WO2023189869A1 - 粒子の分散液と、その製造方法、塗布液および膜付基材の製造方法 - Google Patents

粒子の分散液と、その製造方法、塗布液および膜付基材の製造方法 Download PDF

Info

Publication number
WO2023189869A1
WO2023189869A1 PCT/JP2023/011055 JP2023011055W WO2023189869A1 WO 2023189869 A1 WO2023189869 A1 WO 2023189869A1 JP 2023011055 W JP2023011055 W JP 2023011055W WO 2023189869 A1 WO2023189869 A1 WO 2023189869A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
dispersion
surfactant
rutile
film
Prior art date
Application number
PCT/JP2023/011055
Other languages
English (en)
French (fr)
Inventor
夕子 堀
宏忠 荒金
良 村口
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Publication of WO2023189869A1 publication Critical patent/WO2023189869A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Definitions

  • the present invention relates to a dispersion of rutile particles and a method for producing the same, a coating liquid, and a method for producing a film-coated substrate.
  • a film with a high refractive index has been formed on a substrate using a coating liquid containing oxide particles with a high refractive index.
  • Such films are used, for example, in glasses, lenses, touch panels of smartphones, and the like.
  • the oxide particles have a high refractive index.
  • titanium oxide-containing particles having a rutile-type crystal structure hereinafter referred to as rutile particles
  • rutile particles have a higher refractive index than other crystal structures
  • Patent Document 1 titanium oxide-containing particles can be dispersed in an organic solvent.
  • titanium oxide-containing particles can be obtained by preparing titanium oxide particles in a solution containing a phosphate ester surfactant as a dispersant (for example, Patent Document 2). With this method, titanium oxide-containing particles can be dispersed with a small amount of dispersant.
  • the titanium oxide-containing particles of Patent Document 1 have a rutile crystal structure, they have a high refractive index. However, since the particles are dispersed using a silane coupling agent as a dispersant, a large amount of the silane coupling agent is required. When a coating liquid is prepared using such a dispersion liquid, the content of rutile particles in the solid content becomes low. Therefore, a film with a high refractive index cannot be formed.
  • the titanium oxide-containing particles of Patent Document 2 can be dispersed in an organic solvent even if the amount of dispersant is small.
  • the lipophilic group of the surfactant (dispersant) is a (meth)acrylate group, and the (meth)acrylate group contains an element with low electronegativity, so the lipophilicity is low.
  • Such surfactants cannot disperse rutile particles in organic solvents.
  • an object of the present invention is to provide a dispersion liquid that can increase the content of rutile particles in the solid content.
  • the dispersion of the present invention contains particles having a rutile crystal structure and a phosphate ester surfactant, and this surfactant has a long alkyl group.
  • the number of carbon atoms in this alkyl group is from 6 to 14.
  • the HLB value of this surfactant is 7 or more.
  • the value obtained by dividing this HLB value by the number of carbon atoms in the alkyl group is 0.8 or more.
  • the surfactant has the structure of formula *.
  • R is an alkyl group having 6 to 14 carbon atoms.
  • m is the repeating number of ethylene oxide and is greater than 2.
  • RO[(CH 2 CH 2 O) m ] n P( O)(OH) 3-n ⁇ ⁇ *
  • the dispersion of the present invention contains particles with a rutile crystal structure (hereinafter referred to as rutile particles), a dispersant, and an organic solvent, and the rutile particles contain titanium oxide.
  • the dispersant is a phosphate ester surfactant (hereinafter referred to as surfactant).
  • the surfactant has a hydrophilic group (hereinafter referred to as a hydrophilic group) that ionizes to become an anion and a lipophilic group. Since the surface of rutile particles is also hydrophilic, hydrophilic groups are easily adsorbed onto the surface of rutile particles. The lipophilic groups of the surfactant adsorbed on the surface of the rutile particles are unevenly distributed on the organic solvent side.
  • This lipophilic group has high affinity with organic solvents. Therefore, rutile particles whose surfaces are treated with such a surfactant are easily dispersed in an organic solvent.
  • the balance between these hydrophilic groups and lipophilic groups affects the dispersibility of rutile particles in organic solvents.
  • the phosphoric acid moiety is a hydrophilic group.
  • the HLB value is generally used as an index indicating the balance between hydrophilicity and lipophilicity of a surfactant. The higher this value, the higher the hydrophilicity.
  • HLB value hereinafter simply referred to as HLB value
  • the hydrophilic group is easily adsorbed onto the surface of the rutile particles.
  • the higher the HLB value the lower the affinity between the surfactant and the organic solvent.
  • the number of carbon atoms in the lipophilic group is 6 or more. This increases the affinity between this lipophilic group and the organic solvent. Therefore, even if the HLB value is 7 or more, rutile particles are easily dispersed in an organic solvent.
  • the surfactant is more likely to be stable when it is dispersed in an organic solvent than when it is adsorbed on the surface of the rutile particles. That is, it becomes difficult for the surfactant to adsorb onto the surface of the rutile particles.
  • the number of carbon atoms in the lipophilic group is 14 or less.
  • the lipophilic group has a bulky functional group such as a phenyl group, the bulky functional group becomes a steric hindrance, making it difficult for the surfactant to adsorb to the rutile particles. Furthermore, if the lipophilic group contains an element with high electronegativity, the lipophilicity of the lipophilic group decreases, so that the rutile particles cannot be dispersed in an organic solvent.
  • the lipophilic group is an alkyl group. Although the alkyl groups are long, they are unlikely to cause steric hindrance to each other when adsorbed onto the surface of rutile particles. Further, the alkyl group does not contain a highly electronegative element.
  • the alkyl group of the surfactant will be simply referred to as an alkyl group.
  • the value obtained by dividing the HLB value by the number of carbon atoms in the alkyl group is 0.8 or more.
  • the surfactant has high hydrophilicity. Therefore, the surfactant is easily adsorbed onto the surface of the rutile particles.
  • the rutile particles are easily dispersed in the organic solvent.
  • R is an alkyl group having 6 to 14 carbon atoms.
  • m is the repeating number of ethylene oxide (hereinafter referred to as EO) and is greater than 2.
  • n is 1 or 2.
  • M w is the molecular weight of the hydrophilic group
  • M o is the molecular weight of the lipophilic group.
  • m is preferably 3 or more. Further, the molecular weight of the hydrophilic group is preferably 100 or more. The higher the molecular weight of the hydrophilic group, the easier it is for the hydrophilic group to adsorb onto the surface of the rutile particle.
  • the molecular weight of the surfactant is preferably 300 or more. More preferably 500 or more.
  • this content is preferably 10 parts by mass or more per 100 parts by mass of rutile particles.
  • the content of rutile particles in the dispersion increases. Therefore, the content of the surfactant in the dispersion is preferably 25 parts by mass or less per 100 parts by mass of the rutile particles.
  • the content of this surfactant is preferably 20 parts by mass or less, more preferably 16 parts by mass or less.
  • the solid content concentration of the dispersion liquid is preferably 50% by weight or less, 40% by weight or less, or 30% by weight or less.
  • the solid content concentration is preferably 3% by weight or more, 5% by weight or more, or 10% by weight or more.
  • a dispersion containing a surfactant contains phosphorus (P) in its solid content.
  • P phosphorus
  • the phosphorus content is preferably 3% by weight or less, more preferably 2% by weight or less, calculated as P 2 O 5 .
  • the titanium oxide content is preferably 80% by weight or more, more preferably 85% by weight or more, and even more preferably 90% by weight or more in terms of TiO 2 .
  • the organic solvent may be any organic solvent as long as it can disperse the rutile particles. Rutile particles are easily dispersed in glycol-based organic solvents. Furthermore, rutile particles are easily dispersed in organic solvents having an SP value of 9 to 13.
  • An example of a glycol organic solvent having an SP value of 9 to 13 is propylene glycol monomethyl ether (PGM).
  • PGM propylene glycol monomethyl ether
  • the SP value of the organic solvent is less than 9, the longer the alkyl group, the easier the rutile particles will be dispersed in the organic solvent.
  • the number of carbon atoms in the alkyl group is preferably 10 or more, more preferably 12 or more.
  • rutile particles Particles having an average particle size (hereinafter referred to as dispersed particle size) of 100 nm or less when rutile particles are dispersed in a solvent are difficult to scatter light. By using such particles, the transparency of the film can be increased. Furthermore, rutile particles having a dispersed particle size of 100 nm or less are difficult to settle. The dispersed particle diameter is preferably 80 nm or less. On the other hand, rutile particles having a dispersed particle diameter of 15 nm or more are easily dispersed in a solvent or a binder. The dispersed particle diameter is preferably 25 nm or more. The dispersed particle size can be measured by dynamic light scattering.
  • the crystallite diameter is preferably 7 nm or more, more preferably 9 nm or more, and even more preferably 12 nm or more.
  • rutile particles with a crystallite diameter of 7 nm or more by using 9 parts by mass or more of a surfactant per 100 parts by mass of rutile particles, the rutile particles can be easily dispersed in an organic solvent.
  • rutile particles having a crystallite diameter of 9 nm or more by using 7 parts by mass or more of a surfactant per 100 parts by mass of rutile particles, the rutile particles can be easily dispersed in an organic solvent.
  • the titanium oxide content of the rutile particles is preferably 90% by weight or more, more preferably 92% by weight or more, and even more preferably 95% by weight or more in terms of TiO 2 .
  • the crystal structure of titanium oxide particles containing tin oxide tends to be a rutile type.
  • the tin oxide content of the rutile particles is preferably 10% by weight or less, more preferably 5% by weight or less in terms of SnO 2 .
  • the proportion of titanium oxide on the surface side (hereinafter referred to as shell) of the rutile particles is high. Therefore, the titanium oxide content of the entire rutile particles tends to be high.
  • the center side of the particles hereinafter referred to as core
  • the crystal structure of the particles tends to be rutile-type. That is, if the core contains a sufficient amount of tin oxide to make the crystal structure of the particles rutile, the shell need not contain tin oxide.
  • this ratio is preferably 6.5 atomic% (at%) or less.
  • This tin ratio is the number of tin atoms relative to the total number of atoms of titanium and tin.
  • Examples of the shape of the rutile particles include spherical, elliptical (rugby ball), cocoon, confetti, chain, and dice shapes. The closer the shape is to a sphere, the more uniformly the particles can be dispersed in the coating liquid or film.
  • a mixed solution is prepared by mixing a powder having a rutile crystal structure (hereinafter referred to as rutile powder), a surfactant, and an organic solvent [mixing step]. Thereafter, a dispersion of particles is prepared by crushing the rutile powder in the mixed liquid [pulverization step]. Each step will be explained in detail below.
  • a mixed solution is prepared by mixing rutile powder, a surfactant, and an organic solvent.
  • the surface of the rutile particles can be easily treated with the surfactant uniformly.
  • the larger the amount of surfactant mixed the easier it is for the rutile particles to be dispersed in the organic solvent. Therefore, it is preferably 10 parts by mass or more based on 100 parts by mass of rutile particles.
  • the amount of surfactant mixed is preferably 0.2 mg or more per 1 m 2 of surface area of rutile powder.
  • the smaller the mixing amount the higher the rutile particle content of the solids in the dispersion.
  • the mixing amount is preferably 25 parts by mass or less, more preferably 15 parts by mass or less, based on 100 parts by mass of crystallites of the rutile particles. Further, it is preferable that the mixing amount is 5 mg or less per 1 m 2 of surface area of the rutile powder.
  • the titanium oxide content of the rutile powder becomes the titanium oxide content of the rutile particles obtained after the crushing step.
  • the rutile particles obtained after the crushing step will be 5 nm or more, so the rutile particles will be easily dispersed in the organic solvent.
  • the sol contains particles having a rutile crystal structure.
  • the solvent of the sol is water (ie, the sol is an aqueous sol)
  • the titanium oxide content of the rutile powder can be increased.
  • an aqueous sol there is no need for a step of treating the particle surface with a surface treatment agent. Therefore, the cost is reduced.
  • water tends to evaporate by drying the aqueous sol at a temperature of 80° C. or higher. The lower the drying temperature is, the more difficult it is for the rutile particles to sinter, and the smaller the dispersed particle size becomes. Therefore, this drying temperature is preferably 120°C or lower.
  • the average particle diameter of the aqueous sol is preferably 100 nm or less.
  • the average particle diameter of an aqueous sol or dispersion can be measured by dynamic light scattering.
  • the crystallite diameter of the rutile particles becomes close to the crystallite diameter of the rutile powder (rutile particles in the aqueous sol).
  • the crystallite diameter of the rutile powder is preferably 7 nm or more, more preferably 9 nm or more.
  • Examples of rutile particles having a crystallite diameter of 7 nm or more include the above-mentioned rutile particles on which tin is not detected on the surface. Such particles can be prepared by crystallizing titanium oxide on the surface of the core particle using a titanium-containing compound.
  • the core particles include titanium oxide and tin oxide.
  • the core particles contain tin oxide to the extent that the core particles have a rutile crystal structure.
  • a titanium-containing compound is obtained by neutralizing a titanium compound to form a gel and then peptizing the gel.
  • the titanium compound only needs to be water-soluble.
  • titanium compounds include titanium tetrachloride, titanium trichloride, titanium sulfate, titanyl sulfate, titanium hydride, and the like.
  • the resulting gel contains titanium hydroxide. Salts remaining in the gel reduce the refractive index of the film and the dispersibility of particles. Therefore, it is preferable to wash the gel with water.
  • a gel is peptized using hydrogen peroxide, crystal growth tends to occur while the core particles maintain a rutile-type state.
  • the dispersion of the titanium-containing compound By keeping the dispersion of the titanium-containing compound at 50° C. to 100° C. after adding hydrogen peroxide, the gel is easily peptized.
  • a dispersion of such a titanium-containing compound and a dispersion of core particles are mixed.
  • this temperature By bringing this temperature to 80° C. or higher, the core particles undergo crystal growth.
  • this temperature is less than 80° C., the crystal growth rate is slow and the crystallite diameter of the particles becomes small. Moreover, since the reaction becomes insufficient, titanium-containing compounds end up remaining.
  • this temperature is set to 80° C. or higher, it is preferable to hydrothermally synthesize (autoclave treatment) the mixed liquid.
  • This temperature is preferably 100°C or higher, more preferably 130°C or higher.
  • this temperature is 300° C. or lower, production efficiency becomes high.
  • This temperature is more preferably 250°C. Furthermore, the longer the hydrothermal synthesis time, the denser the particles will be. Therefore, this time is preferably 1 hour or more, more preferably 5 hours or more, and even more preferably 10 hours or more. On the other hand, if this time is 50 hours or less, production efficiency will be high. This time is more preferably 40 hours or less, and even more preferably 20 hours or less.
  • the number of times of crystal growth is preferably 2 to 5 times. In the case of 2 to 3 times, the haze of the film is low and the refractive index of the film is high. In the case of 4 to 5 times, the haze of the film becomes higher than in the case of 2 to 3 times, but the refractive index becomes higher.
  • similar operations are performed using the crystal-grown particles as core particles.
  • a dispersion liquid is prepared by crushing the rutile powder in the liquid mixture.
  • the rutile powder is crushed until it reaches the desired particle size.
  • Rutile powder can be crushed using a bead mill, medialess disperser, etc.
  • Rutile powder can be easily crushed by using a bead mill.
  • the crushing time, circumferential speed, and bead filling rate are adjusted as appropriate depending on the scale and shape of the bead mill used.
  • the bead diameter is adjusted as appropriate depending on the circumferential speed. Glass and zirconia beads are readily available. Beads of inorganic oxides such as zirconia and alumina provide high energy to rutile powder. Therefore, it is easy to crush the rutile powder.
  • a coating liquid can be prepared by adding a binder to the above-mentioned dispersion liquid.
  • Any binder may be used as long as it can form a film using a coating liquid.
  • the binder include monomers and oligomers before polymerization, and polymers after they are polymerized. Among these, monomers or oligomers are preferred.
  • a coating solution containing monomers or oligomers is more likely to form a dense film than a coating solution containing a polymer.
  • the organic solvent can be appropriately selected depending on the type of binder added when preparing the coating liquid.
  • a polymerization initiator is added to the coating solution.
  • a photopolymerization initiator or a thermal polymerization initiator can be selected.
  • Adhesion is increased by adding 20 parts by mass or more of the binder to 100 parts by mass of particles.
  • the amount added is preferably 40 parts by mass or more.
  • the refractive index of the film increases.
  • this solid content concentration is preferably 10% by weight or more, more preferably 20% by weight or more.
  • this solid content concentration is preferably 50% by weight or less, more preferably 30% by weight or less.
  • the boiling point is preferably 80°C or higher, more preferably 100°C or higher.
  • the lower the boiling point the more difficult it is for the organic solvent to remain in the film, making it easier for the film to shrink. Therefore, the hardness of the film increases.
  • This boiling point is preferably 200°C or lower, more preferably 180°C or lower.
  • a leveling agent may be added to the coating liquid in order to adjust the wettability with the base material and the leveling property of the surface of the film.
  • a film is formed on a base material using the above-mentioned coating liquid to produce a film-coated base material.
  • the base material is coated with a film, and the film contains the above-mentioned rutile particles. That is, the film-coated base material includes a film containing rutile particles and a base material, and the film is coated on the base material.
  • a film containing the above-mentioned rutile particles has a high refractive index.
  • Example 1 Hereinafter, the manufacturing method and physical properties of the rutile particle dispersion will be specifically explained. Table 1 shows the conditions for preparing the dispersion.
  • Rutile powder was prepared as follows. First, a white slurry (gel) having a pH of 9.2 was prepared by mixing 523 g of a titanium tetrachloride aqueous solution containing 7.66% by mass in terms of TiO 2 and 523 g of aqueous ammonia containing 7.66% by mass. After filtering the slurry, the solid content was washed with pure water to obtain 400.5 g of cake with a solid content of 10% by mass. A slurry was obtained by diluting this cake with pure water to 1.5% by mass. After adding 457.7 g of 35% by mass hydrogen peroxide solution to this slurry, it was heated at a temperature of 80° C. for 1 hour.
  • a dispersion of a titanium-containing compound (titanium oxide concentration: 1.0% by weight in terms of TiO 2 ) was obtained.
  • the pH of this dispersion was 7.8, and the laser particle diameter was 21 nm.
  • the laser particle diameter was measured by electrophoretic light scattering using ELSZ-2000S manufactured by Otsuka Electronics. In all other Examples and Comparative Examples, laser particle diameters were measured under these conditions.
  • a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was added to 4005 g of a dispersion of a titanium-containing compound. After adding 495 g of a potassium stannate aqueous solution diluted to 1% by weight with pure water to this dispersion, the ion exchange resin was separated from this dispersion. This dispersion was hydrothermally synthesized at 165° C. for 18 hours using an autoclave. The laser particle diameter of this dispersion was 21 nm. After cooling this dispersion liquid to room temperature, it was concentrated using an ultrafiltration membrane device to prepare an aqueous sol. Rutile powder was prepared by drying this aqueous sol using a dryer. The composition of the prepared rutile powder is listed in Table 1.
  • the solid contents of Ti (titanium oxide), Sn (tin oxide), and P in this dispersion were measured by the following method and converted into TiO 2 , SnO 2 , and P 2 O 5 contents.
  • 1 g of a PGM dispersion of rutile particles was dried at 100° C. for 10 minutes to obtain a powder of particles.
  • the organic matter in the powder was incinerated using a burner. Thereafter, sodium peroxide and sodium hydroxide were added to the powder to melt the powder. Furthermore, sulfuric acid and hydrochloric acid were added to dissolve the powder.
  • the coating solution was applied to a glass substrate (manufactured by Hamashinsha: FL Glass, thickness: 3 mm, refractive index: 1.51) by a spin coating method. The coating solution was dried at 80° C. for 2 minutes.
  • a film-coated substrate (glass substrate) was prepared by irradiating the dried coating liquid with ultraviolet light at 3000 mJ/cm 2 using a high-pressure mercury lamp (EYEUVMETER, manufactured by GS Yuasa). The total light transmittance and haze of the film-coated substrate (glass substrate) were measured using a haze meter (manufactured by Nippon Denshoku Co., Ltd.: NDH-5000).
  • the uncoated glass substrate had a total light transmittance of 99.0% and a haze of 0.1%.
  • the evaluation results are shown in Table 2.
  • Transparent film-attached substrates glass substrates were similarly prepared for Examples and Comparative Examples to be described later, and measurements were performed.
  • Example 2 A cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was added to 4005 g of the dispersion of the titanium-containing compound obtained in Example 1. Further, 495 g of a 1% by weight aqueous potassium stannate solution was added to this dispersion. The ion exchange resin was separated from the dispersion. This dispersion was hydrothermally synthesized in an autoclave at 165° C. for 18 hours to obtain 4500 g of a core particle dispersion. 4500 g of a core particle dispersion and 4500 g of a titanium-containing compound dispersion were mixed. The laser particle diameter of this dispersion was 26 nm.
  • This dispersion was hydrothermally synthesized using an autoclave to cause crystal growth of core particles.
  • an aqueous sol of rutile particles was prepared.
  • the conditions for hydrothermal synthesis were 165° C. for 18 hours.
  • the laser particle diameter of the water sol was 26 nm.
  • Rutile powder was obtained by drying this aqueous sol using a dryer.
  • a coating liquid was prepared in the same manner as in Example 1 except that this rutile powder was used in the mixing step.
  • Example 3 Core particles were crystal-grown in the same manner as in Example 2, except that the aqueous sol prepared in Example 2 was used as the core particle dispersion (that is, crystal growth was performed twice in this example). . This gave an aqueous sol.
  • the laser particle diameter of the water sol was 32 nm.
  • Rutile powder was obtained by drying this aqueous sol using a dryer.
  • a coating liquid was prepared in the same manner as in Example 1 except that this rutile powder was used in the mixing step.
  • Example 4 A coating solution was prepared in the same manner as in Example 3, except that DPHA was replaced with an adamantane derivative (Diapurest (registered trademark) ADDA, manufactured by Mitsubishi Gas Chemical Co., Ltd.).
  • Example 5 A coating liquid was prepared in the same manner as in Example 3, except that in the mixing step, Plysurf A208F (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) was used as the surfactant.
  • Plysurf A208F manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • Example 6 A coating solution was prepared in the same manner as in Example 3, except that in the mixing step, Plysurf A215C (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) was used as the surfactant.
  • Example 1 A mixed solution was prepared in the same manner as in Example 3, except that in the mixing step, Plysurf A208B (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) was used as the surfactant.
  • Plysurf A208B manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • the crushing step the rutile powder in this liquid mixture was crushed using a bead mill under the same conditions as in Example 3. Even if the disintegration was continued, the average particle size of the dispersion did not become 2400 nm or less, and the rutile particles could not be dispersed in PGM.
  • Example 2 A mixed solution was prepared in the same manner as in Example 3, except that in the mixing step, Plysurf P-2M (manufactured by Kyoeisha Chemical Co., Ltd.) was used as the surfactant.
  • Plysurf P-2M manufactured by Kyoeisha Chemical Co., Ltd.
  • the crushing step the rutile powder in this liquid mixture was crushed using a bead mill under the same conditions as in Example 3. Even if the disintegration was continued, the average particle size of the dispersion did not become 270 nm or less, and the rutile particles could not be dispersed in PGM.
  • Example 3 A mixed solution was prepared in the same manner as in Example 3, except that in the mixing step, Plysurf A212E (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) was used as the surfactant.
  • Plysurf A212E manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • the crushing step the rutile powder in this liquid mixture was crushed using a bead mill under the same conditions as in Example 3. Even if the disintegration was continued, the average particle size of the dispersion did not become 500 nm or less, and the rutile particles could not be dispersed in PGM.
  • Example 4 A mixed solution was prepared in the same manner as in Example 3, except that in the mixing step, Plysurf A212C (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) was used as the surfactant.
  • Plysurf A212C manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • the crushing step the rutile powder in this liquid mixture was crushed using a bead mill under the same conditions as in Example 3. Even if the disintegration was continued, the average particle size of the dispersion did not become 500 nm or less, and the rutile particles could not be dispersed in PGM.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

分散剤の量が少なくても、ルチル型の結晶構造を有する粒子が有機溶媒に分散できる分散液を提供する。 本発明の分散液はルチル型の結晶構造を有する粒子とリン酸エステル系の界面活性剤とを含み、この界面活性剤は長いアルキル基を有することとした。アルキル基の炭素原子の数は6~14である。この界面活性剤のHLB値は7以上である。さらに、このHLB値をアルキル基の炭素原子数で除した値(HLB値/炭素原子数)が0.8以上である。

Description

粒子の分散液と、その製造方法、塗布液および膜付基材の製造方法
 本発明は、ルチル型粒子の分散液およびその製造方法と、塗布液および膜付基材の製造方法に関する。
 従来から、屈折率の高い酸化物粒子を含有する塗布液を用いて、基材上に屈折率の高い膜が形成されている。このような膜は、例えば、メガネ、レンズ、スマートフォンのタッチパネル等に利用されている。
 膜の屈折率を高くするために、酸化物粒子の屈折率は高いことが好ましい。例えば、ルチル型の結晶構造を有する酸化チタン含有粒子(以下、ルチル粒子)は他の結晶構造と比べて高い屈折率を有することが知られている(例えば、特許文献1)。分散剤としてシランカップリング剤を用いると、酸化チタン含有粒子が有機溶媒に分散できる。
 分散剤としてリン酸エステル系の界面活性剤を含む溶液中で、酸化チタン粒子を調製することにより、酸化チタン含有粒子が得られることが知られている(例えば、特許文献2)。この方法であれば、少ない量の分散剤で酸化チタン含有粒子を分散することができる。
国際公開第2018/181241号 国際公開第2013/161859号
 特許文献1の酸化チタン含有粒子の結晶構造ルチル型であるため、高い屈折率を有する。しかし、分散剤としてシランカップリング剤を用いてこの粒子を分散させているので、多量のシランカップリング剤が必要である。このような分散液を用いて塗布液を調製した場合、固形分中のルチル粒子含有率が低くなってしまう。そのため、屈折率の高い膜を形成することができない。
 一方、特許文献2の酸化チタン含有粒子は、分散剤の量が少なくても有機溶媒に分散できる。しかし、界面活性剤(分散剤)の親油基が(メタ)アクリレート基であり、(メタ)アクリレート基は電気陰性度の低い元素を含むため、親油性が低い。このような界面活性剤は、ルチル粒子を有機溶媒に分散できない。
 そこで本発明の目的は、固形分中のルチル粒子含有率を高くできる分散液を提供することにある。
 そこで、本発明の分散液はルチル型の結晶構造を有する粒子とリン酸エステル系の界面活性剤とを含み、この界面活性剤は長いアルキル基を有することとした。このアルキル基の炭素原子の数は6~14である。この界面活性剤のHLB値は7以上である。さらに、このHLB値をアルキル基の炭素原子数で除した値(HLB値/炭素原子数)が0.8以上である。界面活性剤は式*の構造を有する。Rは炭素原子が6~14のアルキル基である。mはエチレンオキサイドの繰り返し数であり、2より大きい。nは1または2である。なお、n=1とn=2の界面活性剤の両方を分散液は含んでいてもよい。
     RO[(CH2CH2O)m]nP(=O)(OH)3-n・・・・・・*
 本発明の分散液は、結晶構造がルチル型の粒子(以下、ルチル粒子と称す)と、分散剤と、有機溶媒と、を含み、ルチル粒子は酸化チタンを含む。分散剤は、リン酸エステル系の界面活性剤(以下、界面活性剤と表す)である。界面活性剤は電離して陰イオンになる親水基(以下、親水基と表す)と、親油基とを有する。ルチル粒子の表面も親水性であるため、親水基はルチル粒子表面に吸着し易い。ルチル粒子表面に吸着した界面活性剤の親油基は有機溶媒側に偏在する。この親油基は有機溶媒との親和性が高い。そのため、このような界面活性剤が表面に処理されているルチル粒子は有機溶媒に分散し易くなる。これら親水基と親油基のバランスがルチル粒子の有機溶媒への分散性に影響する。ここで、リン酸部は親水基である。
 界面活性剤の親水性と親油性のバランスを示す指標として、一般的にHLB値が用いられる。この値が高いほど親水性が高い。界面活性剤のHLB値(以下、単にHLB値と称す)が7以上であることにより、親水基がルチル粒子表面に吸着し易くなる。
 HLB値が高いほど、、界面活性剤と有機溶媒の親和性が低くなる。ここで、親油基の炭素原子数を6以上である。これにより、この親油基と有機溶媒との親和性が高くなる。そのため、HLB値が7以上でも、ルチル粒子が有機溶媒に分散し易い。
 この炭素原子数が大き過ぎる場合、ルチル粒子の表面に吸着している状態より、有機溶媒に分散している状態の方が、界面活性剤は安定となり易い。すなわち、界面活性剤がルチル粒子の表面に吸着し難くなる。親油基の炭素原子数は14以下である。
 親油基がフェニル基等のかさ高い官能基を有すると、かさ高い官能基が立体障害となり、界面活性剤がルチル粒子に吸着し難くなると推測される。また、親油基が電気陰性度の高い元素を含むと、この親油基の親油性が下がるため、ルチル粒子が有機溶媒に分散できない。ここで、親油基をアルキル基である。アルキル基は長いものの、ルチル粒子表面に吸着する際には互いに立体障害になり難い。また、アルキル基は電気陰性度の高い元素を含まない。以下、界面活性剤のアルキル基を、単にアルキル基と称す。
 さらに、HLB値をアルキル基の炭素原子数で除した値(HLB値/炭素原子数)が0.8以上である。これにより、アルキル基の炭素原子数が大きくても、界面活性剤の親水性が高い。そのため、界面活性剤がルチル粒子の表面に吸着し易くなる。
 界面活性剤が式*の構造を有すると、ルチル粒子が有機溶媒に分散し易い。ここで、Rは炭素原子が6~14のアルキル基である。mはエチレンオキサイド(以下、EOと称す)の繰り返し数であり、2より大きい。nは1または2である。なお、分散剤としてn=1とn=2の界面活性剤の両方を分散液は含んでいてもよい。ここで、EO基もリン酸部と同様に親水基である。
     RO[(CH2CH2O)m]nP(=O)(OH)3-n・・・・・・*
 EOの繰り返し数mが大きいほど、親水基の分子量は高くなり、界面活性剤の親水性が高くなる。繰り返し数mは式〔HLB=7+11.7log(M/M)〕から(川上法により)算出される。Mは親水基の分子量で、Mは親油基の分子量である。分散剤としてn=1とn=2の界面活性剤の両方を分散液が含んでいる場合、n=1として繰り返し数mを算出する。mが2より大きい。これにより、親水基がルチル粒子表面に吸着し易くなる。mは3以上が好ましい。また、親水基の分子量は100以上が好ましい。親水基の分子量が高いほど、親水基がルチル粒子表面に吸着し易い。
 界面活性剤の分子量が高いほど、親水基と親油基の分子量が高くなる。親水基が大きいほど、親水基がルチル粒子表面に吸着し易い。親油基が大きいほど、ルチル粒子が有機溶媒に分散し易い。そのため、界面活性剤の分子量は300以上が好ましい。500以上がより好ましい。
 分散液中の界面活性剤の含有量が多いほど、ルチル粒子が有機溶媒に分散し易い。そのため、この含有量はルチル粒子100質量部に対して10質量部以上が好ましい。一方、この含有量が低いほど。分散液中のルチル粒子含有率が高くなる。そのため、分散液中の界面活性剤の含有率はルチル粒子100質量部に対して25質量部以下が好ましい。この界面活性剤の含有率は20質量部以下が好ましく、16質量部以下がさらに好ましい。
 分散液の固形分濃度が低いほど、ルチル粒子が有機溶媒に分散し易い。そのため、固形分濃度が50重量%以下、40重量%以下、30重量%以下が好ましい。一方で、固形分濃度が低いほど、ルチル粒子の輸送コストが高くなる。そのため、固形分濃度は3重量%以上、5重量%以上、10重量%以上、が好ましい。
 また、界面活性剤を含む分散液は固形分中にリン(P)を含む。固形分中のリン含有率が多いほど、ルチル粒子は有機溶媒に分散し易い。そのため、固形分中のリン含有率はP換算で0.3重量%以上が好ましい。、一方、このリン含有率が低いほど、固形分の界面活性剤含有量が少なく、固形分中のルチル粒子含有率を高くできる。このリン含有率はP換算で3重量%以下が好ましく、2重量%以下がさらに好ましい。
 固形分中の酸化チタン含有率が高いほど、膜の屈折率が高くなる。そのため、この酸化チタン含有率は、TiO換算で80重量%以上が好ましく、85重量%以上がより好ましく、90重量%以上がさらに好ましい。
 有機溶媒はルチル粒子を分散できるものであればよい。ルチル粒子はグリコール系の有機溶媒に分散し易い。また、ルチル粒子は、SP値が9~13の有機溶媒に分散し易い。SP値が9~13のグリコール系有機溶媒として、プロピレングリコールモノメチルエーテル(PGM)が挙げられる。一方、有機溶媒のSP値が9未満の場合、アルキル基が長いほど、ルチル粒子が有機溶媒に分散し易い。この場合、アルキル基の炭素原子数は10以上が好ましく、12以上がより好ましい。
 以下、ルチル粒子について説明する。ルチル粒子を溶媒に分散させたときの平均粒子径(以下、分散粒子径と称す)が100nm以下の粒子は光を散乱させ難い。このような粒子を用いることにより、膜の透明性が高くできる。また、分散粒子径が100nm以下のルチル粒子は沈降し難い。分散粒子径は80nm以下が好ましい。一方、分散粒子径が15nm以上のルチル粒子は溶媒やバインダに分散し易い。分散粒子径は25nm以上が好ましい。分散粒子径は動的光散乱法により測定できる。
 ルチル粒子の結晶子径が大きいほど、比表面積が小さく、ルチル粒子の密度が高い。そのため、ルチル粒子の屈折率が高くなる。このような粒子を含む膜の屈折率は高い。また、この結晶子径が大きいほど、ルチル粒子の比表面積が小さくなるため、ルチル粒子が溶媒に分散し易くなる。そのため、この結晶子径は5nm以上である。この結晶子径は、7nm以上が好ましく、9nm以上がより好ましく、12nm以上がさらに好ましい。
 結晶子径が7nm以上のルチル粒子には、ルチル粒子100質量部に対して9質量部以上の界面活性剤を用いることにより、、ルチル粒子は有機溶媒に分散し易くなる。結晶子径が9nm以上のルチル粒子には、ルチル粒子100質量部に対して7質量部以上の界面活性剤を用いることにより、、ルチル粒子が有機溶媒に分散し易くなる。
 ルチル粒子の酸化チタン含有率が高いほど、ルチル粒子の屈折率は高くなる。そのため、この酸化チタン含有率は、TiO換算で90重量%以上が好ましく、92重量%以上がより好ましく、95重量%以上がさらに好ましい。一方、酸化スズを含む酸化チタン粒子の結晶構造はルチル型になり易い。しかし、屈折率の観点から、ルチル粒子の酸化スズ含有率は低い方がよい。従って、ルチル粒子の酸化スズ含有率は、SnO換算で10重量%以下が好ましく、5重量%以下がより好ましい。
 また、表面からスズが検出されないルチル粒子、すなわち、表面に酸化スズが存在しないルチル粒子では、ルチル粒子の表面側(以下、シェルと称す)の酸化チタンの割合が高くなる。そのため、ルチル粒子全体の酸化チタン含有率が高くなり易い。一方、粒子の中心側(以下、コアと称す)が酸化スズを含むと、粒子の結晶構造がルチル型になり易い。すなわち、粒子の結晶構造がルチル型になるのに十分な量の酸化スズをコアが含めば、シェルは酸化スズを含まなくてよい。コア中のスズの割合が低いほど、ルチル粒子全体の酸化チタン含有率を高くできる。そのため、この割合は、6.5atomic%(at%)以下が好ましい。このスズ割合は、チタンとスズの合計の原子数に対するスズの原子数である。
 ルチル粒子の形状は、例えば、球状、楕球体(ラグビーボール)状、繭状、金平糖状、鎖状、サイコロ状などが挙げられる。この形状が球状に近いほど、塗布液や膜中に均一に分散し易い。
 以下、分散液の製造方法について説明する。まず、ルチル型の結晶構造を有する粉末(以下、ルチル粉末と称す)と界面活性剤と有機溶媒とを混合することにより、混合液を調製する〔混合工程〕。その後、混合液中のルチル粉末を解砕することにより、粒子の分散液を調製する〔解砕工程〕。以下、各工程について詳細に説明する。
 〔混合工程〕
 本工程では、ルチル粉末と界面活性剤と有機溶媒とを混合することにより、混合液を調製する。混合液を攪拌することにより、ルチル粒子表面に界面活性剤が均一に処理され易い。界面活性剤の混合量が多いほど、ルチル粒子が有機溶媒に分散し易くなる。そのため、ルチル粒子100質量部に対して10質量部以上が好ましい。また、界面活性剤の混合量がルチル粉末の表面積1mに対して0.2mg以上が好ましい。一方、この混合量が少ないほど、分散液中の固形分のルチル粒子含有率が高くなる。そのため、この混合量は、ルチル粒子の結晶子100質量部に対して25質量部以下が好ましく、15質量部以下がさらに好ましい。また、この混合量がルチル粉末の表面積1mに対して5mg以下であることが好ましい。
 ルチル粉末の酸化チタン含有率が、解砕工程の後に得られるルチル粒子の酸化チタン含有率になる。この酸化チタン含有率が高いほど、ルチル粒子の屈折率が高くなる。そのため、この酸化チタン含有率は、TiO換算で85重量%以上が好ましく、90重量%以上がより好ましく、95重量%以上がさらに好ましい。
 結晶子径が5nm以上のルチル粉末を用いることにより、解砕工程の後に得られるルチル粒子が5nm以上になるため、ルチル粒子が有機溶媒に分散し易い。
 ゾルを乾燥することにより得られるルチル粉末を用いると、ルチル粉末を解砕し易い。ここで、ゾルはルチル型の結晶構造を有する粒子を含む。ゾルの溶媒が水である(すなわち、ゾルが水ゾルである)場合、表面処理剤で粒子表面を処理する必要がない。そのため、水ゾルを用いることにより、ルチル粉末の酸化チタン含有率を高くできる。また、水ゾルを用いることにより、粒子表面を表面処理剤で処理する工程が必要なくなる。そのため、コストが低くなる。水ゾルを乾燥させる場合、水ゾルを80℃以上で乾燥することにより、水が蒸発し易い。この乾燥温度が低いほど、ルチル粒子が焼結し難く分散粒子径が小さくなる。そのため、この乾燥温度は120℃以下が好ましい。
 解砕工程の後、分散液の平均粒子径は、水ゾルの平均粒子径に近くなる。そのため、膜のヘーズを低くする観点では、水ゾルの平均粒子径は100nm以下が好ましい。水ゾルや分散液の平均粒子径は動的光散乱法により測定できる。また、解砕工程の後、ルチル粒子の結晶子径は、ルチル粉末(水ゾル中のルチル粒子)の結晶子径に近くなる。ルチル粒子を有機溶媒に分散させ易くするために、ルチル粉末の結晶子径は7nm以上が好ましく、9nm以上がより好ましい。
 結晶子径が7nm以上のルチル粒子として、上述の表面からスズが検出されないルチル粒子が挙げられる。このような粒子は、チタン含有化合物を用いてコア粒子表面に酸化チタンを結晶成長させることにより調製できる。コア粒子は酸化チタンと酸化スズを含む。コア粒子の結晶構造がルチル型となる程度に、コア粒子は酸化スズを含む。チタン化合物を中和してゲルを生成させた後、ゲルを解膠することによりチタン含有化合物は得られる。チタン化合物は水溶性であればよい。具体的には、チタン化合物として、四塩化チタン、三塩化チタン、硫酸チタン、硫酸チタニル、水素化チタン等が挙げられる。生成したゲルはチタンの水酸化物を含む。ゲルに残った塩は膜の屈折率や粒子の分散性を低下させる。そのため、ゲルを水で洗浄することが好ましい。過酸化水素を用いてゲルを解膠した場合、コア粒子がルチル型の状態を維持したまま結晶成長し易い。過酸化水素を添加した後のチタン含有化合物の分散液を50℃~100℃の状態にすることにより、ゲルが解膠し易い。
 このようなチタン含有化合物の分散液とコア粒子の分散液とを混合する。これを80℃以上の状態にすることにより、コア粒子が結晶成長する。この温度が80℃未満の場合、結晶成長する速度が遅いため、粒子の結晶子径が小さくなる。また、反応が不十分となるため、チタン含有化合物が残存してしまう。この温度を80℃以上にするとき、混合液を水熱合成(オートクレーブ処理)することが好ましい。水熱合成の温度が高いほど、結晶子径が大きくなる。そのため、この温度は100℃以上が好ましく、130℃以上がさらに好ましい。一方、この温度が300℃以下であると、生産効率が高くなる。この温度は、250℃がより好ましい。また、水熱合成の時間が長いほど、密度の高い粒子となる。そのため、この時間は1時間以上が好ましく、5時間以上がより好ましく、10時間以上がさらに好ましい。一方で、この時間が50時間以下だと、生産効率が高くなる。この時間は、40時間以下がより好ましく、20時間以下がさらに好ましい。
 結晶成長を複数回繰り返すことにより、酸化チタン含有率が高く、且つ結晶子径と粒子径が大きい粒子を調製できる。結晶成長の回数は2~5回が好ましい。2~3回の場合、膜のヘーズが低く、且つ膜の屈折率が高い。4~5回の場合、2~3回の場合よりも、膜のヘーズが高くなるが、屈折率が高くなる。2回目以降の結晶成長では、結晶成長させた粒子をコア粒子として用いて、同様の操作を行う。
 〔解砕工程〕
 本工程では、混合液中のルチル粉末を解砕することにより、分散液を調製する。ここでは、所望の粒径になるまでルチル粉末を解砕する。ビーズミルやメジアレスの分散機等を用いてルチル粉末を解砕できる。ビーズミルを用いることにより、ルチル粉末を解砕し易い。使用するビーズミルの装置の規模や形状によって、解砕時間、周速、およびビーズの充填率を適宜調整する。さらに、ビーズ径は周速に応じて適宜調整する。ガラスやジルコニア製のビーズは容易に入手できる。ジルコニアやアルミナ等の無機酸化物のビーズはルチル粉末に与えるエネルギーが高い。そのため、ルチル粉末を解砕し易い。
 以下、塗布液について説明する。上述の分散液にバインダを添加することにより塗布液を調製できる。バインダは、塗布液を用いて膜を形成可能であれば構わない。バインダとして、重合する前のモノマーやオリゴマー、またはこれらが重合された後のポリマー等が挙げられる。このうち、モノマーまたはオリゴマーが好ましい。膜を硬化する際、ポリマーを含む塗布液よりも、モノマーやオリゴマーを含む塗布液の方が緻密な膜になり易い。塗布液を調製する際に添加するバインダの種類によって、有機溶媒を適宜選択できる。
 バインダとしてモノマーやオリゴマーを用いる場合、重合開始剤を塗布液に添加する。バインダの種類によって、光重合開始剤や熱重合開始剤を選択できる。
 バインダを粒子100質量部に対して20質量部以上添加することにより、密着性が高くなる。この添加量は40質量部以上が好ましい。一方、この添加量を粒子100質量部に対して70質量部以下にすることにより、、膜の屈折率が高くなる。
 塗布液の固形分濃度が高いほど、膜を厚くし易い。また、工業的に扱い易い。従って、この固形分濃度は10重量%以上が好ましく、20重量%以上がより好ましい。一方で、この固形分濃度が低いほど、塗布液の粘度が低くなるため、塗布液を塗工し易い。従って、この固形分濃度は50重量%以下が好ましく、30重量%以下がより好ましい。
 有機溶媒の沸点が高いほど、塗布液をゆっくり乾燥できるため、膜が緻密になる。この沸点は80℃以上が好ましく、100℃以上がより好ましい。一方で、この沸点が低いほど、有機溶媒が膜中に残存し難いため、膜が収縮し易くなる。そのため、膜の硬度が高くなる。この沸点は200℃以下が好ましく、180℃以下がより好ましい。
 基材との濡れ性や膜の表面のレベリング性等を調整するために、塗布液にレベリング剤を添加してもよい。
 上述の塗布液を用いて基材上に膜を形成し、膜付基材を作製する。膜付基材では、基材の上に膜が被覆されており、膜は上述のルチル粒子を含む。すなわち、膜付基材は、ルチル粒子を含む膜と、基材とを含み、基材上に膜が被覆されている。上述のルチル粒子を含む膜の屈折率は高くなる。
 [実施例1]
 以下、ルチル粒子の分散液の製造方法と物性について具体的に説明する。分散液の調製条件を表1に示す。
 以下のようにルチル粉末を調製した。まず、TiO換算で7.66質量%の四塩化チタン水溶液523gと、7.66質量%のアンモニア水523gとを混合することにより、pH9.2の白色のスラリー(ゲル)を調製した。スラリーをろ過した後、固形分を純水で洗浄することにより、固形分が10質量%のケーキ400.5gを得た。このケーキを純水で1.5質量%に希釈することにより、スラリーを得た。このスラリーに35質量%の過酸化水素水457.7gを加えた後、80℃の温度で1時間加熱した。この分散液に純水877gを添加することにより、チタン含有化合物の分散液(酸化チタン濃度はTiO換算で1.0重量%)を得た。この分散液のpHは7.8、レーザー粒子径は、21nmであった。水を用いて、この分散液の酸化チタン濃度を0.01重量%に希釈した後、大塚電子社製のELSZ-2000Sを用いて電気泳動光散乱法でレーザー粒子径を測定した。他の実施例および比較例では、レーザー粒子径を全てこの条件で測定した。
 チタン含有化合物の分散液4005gに、陽イオン交換樹脂(三菱ケミカル社製)を添加した。1重量%に純水で希釈した錫酸カリウム水溶液を495gこの分散液に添加した後、この分散液からイオン交換樹脂を分離した。オートクレーブを用いて165℃で18時間この分散液を水熱合成した。この分散液のレーザー粒子径は、21nmであった。この分散液を室温まで冷却した後、限外濾過膜装置を用いて濃縮することにより、水ゾルを調製した。乾燥機を用いてこの水ゾルを乾燥することにより、ルチル粉末を調製した。調製したルチル粉末の組成を表1に記載する。
 〔混合工程〕
 有機溶媒としてPGMを70.9gと、界面活性剤としてプライサーフA219B(第一工業製薬社製)を3.8gと、ルチル粉末17.7gと、を容器に入れた。これらを10分間撹拌・混合することにより、混合液を調製した。
 〔解砕工程〕
 ジルコニアビーズ(ビーズ径は0.1mmφ)を混合液に添加して、ビーズミル(アイメックス社製 イージーナノ(RMBII))を用いて粒子径が25nmになるまでルチル粉末を解砕した。これにより、ルチル粒子のPGM分散液(固形分濃度が20質量%)を得た。
 以下の方法で、この分散液中の固形分のTi(酸化チタン)、Sn(酸化スズ)、およびP含有率を測定しTiO、SnO、およびP含有率に換算した。まず、ルチル粒子のPGM分散液1gを100℃で10分乾燥することにより、粒子の粉末を得た。バーナーを用いて、粉末中の有機物を灰化した。その後、粉末に過酸化ナトリウムと水酸化ナトリウムを加えて、粉末を溶融した。さらに、硫酸と塩酸を加えて、粉末を溶解した。ICP-OES(SII社製SPS5520または島津製作所社製ICPS-8100)を用いて、この溶液中のTi(酸化チタン)、Sn(酸化スズ)、およびP濃度を測定した。この濃度をそれぞれTiO、SnO、およびPの含有率に換算した。各成分の含有率を表2に示す。以下の実施例および比較例についても同様に測定・換算した。
 〔塗布液の調製〕
 ルチル粒子のPGM分散液100.0g、ポリエチレングリコールモノメチルエーテルアセテート121.0g、ジペンタエリスリトールヘキサアクリレート(DPHA、共栄社化学社製:ライトアクレートDPE-6A)10.4g、および重合開始剤としてジフェニル(2,4,6トリメチルベンゾイル)-フェニルフォスフィンオキサイド(IGMResinsB.V.社製:OMNIRAD(登録商標)TPO-H)0.6gを混合した。これにより、塗布液を調製した。
 〔膜付基材(ガラス基板)の製造〕
 ガラス基板(浜新社製:FL硝子、厚さ:3mm、屈折率:1.51)にスピンコート法で塗布液を塗布した。80℃で2分間塗布液を乾燥した。高圧水銀ランプ(GSユアサ社製:EYEUVMETER)を用いて、3000mJ/cmの条件で紫外光を乾燥した塗布液に照射することにより、膜付基材(ガラス基板)を作製した。ヘーズメーター(日本電色社製:NDH-5000)を用いて、膜付基材(ガラス基板)の全光線透過率およびヘーズを測定した。なお、未塗布のガラス基板は全光線透過率が99.0%、ヘーズが0.1%であった。評価結果を表2に示す。後述の実施例と比較例についても同様に透明膜付基材(ガラス基板)を作製し、測定を行った。
 〔膜付基材(シリコンウエハ)の製造〕
 シリコンウエハ(松崎製作社製:6インチダミーウエハ(P型)、厚さ:625μm)にスピンコート法で塗布液を塗布した。80℃で2分間塗布液を乾燥した。EYEUVMETERを用いて3000mJ/cmの条件で紫外光を乾燥した塗布液に照射することにより、膜付基材(シリコンウエハ)を作製した。分光エリプソメトリー(日本セミラボ社製:SE―2000)を用いて、膜付基材の屈折率と膜厚を評価した。評価結果を表2に示す。後述の実施例と比較例についても同様に透明被膜付基材(シリコンウエハ)を作製し、測定・評価を行った。
 [実施例2]
 実施例1で得たチタン含有化合物の分散液4005gに、陽イオン交換樹脂(三菱ケミカル社製)を添加した。さらに、1重量%の錫酸カリウム水溶液を495gこの分散液に添加した。分散液からイオン交換樹脂を分離した。オートクレーブ中にて165℃で18時間この分散液を水熱合成することにより、コア粒子の分散液4500gを得た。コア粒子の分散液4500gとチタン含有化合物の分散液4500gとを混合した。この分散液のレーザー粒子径は26nmであった。オートクレーブを用いてこの分散液を水熱合成することにより、コア粒子を結晶成長させた。これにより、ルチル粒子の水ゾルを調製した。水熱合成の条件は165℃で18時間とした。水ゾルのレーザー粒子径は、26nmであった。
 乾燥機を用いてこの水ゾルを乾燥することにより、ルチル粉末を得た。混合工程において、このルチル粉末を用いたこと以外は実施例1と同様に塗布液を調製した。
 [実施例3]
 コア粒子の分散液として実施例2で調製した水ゾルを用いたこと以外は、実施例2と同様にコア粒子を結晶成長させた(すなわち、本実施例では結晶成長を2回行った。)。これにより、水ゾルを得た。水ゾルのレーザー粒子径は、32nmであった。乾燥機を用いてこの水ゾルを乾燥することにより、ルチル粉末を得た。混合工程において、このルチル粉末を用いたこと以外は実施例1と同様に塗布液を調製した。
 [実施例4]
 塗布液の調製において、DPHAをアダマンタン誘導体(三菱ガス化学社製:ダイヤピュレスト(登録商標)ADDA)に変更したこと以外は実施例3と同様に塗布液を調製した。
 [実施例5]
 混合工程において、界面活性剤としてプライサーフA208F(第一工業製薬社製)を用いたこと以外は実施例3と同様に塗布液を調製した。
 [実施例6]
 混合工程において、界面活性剤としてプライサーフA215C(第一工業製薬社製)を用いたこと以外は実施例3と同様に塗布液を調製した。
 [比較例1]
 混合工程において、界面活性剤としてプライサーフA208B(第一工業製薬社製)を用いたこと以外は実施例3と同様に混合液を調製した。解砕工程において、ビーズミルを用いて実施例3と同様の条件で、この混合液中のルチル粉末を解砕した。解砕を続けても分散液の平均粒子径が2400nm以下にはならず、ルチル粒子をPGMに分散できなかった。
 [比較例2]
 混合工程において、界面活性剤としてプライサーフP-2M(共栄社化学社製)を用いたこと以外は実施例3と同様に混合液を調製した。解砕工程において、ビーズミルを用いて実施例3と同様の条件で、この混合液中のルチル粉末を解砕した。解砕を続けても分散液の平均粒子径が270nm以下にはならず、ルチル粒子をPGMに分散できなかった。
 [比較例3]
 混合工程において、界面活性剤としてプライサーフA212E(第一工業製薬社製)を用いたこと以外は実施例3と同様に混合液を調製した。解砕工程において、ビーズミルを用いて実施例3と同様の条件で、この混合液中のルチル粉末を解砕した。解砕を続けても分散液の平均粒子径が500nm以下にはならず、ルチル粒子をPGMに分散できなかった。
 [比較例4]
 混合工程において、界面活性剤としてプライサーフA212C(第一工業製薬社製)を用いたこと以外は実施例3と同様に混合液を調製した。解砕工程において、ビーズミルを用いて実施例3と同様の条件で、この混合液中のルチル粉末を解砕した。解砕を続けても分散液の平均粒子径が500nm以下にはならず、ルチル粒子をPGMに分散できなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

 

Claims (8)

  1.  ルチル型の結晶構造を有する粒子と、アルキル基を有するリン酸エステル系の界面活性剤と、有機溶媒と、を含む粒子の分散液であって、
     当該分散液の固形分がTiO2換算で酸化チタンを80重量%以上含み、
     当該分散液を動的光散乱法により測定したときの平均粒子径が100nm以下であり、
     前記粒子の結晶子径が5nm以上であり、
     前記界面活性剤のHLB値が7以上であり、
     前記HLB値を前記アルキル基の炭素原子数で除した値(HLB値/炭素原子数)が0.8以上であり、
     前記界面活性剤が式*の構造であることを特徴とする粒子の分散液。
         RO[(CH2CH2O)m]nP(=O)(OH)3-n・・・・・・*
    (Rは炭素原子が6~14のアルキル基である。エチレンオキサイドの繰り返し数mは2より大きい。nは1または2である。前記界面活性剤としてn=1とn=2の構造の界面活性剤の両方を分散液は含んでいてもよい。)
  2.  前記固形分中にPがP2O5換算で0.3重量%以上含まれることを特徴とする請求項1に記載の分散液。
  3.  前記界面活性剤の分子量が500以上であることを特徴とする請求項1に記載の分散液。
  4.  当該分散液の固形分がTiO2換算で酸化チタンを90重量%以上含み、
     前記粒子の結晶子径が7nm以上であり、
     前記粒子の表面からスズが検出されないことを特徴とする請求項1に記載の分散液。
  5.  ルチル型の結晶構造を有する粉末と、アルキル基を有するリン酸エステル系の界面活性剤と、有機溶媒とを混合することにより、混合液を調製する工程と、
     前記混合液中のルチル粉末を解砕することにより、粒子の分散液を調製する工程と、を備え、
     前記粉末がTiO2換算で酸化チタンを85重量%以上含み、
     前記粉末の結晶子径が5nm以上であり、
     前記界面活性剤のHLB値が7以上であり、
     前記HLB値を前記アルキル基の炭素原子数で除した値(HLB値/炭素原子数)が0.8以上であり、
     前記界面活性剤が式*の構造を有することを特徴とする粒子の分散液の製造方法。
         RO[(CH2CH2O)m]nP(=O)(OH)3-n・・・・・・*
    (Rは炭素原子が6~14のアルキル基である。エチレンオキサイドの繰り返し数mは2より大きい。nは1または2である。前記界面活性剤としてn=1とn=2の界面活性剤の両方を分散液は含んでいてもよい。)
  6.  前記混合液を調整する工程において、前記粉末の表面積1m2に対して、前記界面活性剤を0.2~5mg混合することを特徴とする請求項5に記載の分散液の製造方法。
  7.  請求項1に記載の分散液にバインダを添加することを特徴とする膜形成用の塗布液の製造方法。
  8.  請求項7に記載の製造方法により得られた塗布液を用いて基材上に膜を形成することを特徴とする膜付基材の製造方法。
     

     
PCT/JP2023/011055 2022-03-30 2023-03-22 粒子の分散液と、その製造方法、塗布液および膜付基材の製造方法 WO2023189869A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-055717 2022-03-30
JP2022055717A JP2023147930A (ja) 2022-03-30 2022-03-30 粒子の分散液と、その製造方法、塗布液および膜付基材の製造方法

Publications (1)

Publication Number Publication Date
WO2023189869A1 true WO2023189869A1 (ja) 2023-10-05

Family

ID=88201214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011055 WO2023189869A1 (ja) 2022-03-30 2023-03-22 粒子の分散液と、その製造方法、塗布液および膜付基材の製造方法

Country Status (3)

Country Link
JP (1) JP2023147930A (ja)
TW (1) TW202402681A (ja)
WO (1) WO2023189869A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264632A (ja) * 1999-03-15 2000-09-26 Kanagawa Prefecture 紫外線遮蔽能を有する透明性金属酸化物超微粒子
JP2002542311A (ja) * 1999-02-17 2002-12-10 ロディア・シミ 酸化チタン及び両親媒性化合物に基づく有機ゾル及び固体化合物、並びにその調製方法
WO2010055845A1 (ja) * 2008-11-12 2010-05-20 積水化学工業株式会社 金属酸化物微粒子分散スラリー
JP2011074328A (ja) * 2009-10-01 2011-04-14 Canon Inc 酸化チタン分散液

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542311A (ja) * 1999-02-17 2002-12-10 ロディア・シミ 酸化チタン及び両親媒性化合物に基づく有機ゾル及び固体化合物、並びにその調製方法
JP2000264632A (ja) * 1999-03-15 2000-09-26 Kanagawa Prefecture 紫外線遮蔽能を有する透明性金属酸化物超微粒子
WO2010055845A1 (ja) * 2008-11-12 2010-05-20 積水化学工業株式会社 金属酸化物微粒子分散スラリー
JP2011074328A (ja) * 2009-10-01 2011-04-14 Canon Inc 酸化チタン分散液

Also Published As

Publication number Publication date
JP2023147930A (ja) 2023-10-13
TW202402681A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP5427093B2 (ja) 均一分散性光触媒コーティング液及びその製造方法並びにこれを用いて得られる光触媒活性複合材
JP5754943B2 (ja) 高屈折率金属酸化物微粒子を含む塗料組成物および該塗料組成物を基材上に塗布して得られる硬化性塗膜
KR100635550B1 (ko) 경질 코팅물질 및 이를 포함하는 막
JP4905822B2 (ja) コーティング組成物、その塗膜、反射防止膜、及び画像表示装置
KR101398506B1 (ko) 구상 코어셸형 산화세륨/고분자 하이브리드 나노입자의 집적체 및 그 제조 방법
JP5587573B2 (ja) 樹脂被覆金属酸化物粒子分散ゾルの製造方法および該樹脂被覆金属酸化物粒子を含む透明被膜形成用塗布液ならびに透明被膜付基材
KR20120095984A (ko) 실리카?알루미나졸의 제조방법, 실리카?알루미나졸, 상기 졸을 포함하는 투명 피막형성용 도료 및 투명 피막 부착 기재
JP4540979B2 (ja) ハードコート膜付基材および該ハードコート膜形成用塗布液
JP2010168266A (ja) 高屈折率金属酸化物微粒子の水分散ゾル、その調製方法および該金属酸化物微粒子の有機溶媒分散ゾル
JP6214412B2 (ja) コアシェル型酸化物微粒子の分散液、その製造方法、およびその用途
JP5754884B2 (ja) リン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子およびその製造方法、該リン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子を含む透明被膜形成用塗布液ならびに透明被膜付基材
JP7399599B2 (ja) ルチル型酸化チタンオルガノゾルおよびルチル型酸化チタンオルガノゾルの製造方法並びにこのルチル型酸化チタンオルガノゾルを用いた高屈折率被膜形成用組成物および光学素子
KR101163539B1 (ko) 체인 무기 산화물 미립자 그룹, 미립자 그룹 분산의제조방법 및 미립자 그룹의 이용
WO2023189869A1 (ja) 粒子の分散液と、その製造方法、塗布液および膜付基材の製造方法
JP5885500B2 (ja) 透明被膜形成用塗料および透明被膜付基材
WO2022210973A1 (ja) ルチル型の結晶構造を有する粒子およびその製造方法、並びに粒子の分散液、塗布液、膜付基材の製造方法
EP3885381A1 (en) Reactive silicone composition and cured product of same
JP2024052629A (ja) ルチル型の結晶構造を有する粒子およびその製造方法、並びに粒子の分散液、塗布液、膜付基材の製造方法
JP7169493B1 (ja) 塗布液及びその製造方法、膜付基材の製造方法
JP2024051854A (ja) 光触媒活性が低い粒子およびその製造方法、並びに粒子の分散液、塗布液、膜付基材の製造方法
JP6278902B2 (ja) 連結型結晶性無機酸化物微粒子群を含む水および/または有機溶媒分散液、その製造方法、ならびに該連結型結晶性無機酸化物微粒子群を含む光学基材用塗布液
下垣知代 Synthesis and Application of Porous and Monodispersed Silica Nano-Particles by Gradual Injection Method
WO2023243652A1 (ja) 分散液、その製造方法及びその硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779883

Country of ref document: EP

Kind code of ref document: A1