封法兰2和第二密封法兰3均为水冷法兰,可以通过冷却水带走第一密封法兰2和第二密封法兰3的热量,从而保证密封件4两侧处于较低的温度。
虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (7)

  1. 一种碳化硅外延炉反应室,其特征在于:包括石英管(1)、第一密封法兰(2)、第二密封法兰(3)以及密封件(4),所述石英管(1)外周设有水冷夹套(11)且内部设有反应装置(12),所述第一密封法兰(2)套设于所述石英管(1)外周并与所述水冷夹套(11)抵接,所述第二密封法兰(3)与所述第一密封法兰(2)相连,所述密封件(4)夹设于第一密封法兰(2)与第二密封法兰(3)之间,所述第二密封法兰(3)内设有隔热筒(31),所述隔热筒(31)端部与所述反应装置(12)抵接。
  2. 根据权利要求1所述的碳化硅外延炉反应室,其特征在于:所述隔热筒(31)内设有环形石墨碳毡(5),所述密封件(4)位于所述环形石墨碳毡(5)的外周。
  3. 根据权利要求2所述的碳化硅外延炉反应室,其特征在于:所述环形石墨碳毡(5)的内径由中部向两侧逐渐增加。
  4. 根据权利要求1所述的碳化硅外延炉反应室,其特征在于:所述隔热筒(31)为磨砂石英筒。
  5. 根据权利要求1至4中任一项所述的碳化硅外延炉反应室,其特征在于:所述隔热筒(31)外周套设有保护环(6),所述保护环(6)端部与所述石英管(1)端部抵接。
  6. 根据权利要求1至4中任一项所述的碳化硅外延炉反应室,其特征在于:所述第二密封法兰(3)上设有尾气石墨筒(7),所述尾气石墨筒(7)与所述隔热筒(31)连通。
  7. 根据权利要求1至4中任一项所述的碳化硅外延炉反应室,其特征在于:所述第一密封法兰(2)和第二密封法兰(3)均为水冷法兰。
PCT/CN2021/098529 2021-02-01 2021-06-07 一种碳化硅外延炉反应室 WO2022160547A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110137060.8A CN112962140A (zh) 2021-02-01 2021-02-01 一种碳化硅外延炉反应室
CN202110137060.8 2021-02-01

Publications (1)

Publication Number Publication Date
WO2022160547A1 true WO2022160547A1 (zh) 2022-08-04

Family

ID=76272718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098529 WO2022160547A1 (zh) 2021-02-01 2021-06-07 一种碳化硅外延炉反应室

Country Status (2)

Country Link
CN (1) CN112962140A (zh)
WO (1) WO2022160547A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115745393A (zh) * 2022-11-30 2023-03-07 武汉光盛通光电科技有限公司 一种可旋转加热的稀土卤化物气化输送装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115573035A (zh) * 2021-07-06 2023-01-06 中国电子科技集团公司第四十八研究所 一种碳化硅高温氧化炉装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020108573A1 (en) * 1999-04-28 2002-08-15 Martin Buschbeck Chamber for chemical vapor deposition
US20040020436A1 (en) * 2000-11-07 2004-02-05 Johannes Kaeppeler CVD reactor with graphite-foam insulated, tubular susceptor
CN2730890Y (zh) * 2004-09-22 2005-10-05 中国科学院半导体研究所 水平式离子注入碳化硅高温退火装置
CN103628140A (zh) * 2013-10-09 2014-03-12 东莞市天域半导体科技有限公司 一种超高温双层水冷石英管真空室用双密封结构
CN109338333A (zh) * 2018-11-30 2019-02-15 湖南红太阳光电科技有限公司 一种管式lpcvd真空反应室
CN110331439A (zh) * 2019-07-22 2019-10-15 杭州弘晟智能科技有限公司 一种用于碳化硅外延的加热装置
CN111551037A (zh) * 2020-06-15 2020-08-18 青岛赛瑞达电子装备股份有限公司 一种两端带水冷的工艺管

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188204A (ja) * 1992-12-17 1994-07-08 Kokusai Electric Co Ltd 半導体基板反応炉
CN207038544U (zh) * 2017-05-26 2018-02-23 深圳市捷佳伟创新能源装备股份有限公司 一种低压扩散炉炉口隔热结构
CN111290071B (zh) * 2020-01-22 2021-07-20 华中科技大学 一种半导体芯光纤制备方法
CN212051727U (zh) * 2020-03-27 2020-12-01 无锡松煜科技有限公司 扩散炉工艺腔室炉口结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020108573A1 (en) * 1999-04-28 2002-08-15 Martin Buschbeck Chamber for chemical vapor deposition
US20040020436A1 (en) * 2000-11-07 2004-02-05 Johannes Kaeppeler CVD reactor with graphite-foam insulated, tubular susceptor
CN2730890Y (zh) * 2004-09-22 2005-10-05 中国科学院半导体研究所 水平式离子注入碳化硅高温退火装置
CN103628140A (zh) * 2013-10-09 2014-03-12 东莞市天域半导体科技有限公司 一种超高温双层水冷石英管真空室用双密封结构
CN109338333A (zh) * 2018-11-30 2019-02-15 湖南红太阳光电科技有限公司 一种管式lpcvd真空反应室
CN110331439A (zh) * 2019-07-22 2019-10-15 杭州弘晟智能科技有限公司 一种用于碳化硅外延的加热装置
CN111551037A (zh) * 2020-06-15 2020-08-18 青岛赛瑞达电子装备股份有限公司 一种两端带水冷的工艺管

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115745393A (zh) * 2022-11-30 2023-03-07 武汉光盛通光电科技有限公司 一种可旋转加热的稀土卤化物气化输送装置

Also Published As

Publication number Publication date
CN112962140A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2022160547A1 (zh) 一种碳化硅外延炉反应室
CN103628140B (zh) 一种超高温双层水冷石英管真空室用双密封结构
US20020096117A1 (en) Gas processing apparatus for object to be processed
CN202989354U (zh) 高温减压扩散炉
TWI710658B (zh) 用於SiC高溫氧化製程的製作腔室及熱處理爐
TW201032287A (en) Substrate support table of plasma processing device
CN113380672A (zh) 半导体热处理设备
JP5080043B2 (ja) 半導体装置の製造方法、半導体装置の製造用治具、および半導体装置の製造装置
JP7126027B2 (ja) チャンバーシールアセンブリ及び成長炉
CN102131964B (zh) 制造氮化物半导体晶体的装置、制造氮化物半导体晶体的方法和氮化物半导体晶体
JP2004214283A (ja) 半導体製造装置
US20020000547A1 (en) Silicon/graphite composite ring for supporting silicon wafer, and dry etching apparatus equipped with the same
CN100395373C (zh) 化学气相淀积的生长设备
JP2008262959A (ja) 輻射熱遮熱体及び熱処理装置
JP5656400B2 (ja) 真空熱処理装置および半導体デバイスの製造方法
JP2715645B2 (ja) 半導体閉管拡散方法および閉管拡散装置
JP2006269820A (ja) 半導体熱処理炉用炉心管
CN2527923Y (zh) 太阳能热利用设备保温管
JP2008187067A (ja) 熱処理装置、遮熱用真空バッファー体及び遮熱板
CN218673168U (zh) 一种高温纯化炉铜电极绝缘保护结构
JP2003178991A (ja) 処理チャンバ内のシールを断熱する装置及び方法
CN216793623U (zh) 一种应用于低压扩散炉的石英炉管
JP2686465B2 (ja) 熱処理装置
JPH03208334A (ja) 半導体装置製造装置
CN212299926U (zh) 一种间接加热装置和热处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922145

Country of ref document: EP

Kind code of ref document: A1