WO2022157823A1 - 半導体装置および半導体モジュール - Google Patents

半導体装置および半導体モジュール Download PDF

Info

Publication number
WO2022157823A1
WO2022157823A1 PCT/JP2021/001636 JP2021001636W WO2022157823A1 WO 2022157823 A1 WO2022157823 A1 WO 2022157823A1 JP 2021001636 W JP2021001636 W JP 2021001636W WO 2022157823 A1 WO2022157823 A1 WO 2022157823A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
electrode
interlayer film
semiconductor
protective film
Prior art date
Application number
PCT/JP2021/001636
Other languages
English (en)
French (fr)
Inventor
誠也 中野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022576249A priority Critical patent/JPWO2022157823A1/ja
Priority to US18/252,606 priority patent/US20240006475A1/en
Priority to PCT/JP2021/001636 priority patent/WO2022157823A1/ja
Priority to DE112021006853.9T priority patent/DE112021006853T5/de
Priority to CN202180090268.7A priority patent/CN116686092A/zh
Publication of WO2022157823A1 publication Critical patent/WO2022157823A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Definitions

  • the present disclosure relates to a semiconductor device and a semiconductor module including the semiconductor device.
  • the surface of the protective film is positioned at the top. Therefore, when pressure is applied to the semiconductor device from above when the semiconductor device is pressure-bonded to the module substrate, stress is concentrated on the protective film, causing damage to the internal structure under the protective film and causing fluctuations in the characteristics of the semiconductor device. There is a problem that arises.
  • the present disclosure has been made to solve such problems, and aims to provide a semiconductor device and a semiconductor module capable of suppressing characteristic fluctuations caused by pressure from above.
  • a semiconductor device includes: a semiconductor substrate having a cell portion provided with a semiconductor element; a terminal portion provided around the cell portion in plan view; a first electrode provided on the semiconductor substrate; A second electrode provided at a position corresponding to the cell portion on one electrode, an interlayer film provided at a position corresponding to the cell portion and the terminal portion on the first electrode, and a cell portion and the terminal portion on the interlayer film and a protective film provided at a position corresponding to
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to a first embodiment
  • FIG. FIG. 10 is a cross-sectional view showing the configuration of a semiconductor device according to a second embodiment
  • 10 is a cross-sectional view showing the configuration of a semiconductor device according to Embodiment 3
  • FIG. FIG. 11 is a plan view showing the configuration of a semiconductor device according to a fourth embodiment
  • FIG. 12 is a cross-sectional view showing the configuration of a semiconductor module according to Embodiment 5;
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to Embodiment 1.
  • FIG. 1 shows the configuration of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) as an example of a semiconductor device.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the semiconductor substrate 1 has a cell portion 32 provided with a MOSFET, which is a semiconductor element, and a termination portion 31 provided around the cell portion 32 in plan view.
  • Semiconductor substrate 1 is made of, for example, silicon or silicon carbide.
  • an N-type semiconductor region 6, a P-type semiconductor region 7, an N+ type semiconductor region 8, and a backside semiconductor region 9 are formed in the cell portion 32 of the semiconductor substrate 1.
  • a trench gate 10 is formed to extend from the surface of the semiconductor substrate 1 through the N+ type semiconductor region 8 and the P type semiconductor region 7 to reach the N type semiconductor region 6 . That is, the semiconductor device has a trench gate structure.
  • An oxide film 11 is formed on the surface of the cell portion 32 of the semiconductor substrate 1 so as to cover part of the N+ type semiconductor region 8 and the trench gate 10 .
  • a front electrode 2 (first electrode) is provided on the front surface of the semiconductor substrate 1 , and a back electrode 3 is provided on the back surface of the semiconductor substrate 1 .
  • the surface electrode 2 is made of, for example, AlSi.
  • the semiconductor element is a MOSFET as shown in FIG. 1, the surface electrode 2 functions as a source electrode and the back surface electrode 3 functions as a drain electrode.
  • a P+ type guard ring region 12 is formed in the terminal portion 31 of the semiconductor substrate 1 .
  • the P + -type guard ring region 12 is formed deeper than the P-type semiconductor region 7 .
  • a boundary between the termination portion 31 and the cell portion 32 is a position where the P-type semiconductor region 7 and the P+-type guard ring region 12 are in contact with each other.
  • An insulating film 13 is formed on the surface of the terminal portion 31 of the semiconductor substrate 1 so as to cover the P+ type guard ring region 12 .
  • the interlayer film 4 is provided from a position corresponding to the cell portion 32 on the surface electrode 2 to a position corresponding to the terminal portion 31 .
  • the interlayer film 4 is provided from the terminal portion 31 to the cell portion 32 .
  • the projecting portion of the interlayer film 4 forms an opening region for forming the electrode 22 .
  • the overhanging portion of the interlayer film 4 refers to a portion of the interlayer film 4 that is not covered with the protective film 5 (the portion overhanging from the protective film 5).
  • the interlayer film 4 is thinner than the protective film 5 and the electrode 22 .
  • the electrode 22 (second electrode) is provided adjacent to the interlayer film 4 at a position corresponding to the cell portion 32 on the surface electrode 2 .
  • the electrode 22 is formed in the opening region of the interlayer film 4 by using the interlayer film 4 as a mask. By using the interlayer film 4 as a mask when forming the electrode 22, the steps of the manufacturing process can be reduced.
  • the protective film 5 is provided on the interlayer film 4 at positions corresponding to the terminal portion 31 and the cell portion 32 . In other words, the protective film 5 is provided from the terminal portion 31 to the cell portion 32 .
  • the protective film 5 is made of, for example, polyimide. Protective film 5 is not provided directly above trench gate 10 and oxide film 11 in cell portion 32 .
  • FIG. 1 shows a semiconductor device in which the semiconductor element is a MOSFET
  • the semiconductor element may be an IGBT (Insulated Gate Bipolar Transistor).
  • the front surface electrode 2 functions as an emitter electrode
  • the rear surface electrode 3 functions as a drain electrode
  • the N+ type semiconductor region 8 is replaced by a P+ type semiconductor region.
  • the overhanging portion of the interlayer film 4 forms the opening region for forming the electrode 22 . 4) may be changed.
  • FIG. 1 exemplifies a well-known guard ring structure as the structure of the termination portion 31, but a structure other than the guard ring structure may be used as long as the termination portion 31 has the interlayer film 4 and the protective film 5. .
  • a wiring portion such as a gate wiring may be provided between the terminal portion 31 and the cell portion 32 .
  • the protective film 5 receives stress due to pressure applied from above the semiconductor device, the trench gate 10 and the oxide film 11 formed in the cell portion 32 through the surface electrode 2 are not affected.
  • the transmitted stress component can be reduced more than before. Therefore, it is possible to suppress characteristic fluctuations such as gate defects and withstand voltage defects caused by pressure from above.
  • the interlayer film 4 and the protective film 5 are provided for the purpose of stress relaxation and electrical protection at the end portion 31 .
  • the interlayer film 4 and the protective film 5 provided to protect the terminal portion 31 are extended to the cell portion 32, thereby achieving the above effects without adding a manufacturing process. Obtainable.
  • FIG. 2 is a cross-sectional view showing the configuration of the semiconductor device according to the second embodiment.
  • the second embodiment is characterized in that an interlayer film 41 and an interlayer film 42 are provided apart from each other. Since other configurations are the same as those of the first embodiment, detailed description is omitted here.
  • the interlayer film 41 (second interlayer film) is provided from a position corresponding to the cell portion 32 on the surface electrode 2 to a position corresponding to the terminal portion 31 .
  • the interlayer film 42 (first interlayer film) is provided at a position corresponding to only the cell portion 32 on the surface electrode 2 .
  • the interlayer film 42 forms opening regions for forming the electrodes 22 .
  • the interlayer films 41 and 42 are thinner than the protective film 5 .
  • a spaced portion is provided between the interlayer film 41 and the interlayer film 42 .
  • the protective film 5 is provided over the interlayer film 41 and over the spaced portion between the interlayer film 41 and the interlayer film 42 . Specifically, the protective film 5 is provided so as to fill the space between the interlayer film 41 and the interlayer film 42 so that the electrode 22 is not formed in the space.
  • the interlayer films 41 and 42 may be formed of the same material, the interlayer film 42 is changed to a film of a different material (a film different from the interlayer film 41) on condition that the film thickness is thinner than that of the protective film 5. You may
  • the interlayer films 41 and 42 When a glass coat is used for the interlayer films 41 and 42, if the interlayer films 41 and 42 are formed by plasma CVD (Chemical Vapor Deposition), a large number of hydrogen ions are present in the interlayer films 41 and 42. , 42 to the oxide film 11 via the surface electrode 2 . This may increase the interfacial charge density Qss and change characteristics such as the gate threshold voltage.
  • the semiconductor device according to the second embodiment reduces the area covered by the interlayer films 41 and 42 on the surface electrode 2, so that the characteristic fluctuation can be reduced. Moreover, the same effects as those of the first embodiment can be obtained.
  • FIG. 3 is a cross-sectional view showing the configuration of a semiconductor device according to a third embodiment.
  • the third embodiment is characterized in that a protective film 51 and a protective film 52 are provided apart from each other. Since other configurations are the same as those of the second embodiment, detailed description thereof is omitted here.
  • a protective film 51 (first protective film) is provided on the interlayer film 41 .
  • the protective film 52 (second protective film) is provided on the surface electrode 2 and in a spaced portion between the interlayer film 41 and the interlayer film 42 .
  • the protective film 52 is provided so as to fill the space between the interlayer films 41 and 42 so that the electrode 22 is not formed in the space.
  • the protective films 51 and 52 are separated from each other.
  • the protective films 51 and 52 may be made of the same material, the protective film 52 may be made of a different material (a film different from the protective film 51). Further, if there is no problem even if the electrode 22 is formed in the spaced portion between the interlayer film 41 and the interlayer film 42, the protective film 52 may not be provided.
  • the protective film 51 and the protective film 52 are separated from each other. Therefore, since there is room for deformation of the protective films 51 and 52 between the protective films 51 and 52, even if the protective films 51 and 52 are pressed from above the semiconductor device and the stress is applied to the protective films 51 and 52, the stress is relaxed. This makes it possible to suppress characteristic fluctuations such as gate defects and breakdown voltage defects more effectively than in the second embodiment.
  • FIG. 4 is a plan view showing the configuration of the semiconductor device according to the fourth embodiment.
  • the conventional structure refers to a structure that uses a protective film as a mask to form an electrode (corresponding to the electrode 22 of the present disclosure), such as the semiconductor device disclosed in Patent Document 1, for example.
  • the interlayer film 4 described in the first embodiment (see FIG. 1) or the interlayer film 42 described in the second and third embodiments (see FIGS. 2 and 3) are adjacent to the electrode 22 .
  • the protective film 5 is adjacent to the electrode 22 in the region 62 .
  • the interlayer films 4 and 42 and the protective films 5 are alternately arranged.
  • FIG. 5 is a cross-sectional view showing the configuration of a semiconductor module according to the fifth embodiment.
  • a semiconductor module includes a module substrate 71 , a semiconductor device 72 , lead members 74 and 76 and a mold resin 77 .
  • Semiconductor device 72 corresponds to any one of the semiconductor devices described in the first to fourth embodiments.
  • the semiconductor device 72 is mounted on the module substrate 71 by pressure bonding via a bonding material 73 such as solder.
  • the lead member 74 is electrically connected to the electrode 22 via a bonding material 75 such as solder.
  • the lead member 76 is electrically connected to the module substrate 71 .
  • the mold resin 77 seals the semiconductor device 72 so that the lead members 74 and 76 partially protrude.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本開示は、上方からの加圧に起因する特性変動を抑制することが可能な半導体装置および半導体モジュールを提供することを目的とする。本開示による半導体装置は、半導体素子が設けられたセル部と、平面視においてセル部の周囲に設けられた終端部とを有する半導体基板と、半導体基板上に設けられた第1電極と、第1電極上のセル部に相当する位置に設けられた第2電極と、第1電極上のセル部および終端部に相当する位置に設けられた層間膜と、層間膜上のセル部および終端部に相当する位置に設けられた保護膜とを備える。

Description

半導体装置および半導体モジュール
 本開示は、半導体装置および当該半導体装置を備える半導体モジュールに関する。
 従来、表面電極上に終端部を保護するための保護膜を設け、当該保護膜をマスクとして用いることによってめっき電極を形成した半導体装置が開示されている(例えば、特許文献1参照)。
特開2005-19830号公報
 特許文献1に開示されている半導体装置は、保護膜の表面が最上部に位置している。従って、当該半導体装置をモジュール基板上に加圧接合する際に半導体装置の上方から加圧すると、保護膜に応力が集中して保護膜下の内部構造にダメージが生じ、半導体装置の特性変動が発生するという問題がある。
 本開示は、このような問題を解決するためになされたものであり、上方からの加圧に起因する特性変動を抑制することが可能な半導体装置および半導体モジュールを提供することを目的とする。
 本開示による半導体装置は、半導体素子が設けられたセル部と、平面視においてセル部の周囲に設けられた終端部とを有する半導体基板と、半導体基板上に設けられた第1電極と、第1電極上のセル部に相当する位置に設けられた第2電極と、第1電極上のセル部および終端部に相当する位置に設けられた層間膜と、層間膜上のセル部および終端部に相当する位置に設けられた保護膜とを備える。
 本開示によると、上方からの加圧に起因する特性変動を抑制することが可能となる。
 本開示の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1による半導体装置の構成を示す断面図である。 実施の形態2による半導体装置の構成を示す断面図である。 実施の形態3による半導体装置の構成を示す断面図である。 実施の形態4による半導体装置の構成を示す平面図である。 実施の形態5による半導体モジュールの構成を示す断面図である。
 <実施の形態1>
 図1は、実施の形態1による半導体装置の構成を示す断面図である。なお、図1では、半導体装置の一例としてMOSFET(Metal Oxide Semiconductor Field Effect Transistor)の構成を示している。
 半導体基板1は、半導体素子であるMOSFETが設けられたセル部32と、平面視においてセル部32の周囲に設けられた終端部31とを有している。半導体基板1は、例えば、シリコンまたは炭化珪素などで構成されている。
 半導体基板1のセル部32には、N型半導体領域6と、P型半導体領域7と、N+型半導体領域8と、裏面側半導体領域9とが形成されている。また、半導体基板1の表面からN+型半導体領域8およびP型半導体領域7を貫通してN型半導体領域6に達するようにトレンチゲート10が形成されている。すなわち、半導体素子は、トレンチゲート構造を有する。
 半導体基板1のセル部32の表面であってN+型半導体領域8の一部とトレンチゲート10を覆うように酸化膜11が形成されている。
 半導体基板1の表面には表面電極2(第1電極)が設けられ、半導体基板1の裏面には裏面電極3が設けられている。表面電極2は、例えば、AlSiなどで構成されている。図1に示すように半導体素子がMOSFETである場合、表面電極2はソース電極として機能し、裏面電極3はドレイン電極として機能する。
 半導体基板1の終端部31には、P+型ガードリング領域12が形成されている。P+型ガードリング領域12は、P型半導体領域7よりも深くなるように形成されている。終端部31とセル部32との境界は、P型半導体領域7とP+型ガードリング領域12とが接する位置である。
 半導体基板1の終端部31の表面であってP+型ガードリング領域12を覆うように絶縁膜13が形成されている。
 層間膜4は、表面電極2上のセル部32に相当する位置から終端部31に相当する位置に渡って設けられている。換言すれば、層間膜4は、終端部31からセル部32に渡って設けられている。また、層間膜4の張出し部は、電極22を形成するための開口領域を形成している。ここで、層間膜4の張出し部とは、層間膜4のうち保護膜5で覆われていない部分(保護膜5から張出している部分)のことをいう。層間膜4は、保護膜5および電極22よりも膜厚が薄い。
 電極22(第2電極)は、表面電極2上のセル部32に相当する位置であって、層間膜4に隣接して設けられている。電極22は、層間膜4をマスクとして用いることによって、層間膜4の開口領域に形成されている。電極22を形成する際に層間膜4をマスクとして用いることによって、製造プロセスの工程を削減することができる。
 保護膜5は、層間膜4上の終端部31およびセル部32に相当する位置に設けられている。換言すれば、保護膜5は、終端部31からセル部32に渡って設けられている。保護膜5は、例えば、ポリイミドなどで構成されている。保護膜5は、セル部32におけるトレンチゲート10および酸化膜11の直上には設けられていない。
 なお、図1では、半導体素子がMOSFETである場合における半導体装置を示しているが、半導体素子はIGBT(Insulated Gate Bipolar Transistor)であってもよい。半導体素子がIGBTである場合、表面電極2はエミッタ電極として機能し、裏面電極3はドレイン電極として機能し、N+型半導体領域8に代えてP+型半導体領域となる。
 上記では、層間膜4の張出し部で電極22を形成するための開口領域を形成しているが、当該張り出し部は保護膜5よりも膜厚が薄いことを条件として別材料の膜(層間膜4とは異なる膜)に変更してもよい。
 図1では、終端部31の構造として周知のガードリング構造を例示しているが、終端部31が層間膜4および保護膜5を有していればガードリング構造以外の構造であってもよい。また、終端部31とセル部32との間にゲート配線等の配線部を設けてもよい。
 上記のように構成した半導体装置は、半導体装置の上方から加圧されて保護膜5が応力を受けても、表面電極2を介してセル部32に形成されたトレンチゲート10および酸化膜11まで伝達する応力成分を、従来よりも低減することができる。従って、上方からの加圧に起因するゲート不良および耐圧不良などの特性変動を抑制することができる。
 周知のとおり、層間膜4および保護膜5は、終端部31における応力緩和および電気的保護を目的として設けられている。上記のように構成した半導体装置は、終端部31を保護するために設けられた層間膜4および保護膜5をセル部32に延伸して設けることによって、製造工程を追加することなく上記効果を得ることができる。
 <実施の形態2>
 図2は、実施の形態2による半導体装置の構成を示す断面図である。図2に示すように、実施の形態2では、層間膜41と層間膜42とが離間して設けられていることを特徴としている。その他の構成は、実施の形態1と同様であるため、ここでは詳細な説明は省略する。
 層間膜41(第2層間膜)は、表面電極2上のセル部32に相当する位置から終端部31に相当する位置に渡って設けられている。層間膜42(第1層間膜)は、表面電極2上のセル部32のみに相当する位置に設けられている。層間膜42は、電極22を形成するための開口領域を形成している。層間膜41,42は、保護膜5よりも膜厚が薄い。
 層間膜41と層間膜42との間には離間部が設けられている。保護膜5は、層間膜41上から層間膜41と層間膜42との間の離間部に渡って設けられている。具体的には、保護膜5は、層間膜41と層間膜42との間の離間部に電極22が形成されないように、当該離間部を充填するように設けられている。
 なお、層間膜41,42は同一材料で形成してもよいが、保護膜5よりも膜厚が薄いことを条件として層間膜42を別材料の膜(層間膜41とは異なる膜)に変更してもよい。
 層間膜41,42にガラスコートを用いる場合、層間膜41,42をプラズマCVD(Chemical Vapor Deposition)によって成膜すると、層間膜41,42の中に多数の水素イオンが存在するため、層間膜41,42から表面電極2を経由して酸化膜11に水素イオンが移動する。これにより、界面電荷密度Qssが増加し、ゲート閾値電圧などの特性が変動する可能性がある。これについて、実施の形態2による半導体装置は、層間膜41,42が表面電極2上を被覆する面積を減らしているため、特性変動を低減することができる。また、実施の形態1と同様の効果も得られる。
 <実施の形態3>
 図3は、実施の形態3による半導体装置の構成を示す断面図である。図3に示すように、実施の形態3では、保護膜51と保護膜52とが離間して設けられていることを特徴としている。その他の構成は、実施の形態2と同様であるため、ここでは詳細な説明を省略する。
 保護膜51(第1保護膜)は、層間膜41上に設けられている。保護膜52(第2保護膜)は、表面電極2上であって層間膜41と層間膜42との間には離間部に設けられている。具体的には、保護膜52は、層間膜41と層間膜42との間の離間部に電極22が形成されないように、当該離間部を充填するように設けられている。保護膜51と保護膜52とは離間している。
 なお、保護膜51,52は同一材料で形成してもよいが、保護膜52を別材料の膜(保護膜51とは異なる膜)に変更してもよい。また、層間膜41と層間膜42との間の離間部に電極22が形成されても問題ない場合は、保護膜52を設けなくてもよい。
 実施の形態3による半導体装置は、保護膜51と保護膜52とを離間して設けている。従って、保護膜51と保護膜52との間に保護膜51,52が変形する余地が生じるため、半導体装置の上方から加圧されて保護膜51,52が応力を受けても当該応力を緩和しやすくなり、実施の形態2によりも効果的にゲート不良および耐圧不良などの特性変動を抑制することができる。
 <実施の形態4>
 図4は、実施の形態4による半導体装置の構成を示す平面図である。
 図4に示すように、実施の形態4では、実施の形態1~3のいずれかの構造(図1~3参照)が形成された領域61と、従来構造が形成された領域62とが交互に配置されている。ここで、従来構造とは、例えば特許文献1に開示されている半導体装置のように、電極(本開示の電極22の相当)を形成するために保護膜をマスクとして用いる構造のことをいう。
 領域61において、実施の形態1で説明した層間膜4(図1参照)、または実施の形態2,3で説明した層間膜42(図2,3参照)は、電極22に隣接している。また、領域62において、保護膜5は電極22に隣接している。そして、層間膜4,42と保護膜5とは交互に配置されている。
 上記のような構成とすることによって、実施の形態2,3よりも特性変動を抑制することができる。
 <実施の形態5>
 図5は、実施の形態5による半導体モジュールの構成を示す断面図である。
 半導体モジュールは、モジュール基板71と、半導体装置72と、リード部材74,76と、モールド樹脂77とを備えている。半導体装置72は、実施の形態1~4で説明したいずれかの半導体装置に相当する。半導体装置72は、加圧接合によって、はんだ等の接合材料73を介してモジュール基板71上に実装されている。リード部材74は、はんだ等の接合材料75を介して電極22と電気的に接続されている。リード部材76は、モジュール基板71と電気的に接続されている。モールド樹脂77は、リード部材74,76の一部が突出するように半導体装置72を封止している。
 上記のような構成とすることによって、半導体モジュールにおけるゲート不良および耐圧不良などの特性変動を抑制することができる。
 なお、本開示の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 本開示は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、限定的なものではない。例示されていない無数の変形例が想定され得るものと解される。
 1 半導体基板、2 表面電極、3 裏面電極、4 層間膜、5 保護膜、6 N型半導体領域、7 P型半導体領域、8 N+型半導体領域、9 裏面側半導体領域、10 トレンチゲート、11 酸化膜、12 P+型ガードリング領域、13 絶縁膜、22 電極、31 終端部、32 セル部、41,42 層間膜、51,52 保護膜、61,62 領域、71 モジュール基板、72 半導体装置、73 接合材料、74 リード部材、75 接合材料、76 リード部材、77 モールド樹脂。

Claims (9)

  1.  半導体素子が設けられたセル部と、平面視において前記セル部の周囲に設けられた終端部とを有する半導体基板と、
     前記半導体基板上に設けられた第1電極と、
     前記第1電極上の前記セル部に相当する位置に設けられた第2電極と、
     前記第1電極上の前記セル部および前記終端部に相当する位置に設けられた層間膜と、
     前記層間膜上の前記セル部および前記終端部に相当する位置に設けられた保護膜と、
    を備える、半導体装置。
  2.  前記層間膜は、前記セル部に相当する位置から前記終端部に相当する位置に渡って設けられている、請求項1に記載の半導体装置。
  3.  前記層間膜は、前記セル部のみに相当する位置に設けられた第1層間膜と、前記セル部に相当する位置から前記終端部に相当する位置に渡って設けられた第2層間膜とを含み、
     前記第1層間膜と前記第2層間膜との間には離間部が設けられている、請求項1に記載の半導体装置。
  4.  前記保護膜は、前記第2層間膜上から前記第1電極上の前記離間部に渡って設けられている、請求項3に記載の半導体装置。
  5.  前記保護膜は、前記第2層間膜上に設けられた第1保護膜と、前記第1電極上の前記離間部に設けられた第2保護膜とを含み、
     前記第1保護膜と前記第2保護膜とは離間している、請求項3に記載の半導体装置。
  6.  前記層間膜および前記保護膜は、平面視において前記第2電極に隣接しかつ交互に配置されている、請求項1に記載の半導体装置。
  7.  前記層間膜は、前記保護膜よりも膜厚が薄い、請求項1から6のいずれか1項に記載の半導体装置。
  8.  前記半導体素子は、トレンチゲート構造を有する、請求項1から7のいずれか1項に記載の半導体装置。
  9.  モジュール基板と、
     前記モジュール基板上に加圧接合された請求項1から8のいずれか1項に記載の半導体装置と、
     前記半導体装置を封止したモールド樹脂と、
    を備える、半導体モジュール。
PCT/JP2021/001636 2021-01-19 2021-01-19 半導体装置および半導体モジュール WO2022157823A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022576249A JPWO2022157823A1 (ja) 2021-01-19 2021-01-19
US18/252,606 US20240006475A1 (en) 2021-01-19 2021-01-19 Semiconductor device and semiconductor module
PCT/JP2021/001636 WO2022157823A1 (ja) 2021-01-19 2021-01-19 半導体装置および半導体モジュール
DE112021006853.9T DE112021006853T5 (de) 2021-01-19 2021-01-19 Halbleitervorrichtung und Halbleitermodul
CN202180090268.7A CN116686092A (zh) 2021-01-19 2021-01-19 半导体装置及半导体模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001636 WO2022157823A1 (ja) 2021-01-19 2021-01-19 半導体装置および半導体モジュール

Publications (1)

Publication Number Publication Date
WO2022157823A1 true WO2022157823A1 (ja) 2022-07-28

Family

ID=82549582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001636 WO2022157823A1 (ja) 2021-01-19 2021-01-19 半導体装置および半導体モジュール

Country Status (5)

Country Link
US (1) US20240006475A1 (ja)
JP (1) JPWO2022157823A1 (ja)
CN (1) CN116686092A (ja)
DE (1) DE112021006853T5 (ja)
WO (1) WO2022157823A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518445A (ja) * 2004-10-21 2008-05-29 インターナショナル レクティファイアー コーポレイション 炭化ケイ素デバイス用のはんだ付け可能上部金属
WO2018078799A1 (ja) * 2016-10-28 2018-05-03 三菱電機株式会社 半導体装置および電力変換装置
JP2019091731A (ja) * 2016-03-10 2019-06-13 株式会社日立製作所 パワー半導体モジュール、並びにそれに搭載されるSiC半導体素子およびその製造方法
WO2019208755A1 (ja) * 2018-04-27 2019-10-31 三菱電機株式会社 半導体装置および電力変換装置
JP2020013923A (ja) * 2018-07-19 2020-01-23 株式会社デンソー 半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4049035B2 (ja) 2003-06-27 2008-02-20 株式会社デンソー 半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518445A (ja) * 2004-10-21 2008-05-29 インターナショナル レクティファイアー コーポレイション 炭化ケイ素デバイス用のはんだ付け可能上部金属
JP2019091731A (ja) * 2016-03-10 2019-06-13 株式会社日立製作所 パワー半導体モジュール、並びにそれに搭載されるSiC半導体素子およびその製造方法
WO2018078799A1 (ja) * 2016-10-28 2018-05-03 三菱電機株式会社 半導体装置および電力変換装置
WO2019208755A1 (ja) * 2018-04-27 2019-10-31 三菱電機株式会社 半導体装置および電力変換装置
JP2020013923A (ja) * 2018-07-19 2020-01-23 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
DE112021006853T5 (de) 2023-11-02
US20240006475A1 (en) 2024-01-04
JPWO2022157823A1 (ja) 2022-07-28
CN116686092A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
CN103943680B (zh) 半导体装置
US10784256B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP6239214B1 (ja) 電力用半導体装置およびその製造方法
US10276470B2 (en) Semiconductor device having an electric field relaxation structure
US10978367B2 (en) Semiconductor device and method for manufacturing the same
JP6873865B2 (ja) パワー半導体デバイスおよびこのようなパワー半導体デバイスの製造方法
US10418359B2 (en) Semiconductor device and manufacturing method
JP5943819B2 (ja) 半導体素子、半導体装置
JP2007305757A (ja) 半導体装置
JP7258124B2 (ja) 半導体装置および半導体モジュール
US11658093B2 (en) Semiconductor element with electrode having first section and second sections in contact with the first section, and semiconductor device
JP2019186309A (ja) 半導体装置
WO2022157823A1 (ja) 半導体装置および半導体モジュール
US8692244B2 (en) Semiconductor device
JP2017108074A (ja) 半導体装置および半導体装置の製造方法
JP2015109292A (ja) 半導体モジュール
JP6579653B2 (ja) 半導体装置および半導体装置の製造方法
JP7149907B2 (ja) 半導体装置および半導体素子
JP2022159154A (ja) パワー半導体デバイス、パッケージ構造および電子デバイス
JP6865670B2 (ja) 半導体装置およびその製造方法
JP7074392B2 (ja) 半導体装置
CN112713124A (zh) 半导体装置
US10396161B2 (en) Semiconductor device and method of manufacturing semiconductor device
US20240096990A1 (en) Semiconductor device and method of manufacturing semiconductor device
US20230215840A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576249

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18252606

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180090268.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021006853

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920940

Country of ref document: EP

Kind code of ref document: A1