WO2022158568A1 - 塗布液及びその製造方法、膜付基材の製造方法 - Google Patents

塗布液及びその製造方法、膜付基材の製造方法 Download PDF

Info

Publication number
WO2022158568A1
WO2022158568A1 PCT/JP2022/002186 JP2022002186W WO2022158568A1 WO 2022158568 A1 WO2022158568 A1 WO 2022158568A1 JP 2022002186 W JP2022002186 W JP 2022002186W WO 2022158568 A1 WO2022158568 A1 WO 2022158568A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating liquid
film
weight
titanium oxide
dispersion
Prior art date
Application number
PCT/JP2022/002186
Other languages
English (en)
French (fr)
Inventor
夕子 箱嶋
宏忠 荒金
良 村口
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to JP2022548251A priority Critical patent/JP7169493B1/ja
Publication of WO2022158568A1 publication Critical patent/WO2022158568A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/10Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Definitions

  • the present invention relates to a coating liquid for forming a thick film with a high refractive index on a substrate.
  • Patent Document 2 It is also known to prepare a coating liquid for forming a high refractive index film using a resin having an adamantane skeleton with a high refractive index (see Patent Document 2, for example).
  • JP 2016-194008 A Japanese Patent Publication No. 2019-510119
  • a high refractive index film can be formed on a substrate using the coating liquid of Patent Document 1.
  • the coating film tends to shrink during film formation, a thick film of 150 nm or more cannot be formed.
  • the coating liquid of Patent Document 2 contains a resin with a high refractive index, the density of the formed film is low, so only a refractive index of about 1.7 can be obtained.
  • An object of the present invention is to provide a coating liquid with a high refractive index and capable of forming a thick film.
  • the ratio of these components in the solid content is preferably 50 to 75% by weight for the titanium-containing oxide, 10 to 35% by weight for the adamantane derivative, and 10 to 25% by weight for the organic binder.
  • the organic binder preferably has an alkoxy group.
  • the method for producing the coating liquid includes a step of preparing a dispersion of the titanium-containing oxide (preparing step), and a step of mixing the dispersion of the titanium-containing oxide and an organic binder to prepare a mixture (mixing step). , and a step of adding an adamantane derivative (adding step).
  • the coating liquid of the present invention contains a titanium-containing oxide (hereinafter referred to as titanium oxide), an organic binder and an adamantane derivative.
  • titanium oxide titanium-containing oxide
  • organic binder organic binder
  • adamantane derivative a film in which the adamantane derivative and the organic binder are densely packed around the titanium oxide is formed. That is, since the film becomes dense, the density of the film increases. Therefore, the refractive index and transparency of the film are increased.
  • the refractive index of titanium oxide Since the refractive index of titanium oxide is high, the refractive index of the film increases when the titanium oxide is 50% by weight or more of the solid content contained in the coating liquid. If the titanium oxide is 75% by weight or less of the solids contained in the coating liquid, the titanium oxide is easily dispersed in the coating liquid and the film.
  • the organic binder is 25% by weight or less of the solid content in the coating liquid, the content of titanium oxide and adamantane derivative is relatively high. Titanium oxide and adamantane derivatives have a higher refractive index than the organic binder, so a high content of these will increase the refractive index of the film.
  • the organic binder accounts for 10% by weight or more of the solid content in the coating liquid, the compatibility between the titanium oxide and the adamantane derivative is enhanced. Therefore, the titanium oxide is easily dispersed in the coating liquid. Therefore, the film is easily formed in a state in which the titanium oxide is dispersed, and the titanium oxide can be uniformly present in the film. As a result, the film becomes more transparent. Also, when a film is formed in a state where titanium oxide is dispersed, voids in the film are reduced as compared with the case where titanium oxide is agglomerated, so the film becomes denser.
  • the solid content of the coating liquid is 50 to 75% by weight
  • the adamantane derivative is 10 to 35% by weight
  • the organic binder is 10 to 25% by weight
  • a component with a high refractive index titanium oxide and adamantane derivative
  • titanium oxide easily disperses in the coating solution or film.
  • the content of titanium oxide is 2.5 to 4.0, and the content of adamantane derivative is 0.5 to 1.5. If it is in the range of , the film will be dense. In particular, it is preferable that the content of titanium oxide is in the range of 3.0 to 3.5 and the content of adamantane derivative is in the range of 0.8 to 1.3.
  • the solid content in the coating liquid When the solid content in the coating liquid is 5% by weight or more, it becomes easier to form a thick film of 150 nm or more with a uniform thickness. 10% by weight or more is more preferable. Further, when the solid content in the coating liquid is 50% by weight or less, the titanium oxide tends to disperse in the film. 45% by weight or less is more preferable.
  • the organic binder has an alkoxy group
  • compatibility with titanium oxide increases. Further, the alkoxy group is hydrolyzed in the coating liquid to undergo a dehydration condensation reaction with the OH group of the titanium oxide (hereinafter, hydrolysis and dehydration condensation are collectively referred to as coupling reaction). That is, titanium oxide chemically bonds with the organic binder. Therefore, the film becomes dense. Also, the hardness of the film increases. Since the titanium oxide chemically bonded to the organic binder has high compatibility with the adamantane derivative and the organic solvent, it is easily dispersed in the coating liquid and the film.
  • the organic binder is easily hydrolyzed. That is, it easily undergoes a coupling reaction with titanium oxide. Further, when a catalyst that promotes hydrolysis of the alkoxy group is added to the coating liquid, the coupling reaction is facilitated.
  • the organic binder When the organic binder has two or more alkoxy groups, the organic binder that has not undergone coupling reaction (unreacted organic binder) in the coating liquid is polymerized. As a result, oligomers of the organic binder are formed. The oligomers are believed to have a polarity intermediate between titanium oxides and adamantane derivatives. When such an oligomer is contained in the coating liquid, the solid content is easily dispersed in the coating liquid, resulting in a dense film. At this time, if an organic binder having 2 to 3 alkoxy groups is used, the compatibility between the titanium oxide and the adamantane derivative is enhanced. Therefore, the solid content is easily dispersed in the film during film formation. In particular, when an organic binder having three alkoxy groups is used, the oligomer becomes moderately polar. Therefore, the compatibility between the titanium oxide and the adamantane derivative is enhanced.
  • the compatibility between the titanium oxide and the adamantane derivative increases.
  • the amount of the monomer is 10% or less of the total amount of the unreacted organic binder, the organic binder is difficult to volatilize during film formation, and a dense film can be formed.
  • the molecular weight of the oligomer is 5000 or less, the strength of the film and the adhesion of the film to the substrate are increased.
  • the molecular weight is in the range of 500 to 5000, the compatibility between the titanium oxide and the adamantane derivative is high. More preferably, the molecular weight ranges from 1,500 to 4,000.
  • the organic binder having an alkoxy group further has a (meth)acrylate group
  • the (meth)acrylate groups will bond together when irradiated with ultraviolet rays, so the film can be cured at a low temperature.
  • the (meth)acrylate groups of the organic binder are bonded to the (meth)acrylate groups of other solids during curing, resulting in a dense film.
  • Oligomers formed from organic binders with alkoxy groups have multiple (meth)acrylate groups. Upon curing, such oligomers combine with multiple solids, resulting in a denser film.
  • the organosilicon compound can be represented by the general formula (RO) m Si(Y) 4-m .
  • R is Me or Et.
  • m represents an integer of 1 to 4;
  • Y is an organic compound having a (meth)acrylate group.
  • the adamantane derivative of the monomer When the adamantane derivative of the monomer is used, the adamantane derivative can be polymerized with the solid content in the coating liquid, so a denser film can be obtained. Also, monomers are more likely to shrink than oligomers or polymers during curing. Therefore, the film becomes dense.
  • the adamantane derivative has two or more (meth)acrylate groups in the molecule, it can be polymerized with other solids having two or more (meth)acrylate groups.
  • an adamantane derivative having two (meth)acrylate groups has less steric hindrance than three or more (meth)acrylate groups. Therefore, when such an adamantane derivative is used, the film becomes dense.
  • (meth)acrylate groups are bonded to the 1- and 3-positions of the adamantane skeleton, the steric hindrance of the adamantane derivative is further reduced.
  • adamantane derivative does not have a substituent other than a (meth)acrylate group, steric hindrance is reduced. Moreover, when the molecular weight of the adamantane derivative is 350 or less, steric hindrance is reduced.
  • a precursor of titanium oxide may be contained in the coating liquid instead of titanium oxide.
  • precursors include monomers and oligomers.
  • the precursor is titanium alkoxide, it will be hydrolyzed and condensed when the coating film is heated and dried to form titanium oxide. Since the organic binder having an alkoxy group hydrolyzes and condenses with titanium alkoxide, the film becomes dense.
  • the coating liquid contains an organic solvent
  • the solid content tends to disperse in the coating liquid.
  • Such a coating liquid can be easily applied to the substrate.
  • the content of the organic solvent is 50% by weight or more
  • the titanium oxide is easily dispersed in the coating liquid or the film. More preferably, the content is 60% by weight or more.
  • the content of the organic solvent is 95% by weight or less, it becomes easy to form a film having a thickness of 150 nm or more with a uniform thickness. 90% by weight or less is more preferable.
  • the coating liquid can be dried slowly. Therefore, the titanium oxide is easily dispersed uniformly in the film.
  • the coating liquid can be dried at a low temperature of substantially 120° C. or less in a few minutes, thereby increasing productivity.
  • the organic solvent has an ester bond, an ether bond, or a ketone group
  • the adamantane derivative can be dispersed in the coating liquid, and the surface of the film becomes smooth. If the organic solvent has two or more of these bonds or functional groups, the solid content will be more easily dispersed in the coating liquid. Two or more of the same type may be used, or one or more of each of two different types may be used. Organic solvents having three are more preferred.
  • organic solvents examples include propylene glycol monomethyl ether (PGME) and propylene glycol monomethyl ether acetate (PGMEA). Among them, PGMEA is preferable.
  • Curing agents and surface conditioners are added to the coating liquid as necessary.
  • the curing agent is a photopolymerization initiator
  • the film can be formed at a low temperature.
  • an acylphosphine oxide-based photopolymerization initiator is used, curing of the film proceeds efficiently and the film becomes dense.
  • the content of the photopolymerization initiator is 2 parts by mass or more with respect to 100 parts by mass of the adamantane derivative, the curing reaction proceeds easily and the hardness of the film increases.
  • the content is 10 parts by mass or less, the ratio of excess polymerization initiator decreases, so polymerization proceeds efficiently.
  • the coating liquid does not contain solids other than titanium oxide, organic binders, adamantane derivatives, and curing agents, the film tends to be dense. At this time, these may include those that have changed over time.
  • the titanium oxide will be described in detail below.
  • the crystal structure of titanium oxide may be anatase, rutile, brookite, or amorphous. A plurality of crystals may be mixed. A portion of the titanium oxide may be amorphous.
  • the titanium oxide contains 80% by weight or more of titanium oxide in terms of TiO 2 concentration, the refractive index of the film increases. 90% by weight or more is more preferable, and 95% by weight or more is even more preferable.
  • particulate titanium oxide When the titanium oxide is particulate (hereinafter, particulate titanium oxide is simply referred to as particles), the film tends to be dense. Moreover, it is easy to form a thick film.
  • the crystallite diameter is preferably 1 nm or more, more preferably 5 nm or more.
  • the haze of the film becomes low. 50 nm or less is more preferable.
  • the particle diameter of the particles is 100 nm or less, the haze of the film becomes low.
  • the particles contain an inorganic component other than titanium oxide, they will be easily dispersed in the coating liquid.
  • inorganic components such as alumina, silica, zirconia, and tin oxide are contained in the particles in an amount of 0.5 to 10.0% by weight in terms of Al 2 O 3 , SiO 2 , ZrO 2 , and SnO 2 , respectively
  • the particles are added to the coating liquid. easily dispersed.
  • a range of 0.5 to 6.0% by weight is more preferred.
  • titanium oxide containing 1 to 3% by weight of tin oxide in terms of SnO 2 tends to form particles.
  • particles containing 0.5 to 1.5% by weight of alumina in terms of Al 2 O 3 easily disperse in the solvent.
  • the particles when the particles are treated with 1 to 30 parts by mass of a surface treatment agent with respect to 100 parts by mass of the particles, the particles become easier to disperse in the organic solvent. More preferably, the particles are treated with 5 to 22 parts by mass of the surface treatment agent.
  • the surface treatment agent having an alkoxy group easily undergoes a coupling reaction with the particle surface, the particles are easily dispersed in the organic solvent. The more alkoxy groups, the more likely the coupling reaction will occur on the particle surface. Surface treatment agents having 3 to 4 alkoxy groups are preferred, and surface treatment agents having 4 alkoxy groups are more preferred.
  • the alkoxy group is a methoxy group or an ethoxy group, it is easily hydrolyzed. That is, the smaller the molecular weight of the alkyl group in the alkoxy group, the easier the hydrolysis of the alkoxy group.
  • Examples of surface treatment agents include silicon compounds, titanium compounds, zirconium compounds, and aluminum compounds.
  • the surface treatment agent can be represented by the general formula (RO) n M(X) 4-n .
  • n is an integer of 1-4.
  • M represents either Si, Ti, Zr or Al.
  • R is Me or Et.
  • the surface treatment agent is a silicon compound, it is industrially easy to handle.
  • a dispersion of titanium oxide is prepared (preparation step).
  • a dispersion of titanium oxide and an organic binder are mixed to prepare a mixture (mixing step).
  • An organic binder may be mixed in the preparation step.
  • a coating liquid is obtained by adding an adamantane derivative to the mixture (adding step).
  • a dispersion of titanium oxide is prepared.
  • a dispersion of titanium-containing oxide particles (hereinafter referred to as titanium oxide particles) was prepared.
  • a compound containing titanium is neutralized in an aqueous solution to prepare a slurry.
  • the prepared slurry can be washed with water to remove excess salt.
  • a hydrogen peroxide solution is added to the slurry to prepare an aqueous peroxotitanic acid solution. After that, it is preferable to carry out a dealkalization treatment.
  • a dispersion of titanium oxide particles having a crystallite size of several nanometers to several tens of nanometers can be obtained.
  • Grain growth can be controlled by adding an inorganic component other than titanium oxide before heating.
  • the particles are easily dispersed in the coating liquid.
  • the amount of the inorganic component to be added is preferably an amount corresponding to the concentration of the inorganic component in the particles described above. By reducing the amount added, the proportion of titanium oxide in the particles can be increased.
  • the prepared dispersion of titanium oxide may further contain an oxide other than titanium oxide.
  • the surface of the particles can be treated by adding the surface treating agent to the dispersion of the particles.
  • the surface-treated particles are easier to disperse in organic solvents.
  • the treatment amount of the surface treatment agent is 20 to 85 parts by mass with respect to 100 parts by mass of the particles (3 to 30 parts by mass in terms of oxide ⁇ in terms of SiO2 if the surface treatment agent is a silicon compound ⁇ ). is easily dispersed in organic solvents.
  • a surface treatment agent When a surface treatment agent is added to an aqueous dispersion of particles, aggregation of the surface treatment agent is suppressed by adding an organic solvent. Therefore, the surfaces of the particles are easily uniformly treated with the surface treatment agent. At this time, if the organic solvent to be added is alcohol, aggregation of the surface treatment agent is further suppressed. Also, alcohol is easily mixed with water.
  • the solvent of the dispersion is an organic solvent
  • the aggregation of the organic binder that is mixed later is suppressed.
  • the solvent of the titanium oxide dispersion is water
  • the organic solvent is alcohol
  • a replacement method a method of removing water (dehydrating) after adding an organic solvent can be mentioned. Methods of dehydration include methods such as ultrafiltration and distillation.
  • the titanium oxide is particles, the solvent is easily replaced if the particles are treated with a surface treatment agent.
  • a dispersion liquid of the precursor of titanium oxide may be prepared and used for preparing the coating liquid.
  • ⁇ Mixing process> In this step, a dispersion of titanium oxide and an organic binder are mixed to prepare a mixture. At this time, by using an organic binder having an alkoxy group, the organic binder can undergo a coupling reaction with titanium oxide. The compatibility between the titanium oxide that has undergone the coupling reaction and the organic solvent is high. Unreacted organic binders are hydrolyzed and condensed to form oligomers. When the oligomer is contained in the coating liquid, the compatibility between the titanium oxide and the organic solvent is further enhanced.
  • the hydrolysis reaction proceeds by maintaining the temperature of the mixture at 40°C or higher.
  • the holding temperature is preferably 45°C or higher.
  • holding for 1 hour or more facilitates the progress of the reaction.
  • the retention time is preferably 10 hours or longer, more preferably 15 hours or longer.
  • stirring the mixture facilitates uniform condensation reaction of the organic binder with the surface of the titanium oxide.
  • the solvent is alcohol, if the mixture is kept at 60° C. or less, the solvent is difficult to evaporate.
  • the organic binder has an alkoxy group
  • adding a catalyst, water, etc. to the mixture accelerates the hydrolysis reaction of the organic binder. If the catalyst does not easily remain in the film after film formation, the density of the film increases.
  • the hydrolysis reaction is preferably carried out on the alkali side rather than the acid side. Ammonia is suitable as a catalyst that hardly remains and can promote the hydrolysis reaction on the alkaline side.
  • the amount of the organic binder mixed with 100 parts by mass of titanium oxide is 10 parts by mass or more, the titanium oxide is easily dispersed in the organic solvent. 20 parts by mass or more is more preferable, and 30 parts by mass or more is even more preferable.
  • the amount of organic binder mixed with 100 parts by mass of titanium oxide is 50 parts by mass or less, the proportion of titanium oxide in the film increases. 40 parts by mass or less is more preferable.
  • 100 parts by mass is the amount including the surface treatment agent.
  • the adamantane derivative can be dispersed in the organic solvent.
  • the stability of the film formation is enhanced, so that a uniform, dense and smooth surface film can be easily obtained.
  • PGMEA is suitable as such an organic solvent.
  • a coating liquid is obtained by adding an adamantane derivative to the mixture. After the addition, it is preferable to sufficiently stir using an ultrasonic device or the like. Moreover, it is preferable to add a photopolymerization initiator after the addition. Moreover, in this step, a resin other than the adamantane derivative may be further added. At this time, the order of addition does not matter.
  • a substrate with a film can be produced by applying the coating liquid described above onto the substrate.
  • the coating liquid is dried and cured to obtain the base material with the film.
  • coating methods include spin coating, bar coating, gravure coating, and slit coating.
  • drying means volatilizing and removing the solvent. If the drying temperature is 60°C or higher, the drying time will be shortened. Also, the solvent hardly remains in the film. Therefore, a dense film can be obtained. On the other hand, if the drying temperature is 120° C. or less, the base material is difficult to deform. Moreover, it is industrially easy to handle. The drying temperature is more preferably 100° C. or lower, more preferably 80° C. or lower. If the coating film is dried and then cured, production efficiency increases.
  • a dispersion of titanium oxide particles was prepared as follows. 900 g of an aqueous titanium tetrachloride solution containing 2% by weight of titanium tetrachloride in terms of TiO 2 and 352 g of 15% by weight ammonia water were mixed to prepare a white slurry having a pH of 8.6. After filtering this slurry, it was washed with pure water to obtain 360 g of a cake having a solid concentration of 5% by weight. To 360 g of this cake, 411.2 g of 35% by weight hydrogen peroxide solution and 128.8 g of pure water were added to obtain slurry again. By heating this slurry at 80° C.
  • silica sol manufactured by Nikki Shokubai Kasei Co., Ltd.: Cataloid (registered trademark) SN-350
  • aqueous solution was held at 165° C. for 18 hours using an autoclave.
  • the aqueous solution was cooled to room temperature, it was concentrated using an ultrafiltration membrane apparatus to obtain 209.1 g of an aqueous dispersion of titanium oxide having a solid content of 10% by weight.
  • Table 1 shows the composition of the prepared titanium oxide (ratio of inorganic components added).
  • Alkaline components were removed by adding a cation exchange resin (Mitsubishi Chemical Co., Ltd.) to water glass containing 2% by weight of sodium silicate in terms of SiO 2 concentration. After that, the ion exchange resin was separated to obtain a silicic acid aqueous solution of 2% by weight as SiO 2 .
  • a cation exchange resin Mitsubishi Chemical Co., Ltd.
  • aqueous dispersion After adding 640 g of pure water to 160 g of an aqueous dispersion of titanium oxide, the aqueous dispersion was heated to 90°C. This aqueous dispersion, 53.4 g of an aqueous zirconic acid peroxide solution, and 42.4 g of an aqueous silicic acid solution were mixed to obtain a mixture. This mixed solution was stirred at 90° C. for 1 hour and then kept at 165° C. for 18 hours using an autoclave. After the mixed solution was cooled to room temperature, it was concentrated using an ultrafiltration membrane apparatus to obtain 195.2 g of an aqueous dispersion of titanium oxide having a solid content of 10% by weight.
  • a cation exchange resin was added (dealkalized) to 195.2 g of this aqueous dispersion.
  • the ion exchange resin was then separated.
  • 210.1 g of a methanol solution containing 14.9 g of tetraethoxysilane (manufactured by Tama Kagaku Co., Ltd.) having an SiO 2 equivalent concentration of 28.8% by weight dissolved therein the mixture was stirred at 50° C. for 1 hour. After cooling this dispersion to room temperature, the solvent was replaced with methanol using an ultrafiltration membrane. Thereafter, by concentrating the dispersion, 119.2 g of a methanol dispersion of titanium oxide having a solid content concentration of 20% by weight and having a silica layer was obtained. This methanol dispersion was used as a titanium oxide dispersion.
  • the titanium oxide dispersion and the organic binder were mixed. Specifically, a mixture is prepared by mixing 100 g of a methanol dispersion of titanium oxide and 3.68 g of 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: KBM-503) as an organic binder. did. The mixture was stirred at 50° C. for 19 hours. After cooling the mixture to room temperature, the solvent in the mixture was replaced with PGMEA using a rotary evaporator to obtain 103.7 g of a mixture having a solid concentration of 20% by weight.
  • PGMEA 3-methacryloxypropyltrimethoxysilane
  • an adamantane derivative was added to prepare a coating liquid.
  • a coating liquid was prepared by adding and stirring 0.36 g of 2,4,6-trimethylbenzoyl)-phenylphosphine oxide (manufactured by IGM Resins B.V.: OMNIRAD (registered trademark) TPO-H).
  • Table 1 A summary of the conditions for preparing the coating liquid is shown in Table 1.
  • a substrate with a transparent film glass substrate
  • a transparent film-coated substrate silicon wafer
  • Table 2 shows the measurement results and evaluation results.
  • transparent film-attached substrates were produced in the same manner, and measured and evaluated.
  • the coating liquid was applied to a glass substrate (made by Hamashin Co., Ltd.: FL glass, thickness: 3 mm, refractive index: 1.51) by a spin coating method. After drying this coating solution at 80° C. for 2 minutes, a high-pressure mercury lamp (manufactured by GS Yuasa: EYEUVMETER) was used to irradiate this coating solution with ultraviolet light under the conditions of 3000 mJ/cm 2 to form a transparent film. A substrate (glass substrate) was prepared.
  • the uncoated glass substrate had a total light transmittance of 99.0% and a haze of 0.1%.
  • the coating liquid was applied to a silicon wafer (manufactured by Matsuzaki Manufacturing Co., Ltd.: 6-inch dummy wafer (P type), thickness: 625 ⁇ m) by spin coating. After drying this coating liquid at 80° C. for 2 minutes, this coating liquid was irradiated with ultraviolet light under the condition of 3000 mJ/cm 2 using an EYEUVMETER to prepare a base material (silicon wafer) with a transparent film. Using spectroscopic ellipsometry (manufactured by Japan Semilab Co., Ltd.: SE-2000), the refractive index and film thickness of the transparent film-attached substrate (silicon wafer) were evaluated.
  • Example 2 A white slurry having a pH of 9.2 was prepared by mixing 2000 g of an aqueous titanium tetrachloride solution containing 7.5% by weight of titanium tetrachloride in terms of TiO 2 and 2000 g of 7.5% by weight of aqueous ammonia. This slurry was filtered and washed with pure water to obtain 1500 g of a cake having a solid content of 10% by weight. 1500 g of this cake was diluted with pure water to 1.5% by weight. After adding 1714 g of 35% by weight hydrogen peroxide water to this cake, it was held at 80° C.
  • a coating liquid was prepared in the same manner as in Example 1, except that in the addition step, the mixture prepared in this example was used and Diapurest ADTM manufactured by Mitsubishi Gas Chemical Company, Inc. was used as the adamantane derivative.
  • Example 3 A coating solution was prepared in the same manner as in Example 2, except that DIAPUREST HADDM manufactured by Mitsubishi Gas Chemical Company, Inc. was used as the adamantane derivative in the addition step.
  • a white slurry having a pH of 8.6 was prepared by mixing 4500 g of an aqueous titanium tetrachloride solution containing 2% by weight of titanium tetrachloride in terms of TiO 2 and 450 g of 15% by weight of ammonia water. This slurry was filtered and washed with pure water to obtain 900 g of a cake having a solid content of 10% by weight. After 900 g of this cake was diluted with pure water to 1.5% by weight and slurried, 1029 g of 35% by weight hydrogen peroxide solution was added to the slurry. By holding this slurry at 80° C.
  • a cation exchange resin was added (dealkalization) to 9000 g of this aqueous solution. After separating the ion exchange resin, 91 g of 1% by weight sodium aluminate aqueous solution was added to the aqueous solution and the aqueous solution was stirred. This aqueous solution was held at 155° C. for 18 hours using an autoclave. After cooling this aqueous solution to room temperature, it was concentrated using an ultrafiltration membrane apparatus to obtain 2275 g of an aqueous dispersion of titanium oxide having a solid concentration of 4% by weight.
  • this aqueous dispersion was stirred at 50° C. for 18 hours to obtain a water/methanol dispersion of titanium oxide.
  • This dispersion was cooled to room temperature, and the solvent of this dispersion was replaced with methanol using an ultrafiltration membrane. By concentrating this dispersion, 555.8 g of a methanol dispersion of titanium oxide having a solid concentration of 20% by weight was obtained.
  • Example 5 A coating solution was prepared in the same manner as in Example 4, except that in the adding step, the amount of the adamantane derivative added was changed to 14.0 g and the amount of the photopolymerization initiator added was changed to 0.84 g.
  • Example 6 To 500 g of the methanol dispersion of titanium oxide of Example 2, 10.0 g of 5% aqueous ammonia was added. After adding 29.9 g of 3-phenyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: KBM-103), the dispersion was stirred at 50° C. for 18 hours. After cooling this dispersion to room temperature, the solvent of this dispersion was replaced with PGMEA using a rotary evaporator to obtain 529.9 g of a mixture having a solid concentration of 20% by weight.
  • 3-phenyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.: KBM-103
  • a coating liquid was prepared in the same manner as in Example 1, except that the mixture prepared in this example was used in the addition step.
  • Example 7 An aqueous dispersion of titanium oxide was obtained in the same manner as in Example 2, except that the potassium stannate aqueous solution was not added and the addition amount of the 1% by weight sodium aluminate aqueous solution was changed to 152 g. However, the amount of the aqueous dispersion of titanium oxide after ultrafiltration was 3788 g.
  • the solid content concentration was 20% by weight in the same manner as in Example 2, except that 17 g of 5% aqueous ammonia was added to 824 g of the methanol dispersion of titanium oxide of this example, and then 49 g of KBM-503 was mixed. 873 g of a mixture of
  • Example 8 Example except that the mixture of Example 4 with a solid content concentration of 20% by weight was used in the addition step, and that the polymerization initiator was changed to 1-hydroxycyclohexylphenyl ketone (manufactured by IGM Resins B.V.: OMNIRAD184). A coating liquid was prepared in the same manner as in 1.
  • Example 9 A coating solution was prepared in the same manner as in Example 4, except that in the addition step, the amount of the adamantane derivative mixed was changed to 8.0 g, and the amount of the photopolymerization initiator added was changed to 0.48 g.
  • Example 10 A coating solution was prepared in the same manner as in Example 1, except that the mixture of Example 2 with a solid content concentration of 20% by weight was used in the addition step.
  • [Comparative Example 1] 403.71 g of methyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: KBM-13) having an SiO 2 equivalent concentration of 44.1% by weight and a solvent (manufactured by Nippon Alcohol Sales Co., Ltd.: Solmix (registered trademark) AP-11) 1061. 55 g were mixed to prepare a mixed liquid. The mixture was stirred for 30 minutes. 322.92 g of 0.1% by weight nitric acid was added to this mixed solution over 30 minutes while stirring. It was then stirred for an additional 30 minutes. The pH of the mixed solution at this time was 2.0.
  • a substrate with a transparent film (glass substrate) was formed as follows, and the total light transmittance and haze were measured. Also, a base material (silicon wafer) with a transparent film was formed in the same manner, and the refractive index and film thickness were evaluated. Table 2 shows the measurement results and evaluation results.
  • This coating liquid was applied onto a glass substrate by a flexographic printing method. After that, this coating liquid was dried at 90° C. for 5 minutes. After irradiating this coating liquid with ultraviolet rays (wavelength: 365 nm) at 3000 mJ/cm 2 , this coating liquid was heated at 230° C. for 30 minutes to prepare a substrate with a transparent film (glass substrate). Using NDH-5000, the total light transmittance and haze of the transparent film-coated substrate (glass substrate) were measured. The uncoated glass substrate had a total light transmittance of 99.0% and a haze of 0.1%.
  • the coating liquid was applied onto a silicon wafer by a flexographic printing method. After that, this coating liquid was dried at 90° C. for 5 minutes. After irradiating this coating liquid with ultraviolet rays (wavelength: 365 nm) at 3000 mJ/cm 2 , this coating liquid was heated at 230° C. for 30 minutes to prepare a base material (silicon wafer) with a transparent film. SE-2000 was used to evaluate the refractive index and film thickness of the base material (silicon wafer) with a transparent film.
  • Example 2 A coating liquid was prepared in the same manner as in Example 1, except that the adamantane derivative was not mixed in the addition step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

基材上に高屈折率で、厚い膜を形成できる塗布液を提供する。本発明によれば、チタン含有酸化物と、有機バインダーと、アダマンタン誘導体とを含む塗布液を用いて、基材上に膜を形成する。この塗布液は、チタン含有酸化物が固形分中で50~75重量%含まれ、アダマンタン誘導体が固形分中で10~35重量%含まれ、有機バインダーが固形分中で10~25重量%含まれることが好ましい。また、アルコキシ基を持つ有機バインダーを用いることが好ましい。

Description

塗布液及びその製造方法、膜付基材の製造方法
 本発明は、基材上に高屈折率の厚膜を形成するための塗布液に関する。
 従来から、メガネ、レンズ、タッチパネル等に高屈折率膜が利用されている。このような膜を形成するために、屈折率の高いチタニア粒子を含有した塗布液が用いられている。さらに、チタンアルコキシドとシランアルコキシドを含有する塗布液を用いて、クラックの生じ難い高屈折率膜を形成することが知られている(例えば、特許文献1を参照)。
 また、屈折率の高いアダマンタン骨格を有する樹脂を用いて高屈折率膜形成用の塗布液を調製することが知られている(例えば、特許文献2を参照)。
特開2016-194008号公報 特表2019-510119号公報
 特許文献1の塗布液を用いて、基材上に高屈折率膜を形成できる。しかし、成膜時に塗膜が収縮し易いため、150nm以上の厚膜を形成することができない。また、膜を硬化する際に、高温(300℃以上)で加熱する必要があるため、基材が歪み易い。
 特許文献2の塗布液は屈折率の高い樹脂を含んでいるものの、形成される膜の密度が低いため、1.7程度の屈折率しか得られない。
 本発明の目的は、高屈折率で、厚い膜を形成可能な塗布液を提供することにある。
 そこで、チタン含有酸化物と、有機バインダーと、アダマンタン誘導体とを含む塗布液を用いて、基材上に膜を形成することとした。また、固形分中でのこれらの成分の比率について、チタン含有酸化物は50~75重量%、アダマンタン誘導体は10~35重量%、有機バインダーは10~25重量%が好ましい。また、有機バインダーはアルコキシ基を有することが好ましい。
 また、塗布液の製造方法は、チタン含有酸化物の分散液を準備する工程(準備工程)と、チタン含有酸化物の分散液と有機バインダーを混合し、混合物を調製する工程(混合工程)と、アダマンタン誘導体を添加する工程(添加工程)と、を備えている。
 本発明の塗布液は、チタン含有酸化物(以下、チタン酸化物と記す)、有機バインダーとアダマンタン誘導体を含んでいる。このような塗布液を用いると、アダマンタン誘導体と有機バインダーがチタン酸化物の周りに密に充填された膜が形成される。すなわち、膜が緻密になるため、膜の密度が高くなる。そのため、膜の屈折率と透明性が高くなる。
 チタン酸化物の屈折率が高いため、塗布液に含まれる固形分のうち、チタン酸化物が50重量%以上であると、膜の屈折率が高くなる。塗布液に含まれる固形分のうち、チタン酸化物が75重量%以下であると、チタン酸化物が塗布液や膜中に分散し易い。
 塗布液に含まれる固形分のうち、有機バインダーが25重量%以下であると、相対的にチタン酸化物とアダマンタン誘導体の含有量が多くなる。チタン酸化物とアダマンタン誘導体は有機バインダーより屈折率が高いので、これらの含有量が多いと、膜の屈折率が高くなる。一方、塗布液に含まれる固形分のうち、有機バインダーが10重量%以上であると、チタン酸化物とアダマンタン誘導体の相溶性が高くなる。そのため、チタン酸化物が塗布液に分散し易い。そのため、チタン酸化物が分散した状態で膜が形成され易く、膜中でチタン酸化物が均一に存在できる。その結果、膜の透明性が高くなる。また、チタン酸化物が分散された状態で膜が形成されると、チタン酸化物が凝集する場合よりも、膜中にボイドが少なくなるため、膜が緻密になる。
 特に、塗布液に含まれる固形分のうち、チタン酸化物が50~75重量%、アダマンタン誘導体が10~35重量%、有機バインダーが10~25重量%だと、屈折率の高い成分(チタン酸化物とアダマンタン誘導体)の含有量が多いうえ、チタン酸化物が塗布液や膜に分散し易い。
 塗布液の固形分において、有機バインダーの含有量(重量)を1としたときの、チタン酸化物の含有量が2.5~4.0、アダマンタン誘導体の含有量が0.5~1.5の範囲にあると、膜が緻密になる。特に、チタン酸化物の含有量が3.0~3.5、アダマンタン誘導体の含有量が0.8~1.3の範囲にあることが好ましい。
必要に応じて、他の固形分(酸化物や樹脂〔モノマー、オリゴマー、ポリマー〕、添加剤〔硬化剤や表面調整剤〕)を添加しても構わない。これらを添加する場合に、チタン酸化物、アダマンタン誘導体や有機バインダーが上記濃度の範囲にあると、膜が緻密になる。
 塗布液中の固形分が5重量%以上だと、150nm以上の厚膜を均一な厚さで成膜し易くなる。10重量%以上がより好ましい。また、塗布液中の固形分が50重量%以下だと、膜中にチタン酸化物が分散し易い。45重量%以下がより好ましい。
 有機バインダーがアルコキシ基を有すると、チタン酸化物との相溶性が高くなる。さらに、塗布液中でアルコキシ基は加水分解し、チタン酸化物のOH基と脱水縮合反応(以下、加水分解と、脱水縮合を合わせてカップリング反応と称す)する。すなわち、チタン酸化物が有機バインダーと化学結合する。そのため、膜が緻密になる。また、膜の硬度が高くなる。有機バインダーと化学結合したチタン酸化物はアダマンタン誘導体や有機溶媒との相溶性が高いため、塗布液や膜中に分散し易い。
 また、アルコキシ基の酸素原子に結合しているアルキル基がメチル基またはエチル基だと、有機バインダーは加水分解し易い。すなわち、チタン酸化物とカップリング反応し易い。また、アルコキシ基の加水分解を促進させる触媒を塗布液に添加すると、カップリング反応が起こり易くなる。
 有機バインダーが2個以上のアルコキシ基を有すると、塗布液中でカップリング反応していない有機バインダー(未反応の有機バインダー)が重合する。その結果、有機バインダーのオリゴマーが形成される。オリゴマーは、チタン酸化物とアダマンタン誘導体との中間の極性を持つと考えられる。このようなオリゴマーが塗布液に含まれていると、固形分が塗布液に分散し易いため、膜が緻密になる。このとき、2~3個のアルコキシ基を有する有機バインダーを用いると、チタン酸化物とアダマンタン誘導体の相溶性が高くなる。そのため、成膜時に固形分が膜に分散し易くなる。特に、アルコキシ基を3個有する有機バインダーを用いると、オリゴマーが程よい極性となる。そのため、チタン酸化物とアダマンタン誘導体の相溶性が高くなる。
 このとき、未反応の有機バインダーの8割以上がオリゴマーを形成すると、チタン酸化物とアダマンタン誘導体の相溶性が高くなる。未反応の有機バインダーの全量に対してモノマーの量が1割以下だと、成膜時に有機バインダーが揮発し難いため、緻密な膜が形成できる。
 オリゴマーの分子量が5000以下だと、膜の強度や、膜の基材への密着性が高くなる。特に、分子量が500~5000の範囲だと、チタン酸化物とアダマンタン誘導体との相溶性が高くなる。分子量は1500~4000の範囲がより好ましい。
 アルコキシ基を有する有機バインダーは、さらに(メタ)アクリレート基を有すると、紫外線照射により(メタ)アクリレート基同士が結合するため、膜を低温で硬化できる。また、硬化時に有機バインダーの(メタ)アクリレート基が他の固形分の(メタ)アクリレート基と結合するため、膜が緻密になる。アルコキシ基を有する有機バインダーから形成されたオリゴマーは複数の(メタ)アクリレート基を有する。硬化時にこのようなオリゴマーは複数の固形分と結合するため、膜が緻密になる。
 また、有機バインダーが有機ケイ素化合物だと工業的に取り扱い易い。有機ケイ素化合物は一般式(RO)Si(Y)4-mで表せる。ここで、RはMeまたはEtである。mは1~4の整数を表す。Yは(メタ)アクリレート基を有する有機化合物である。Yとして、具体的に-(CHOC(=O)C(CH)(=CH)又は-(CHOC(=O)CH(=CH)等が挙げられる。
 モノマーのアダマンタン誘導体を用いると、アダマンタン誘導体が塗布液中の固形分と重合できるため、より緻密な膜が得られる。また、硬化時にオリゴマーやポリマーよりもモノマーは収縮し易い。そのため、膜が緻密になる。
 このとき、アダマンタン誘導体は分子内に2個以上の(メタ)アクリレート基を有すると、(メタ)アクリレート基を2個以上有する他の固形分と重合できる。特に、(メタ)アクリレート基を2個有するアダマンタン誘導体は、3個以上の場合より立体障害が小さい。そのため、このようなアダマンタン誘導体を用いると、膜が緻密になる。このとき、アダマンタン骨格の1位と3位に(メタ)アクリレート基が結合していると、アダマンタン誘導体の立体障害がさらに小さくなる。また、アダマンタン誘導体が(メタ)アクリレート基以外の置換基を有さないと、立体障害が小さくなる。また、アダマンタン誘導体の分子量が350以下だと、立体障害が小さくなる。
 チタン酸化物の代わりに、チタン酸化物の前駆体が塗布液に含まれていてもよい。前駆体として、モノマーやオリゴマーなどが挙げられる。さらに、前駆体はチタンアルコキシドだと、塗膜を加熱・乾燥するときに加水分解・縮合し、チタン酸化物となる。アルコキシ基を有する有機バインダーはチタンアルコキシドと加水分解・縮合するため、膜が緻密になる。
 塗布液が有機溶媒を含むと、塗布液に固形分が分散し易い。このような塗布液は基材に塗布し易い。さらに、有機溶媒の含有量が50重量%以上だと、塗布液や膜中にチタン酸化物が分散し易くなる。含有量は60重量%以上がより好ましい。一方、有機溶媒の含有量が95重量%以下だと、150nm以上の厚さの膜を均一な厚さで形成し易くなる。90重量%以下がより好ましい。
 また、有機溶媒の沸点が50℃以上だと、塗布液をゆっくり乾燥できる。そのため、チタン酸化物が膜中に均一に分散し易い。一方、有機溶媒の沸点が200℃以下だと、実質的に120℃以下という低温且つ数分で塗布液を乾燥できるため、生産性が上がる。
 有機溶媒がエステル結合もしくはエーテル結合、またはケトン基を有すると、塗布液にアダマンタン誘導体が分散できる、膜の表面が平滑になる。有機溶媒がこれらの結合または官能基を2個以上有すると、塗布液に固形分がより分散し易い。同一種を2個以上でも、異なる2種をそれぞれ1個以上でもよい。3個有する有機溶媒がさらに好ましい。
 有機溶媒として、プロピレングリコールモノメチルエーテル(PGME)又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)が挙げられる。中でも、PGMEAが好ましい。
 必要に応じて塗布液には硬化剤や表面調整剤などが添加される。硬化剤が光重合開始剤だと、低温で成膜できる。中でも、アシルフォスフィンオキサイド系の光重合開始剤を用いると、膜の硬化が効率よく進行するため、膜が緻密になる。光重合開始剤の含有量がアダマンタン誘導体100質量部に対して2質量部以上だと、硬化反応が進み易いため、膜の硬度が高くなる。一方、10質量部以下だと、余剰の重合開始剤の比率が減るため、重合が効率よく進む。
 塗布液がチタン酸化物、有機バインダー、アダマンタン誘導体、および硬化剤以外の固形分を含まなければ、膜は緻密になり易い。このとき、これらが経時変化したものを含んでいても構わない。
 以下、チタン酸化物について詳細に説明する。
 チタン酸化物の結晶構造は、アナターゼ型、ルチル型、ブルッカイト型であっても、非晶質であってもよい。複数の結晶が混在してもよい。チタン酸化物の一部が非晶質であってもよい。チタン酸化物が酸化チタンをTiO換算濃度で80重量%以上含むと、膜の屈折率が高くなる。90重量%以上がより好ましく、95重量%以上がさらに好ましい。
 チタン酸化物が粒子状(以下、粒子状のチタン酸化物を単に粒子と称す)だと、膜が緻密になり易い。また、厚膜を形成し易い。
 粒子の結晶子径が大きいほど、粒子の密度が高くなるため、膜の屈折率が高くなる。結晶子径は1nm以上が好ましく、5nm以上がより好ましい。一方、結晶子径が100nm以下だと、膜のヘーズが低くなる。50nm以下がより好ましい。また、粒子の粒子径が100nm以下だと膜のヘーズが低くなる。
 粒子はチタン酸化物以外の無機成分を含むと、塗布液に分散し易くなる。中でも、アルミナ、シリカ、ジルコニア、酸化スズなどの無機成分がそれぞれAl、SiO、ZrO、SnO換算で0.5~10.0重量%粒子に含まれると、塗布液に粒子が分散し易い。0.5~6.0重量%の範囲がより好ましい。特に、酸化スズをSnO換算濃度で1~3重量%含むチタン酸化物は粒子状になり易い。また、特に、アルミナをAl換算濃度で0.5~1.5重量%含む粒子は溶媒に分散し易い。
 また、粒子100質量部に対して1~30質量部の表面処理剤を粒子に処理すると、粒子は有機溶媒へ分散し易くなる。5~22質量部の表面処理剤を粒子に処理することがより好ましい。
 また、アルコキシ基を有する表面処理剤は粒子表面とカップリング反応し易いため、粒子を有機溶媒に分散させ易い。アルコキシ基が多いほど、粒子の表面でカップリング反応が起こり易い。3~4個のアルコキシ基を有する表面処理剤が好ましく、4個のアルコキシ基を有する表面処理剤がさらに好ましい。
 また、アルコキシ基はメトキシ基もしくはエトキシ基だと、加水分解し易い。すなわち、アルコキシ基中のアルキル基の分子量が小さいほど、アルコキシ基が加水分解し易い。
 表面処理剤として、ケイ素化合物、チタン化合物、ジルコニウム化合物、アルミニウム化合物等が挙げられる。表面処理剤は、一般式(RO)M(X)4-nで表せる。nは1~4の整数である。Mは、Si、Ti、Zr、Alのいずれかを表す。Xとして、Me、Et、Pr、-(CHOC(=O)C(CH)(=CH)、-(CHOC(=O)CH(=CH)、-CH=CHが挙げられる。RはMeまたはEtである。特に、表面処理剤はケイ素化合物だと、工業的に取り扱い易い。
 次に、塗布液の製造方法について説明する。まず、チタン酸化物の分散液を準備する(準備工程)。次に、チタン酸化物の分散液と有機バインダーを混合し、混合物を調製する(混合工程)。準備工程において有機バインダーを混合しても構わない。次に、混合物にアダマンタン誘導体を添加する(添加工程)ことにより、塗布液が得られる。
 以下、各工程について詳細に説明する。
<準備工程>
 はじめに、チタン酸化物の分散液を準備する。ここでは、チタン含有酸化物の粒子(以下、チタン酸化物粒子と記す)の分散液を準備した。まず、チタンを含む化合物を水溶液中で中和してスラリーを調製する。調製したスラリーを、水を用いて洗浄すると、余分な塩を取り除ける。次に、スラリーに過酸化水素水を添加し、ペルオキソチタン酸水溶液を調製する。その後、脱アルカリ処理を行うことが好ましい。このペルオキソチタン酸水溶液を加熱することにより、結晶子径が数nm~数十nmのチタン酸化物粒子の分散液が得られる。加熱の前に、酸化チタン以外の無機成分を添加することにより、粒子成長はコントロールできる。また、粒子が塗布液に分散し易くなる。添加する無機成分量は、前述した粒子中の無機成分の濃度に対応する量が好ましい。添加量を少なくすると、粒子中の酸化チタンの比率を高くできる。準備されたチタン酸化物の分散液には、チタン酸化物以外の酸化物がさらに含まれていても構わない。
 粒子の分散液に上述の表面処理剤を添加することにより、粒子表面を処理できる。表面処理された粒子は有機溶媒に分散し易くなる。表面処理剤を添加した後の分散液を40℃以上で1時間以上保持することにより、表面処理剤が速く処理される。40℃以上に保持する時間が20時間以下だとコストが低くなる。表面処理剤の処理量は、粒子100質量部に対して20~85質量部(酸化物換算{表面処理剤がケイ素化合物であればSiO換算}で3~30質量部)であると、粒子は有機溶媒に分散し易くなる。粒子の水分散液に表面処理剤を添加する場合、有機溶媒を添加することにより、表面処理剤の凝集が抑制される。そのため、表面処理剤が粒子の表面に均一に処理され易くなる。このとき、添加する有機溶媒がアルコールであると、表面処理剤の凝集がさらに抑制される。また、アルコールは水と混ざり易い。
 分散液の溶媒が有機溶媒だと、後に混合する有機バインダーの凝集が抑制される。チタン酸化物の分散液の溶媒が水の場合、水を有機溶媒に置換することが好ましい。このとき、有機溶媒がアルコールであると水と混ざり易いため、溶媒を置換し易い。置換する方法として、有機溶媒を添加した後、水を取り除く(脱水する)方法が挙げられる。脱水の方法として、限外濾過や蒸留等の方法が挙げられる。チタン酸化物が粒子の場合、表面処理剤で粒子が処理されていると、溶媒を置換し易い。
 上述のチタン酸化物の前駆体の分散液を準備し、塗布液の調製に用いてもよい。
<混合工程>
 この工程では、チタン酸化物の分散液と有機バインダーを混合し、混合物を調製する。このとき、アルコキシ基を有する有機バインダーを用いることにより、有機バインダーはチタン酸化物とカップリング反応できる。カップリング反応したチタン酸化物と、有機溶媒の相溶性は高い。未反応の有機バインダー同士は加水分解・縮合反応して、オリゴマーとなる。オリゴマーが塗布液に含まれると、チタン酸化物と有機溶媒の相溶性がさらに高くなる。
 アルコキシ基を有する有機バインダーを用いる場合、混合物の温度を40℃以上で保持することにより加水分解反応が進行する。保持温度は45℃以上が好ましい。さらに、1時間以上保持すると、反応が進行し易い。保持する時間は、10時間以上が好ましく、15時間以上がより好ましい。また、混合物を攪拌することにより、有機バインダーがチタン酸化物の表面と均一に縮合反応し易くなる。溶媒がアルコールのとき、混合物を60℃以下で保持すると、溶媒が蒸発し難い。
 また、有機バインダーがアルコキシ基を有するとき、混合物に触媒や水などを添加することにより、有機バインダーの加水分解反応が促進する。成膜後、膜に触媒が残存し難いと、膜の密度が高くなる。また、加水分解反応は酸側よりアルカリ側で行うことが好ましい。残存し難く且つアルカリ側で加水分解反応を促進できる触媒としてアンモニアが適している。
 チタン酸化物100質量部に対して混合する有機バインダーの量が10質量部以上だと、チタン酸化物が有機溶媒に分散し易い。20質量部以上がより好ましく、30質量部以上がさらに好ましい。一方、チタン酸化物100質量部に対して混合する有機バインダーの量が50質量部以下だと、膜中のチタン酸化物の割合が高くなる。40質量部以下がより好ましい。ただし、チタン酸化物が粒子の場合、100質量部は表面処理剤を含めた量である。
 混合物中の溶媒をエステル結合もしくはエーテル結合、またはケトン基を有する有機溶媒に置換すると、アダマンタン誘導体が有機溶媒に分散できる。また、塗布液を塗布してから乾燥する工程において、成膜の安定性が高くなるため、均質で、緻密で、表面が平滑な膜が得られ易くなる。このような有機溶媒としてPGMEAが適している。
<添加工程>
 混合物にアダマンタン誘導体を添加することにより、塗布液が得られる。添加後、超音波装置等を用いて十分に撹拌することが好ましい。また、添加後、光重合開始剤を添加することが好ましい。また、この工程では、アダマンタン誘導体以外の樹脂をさらに添加しても構わない。このとき、添加する順序は問わない。
 チタン酸化物100質量部に対して、10~40質量部の有機バインダー混合し、且つ15~80質量部のアダマンタン誘導体を添加すると、膜の密度は高くなる。有機バインダーは20~40質量部混合し、且つアダマンタン誘導体は20~50質量部添加することがより好ましい。ただし、チタン酸化物が粒子状の場合、100質量部は表面処理剤を含めた量である。
 上述の塗布液を基材上に塗布することにより被膜付基材を製造できる。
 具体的には、基材上に塗布液を塗布した後、塗布液を乾燥・硬化させることにより、膜付基材が得られる。塗布方法として、スピンコート、バーコート、グラビアコート、スリットコートなどが挙げられる。ここで、乾燥とは溶媒を揮発させて除去することを表す。乾燥温度が60℃以上だと、乾燥時間が短くなる。また、膜中に溶媒が残り難い。そのため、緻密な膜が得られる。一方、乾燥温度が120℃以下だと、基材が変形し難い。また、工業的に扱い易い。乾燥温度は100℃以下がより好ましく、80℃以下がさらに好ましい。塗膜を乾燥した後に硬化すると、生産効率が上がる。
 以下、本発明の実施例を具体的に説明する。
[実施例1]
≪準備工程≫
 はじめに、以下のようにチタン酸化物粒子の分散液を準備した。四塩化チタンをTiO換算で2重量%含む四塩化チタン水溶液900gと、15重量%のアンモニア水352gとを混合し、pH8.6の白色のスラリーを調製した。このスラリーを濾過した後、純水で洗浄することにより、固形分濃度が5重量%のケーキ360gを得た。このケーキ360gに、35重量%の過酸化水素水411.2gと純水128.8gを加えることにより、再度スラリーを得た。このスラリーを80℃で1時間加熱することにより、過酸化チタン酸をTiO換算で2重量%含む過酸化チタン酸水溶液900gを得た。この水溶液の色は透明な黄褐色であった。この水溶液のpHは8.1であった。
 この水溶液900gに、平均粒子径が7nmのシリカ粒子を15重量%含むシリカゾル(日揮触媒化成社製:カタロイド(登録商標)SN-350)19.4gと純水1178gとを添加した。その後、オートクレーブを用いて165℃で18時間水溶液を保持した。水溶液を室温まで冷却した後、限外濾過膜装置を用いて濃縮することにより、固形分が10重量%のチタン酸化物の水分散液209.1gを得た。調製したチタン酸化物の組成(無機成分の添加量比)を表1に記載する。
 オキシ塩化ジルコニウムをZrO換算で2重量%含むオキシ塩化ジルコニウム水溶液263gを攪拌しながら、そこに15重量%のアンモニア水を添加することにより、pH8.5のスラリーを得た。このスラリーを濾過し、純水で洗浄することにより、ジルコニウム化合物をZrO換算で10重量%含むケーキ52.6gを得た。このケーキ20gに純水180gと10重量%の水酸化カリウム水溶液12gを加えた。さらに、35重量%の過酸化水素水40gを加えた後、このケーキを50℃に加温することにより、ケーキを溶解し、分散液を得た。この分散液に純水148gを加え、過酸化ジルコン酸をZrOとして0.5重量%含む過酸化ジルコン酸水溶液400gを得た。
 ケイ酸ナトリウムをSiO換算濃度で2重量%含む水硝子に陽イオン交換樹脂(三菱ケミカル社製)を添加することにより、アルカリ成分を除去した。その後、イオン交換樹脂を分離し、SiOとして2重量%の珪酸水溶液を得た。
 チタン酸化物の水分散液160gに純水640gを加えた後、この水分散液を90℃に加温した。この水分散液と、過酸化ジルコン酸水溶液53.4gと、珪酸水溶液42.4gとを混合し、混合液を得た。この混合液を90℃で1時間撹拌した後、オートクレーブを用いて165℃で18時間保持した。混合液を室温まで冷却した後、限外濾過膜装置を用いて濃縮することにより、固形分が10重量%のチタン酸化物の水分散液195.2gを得た。この水分散液195.2gに陽イオン交換樹脂を添加(脱アルカリ)した。その後、イオン交換樹脂を分離した。この分散液にSiO換算濃度が28.8重量%のテトラエトキシシラン(多摩化学社製)14.9gを溶解させたメタノール溶液210.1gを添加した後、50℃で1時間撹拌した。この分散液を室温まで冷却した後、限外濾過膜を用いて溶媒をメタノールに置換した。その後、分散液を濃縮することにより、シリカ層を設けた固形分濃度20重量%のチタン酸化物のメタノール分散液119.2gを得た。このメタノール分散液をチタン酸化物の分散液とした。
≪混合工程≫
 次に、チタン酸化物の分散液と有機バインダーを混合した。具体的には、チタン酸化物のメタノール分散液100gと、有機バインダーとして3-メタクリロキシプロピルトリメトキシシラン(信越化学工業社製:KBM-503)3.68gとを混合することにより、混合物を調製した。この混合物を50℃で19時間撹拌した。混合物を室温まで冷却した後、ロータリーエバポレーターを用いて混合物中の溶媒をPGMEAに置換することにより、固形分濃度20重量%の混合物103.7gを得た。
≪添加工程≫
 次に、アダマンタン誘導体を添加し、塗布液を調製した。具体的には、固形分濃度20重量%の混合物100.0gにPGMEA100.0g、アダマンタン誘導体(三菱ガス化学社製:ダイヤピュレスト(登録商標)ADDA)6.0g、および重合開始剤としてジフェニル(2,4,6トリメチルベンゾイル)-フェニルフォスフィンオキサイド(IGMResinsB.V.社製:OMNIRAD(登録商標)TPO-H)0.36gを添加・攪拌することにより、塗布液を調製した。
 塗布液の調製条件の概要を表1に記載する。得られた塗布液を用いて以下のように透明被膜付基材(ガラス基材)を形成し、膜付基材の全光線透過率およびヘーズを測定した。また、得られた塗布液を用いて以下のように透明被膜付基材(シリコンウエハ)を形成し、膜付基材の屈折率と膜厚を評価した。測定結果と評価結果を表2に示す。後述の実施例、及び比較例2についても同様に透明膜付基材を作製し、測定・評価した。
 ≪透明被膜付基材(ガラス基材)の製造≫
 塗布液をガラス基材(浜新社製:FL硝子、厚さ:3mm、屈折率:1.51)にスピンコート法で塗布した。この塗布液を80℃で2分間乾燥した後、高圧水銀ランプ(GSユアサ社製:EYEUVMETER)を用いて、この塗布液に3000mJ/cmの条件で紫外光を照射することにより、透明被膜付基材(ガラス基材)を調製した。ヘーズメーター(日本電色社製:NDH-5000)を用いて、透明被膜付基材(ガラス基材)の全光線透過率およびヘーズを測定した。なお、未塗布のガラス基材おいて、全光線透過率が99.0%、ヘーズが0.1%であった。
≪透明被膜付基材(シリコンウエハ)の製造≫
 塗布液をシリコンウエハ(松崎製作社製:6インチダミーウエハ(P型)、厚さ:625μm)にスピンコート法で塗布した。この塗布液を80℃で2分間乾燥した後、この塗布液にEYEUVMETERを用いて3000mJ/cmの条件で紫外光を照射することにより、透明被膜付基材(シリコンウエハ)を調製した。分光エリプソメトリー(日本セミラボ社製:SE―2000)を用いて、透明被膜付基材(シリコンウエハ)の屈折率と膜厚を評価した。
[実施例2]
 四塩化チタンをTiO換算で7.5重量%含む四塩化チタン水溶液2000gと7.5重量%のアンモニア水2000gとを混合することにより、pH9.2の白色のスラリーを調製した。このスラリーを濾過し、純水で洗浄することにより、固形分が10重量%のケーキ1500gを得た。このケーキ1500gを純水で1.5重量%に希釈した。このケーキに35重量%の過酸化水素水1714gを加えた後、80℃で1時間保持することにより、過酸化チタン酸をTiO換算で1.5重量%含む過酸化チタン酸水溶液11714gを得た。この水溶液に純水3286gを添加後、水溶液を撹拌することにより、透明な黄褐色の過酸化チタン酸水溶液を得た。この水溶液のpHは7.8であった。この過酸化チタン酸水溶液15000gに、陽イオン交換樹脂を添加(脱アルカリ)した。この水溶液に1重量%の錫酸カリウム水溶液を309g添加した後、イオン交換樹脂を分離した。さらに1重量%のアルミン酸ナトリウム水溶液155gを添加し、攪拌した。その後、オートクレーブを用いて165℃で18時間この水溶液を保持した。この水溶液を室温まで冷却した後、限外濾過膜装置を用いて濃縮することにより、固形分が4重量%のチタンの水分散液3866gを得た。
 この水分散液3866gにメタノール3866gとSiO換算で28.8重量%の正珪酸エチル(多摩化学工業社製)118.4gとを添加した。その後50℃で18時間撹拌し、チタン酸化物の水/メタノール分散液を得た。
 この分散液を室温まで冷却した後、限外濾過膜を用いてこの分散液の溶媒をメタノールに置換した。この分散液を濃縮することにより、固形分濃度20重量%のチタン酸化物のメタノール分散液943.7gを得た。
 このメタノール分散液890gに5重量%のアンモニア水を17.7g添加した。さらにKBM-503を53.3g添加した後、この分散液を50℃で18時間撹拌した。この分散液を室温まで冷却した後、ロータリーエバポレーターを用いてこの分散液の溶媒をPGMEAに置換することにより、固形分濃度20重量%の混合物943.3gを得た。
 添加工程において、本実施例で調製した混合物を用いたことおよびアダマンタン誘導体として三菱ガス化学社製のダイヤピュレストADTMを用いたこと以外は実施例1と同様に塗布液を調製した。
[実施例3]
 添加工程において、アダマンタン誘導体として三菱ガス化学社製のダイヤピュレストHADDMを用いた以外は実施例2と同様にして、塗布液を調製した。
[実施例4]
 四塩化チタンをTiO換算で2重量%含む四塩化チタン水溶液4500gと15重量%のアンモニア水450gとを混合することにより、pH8.6の白色のスラリーを調製した。このスラリーを濾過し、純水で洗浄することにより、固形分含有量が10重量%のケーキ900gを得た。このケーキ900gを純水で1.5重量%に希釈し、スラリー化した後、このスラリーに35重量%の過酸化水素水1029gを加えた。このスラリーを80℃で1時間保持することにより、過酸化チタン酸をTiO換算で1.5重量%含む過酸化チタン酸水溶液7039gを得た。この水溶液に純水1961gを添加後、この水溶液を撹拌することにより、透明な黄褐色の過酸化チタン酸水溶液を得た。この水溶液のpHは8.1であった。
 この水溶液9000gに陽イオン交換樹脂を添加(脱アルカリ)した。イオン交換樹脂を分離した後、1重量%のアルミン酸ナトリウム水溶液91gをこの水溶液に添加し、この水溶液を攪拌した。オートクレーブを用いてこの水溶液を155℃で18時間保持した。この水溶液を室温まで冷却した後、限外濾過膜装置を用いて濃縮することにより、固形分濃度が4重量%のチタン酸化物の水分散液2275gを得た。
 この水分散液2275gにメタノールを2275gとSiO換算で28.8重量%の正珪酸エチル70gとを添加した。その後、この水分散液を50℃で18時間撹拌することにより、チタン酸化物の水/メタノール分散液を得た。この分散液を室温まで冷却し、限外濾過膜を用いてこの分散液の溶媒をメタノールに置換した。この分散液を濃縮することにより、固形分濃度20重量%のチタン酸化物のメタノール分散液555.8gを得た。
 このメタノール分散液500gに5%のアンモニア水を10g添加した。さらに、KBM-503を30g添加した。この分散液を50℃で18時間撹拌し、室温まで冷却した。その後、ロータリーエバポレーターを用いてこの分散液の溶媒をPGMEAに置換することにより、固形分濃度20重量%の混合物530gを得た。
 添加工程において本実施例で調製した混合物を用いることと、アダマンタン誘導体の添加量を4.0gに、光重合開始剤の添加量を0.24gに変更したこと以外は実施例1と同様に塗布液を調製した。
[実施例5]
 添加工程において、アダマンタン誘導体の添加量を14.0g、光重合開始剤の添加量を0.84gに変更した以外は実施例4と同様に塗布液を調製した。
[実施例6]
 実施例2のチタン酸化物のメタノール分散液500gに5%のアンモニア水を10.0g添加した。さらに3-フェニルトリメトキシシラン(信越化学工業社製:KBM-103)29.9gを添加した後、この分散液を50℃で18時間撹拌した。この分散液を室温まで冷却した後、ロータリーエバポレーターを用いてこの分散液の溶媒をPGMEAに置換することにより、固形分濃度20重量%の混合物529.9gを得た。
 添加工程において、本実施例で調製した混合物を用いたこと以外は実施例1と同様に塗布液を調製した。
[実施例7]
 錫酸カリウム水溶液を添加しないこと、および1重量%のアルミン酸ナトリウム水溶液の添加量を152gに変更したこと以外は実施例2と同様にチタン酸化物の水分散液を得た。ただし、限外濾過後のチタン酸化物の水分散液の量は3788gであった。
 準備工程において、本実施例のチタン酸化物の水分散液3788gに、メタノールを3788gとSiO換算で28.8重量%の正珪酸エチル116gとを添加すること以外は実施例2と同様に、固形分濃度20重量%のチタン酸化物のメタノール分散液924.6gを得た。
 混合工程において、本実施例のチタン酸化物のメタノール分散液824gに5%のアンモニア水を17g添加後、KBM-503を49g混合したこと以外は、実施例2と同様に固形分濃度20重量%の混合物を873g調製した。
 添加工程において、本実施例の固形分濃度20重量%の混合物100.0gを用いたこと、およびアダマンタン誘導体の混合量を8.0g、光重合開始剤の添加量を0.48gとしたこと以外は実施例1と同様に塗布液を調製した。
[実施例8]
 添加工程において、実施例4の固形分濃度20重量%の混合物を用いたこと、および重合開始剤を1-ヒドロキシシクロヘキシルフェニルケトン(IGMResinsB.V.社製:OMNIRAD184)に変更したこと以外は実施例1と同様に塗布液を調製した。
[実施例9]
 添加工程において、アダマンタン誘導体の混合量を8.0gに、光重合開始剤の添加量を0.48gにしたこと以外は実施例4と同様に塗布液を調製した。
[実施例10]
 添加工程において、実施例2の固形分濃度20重量%の混合物を用いたこと以外は実施例1と同様に塗布液を調製した。
[比較例1]
 SiO換算濃度が44.1重量%のメチルトリエトキシシラン(信越化学工業社製:KBM-13)403.71gと溶媒(日本アルコール販売社製:ソルミックス(登録商標)AP-11)1061.55gを混合し、混合液を調製した。この混合液を30分間撹拌した。撹拌しながらこの混合液に0.1重量%の硝酸322.92gを30分かけて添加した。その後、さらに30分間撹拌した。このときの混合液のpHは2.0であった。さらに、撹拌しながらこの混合液にトリエタノールアミン(林純薬工業社製)2.86gを添加した。さらに、この混合液を10分撹拌することにより、SiO換算濃度で10.0重量%の加水分解化合物を調製した。このときの混合液のpHは7.0であった。攪拌されているヘキシレングリコール(富士フィルム和光純薬社製)1194.03gに、この加水分解化合物を添加し、加水分解化合物の分散液を得た。この分散液をさらに30分間撹拌し、SiO換算濃度6.0重量%の加水分解化合物の分散液を調製した。
 ヘキシレングリコール(富士フィルム和光純薬社製)を5211.44g、アセチルアセトン(富士フィルム和光純薬社製)を261.19g、およびTiO換算で28重量%のチタンアルコキシド(マツモトファインケミカル社製:オルガチックス(登録商標)TA-10)を1492.54g混合し、混合液を得た。その後、この混合液を5分間撹拌した。この混合液を撹拌しながら、この混合液にSiO換算濃度6.0重量%の加水分解化合物の分散液をさらに混合した。この混合液を10分間撹拌した後、この混合液に純水49.75gを加えた。この混合液を25℃で30分間撹拌した後、0.2μmのフィルターを用いて濾過することにより、固形分が6.0重量%の塗布液を調製した。
 得られた塗布液を用いて以下のように透明被膜付基材(ガラス基材)を形成し、全光線透過率およびヘーズを測定した。また、同様に透明被膜付基材(シリコンウエハ)を形成し、屈折率と膜厚を評価した。測定結果と評価結果を表2に示す。
≪透明被膜付基材(ガラス基材)の製造≫
 フレキソ印刷法で、この塗布液をガラス基材上に塗布した。その後、この塗布液を90℃で5分間乾燥した。この塗布液に3000mJ/cmの紫外線(波長365nm)を照射した後、この塗布液を230℃で30分間加熱することにより、透明被膜付基材(ガラス基材)を調製した。NDH-5000を用いて、透明被膜付基材(ガラス基材)の全光線透過率及びヘーズを測定した。なお、未塗布のガラス基材おいて、全光線透過率が99.0%、ヘーズが0.1%であった。
≪透明被膜付基材(シリコンウエハ)の製造≫
 フレキソ印刷法で、塗布液をシリコンウエハ上に塗布した。その後、この塗布液を90℃で5分間乾燥した。この塗布液に3000mJ/cmの紫外線(波長365nm)を照射した後、この塗布液を230℃で30分間加熱し、透明被膜付基材(シリコンウエハ)を調製した。SE―2000を用いて、透明被膜付基材(シリコンウエハ)の屈折率と膜厚を評価した。
[比較例2]
 添加工程において、アダマンタン誘導体を混合しないこと以外は実施例1と同様にして、塗布液を調製した。
[比較例3]
 ロータリーエバポレーターを用いて実施例4のチタン酸化物のメタノール分散液500g中の溶媒をPGMEAに置換することにより、固形分濃度20重量%のチタン酸化物のPGMEA分散液500gを得た。この分散液は、粘度が高く、白濁していた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (10)

  1.  チタン含有酸化物またはその前駆体と、アダマンタン誘導体と、有機バインダーと、を含む膜形成用の
    塗布液。
  2.  前記チタン含有酸化物が固形分中に50~75重量%含まれ、
     前記アダマンタン誘導体が固形分中に10~35重量%含まれ、
     前記有機バインダーが固形分中に10~25重量%含まれることを特徴とする
    請求項1に記載の塗布液。
  3.  前記有機バインダーが、アルコキシ基を有することを特徴とする
    請求項1に記載の塗布液。
  4.  前記有機バインダーが分子量500~5000のオリゴマーを含む
    請求項3に記載の塗布液。
  5.  前記アダマンタン誘導体がモノマーであることを特徴とする
    請求項1に記載の塗布液。
  6.  前記アダマンタン誘導体が(メタ)アクリレート以外の置換基を有さないことを特徴とする
    請求項5に記載の塗布液。
  7.  前記アダマンタン誘導体の分子量が350以下であることを特徴とする
    請求項5に記載の塗布液。
  8.  チタン含有酸化物またはその前駆体の分散液を準備する準備工程と、
     前記分散液と有機バインダーを混合し、混合物を調製する混合工程と、
     前記混合物にアダマンタン誘導体を添加する添加工程と、を備えることを特徴とする膜形成用の
    塗布液の製造方法。
  9.  前記混合工程で前記有機バインダーを前記チタン含有酸化物100質量部に対して10~40質量部混合し、
     前記添加工程で前記アダマンタン誘導体を前記チタン含有酸化物100質量部に対して15~80質量部添加することを特徴とする
    請求項8に記載の塗布液の製造方法。
  10.  請求項1に記載の塗布液、または請求項8に記載の製造方法により得られた塗布液を基材上に塗布し、膜を形成することを特徴とする
    膜付基材の製造方法。
PCT/JP2022/002186 2021-01-22 2022-01-21 塗布液及びその製造方法、膜付基材の製造方法 WO2022158568A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022548251A JP7169493B1 (ja) 2021-01-22 2022-01-21 塗布液及びその製造方法、膜付基材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021009006 2021-01-22
JP2021-009006 2021-01-22

Publications (1)

Publication Number Publication Date
WO2022158568A1 true WO2022158568A1 (ja) 2022-07-28

Family

ID=82548796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002186 WO2022158568A1 (ja) 2021-01-22 2022-01-21 塗布液及びその製造方法、膜付基材の製造方法

Country Status (3)

Country Link
JP (1) JP7169493B1 (ja)
TW (1) TW202239880A (ja)
WO (1) WO2022158568A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096253A1 (ja) * 2008-01-29 2009-08-06 Konica Minolta Opto, Inc. 光学用複合材料及びそれを用いた光学素子
WO2010071134A1 (ja) * 2008-12-15 2010-06-24 旭硝子株式会社 光硬化性材料の製造方法、光硬化性材料および物品
JP2011053518A (ja) * 2009-09-03 2011-03-17 Olympus Corp 材料組成物およびそれを用いた光学素子
JP2015193757A (ja) * 2014-03-31 2015-11-05 日揮触媒化成株式会社 塗料組成物、ハードコート層およびハードコート層付き光学基材ならびにこれらの製造方法
JP2016194008A (ja) * 2015-03-31 2016-11-17 日揮触媒化成株式会社 透明被膜形成用塗布液、透明被膜形成用塗布液の製造方法、透明被膜付基材、および透明被膜付基材の製造方法
JP2020132857A (ja) * 2019-02-15 2020-08-31 Agc株式会社 硬化性組成物、硬化物及び積層体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096253A1 (ja) * 2008-01-29 2009-08-06 Konica Minolta Opto, Inc. 光学用複合材料及びそれを用いた光学素子
WO2010071134A1 (ja) * 2008-12-15 2010-06-24 旭硝子株式会社 光硬化性材料の製造方法、光硬化性材料および物品
JP2011053518A (ja) * 2009-09-03 2011-03-17 Olympus Corp 材料組成物およびそれを用いた光学素子
JP2015193757A (ja) * 2014-03-31 2015-11-05 日揮触媒化成株式会社 塗料組成物、ハードコート層およびハードコート層付き光学基材ならびにこれらの製造方法
JP2016194008A (ja) * 2015-03-31 2016-11-17 日揮触媒化成株式会社 透明被膜形成用塗布液、透明被膜形成用塗布液の製造方法、透明被膜付基材、および透明被膜付基材の製造方法
JP2020132857A (ja) * 2019-02-15 2020-08-31 Agc株式会社 硬化性組成物、硬化物及び積層体

Also Published As

Publication number Publication date
JPWO2022158568A1 (ja) 2022-07-28
TW202239880A (zh) 2022-10-16
JP7169493B1 (ja) 2022-11-10

Similar Documents

Publication Publication Date Title
TWI411580B (zh) 氧化鋯一氧化錫之複合物溶膠、塗佈組成物及光學構件
JP3635692B2 (ja) 低屈折率反射防止膜
KR100635550B1 (ko) 경질 코팅물질 및 이를 포함하는 막
EP0992456B1 (en) Process for producing composite sols, coating composition, and optical member
JP2008266043A (ja) 透明酸化チタンゾルおよびその製造法
WO2018181241A1 (ja) 鉄含有ルチル型酸化チタン微粒子分散液の製造方法、鉄含有ルチル型酸化チタン微粒子およびその用途
TWI805546B (zh) 被膜形成用組成物及其製造方法
WO2014098167A1 (ja) 金属酸化物ナノ粒子とシルセスキオキサンポリマーとの複合体およびその製造方法、ならびにその複合体を用いて製造した複合材料
US5460738A (en) Modified stannic oxide-zirconium oxide composite sol and process for preparing the same
WO2006109705A1 (ja) 光学器材用コーティング剤
JP4288432B2 (ja) コーティング組成物及び光学部材
JP5146683B2 (ja) 変性された酸化ジルコニウム−酸化第二スズ複合体ゾルの製造方法
JP5337393B2 (ja) 透明酸化チタンオルガノゾルおよびそれを配合したコーティング組成物,光学基材
KR20170107441A (ko) 저굴절률막 형성용 액 조성물
WO2004050560A1 (ja) 変性された酸化第二スズゾル、酸化第二スズ−酸化ジルコニウム複合体ゾル、コーティング組成物及び光学部材
JP5827107B2 (ja) 被膜形成用組成物の調製方法、および太陽電池モジュールの製造方法
KR102371414B1 (ko) 표면 처리 금속 산화물 졸
JP7169493B1 (ja) 塗布液及びその製造方法、膜付基材の製造方法
JP3955971B2 (ja) 反射防止膜付基材
JP2637793B2 (ja) コーティング用組成物
JPH06212125A (ja) 塗布液、その製造方法および被膜付基材
WO2020105405A1 (ja) 反応性シリコーン組成物およびその硬化物
WO2022210973A1 (ja) ルチル型の結晶構造を有する粒子およびその製造方法、並びに粒子の分散液、塗布液、膜付基材の製造方法
JP2024146607A (ja) 酸化チタン含有膜形成用の塗布液
WO2023189869A1 (ja) 粒子の分散液と、その製造方法、塗布液および膜付基材の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022548251

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742687

Country of ref document: EP

Kind code of ref document: A1