WO2022154035A1 - 海島型複合マルチフィラメントおよび極細マルチフィラメントならびに極細繊維構造体 - Google Patents

海島型複合マルチフィラメントおよび極細マルチフィラメントならびに極細繊維構造体 Download PDF

Info

Publication number
WO2022154035A1
WO2022154035A1 PCT/JP2022/000846 JP2022000846W WO2022154035A1 WO 2022154035 A1 WO2022154035 A1 WO 2022154035A1 JP 2022000846 W JP2022000846 W JP 2022000846W WO 2022154035 A1 WO2022154035 A1 WO 2022154035A1
Authority
WO
WIPO (PCT)
Prior art keywords
sea
multifilament
ultrafine
type composite
island
Prior art date
Application number
PCT/JP2022/000846
Other languages
English (en)
French (fr)
Inventor
貴志 池田
均 中塚
慎也 河角
康平 山▲崎▼
Original Assignee
クラレトレーディング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレトレーディング株式会社 filed Critical クラレトレーディング株式会社
Priority to CN202280010106.2A priority Critical patent/CN116829774A/zh
Priority to EP22739440.0A priority patent/EP4279644A1/en
Priority to JP2022575622A priority patent/JPWO2022154035A1/ja
Publication of WO2022154035A1 publication Critical patent/WO2022154035A1/ja
Priority to US18/220,641 priority patent/US20230366132A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/36Matrix structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/82Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from polyester amides or polyether amides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/86Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from polyetheresters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/18Other fabrics or articles characterised primarily by the use of particular thread materials elastic threads
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/06Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/20Physical properties optical

Definitions

  • the present invention relates to a sea-island type composite multifilament containing a thermoplastic elastomer resin as an island component, and an ultrafine fiber containing an ultrafine multifilament obtained from the sea-island type composite multifilament.
  • the sea-island type composite multifilament can produce ultrafine fibers by forming a composite multifilament using a resin that can be eluted and removed from the sea component, and then removing the sea component.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2014-101613
  • ultrafine fibers having an average single yarn fiber diameter of 10 to 2500 nm and a tensile strength of 4.5 cN / dtex or more are described.
  • the composite mass ratio (sea: island) of the sea component and the island component of the sea-island type composite fiber is in the range of 40:60 to 20:80.
  • the melt viscosity ratio (sea / island) of the sea component and the island component of the sea-island type composite fiber is in the range of 0.2 to 1.0.
  • the sea-island type composite fiber is manufactured by melting and extruding the sea component and the island component from the spinning base for the sea-island type composite fiber, and then taking it at a spinning speed of 400 to 2000 m / min. ..
  • D The sea-island type composite fiber is preheated on a residual heat roller, stretched at a draw ratio of 3.0 to 6.0 times, heat-set on a set roller, and wound up.
  • E The sea-island type composite fiber is stretched so as to have a residual elongation of 5 to 30%.
  • the ultrafine fibers obtained by elution and removal of the sea component of the sea-island type composite fiber satisfying the above are disclosed.
  • Patent Document 1 it is possible to form polyester ultrafine fibers having excellent strength, but since these fibers slip between the ultrafine fibers and cannot exhibit grip, for example, an inner or a glove or the like. When used as a non-slip application, the effects of friction and adsorption were insufficient.
  • an object of the present invention is to provide an ultrafine multifilament having excellent grip, a sea-island type composite multifilament capable of forming the ultrafine multifilament, a method for producing the same, and a fiber structure.
  • thermoplastic elastomer resin exhibiting a specific hardness as an island component of the sea-island type composite multifilament in order to obtain an ultrafine multifilament having high grip.
  • thermoplastic elastomer resin has high elasticity, it has been found that it is difficult to produce it as an island component of the sea-island type composite multifilament in the same manner as the non-elastomer resin, and this has been set as a new issue.
  • thermoplastic elastomer resin when used as an island component, the single-thread fineness of the sea-island type composite multifilament is reduced, while the number of island components in the sea-island type composite multifilament is reduced to achieve thermoplasticity.
  • a sea-island type composite multifilament containing an elastomer resin as an island component and removing the sea component from the multifilament it is possible to produce an ultrafine multifilament of a thermoplastic elastomer, and further, the thermoplastic elastomer resin is specified.
  • the present invention has been completed by finding that it can exhibit excellent grip properties that have never been seen before when it has the hardness of.
  • the island component has a shore A hardness of 90 or less, a shore D hardness of 60 or less (preferably 58 or less, more preferably 55 or less, still more preferably 53 or less, even more preferably 50 or less), and a Rockwell hardness (R scale) of 70 or less (R scale). It is composed of a thermoplastic elastomer resin (A) satisfying any one of preferably 65 or less, more preferably 60 or less), and the sea component is composed of a water-soluble or easily alkaline-soluble thermoplastic resin (B), and the average is simple.
  • the thermoplastic resin (B) of the sea component is a modified polyvinyl alcohol-based polymer in which a unit derived from ⁇ -olefins and / or vinyl ethers is present in the polyvinyl alcohol-based polymer.
  • Type composite multifilament is 3 to 200 islands (preferably 5 to 100 islands, more preferably 6 to 80 islands, still more preferably 7 to 60 islands), and the sea.
  • a fiber structure comprising at least a part of the sea-island type composite multifilament and / or a cut fiber thereof according to any one of aspects 1 to 4.
  • Aspect 8 An ultrafine fiber structure comprising at least a part of the ultrafine multifilament and / or a cut fiber thereof according to aspect 6 or 7.
  • a method for producing an ultrafine multifilament which comprises at least a step of dissolving and removing the thermoplastic resin (B) from the sea-island type composite multifilament according to any one of aspects 1 to 4.
  • Aspect 11 A method for producing an ultrafine fiber structure, which comprises at least a step of dissolving and removing the thermoplastic resin (B) from the fiber structure according to the fifth aspect.
  • a thermoplastic elastomer resin having a specific hardness can be used as a resin constituting the island component (hereinafter, may be referred to as an island component resin) and can be easily removed by water or alkali. Since the resin is composite-spun as a resin constituting the sea component (hereinafter, may be referred to as a sea component resin), it is possible to efficiently make the thermoplastic elastomer resin into ultrafine fibers. Further, since the ultrafine multifilament is an ultrafine multifilament made of a thermoplastic elastomer resin, the coefficient of dynamic friction is high and the grip property can be improved.
  • the sea-island type composite multifilament of the present invention is a thermoplastic elastomer resin (A) in which the resin constituting the island component satisfies any of a shore A hardness of 90 or less, a shore D hardness of 60 or less, and a rockwell hardness (R scale) of 70 or less. It is a sea-island type composite multifilament in which the resin constituting the sea component is a water-soluble or easily alkaline-soluble thermoplastic resin (B).
  • the sea-island type composite multifilament can reduce the average single island diameter, and the average single island diameter of the sea-island type composite multifilament is 8000 nm or less, preferably 6000 nm or less, more preferably 4000 nm or less. May be good.
  • the lower limit of the average island diameter is not particularly limited, but may be, for example, 500 nm or more.
  • the average island diameter is a value measured by the method described in Examples described later.
  • the island component resin is a thermoplastic elastomer resin (A) having a specific hardness.
  • the appropriate measurement standard for the hardness of the thermoplastic elastomer resin (A) differs depending on the hardness. Of the Shore A hardness, Shore D hardness, and Rockwell hardness (R scale), (i) the hardest is locked. Measured by well hardness (R scale), (ii) measured by shore D hardness when rockwell hardness (R scale) is less than 50, (iii) by shore A hardness when shore D hardness is 40 or less. It is possible to measure.
  • the hardness of the island component resin may satisfy any of Shore A hardness 90 or less, Shore D hardness 60 or less, and Rockwell hardness (R scale) 70 or less. For example, when the Shore D hardness is not 60 or less. Also, the Rockwell hardness (R scale) may be 70 or less.
  • Shore A hardness is a measured value of indentation hardness by a JIS K 7215 durometer, and is measured using a type A indenter (tip cone shape, tip diameter 0.79 mm, cone angle 35 °).
  • the hardness of the island component resin is not particularly limited as long as it has a shore A hardness of 90 or less from the viewpoint of grip when made into an ultrafine multifilament and does not impair the effect of the present invention.
  • the shore A hardness may be 20 or more, preferably 50 or more.
  • Shore D hardness is a measured value of indentation hardness with a durometer of JIS K 7215, and is measured using a type D indenter (tip cone, tip diameter 0.1 mm, cone angle 30 °).
  • the hardness of the island component resin is a shore D hardness of 60 or less, preferably 58 or less, more preferably 55 or less, still more preferably 53 or less, still more preferably 50, from the viewpoint of grip when an ultrafine multifilament is used. It may be as follows.
  • the lower limit of the hardness is not particularly limited as long as the effect of the present invention is not impaired, but for example, the shore D hardness may be 20 or more.
  • Rockwell hardness (R scale) is a measured value of indentation hardness according to JIS Z2245, and is measured using a hard sphere having a diameter of 12.7 mm as an indenter.
  • the hardness of the island component resin may be Rockwell hardness (R scale) of 70 or less, preferably 65 or less, and more preferably 60 or less, from the viewpoint of grip when made into an ultrafine multifilament.
  • the lower limit of hardness is not particularly limited as long as the effect of the present invention is not impaired, but for example, Rockwell hardness (R scale) may be 50 or more.
  • thermoplastic elastomer resin examples include polyolefin-based elastomer resins, polyvinyl chloride-based elastomer resins, polyurethane-based elastomer resins, polystyrene-based elastomer resins, polyester-based elastomer resins, and polyamide-based elastomer resins. From the viewpoint of good handleability, a polyamide-based elastomer resin or a polyester-based elastomer resin is preferable, and from the viewpoint of washing fastness, a polyamide-based elastomer resin is more preferable.
  • the polyolefin-based elastomer resin is composed of polyethylene or polypropylene as a hard segment and SEBS or an ethylene / propylene copolymer as a soft segment.
  • the polyvinyl chloride-based elastomer resin is composed of crystalline polyvinyl chloride as a hard segment and amorphous polyvinyl chloride and acrylonitrile as a soft segment.
  • the polyurethane-based elastomer resin is composed of a hard segment composed of low molecular weight glycol and diisocyanates and a soft segment composed of high molecular weight diol and diisocyanate.
  • the small molecule glycol include C 1-10 diols such as ethylene glycol, 1,4-butanediol and 1,6-hexanediol.
  • the polymer diol include poly (1,4-butylene adipate), poly (1,6-hexane adipate), polycaprolactone, polyethylene glycol, polyprolen glycol, polyoxytetramethylene glycol and the like.
  • diisocyanate include tolylene diisocyanate, 4,4-diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate and the like.
  • the polystyrene-based elastomer resin is composed of polystyrene as a hard segment and polybutadiene, polyisoprene, hydrogenated polybutadiene, polyethylene, polypropylene and the like as soft segments.
  • SBS styrene / butadiene / styrene block copolymer
  • SIS Styrene / isoprene / styrene block copolymer
  • SEBS styrene / ethylene / butadiene / styrene block copolymer
  • SEPS styrene / ethylene / propylene / styrene block copolymer
  • polyester-based elastomer resin for example, a resin having a predetermined hardness can be selected from those marketed as "Septon” manufactured by Kuraray Co., Ltd., “Hybler” manufactured by Kuraray Co., Ltd., and the like.
  • the polyester-based elastomer resin is composed of an aromatic polyester resin component as a hard segment and an aliphatic polyether or an aliphatic polyester as a soft segment.
  • a resin having a predetermined hardness is selected from those marketed as "SKYPEL” manufactured by SK chemical, "Hytrel” manufactured by Toray DuPont Co., Ltd., "Perprene” manufactured by Toyobo Co., Ltd., and the like. can do.
  • the polyamide-based elastomer resin may be a polyether block polyamide, a polyester block polyamide, or a polyester ether block polyamide having a polyamide-based elastomer resin component as a hard segment and a polyether block or a polyester block as a soft segment.
  • the polyamide-based elastomer may have, for example, an aliphatic polyamide having 6 to 22 carbon atoms as a hard segment, and preferably an aliphatic polyamide having a prime number of 9 to 20 as a hard segment.
  • the aliphatic polyamide means a polyamide in which the hydrocarbon group in the repeating unit of the following formulas (1) to (3) is a saturated aliphatic hydrocarbon group.
  • R1, R2, and R3 are linear or branched aliphatic hydrocarbon groups having 1 to 22 carbon atoms, which are the same or different, and m is an integer of 0 or 1.
  • polyamide 6, polyamide 6/6, polyamide 6/11, polyamide 6/12, polyamide 9, polyamide 11, or polyamide 12 is used as a hard segment, and polyethylene glycol, polypropylene glycol, etc. It may be a polyether block polyamide having polytetramethylene glycol or the like as a soft segment.
  • Polyamide-based elastomer resins have a predetermined hardness from those marketed as, for example, "Vestamide” and "Diamid” manufactured by Daicel Evonik Industries, “Pevax” manufactured by ARKEMA, and "UBESTAXPA” manufactured by Ube Kosan Co., Ltd. Resin can be selected.
  • An amino group-containing color development improver may be used in combination from the viewpoint of improving the color development.
  • the amino group-containing color development improver has at least an amino group and can be used together with a polyamide-based elastomer resin to impart a predetermined terminal amino group concentration.
  • the amino group-containing color-developing agent may have a terminal amino group concentration of, for example, 100 to 2000 ⁇ eq / g, preferably 125 to 2000 ⁇ eq / g, and more preferably 200 to 1000 ⁇ eq / g. good.
  • the amino group-containing color-developing agent can be combined in an appropriate ratio according to the type of the amino group-containing color-developing agent as long as the characteristics of the polyamide-based elastomer resin are not impaired.
  • the mass ratio of the polyamide-based elastomer resin to the amino group-containing color development improver may be, for example, 99/1 to 70/30 as the former / latter from the viewpoint of color development and compatibility, and is preferable. It may be 98/2 to 75/25, more preferably 95/5 to 80/20.
  • amino group-containing color-developing agent amino group-containing compounds such as polyamide oligomers and diverse amines (for example, 3 to 12) can be used from the viewpoint of improving the color development of polyamide fibers without impairing the characteristics of the polyamide-based elastomer resin.
  • Linear aliphatic, alicyclic or aromatic multidiversified amines having an amino group, etc. can be mentioned.
  • the polyamide oligomer is preferably composed of any of the repeating units represented by the formulas (1) to (3) described in the polyamide-based elastomer resin.
  • the hydrocarbon group having 1 to 22 carbon atoms used in the repeating unit represented by the formulas (1) to (3) include 1 to 22 carbon atoms (preferably 6 to 20, more preferably 9 to 18).
  • Preferred polyamide oligomers include polyamide 6 oligomer, polyamide 4/6 oligomer, polyamide 6/6 oligomer, polyamide 6/10 oligomer, polyamide 6/11 oligomer, polyamide 6/12 oligomer, polyamide 9 oligomer, polyamide 10 oligomer, and polyamide 11. Examples thereof include oligomers and polyamide 12 oligomers.
  • the repeating unit hydrocarbon groups of the polyamide oligomer and the polyamide-based elastomer resin preferably have the same number of single elements.
  • the repeating unit hydrocarbon groups in the polyamide oligomer May have its carbon number within the range of ⁇ 3 single elements in the repeating unit of the polyamide-based elastomer resin, and more preferably within the range of ⁇ 2 single elements in the repeating unit of the polyamide-based elastomer resin. May be within the range of ⁇ 1 single element in the repeating unit of the polyamide-based elastomer resin.
  • the polyamide-based elastomer resin is a polyamide-based elastomer
  • the hydrocarbon group of the repeating unit of the polyamide-based elastomer resin component in the hard segment has the above-mentioned relationship.
  • the number average molecular weight of the polyamide oligomer may be, for example, 500 to 10000, preferably 500 to 9000, and more preferably 1000 to 6000.
  • the molecular weight of the polyamide oligomer is a value measured by the method described in Examples described later.
  • the island component resin may contain various commonly used additives, if necessary. Additives include, for example, heat stabilizers, antioxidants, light stabilizers, UV absorbers, antistatic agents, colorants (eg color pigments), smoothing agents, plasticizers, antibacterial agents, antifungal agents and deodorants. Examples include additives such as agents. Further, the island component resin may contain other non-thermoplastic elastomer resins as long as the effects of the present invention are not impaired.
  • the island component resin preferably has a melt viscosity at 240 ° C. of 600 to 3000 poise from the viewpoint of improving fibrosis. If the melt viscosity exceeds 3000 poise, the high-speed spinnability at the time of fiberization may decrease. Further, if it is less than 600 poise, the yarn may be easily broken during spinning and the productivity may be poor, and the strength of the obtained fiber may be low.
  • the melt viscosity of the island component resin is more preferably 800 to 2000 pablye.
  • the sea component resin is composed of a water-soluble or easily alkali-soluble thermoplastic resin (B).
  • the thermoplastic resin (B) include a thermoplastic resin that is soluble in water (including warm water) and alkali, and preferably a thermoplastic polyvinyl alcohol resin that is soluble in water and an alkali. Examples thereof include easily soluble polyester resin that can be dissolved.
  • thermoplastic polyvinyl alcohol resin is, for example, when immersed in hot water at 100 ° C. at a bath ratio of 1:30, for example, within 60 minutes, preferably within 50 minutes, more preferably within 30 minutes, and particularly preferably within 15 minutes. It may be dissolved (decomposed) almost completely in.
  • the easily soluble polyester resin is, for example, when immersed in a 2% sodium hydroxide aqueous solution at 100 ° C. at a bath ratio of 1:30, for example, within 60 minutes, preferably within 45 minutes, more preferably within 30 minutes, particularly preferably. May be dissolved (decomposed) almost completely within 15 minutes.
  • thermoplastic polyvinyl alcohol resin The polyvinyl alcohol (hereinafter, may be referred to as PVA) constituting the thermoplastic polyvinyl alcohol resin mainly contains a vinyl alcohol unit, and may be a homopolymer of the vinyl alcohol unit, or in addition to the vinyl alcohol unit, It may be a modified polymer containing a copolymerizable unit and / or a functional group.
  • the PVA used in the present invention is obtained by saponifying the vinyl ester unit of the vinyl ester polymer.
  • Vinyl compound monomers for forming vinyl ester units include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate and Examples thereof include vinyl versaticate, and among these, vinyl acetate is preferable from the viewpoint of obtaining PVA.
  • the PVA used in the present invention may be a homopolymer or a modified polymer having a copolymerization unit introduced therein, but from the viewpoint of melt spinnability, water solubility and fibrous physical properties, the copolymerization unit is introduced. It is preferable to use the modified polyvinyl alcohol.
  • the type of copolymerized monomer include ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene, and 1-hexene, acrylic acid and salts thereof, methyl acrylate, ethyl acrylate, and n- acrylate.
  • Acrylic acid esters such as propyl and i-propyl acrylate, methacrylic acid and salts thereof, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, methacrylic acid esters such as i-propyl methacrylate, acrylamide, N- Acrylamide derivatives such as methyl acrylamide and N-ethyl acrylamide, methacrylic amides, N-methyl methacrylic amides, methacrylic amide derivatives such as N-ethyl methacrylic amides, methyl vinyl ethers, ethyl vinyl ethers, n-propyl vinyl ethers, i-propyl vinyl ethers, n- Vinyl ethers such as butyl vinyl ether, ethylene glycol vinyl ether, 1,3-propanediol vinyl ether, hydroxy group-containing vinyl ethers such as 1,4-butanediol vinyl ether, ally
  • Allyl ethers monomers having an oxyalkylene group, vinylsilyls such as vinyltrimethoxysilane, isopropenyl acetate, 3-butene-1-ol, 4-penten-1-ol, 5-hexene-1-ol , 7-octen-1-ol, 9-decene-1-ol, 3-methyl-3-buten-1-ol and other hydroxy group-containing ⁇ -olefins, fumaric acid, maleic acid, itaconic acid, maleine anhydride Monomer having a carboxyl group derived from acid, phthalic anhydride, trimellitic anhydride, itaconic anhydride, etc .; ethylene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, 2-acrylamide-2-methylpropan sulfonic acid, etc.
  • Ammonium chloride, N-acrylamide dimethylamine, allyltrimethylammonium chloride, metaallyltrimethylammonium chloride, dimethylallylamine examples thereof include a monomer having a cationic group derived from allyl ethylamine or the like.
  • ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene and 1-hexene, methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether and i-propyl are available because of their availability.
  • Vinyl ethers such as vinyl ether and n-butyl vinyl ether, hydroxy group-containing vinyl ethers such as ethylene glycol vinyl ether, 1,3-propanediol vinyl ether and 1,4-butanediol vinyl ether, allyl acetate, propyl allyl ether, butyl allyl ether, Allyl ethers such as hexyl allyl ethers, monomers having an oxyalkylene group, 3-butene-1-ol, 4-pentene-1-ol, 5-hexene-1-ol, 7-octen-1-ol, Monomers derived from hydroxy group-containing ⁇ -olefins such as 9-decene-1-ol and 3-methyl-3-butene-1-ol are preferable, and ⁇ -olefins and / or vinyl ethers are particularly preferable. It is a monomer derived from.
  • ⁇ -olefins having 4 or less carbon atoms of ethylene, propylene, 1-butene and isobutene from the viewpoint of copolymerizability, melt-spinnability and water solubility of fibers; methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i- More preferably, vinyl ethers linked by a linear or branched alkylene group having 4 or less carbon atoms, such as propyl vinyl ether and n-butyl vinyl ether.
  • the content of these monomers is usually 20 mol% or less, preferably 15 mol% or less, and more preferably 13 mol%.
  • the lower limit of the monomer is not particularly limited, but may be, for example, 0.1 mol% or more, preferably 3 mol% or more, and more preferably 6 mol% or more.
  • the fiber physical characteristics are high, so it is preferable to use a modified polymer in which 4 to 15 mol%, more preferably 6 to 13 mol% of ethylene units are introduced.
  • the viscosity average degree of polymerization of PVA used in the present invention (hereinafter, simply abbreviated as the degree of polymerization) is preferably 200 to 500, more preferably 230 to 470, and particularly 250 to 450, from the viewpoint of spinnability and solubility. preferable.
  • the degree of polymerization is preferably 200 to 500, more preferably 230 to 470, and particularly 250 to 450, from the viewpoint of spinnability and solubility. preferable.
  • a so-called low-polymerization PVA having a degree of polymerization of 500 or less not only the dissolution rate becomes faster when the sea-island type composite multifilament is dissolved in an aqueous solution, but also the shrinkage when the sea-island type composite multifilament is dissolved is reduced. can do.
  • the degree of polymerization (P) of PVA is measured with reference to JIS-K6726. That is, it is obtained by the following formula from the ultimate viscosity [ ⁇ ] (dl / g) measured in water at 30 ° C. after re-kenning and purifying PVA.
  • P ([ ⁇ ] ⁇ 10 3 / 8.29) (1 / 0.62)
  • the PVA used in the present invention preferably has a saponification degree of 90 to 99.99 mol% from the viewpoint of spinnability and solubility. More preferably, it is 93 to 99.98 mol%, further preferably 94 to 99.97 mol%, and particularly preferably 96 to 99.96 mol%.
  • the preferred PVA used in the present invention may have a molar fraction of the central hydroxyl group of the hydroxyl group 3 chain according to triad indication for the vinyl alcohol unit of 70 to 99.9 mol%, more preferably 72 to 99 mol%.
  • 74-97 mol% is more preferable, and 76-95 mol% is particularly preferable.
  • the central hydroxyl group of the hydroxyl group 3-chain by triad display of polyvinyl alcohol is a 500 MHz proton NMR (JEOL GX-500) device in a d6-DMSO solution of PVA, and a tactic of a triad of hydroxyl group protons measured at 65 ° C. It means the peak (I) that reflects the city.
  • the peak (I) is represented by the sum of the triad-displayed isotacticity chain (4.54 ppm), heterotacticity chain (4.36 ppm) and syndiotacticity chain (4.13 ppm) of the hydroxyl group of PVA, all of which are represented by the sum.
  • the mole fraction of the central hydroxyl group of the hydroxyl group 3 chain according to the triad notation for the vinyl alcohol unit of the present invention is determined. It is represented by 100 ⁇ (I) / (II).
  • the effect of the present invention is further enhanced by satisfying the following formula. -1.5 x Et + 100 ⁇ mole fraction ⁇ -Et + 85
  • the mole fraction (unit: mole%) represents the mole fraction of the central hydroxyl group of the hydroxyl group 3-chain by triad display with respect to the vinyl alcohol unit, and Et is the ethylene content (unit: mol%) contained in the vinyl alcohol polymer. ).
  • the melting point (Tm) of PVA used in the present invention is preferably 160 to 230 ° C, more preferably 170 to 227 ° C, even more preferably 175 to 224 ° C, and particularly preferably 180 to 220 ° C.
  • the melting point of PVA is PVA when the temperature is raised to 250 ° C. in nitrogen at a temperature rise rate of 10 ° C./min using DSC, cooled to room temperature, and then raised to a temperature rise rate of 10 ° C./250 ° C. again. It means the temperature of the peak top of the heat absorption peak indicating the melting point of.
  • the PVA used in the present invention preferably contains an alkali metal ion from the viewpoint of improving solubility, and the content ratio of the alkali metal ion is 0.0003 to 1 part by mass in terms of sodium ion with respect to 100 parts by mass of PVA. It is preferably 0.0003 to 0.8 parts by mass, more preferably 0.0005 to 0.6 parts by mass, and particularly preferably 0.0005 to 0.5 parts by mass.
  • the alkali metal ion include potassium ion and sodium ion.
  • the method of incorporating a specific amount of alkali metal ion in PVA is not particularly limited, and a method of adding an alkali metal ion-containing compound after polymerizing PVA, or keratinizing a vinyl ester polymer in a solvent.
  • a method of adding an alkali metal ion-containing compound after polymerizing PVA, or keratinizing a vinyl ester polymer in a solvent By using an alkaline substance containing an alkali ion as a saponification catalyst, an alkali metal ion is blended in the PVA, and the PVA obtained by saponification is washed with a cleaning liquid to obtain an alkali contained in the PVA. Examples thereof include a method of controlling the metal ion content, but the latter is preferable.
  • the content of alkali metal ions can be determined by the atomic absorption method.
  • thermoplastic polyvinyl alcohol resin has polyethylene glycol, propylene glycol and its oligomer, butylene glycol and its oligomer, as necessary, with respect to PVA in order to improve the melt fluidity and spinnability of PVA at high temperature.
  • Polyglycerin derivatives glycerin derivatives with alkylene oxides such as ethylene oxide and propylene oxide added to glycerin, derivatives with alkylene oxides such as ethylene oxide and propylene oxide added to sorbitol, polyhydric alcohols such as pentaerythritol and their derivatives,
  • a plasticizing agent such as a PO / EO random copolymer may be contained in a proportion of 1 to 30% by mass, preferably 2 to 20% by mass.
  • plasticizers such as sorbitol alkylene oxide adducts, polyglycerin alkyl monocarboxylic acid esters, and PO / EO random copolymers are used to obtain good plasticity and spinnability because thermal decomposition is unlikely to occur in the fibrosis process.
  • Examples of the easily soluble polyester resin include polar group-containing copolymerized polyesters and aliphatic polyesters.
  • the polar group-containing copolymerized polyester contains a dicarboxylic acid unit such as terephthalic acid and isophthalic acid and a diol unit such as ethylene glycol, as well as an ester-forming sulfonic acid metal salt compound (for example, 4-sodium sulfoisophthalic acid and 5-potassium sulfo).
  • a dicarboxylic acid unit such as terephthalic acid and isophthalic acid
  • a diol unit such as ethylene glycol
  • an ester-forming sulfonic acid metal salt compound for example, 4-sodium sulfoisophthalic acid and 5-potassium sulfo.
  • Examples thereof include copolymerized polyester obtained by copolymerizing isophthalic acid, 5-sodium sulfoisophthalic acid, 4-sodium sulfoterephthalic acid, 5-potassium sulfoterephthalic acid, 4-sodium s
  • dicarboxylic acid unit in addition to terephthalic acid and isophthalic acid, aromatic dicarboxylic acids such as diphenylsulphondicarboxylic acid, benzophenonedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, and 3,3'-diphenyldicarboxylic acid; Aliphatic dicarboxylic acids such as adipic acid, succinic acid, azelaic acid, sebacic acid and dodecandioic acid; alicyclic dicarboxylic acids such as hexahydroterephthalic acid and 1,3-adamantandicarboxylic acid can be mentioned.
  • aromatic dicarboxylic acids such as diphenylsulphondicarboxylic acid, benzophenonedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, and 3,3'-diphenyldicarboxylic acid
  • Aliphatic dicarboxylic acids such as adip
  • diol unit in addition to ethylene glycol, chlorohydroquinone, 4,4'-dihydroxybiphenyl, 4,4'-dihydroxydiphenylsulphon, 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxybenzophenone, p- Aromatic diols such as xylene glycol; aliphatic diols such as diethylene glycol, propanediol, butanediol, hexanediol and neopentyl glycol, and alicyclic diols such as cyclohexanedimethanol can be mentioned.
  • the ester-forming sulfonic acid metal salt compound is, for example, 1 to 20 mol%, preferably 1 to 12 mol%, more preferably 1 to 5 mol% with respect to the total dicarboxylic acid component from the viewpoint of water solubility and water resistance. It may be used.
  • polyalkylene glycol for example, poly C 1-4 alkylene glycol such as polypropylene glycol and polyethylene glycol
  • polyalkylene glycol may be copolymerized, and the polyalkylene glycol is contained in the polar group-containing copolymer polyester, for example, by 5 to 30 mass by mass. It may be contained in an amount of about%, preferably about 6 to 25% by mass.
  • polylactic acid for example, polylactic acid; polyester of an aliphatic diol such as poly (ethylene succinate), poly (butylene succinate), poly (butylene succinate co butylene adipate) and an aliphatic carboxylic acid; Polyhydroxycarboxylic acids such as poly (glycolic acid), poly (3 hydroxybutyric acid), poly (3 hydroxyvaleric acid), poly (6 hydroxycaproic acid); poly such as poly ( ⁇ caprolactone) and poly ( ⁇ valerolactone) ( ⁇ -hydroxy alkanoate) and the like.
  • polylactic acid is preferable, and polylactic acid may be poly D-lactic acid, poly L-lactic acid, or a mixture thereof.
  • the sea component resin preferably has a melt viscosity at 240 ° C. of 600 to 3000 poise. If the melt viscosity exceeds 3000 poise, the high-speed spinnability at the time of fiberization may decrease. Further, if it is less than 600 poise, the yarn may be easily broken during spinning and the productivity may be poor, and the strength of the obtained fiber may be low.
  • the melt viscosity of the sea component resin is more preferably 800 to 2000 pablye.
  • the sea-island type composite multifilament of the present invention can be fibrized using a conventionally known composite spinning device, but the island component uses a thermoplastic elastomer resin (A) having a specific hardness as the island component. Even when the thermoplastic elastomer resin is used as the island component by reducing the single yarn fineness of the sea-island type composite multifilament and reducing the number of island components in the sea-island type composite multifilament. , It is possible to make the island component extremely fine.
  • the method for producing a sea-island type composite multifilament is a melt-kneading step of melt-kneading an island component resin and a sea component resin by separate extruders to obtain a molten resin, and introducing the molten resin into a composite spinning nozzle.
  • the process includes a discharge step of discharging the island component and the sea component at a predetermined composite ratio, and a winding step of winding the discharged yarn (or molten raw yarn) at a predetermined take-up speed (or spinning speed). I'm out.
  • the island component resin and the sea component resin are melted according to their respective melting points.
  • various additives such as a color-developing agent and a plasticizer may be mixed as needed. These additives may be added directly, or may be once formed into a masterbatch and then kneaded with the island component resin and the sea component resin.
  • the number of islands per yarn for example, 3 to 200 islands per yarn, but from the viewpoint of high-speed spinnability and yarn-making stability, 5 to 100 islands are preferable. It may have, more preferably 6 to 80 islands, and even more preferably 7 to 60 islands.
  • the number of islands exceeds the above upper limit, the islands adhere to each other due to the shrinkage of the island components before the resin of the island component and the sea component are combined and cooled and solidified due to the high elasticity of the thermoplastic elastomer. In some cases.
  • the discharged yarn is directly drawn (spin-drawn) without being wound as it is.
  • the discharged yarn may be directly wound as a drawn yarn through a direct drawing step as it is (after a cooling step if necessary).
  • the discharged yarn may be cooled in the quenching zone.
  • the discharged yarn can be cooled and solidified by cooling air.
  • stretching may be performed on the cooled and solidified cooling yarn.
  • the take-up speed may be 2000 to 4000 m / min, and the take-up speed is preferably 2200 to 3800 m / min, more preferably 2300 to 3700 m / min in view of the silk reeling stability. ..
  • the sea-island type composite multifilament of the present invention uses a thermoplastic elastomer resin as an island component resin and coats the thermoplastic elastomer resin with a sea component resin which is a non-thermoplastic elastomer resin.
  • the sea-island type composite multifilament obtained after the picking process is also good in unwinding property at the time of rewinding.
  • the single yarn fineness of the sea-island type composite multifilament may be, for example, 0.5 to 5 dtex, preferably 0.8 to 4.5 dtex, and more preferably 1 to 4 dtex.
  • the single yarn fineness is a value measured by the method described in Examples described later.
  • the average single-island fineness can be reduced, and the average single-island fineness of the sea-island type composite multifilament may be, for example, 0.005 to 0.5 dtex, preferably 0. It may be .010 to 0.4 dtex, more preferably 0.015 to 0.3 dtex.
  • the average single island fineness is a value measured by the method described in Examples described later.
  • the sea-island type composite multifilament may have a fiber strength at room temperature of, for example, 1.0 cN / dtex or more, preferably 1.1 cN / dtex or more.
  • the upper limit of the fiber strength is not particularly limited, but since a thermoplastic elastomer resin is used as the island component resin, it may be, for example, 2.5 cN / dtex or less.
  • the fiber strength is a value measured by the method described in Examples described later.
  • the manufactured sea-island type composite multifilament may be used as a continuous filament, or may be cut and processed into staples or the like. Further, it may be used by knitting, interweaving or mixing with other natural fibers or synthetic fibers.
  • the fiber structure includes a fiber structure containing at least a part of a sea-island type composite multifilament and / or a cut fiber thereof.
  • the fiber structure may be a one-dimensional structure such as yarns, strings, ropes or the like composed of a sea-island type composite multifilament and / or a spun yarn containing a cut fiber thereof, or a sea-island type composite multifilament.
  • Two-dimensional structures such as woven and knitted fabrics composed of spun yarns containing filaments and / or their cut fibers, non-woven fabrics composed of cut fibers of Kaijima-type composite multifilaments, and three-dimensional structures using these. You may.
  • the fiber structure may be composed of only the sea-island type composite multifilament, or may contain other fibers such as natural fiber, chemical fiber, and synthetic fiber in addition to the sea-island type composite multifilament.
  • an ultrafine multifilament may be obtained by a method for producing an ultrafine multifilament, which comprises at least a step of dissolving and removing the thermoplastic resin (B) from the above-mentioned sea-island type composite multifilament.
  • an ultrafine fiber is produced by a method for producing an ultrafine fiber structure, which comprises at least a step of dissolving and removing the thermoplastic resin (B) from the fiber structure containing at least a part of the sea-island type composite multifilament and / or its cut fiber. You may obtain a structure.
  • thermoplastic resin (B) which is a sea component
  • the thermoplastic resin (B) may be removed by alkali treatment, water treatment, or the like, depending on the type of resin constituting the sea component.
  • water treatment water or an aqueous solution may be used, and in the alkaline treatment, an alkaline aqueous solution or the like may be used.
  • the dissolution / removal step may be performed at, for example, 50 to 120 ° C., preferably 80 to 100 ° C., depending on the type of the treatment liquid and the like.
  • the ultrafine multifilament contains a thermoplastic elastomer resin (A) satisfying any of a shore A hardness of 90 or less, a shore D hardness of 60 or less, and a Rockwell hardness (R scale) of 70 or less, and has a thread-metal dynamic friction coefficient of 0. It may be .30 or more.
  • the yarn-metal dynamic friction coefficient of the ultrafine multifilament may be preferably 0.33 or more, and more preferably 0.36 or more.
  • the upper limit of the yarn-metal dynamic friction coefficient is not particularly limited, but may be, for example, 1.0 or less, or 0.50 or less.
  • the yarn-metal dynamic friction coefficient is a value measured by the method described in Examples described later.
  • the single yarn fineness of the ultrafine multifilament may be, for example, 0.005 to 0.5 dtex, preferably 0.01 to 0.4 dtex, and more preferably 0.015 to 0.3 dtex.
  • the single yarn fineness is a value measured by the method described in Examples described later. When the single yarn fineness is small, the coefficient of friction can be increased and the grip property can be improved.
  • the ultrafine multifilament may have a fiber strength at room temperature of, for example, 1.0 cN / dtex or more, preferably 1.1 cN / dtex or more, and more preferably 1.2 cN / dtex or more.
  • the upper limit of the fiber strength is not particularly limited, but since a thermoplastic elastomer resin is used, it may be, for example, 2.5 cN / dtex or less.
  • the fiber strength is a value measured by the method described in Examples described later.
  • One aspect of the present invention includes an ultrafine fiber structure containing at least a part of ultrafine multifilament and / or ultrafine multifilament cut fibers.
  • ultrafine multifilament and / or ultrafine multifilament cut fibers may be collectively referred to as ultrafine fibers.
  • good grip can be exhibited by the frictional force, probably because the ultrafine fibers derived from the ultrafine multifilament generate friction between the single fibers.
  • the ultrafine fiber structure includes a non-woven fabric composed of ultrafine multifilament cut fibers in addition to ultrafine multifilaments and threads and knitted fabrics of the cut fibers thereof.
  • the ultrafine fiber structure may be composed of only ultrafine fibers, or may contain other fibers such as natural fibers, chemical fibers, and synthetic fibers together with the ultrafine fibers.
  • the ultrafine fiber structure may be a one-dimensional structure such as a thread, a string, or a rope composed of an ultrafine multifilament and / or a cut fiber thereof, or the ultrafine multifilament and / or a cut fiber thereof. It may be a two-dimensional structure such as a woven or knitted fabric composed of spun yarn containing the above, a non-woven fabric composed of ultrafine multifilament cut fibers, or a three-dimensional structure using these.
  • the fiber structure may be composed of only ultrafine multifilaments, or may contain other fibers such as natural fibers, chemical fibers, and synthetic fibers in addition to the ultrafine multifilaments.
  • the ultrafine fiber structure may contain ultrafine multifilaments and / or cut fibers thereof in an amount of, for example, 20 to 100% by mass, preferably 30 to 100% by mass, and more preferably 40 to 100% by mass. It may be contained in 100% by mass.
  • the ultrafine multifilament and / or its cut fiber of the present invention is excellent in color development
  • the ultrafine multifilament and / or its cut fiber and the ultrafine fiber structure may be dyed.
  • the dyeing step can be performed by a known method depending on the dyeing agent used.
  • the dyeing agent examples include acid dyes, acid mordant dyes, metallic complex hydrochloric acid dyes, and disperse dyes. Of these, acid dyes, acid mordant dyes, and metal complex hydrochloric acid dyes are preferable from the viewpoint of color development and spinnability.
  • Acid dyes are dyes containing sulfonic acid groups, carboxyl groups, hydroxy groups and the like as soluble groups, and are azo-based, triphenylmethane-based, anthracene-based, oxygen anthracene-based, phthalocyanine-based, indigoid-based, nitroso-based and pyrazolone. Acid dyes such as systems can be mentioned.
  • Acid mordant dyes are dyes that can mainly form metal complex chlorides (for example, coordination bonds with chromium atoms) while having color-developing properties due to acid dyes, and are azo-based, triphenylmethane-based, anthraquinone-based, and oxygen anthracene-based dyes. , Phthalocyanine-based, indigoid-based, nitroso-based and pyrazolone-based acid mordant dyes.
  • Metal complex hydrochloric acid dyes are roughly classified into 1: 1 type dyes in which one metal atom and one dye molecule are bonded, and 1: 2 type dyes in which two dye molecules are bonded to one metal atom. Examples thereof include metal complex hydrochloric acid dyes such as triphenylmethane-based, anthraquinone-based, oxygen anthracene-based, phthalocyanine-based, indigoid-based, nitroso-based and pyrazolone-based.
  • the ultrafine multifilament of the present invention is excellent in color development, and in particular, is excellent in color development in dark color dyeing such as dark blue, dark brown, and black.
  • the ultrafine multifilament of the present invention may have, for example, an L * value of 70 or less, preferably 60 or less, more preferably 50 or less, and even more preferably 45 or less in dark color dyeing.
  • the smaller the L * value, the higher the darkness, and the lower limit is not limited, but it may be 10 or more, for example.
  • the L * value is a value measured by the method described in Examples described later.
  • the ultrafine fiber structure of the present invention is also good in washing fastness, and can show grade 4 or higher in the washing fastness test defined in JIS L 0844, for example.
  • the average island diameter was measured by the following method.
  • a tubular knitted fabric was prepared from the sea-island type composite multifilaments obtained in Examples and Comparative Examples, treated in hot water at 95 ° C. at a bath ratio of 1:30 for 20 minutes to dissolve and remove sea components, and then dried. .. After that, the fiber cross section was observed with a scanning electron microscope (JCM-6000Plus, manufactured by JEOL Ltd.), and the diameter length of each single thread was measured for 10 single threads randomly selected from the fiber cross section photograph. The average value was calculated.
  • the fineness was measured with reference to JIS L 1013 "Chemical fiber filament yarn test method".
  • the total fineness is the fineness of the entire multifilament, and the single yarn fineness is a value obtained by dividing the total fineness by the number of filaments.
  • breaking strength (initial tensile resistance) was determined under the conditions of a trial length of 20 cm, an initial load of 0.1 g / d, and a tensile speed of 10 cm / min, and an average value of 5 points or more was adopted.
  • a circular knitted fabric was prepared from the sea-island type composite multifilaments obtained in Examples and Comparative Examples using a circular knitting machine (18 gauge). The obtained circular knitted fabric was immersed in hot water at 90 ° C. for 30 minutes and then passed through a tunnel-type setter at 160 ° C. for 1 minute to obtain a circular knitted fabric formed of ultrafine multifilaments. The obtained circular knitted fabric had a width of 10 cm and a length of 50 cm, was wrapped around the arm three times, a load of 200 g was applied to the edge of the remaining fabric, and the feeling of slippage after standing for 3 minutes was evaluated. Ten panelists performed sensory evaluation according to the following evaluation criteria. "I don't feel any deviation” 2 points "I feel a slight deviation" 1 point "I feel a deviation” 0 points
  • Nylon (Ny) 12 elastomer 1 (“Vestamide E47-S1” manufactured by Daicel Ebonic Co., Ltd.), which is a polyamide-based elastomer, is used as the island component resin, while an ethylene-modified-polyvinyl alcohol copolymer (ethylene-modified-polyvinyl alcohol copolymer) is used as the sea component resin.
  • ethylene-modified-polyvinyl alcohol copolymer ethylene-modified-polyvinyl alcohol copolymer
  • sea component resin Made by Kuraray Co., Ltd., Kensification degree: 98.5 mol%, ethylene content 8.0 mol%, polymerization degree: 380), and the composite ratio of island component and sea component was set to 50/50 mass ratio.
  • Each was melted by a separate extruder, and a discharge yarn having 37 islands per monofilament was discharged from a composite spinning nozzle.
  • the discharged yarn discharged from the spinneret is cooled by a horizontal spray type cooling air device having a length of 1.0 m, and then continuously installed at a position 1.3 m from directly below the spinneret, having a length of 1.0 m and an inner diameter.
  • a horizontal spray type cooling air device having a length of 1.0 m, and then continuously installed at a position 1.3 m from directly below the spinneret, having a length of 1.0 m and an inner diameter.
  • an oil agent is applied to the fibers coming out of the tube heater, and subsequently, a take-up speed of 3000 m / min via a roller.
  • the obtained sea-island type composite multifilament was treated in hot water at 100 ° C. at a bath ratio of 1:30 for 40 minutes to dissolve and remove the sea component to obtain an ultrafine multifilament of a thermoplastic elastomer resin.
  • Table 1 shows the evaluation of the obtained sea-island type composite multifilament and ultrafine multifilament.
  • Example 2 Spinning was performed in the same manner as in Example 1 except that the number of islands per monofilament of the sea-island type composite multifilament was set to 12, to obtain a sea-island type composite multifilament and an ultrafine multifilament of a thermoplastic elastomer resin. Table 1 shows the evaluation of the obtained sea-island type composite multifilament and ultrafine multifilament.
  • Example 3 The sea islands were spun in the same manner as in Example 1 except that the number of islands per monofilament of the sea-island type composite multifilament was 7, and the composite ratio of the island component and the sea component was 30/70. Ultrafine multifilaments of type composite multifilaments and thermoplastic elastomer resins were obtained. Table 1 shows the evaluation of the obtained sea-island type composite multifilament and ultrafine multifilament.
  • Example 4 The sea-island type composite multifilament was spun in the same manner as in Example 1 except that the number of filaments was 72, to obtain a sea-island type composite multifilament and an ultrafine multifilament of a thermoplastic elastomer resin. Table 1 shows the evaluation of the obtained sea-island type composite multifilament and ultrafine multifilament.
  • Example 5 Spinning was performed in the same manner as in Example 1 except that the number of islands per monofilament of the sea-island type composite multifilament was set to 100 to obtain a sea-island type composite multifilament and an ultrafine multifilament of a thermoplastic elastomer resin. Table 1 shows the evaluation of the obtained sea-island type composite multifilament and ultrafine multifilament.
  • Example 6 A sea-island type composite multifilament and a sea-island type composite multifilament were spun in the same manner as in Example 1 except that Ny12 elastomer 2 (“Vestamide E55-S4” manufactured by Daicel Evonik Industries, Ltd.), which is a polyamide-based elastomer, was used as the island component resin. An ultrafine multifilament of a thermoplastic elastomer resin was obtained. Table 1 shows the evaluation of the obtained sea-island type composite multifilament and ultrafine multifilament.
  • Example 7 (1) Preparation of Polyamide 12 Oligomer
  • the autoclave was replaced with nitrogen, 1.000 g of lauryl lactam and 38 g of dodecane diamine were added together with a small amount of water and a small amount of phosphoric acid, and the obtained mixture was stirred under heating.
  • the reaction system was gradually heated and the pressure was adjusted with nitrogen gas, kept at 270 ° C. at 17.5 kgf / cm 2 (1.7 ⁇ 106 Pa), and heating and stirring were continued for about 4 hours. Then, the reaction system was gradually returned to normal pressure, and while circulating a very small amount of nitrogen gas, it took about 1 hour to reduce the pressure and the water in the system was discharged.
  • the polyamide 12 oligomer was taken out in a molten state while cooling the system under normal pressure. The obtained polyamide 12 oligomer was further cooled to obtain a slightly brittle solid. The number average molecular weight of the polyamide 12 oligomer was as low as about 5400, and the content of the terminal amino group was 350 ⁇ eq / g. This polyamide 12 oligomer was used as an amino group-containing color development improver.
  • a sea-island type composite multifilament and a thermoplastic elastomer resin were spun in the same manner as in Example 1 except that the polyamide 12 oligomer obtained above was added to the island component resin so as to have a weight ratio of 9%. Ultrafine multifilament was obtained. Table 1 shows the evaluation of the obtained sea-island type composite multifilament and ultrafine multifilament.
  • Example 8 A sea-island type composite multifilament and a thermoplastic elastomer were spun in the same manner as in Example 1 except that PET elastomer (“Hytrel 4047N” manufactured by Toray DuPont Co., Ltd.), which is a polyester-based elastomer, was used as the island component resin. An ultrafine multifilament of resin was obtained. Table 1 shows the evaluation of the obtained sea-island type composite multifilament and ultrafine multifilament.
  • Example 1 A general-purpose polyethylene terephthalate (PET) was used as the island component resin, and the sea-island type composite was spun in the same manner as in Example 1 except that the number of islands per monofilament of the sea-island type composite multifilament was 726. Ultrafine multifilaments of multifilaments and thermoplastic elastomer resins were obtained. Table 1 shows the evaluation of the obtained sea-island type composite multifilament and ultrafine multifilament.
  • PET polyethylene terephthalate
  • Example 2 Spinning was performed in the same manner as in Example 1 except that general-purpose polyethylene terephthalate (PET) was used as the island component resin to obtain sea-island type composite multifilaments and ultrafine multifilaments of thermoplastic elastomer resins.
  • PET general-purpose polyethylene terephthalate
  • Table 1 shows the evaluation of the obtained sea-island type composite multifilament and ultrafine multifilament.
  • Example 3 A sea-island type composite multifilament and a sea-island type composite multifilament were spun in the same manner as in Example 1 except that Ny12 elastomer 3 (“Vestamide E62-S1” manufactured by Daicel Evonik Industries, Ltd.), which is a polyamide-based elastomer, was used as the island component resin. An ultrafine multifilament of a thermoplastic elastomer resin was obtained. Table 1 shows the evaluation of the obtained sea-island type composite multifilament and ultrafine multifilament.
  • Example 4 Spinned in the same manner as in Example 1 except that nylon (Ny) 6 (“1013B” manufactured by Ube Corporation) was used as the island component resin. Filaments were obtained. Table 1 shows the evaluation of the obtained sea-island type composite multifilament and ultrafine multifilament.
  • Example 5 A sea-island type composite multifilament and a thermoplastic elastomer were spun in the same manner as in Example 1 except that Ny11 elastomer (“Pevax Rnew 70R53” manufactured by ARKEMA Co., Ltd.), which is a polyamide-based elastomer, was used as the island component resin. An ultrafine multifilament of resin was obtained. Table 1 shows the evaluation of the obtained sea-island type composite multifilament and ultrafine multifilament.
  • the polyamide-based elastomer resin used has a specific hardness, the yarn-metal dynamic friction coefficient is 0.30 or more, and the grip property is also good. As the single yarn fineness decreases, both the yarn-metal dynamic friction coefficient and the dynamic friction coefficient (fabric) tend to increase. Further, the ultrafine multifilaments of Examples 1 to 7 and the ultrafine multifilaments of Comparative Examples 3 and 5 are dyed with the same dyeing agent for the ultrafine multifilaments, but among the ultrafine multifilaments having the same single yarn fineness.
  • the L * values of the ultrafine multifilaments of Examples 1, 6 and 7 were generally lower than those of Comparative Examples 3 and 5, and in particular, Example 7 to which the amino group-containing color improving agent was added had a particularly low L * value. It shows a value and has excellent color development. Further, the ultrafine multifilaments of Examples 1 to 8 all have good washing fastness, and Examples 1 to 7 made of the ultrafine multifilament of a polyamide-based elastomer show particularly good washing fastness.
  • Comparative Example 1 since the number of islands of the sea-island type composite multifilament is too large, the spinnability and the unfoldability are poor, and the obtained ultrafine multifilament has insufficient washing fastness. Further, when compared with Example 3 having the largest average island diameter, the grip property is inferior to that of any of the examples, although the average island diameter is as small as about 1/10 of that. Although Comparative Examples 2 and 4 have good spinnability and unfoldability, they cannot exhibit grip because the island component resin is a non-elastomer resin. Further, although the single yarn fineness is the same as that of Example 1, both the yarn-metal dynamic friction coefficient and the dynamic friction coefficient (fabric) show significantly smaller values than those of Example 1.
  • Comparative Example 3 and Comparative Example 5 are compared with the ultrafine multifilament of Example 1 having the same single yarn fineness because the polyamide-based elastomer resin used as the island component resin does not have a specific hardness. As a result, the coefficient of dynamic friction becomes low, and the grip property cannot be sufficiently exhibited.
  • the sea-island type composite multifilament of the present invention can efficiently form an ultrafine multifilament of a thermoplastic elastomer, and the obtained ultrafine multifilament can exhibit good grip as an ultrafine fiber. Therefore, for example, various clothing items.

Abstract

熱可塑性エラストマー樹脂を島成分とする海島型複合マルチフィラメントおよびこの海島型複合マルチフィラメントから得られる極細マルチフィラメントを提供する。前記海島型複合マルチフィラメントは、島成分がショアA硬度90以下、ショアD硬度60以下、ロックウェル硬度(Rスケール)70以下のいずれかを満たす熱可塑性エラストマー樹脂(A)で構成され、海成分が水溶性または易アルカリ溶解性の熱可塑性樹脂(B)で構成され、平均単島径が8000nm以下である。

Description

海島型複合マルチフィラメントおよび極細マルチフィラメントならびに極細繊維構造体 関連出願
 本願は、日本国で2021年1月15日に出願した特願2021-004876の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
 本発明は、熱可塑性エラストマー樹脂を島成分とする海島型複合マルチフィラメント、およびこの海島型複合マルチフィラメントから得られる極細マルチフィラメントを含む極細繊維に関する。
 海島型複合マルチフィラメントは、海成分に溶出除去できる樹脂を用いて複合マルチフィラメントを形成し、その後海成分を除去することにより極細繊維を製造することができる。
 例えば、特許文献1(特開2014-101613号公報)には、平均単糸繊維径が10~2500nm、引張強度が4.5cN/dtex以上の極細繊維であって、
(A)海島型複合繊維の海成分と島成分の複合質量比率(海:島)が40:60~20:80の範囲であること。
(B)海島型複合繊維の海成分と島成分の溶融粘度比(海/島)が0.2~1.0の範囲であること。
(C)海島型複合繊維が、海島型複合繊維用紡糸口金から、海成分と島成分とを溶融、押出した後、400~2000m/minの紡糸速度で引き取ることにより製造されたものであること。
(D)海島型複合繊維が、余熱ローラー上で余熱し、延伸倍率3.0~6.0倍で延伸し、セットローラー上で熱セットして巻き取られされたものであること。
(E)海島型複合繊維が、残留伸度5~30%となるように延伸されたものであること。を同時に満足する海島型複合繊維の海成分を溶出除去して得られた極細繊維が開示されている。
特開2014-101613号公報
 特許文献1では、強度に優れるポリエステルの極細繊維を形成することはできるが、この繊維では極細繊維間で互いに滑ってしまうため、グリップ性を発揮することができないことから、例えば、インナーやグローブ等の滑り止め用途とした際、摩擦や吸着の効果が不十分であった。
 そこで、本発明の目的は、グリップ性に優れる極細マルチフィラメント、前記極細マルチフィラメントを形成可能な海島型複合マルチフィラメント、およびそれらの製造方法ならびに繊維構造体を提供することにある。
 本発明者等は上記目的を達成すべく鋭意検討を行った結果、グリップ性の高い極細マルチフィラメントを得るには特定の硬度を示す熱可塑性エラストマー樹脂を海島型複合マルチフィラメントの島成分として用いることが有効であることを見出した。しかしながら、熱可塑性エラストマー樹脂は伸縮性が高いため、海島型複合マルチフィラメントの島成分として非エラストマー樹脂と同様に製造することは困難であることを見出し、新たな課題とした。
 そこで、さらなる研究を行った結果、熱可塑性エラストマー樹脂を島成分として用いる場合、海島型複合マルチフィラメントの単糸繊度を小さくする一方、海島型複合マルチフィラメント中の島成分数を少なくすることにより、熱可塑性エラストマー樹脂を島成分とする海島型複合マルチフィラメントを製造し、前記マルチフィラメントから海成分を除去することにより、熱可塑性エラストマーの極細マルチフィラメントを製造することができること、さらに、熱可塑性エラストマー樹脂が特定の硬度を有する場合、従来にはない優れたグリップ性を発揮できることを見出し、本発明を完成した。
 すなわち、本発明は、以下の態様で構成されうる。
 〔態様1〕
 島成分がショアA硬度90以下、ショアD硬度60以下(好ましくは58以下、より好ましくは55以下、さらに好ましくは53以下、さらにより好ましくは50以下)、ロックウェル硬度(Rスケール)70以下(好ましくは65以下、さらに好ましくは60以下)のいずれかを満たす熱可塑性エラストマー樹脂(A)で構成され、海成分が水溶性または易アルカリ溶解性の熱可塑性樹脂(B)で構成され、平均単島径が8000nm以下(好ましくは6000nm以下、より好ましく4000nm以下)である、海島型複合マルチフィラメント。
〔態様2〕
 前記海成分の熱可塑性樹脂(B)が、α-オレフィン類および/またはビニルエーテル類に由来する単位がポリビニルアルコール系重合体中に存在する変性ポリビニルアルコール系重合体である、態様1に記載の海島型複合マルチフィラメント。
〔態様3〕
 前記海島型複合マルチフィラメントの島数が3~200島(好ましくは5~100島を有していてもよく、より好ましくは6~80島、さらに好ましくは7~60島)であり、前記海成分と前記島成分の複合質量比率(海成分:島成分)が20:80~70:30(好ましくは25:75~70:30、さらに好ましくは30:70~60:40)である、態様1または2に記載の海島型複合マルチフィラメント。
〔態様4〕
 前記熱可塑性エラストマー樹脂(A)がポリアミド系エラストマー樹脂またはポリエステル系エラストマー樹脂である、態様1~3のいずれか一態様に記載の海島型複合マルチフィラメント。
〔態様5〕
 態様1~4のいずれか一態様に記載の海島型複合マルチフィラメントおよび/またはそのカットファイバーを少なくとも一部に含む、繊維構造体。
〔態様6〕
 ショアA硬度90以下、ショアD硬度60以下、ロックウェル硬度(Rスケール)70以下のいずれかを満たす熱可塑性エラストマー樹脂(A)を含んでなり、糸-金属動摩擦係数が0.30以上(好ましくは0.33以上、より好ましくは0.36以上)である、極細マルチフィラメント。
〔態様7〕
 単糸繊度が0.005~0.5dtex(好ましくは0.010~0.4dtex、より好ましくは0.015~0.3dtex)である、態様6に記載の極細マルチフィラメント。
〔態様8〕
 態様6または7に記載の極細マルチフィラメントおよび/またはそのカットファイバーを少なくとも一部に含む、極細繊維構造体。
〔態様9〕
 織物または編物である、態様8に記載の極細繊維構造体。
〔態様10〕
 態様1~4のいずれか一態様に記載の海島型複合マルチフィラメントから、熱可塑性樹脂(B)を溶解除去する工程を少なくとも含む、極細マルチフィラメントの製造方法。
〔態様11〕
 態様5に記載の繊維構造体から、熱可塑性樹脂(B)を溶解除去する工程を少なくとも含む、極細繊維構造体の製造方法。
 なお、請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。
 本発明の海島型複合マルチフィラメントは、特定の硬度を有する熱可塑性エラストマー樹脂を、島成分を構成する樹脂(以下島成分樹脂と称する場合がある)として用いるとともに、水やアルカリにより簡単に除去できる樹脂を、海成分を構成する樹脂(以下海成分樹脂と称する場合がある)として複合紡糸しているため、熱可塑性エラストマー樹脂の極細繊維化を効率よく行うことが可能である。
 また、極細マルチフィラメントは、熱可塑性エラストマー樹脂の極細マルチフィラメントであるため、動摩擦係数が高くなり、グリップ性を向上することができる。
[海島型複合マルチフィラメント]
 本発明の海島型複合マルチフィラメントは、島成分を構成する樹脂がショアA硬度90以下、ショアD硬度60以下、ロックウェル硬度(Rスケール)70以下のいずれかを満たす熱可塑性エラストマー樹脂(A)であり、海成分を構成する樹脂が水溶性または易アルカリ溶解性の熱可塑性樹脂(B)である、海島型複合マルチフィラメントである。
 前記海島型複合マルチフィラメントは、平均単島径を小さくすることが可能であり、海島型複合マルチフィラメントの平均単島径は、8000nm以下であり、好ましくは6000nm以下、より好ましく4000nm以下であってもよい。平均単島径の下限値は、特に限定されないが、例えば500nm以上であってもよい。ここで、平均単島径は、後述する実施例に記載された方法により測定される値である。
(島成分樹脂)
 島成分樹脂は、特定の硬度を有する熱可塑性エラストマー樹脂(A)である。熱可塑性エラストマー樹脂(A)の硬度は、硬度に応じて適切な測定規格が異なっており、ショアA硬度、ショアD硬度、ロックウェル硬度(Rスケール)のうち、(i)最も硬い場合はロックウェル硬度(Rスケール)で測定され、(ii)ロックウェル硬度(Rスケール)が50未満である場合はショアD硬度により測定され、(iii)ショアD硬度40以下である場合、ショアA硬度により測定することが可能である。
 島成分樹脂の硬度は、ショアA硬度90以下、ショアD硬度60以下、ロックウェル硬度(Rスケール)70以下のいずれかを満たしていればよく、例えば、ショアD硬度60以下でない場合であっても、ロックウェル硬度(Rスケール)70以下であればよい。
 ショアA硬度は、JIS K 7215のデュロメータによる押し込み硬さの測定値であり、タイプA圧子(先端円錐台状、先端径0.79mm、円錐角度35°)を用いて測定される。島成分樹脂の硬度は、極細マルチフィラメントとした時のグリップ性の観点から、ショアA硬度90以下であり、本発明の効果を阻害しない範囲であれば、下限値は特に限定されないが、例えば、ショアA硬度は20以上であってもよく、50以上であることが好ましい。
 ショアD硬度は、JIS K 7215のデュロメータによる押し込み硬さの測定値であり、タイプD圧子(先端円錐状、先端径0.1mm、円錐角度30°)を用いて測定される。島成分樹脂の硬度は、極細マルチフィラメントとした時のグリップ性の観点から、ショアD硬度60以下であり、好ましくは58以下、より好ましくは55以下、さらに好ましくは53以下、さらにより好ましくは50以下であってもよい。本発明の効果を阻害しない範囲であれば、硬度の下限値は特に限定されないが、例えば、ショアD硬度は20以上であってもよい。
 ロックウェル硬度(Rスケール)は、JIS Z 2245による押し込み硬さの測定値であり、径12.7mmの剛球を圧子として用いて測定される。島成分樹脂の硬度は、極細マルチフィラメントとした時のグリップ性の観点から、ロックウェル硬度(Rスケール)70以下であり、好ましくは65以下、さらに好ましくは60以下であってもよい。本発明の効果を阻害しない範囲であれば、硬度の下限値は特に限定されないが、例えば、ロックウェル硬度(Rスケール)は50以上であってもよい。
 熱可塑性エラストマー樹脂としては、例えば、ポリオレフィン系エラストマー樹脂、ポリ塩化ビニル系エラストマー樹脂、ポリウレタン系エラストマー樹脂、ポリスチレン系エラストマー樹脂、ポリエステル系エラストマー樹脂、およびポリアミド系エラストマー樹脂等を挙げることができる。取り扱い性が良好である観点から、ポリアミド系エラストマー樹脂、またはポリエステル系エラストマー樹脂が好ましく、洗濯堅牢度の観点から、ポリアミド系エラストマー樹脂であることがより好ましい。
 ポリオレフィン系エラストマー樹脂は、ポリエチレンまたはポリプロピレンをハードセグメントとし、SEBSやエチレン/プロピレン共重合体をソフトセグメントとして構成される。
 ポリ塩化ビニル系エラストマー樹脂は、結晶ポリ塩化ビニルをハードセグメントとし、非晶ポリ塩化ビニルやアクリロニトリルをソフトセグメントとして構成される。
 ポリウレタン系エラストマー樹脂は、低分子グリコールとジイソシアネート類とで構成されるハードセグメント、および高分子ジオールとジイソシアネートとで構成されるソフトセグメントから構成される。
 低分子グリコールとしては、例えば、エチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールなどのC1-10ジオールなどが挙げられる。高分子ジオールとしては、ポリ(1,4-ブチレンアジペート)、ポリ(1,6-ヘキサンアジペート)、ポリカプロラクトン、ポリエチレングリコール、ポリプロレングリコール、ポリオキシテトラメチレングリコールなどが挙げられる。ジイソシアネートとしては、例えばトリレンジイソシアネート、4,4-ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートなどが挙げられる。
 ポリスチレン系エラストマー樹脂としては、ポリスチレンをハードセグメントとし、ポリブタジエン、ポリイソプレン、水素添加ポリブタジエン、ポリエチレン、ポリプロピレンなどをソフトセグメントとして構成され、例えば、SBS(スチレン/ブタジエン/スチレンブロック共重合体)、SIS(スチレン/イソプレン/スチレンブロック共重合体)、SEBS(スチレン/エチレン/ブタジエン/スチレンブロック共重合体)、SEPS(スチレン/エチレン/プロピレン/スチレンブロック共重合体)などが挙げられる。ポリエステル系エラストマー樹脂は、例えば、株式会社クラレ製「セプトン」、株式会社クラレ製「ハイブラー」等として上市されているものから、所定の硬度を有する樹脂を選択することができる。
 ポリエステル系エラストマー樹脂は、芳香族ポリエステル樹脂成分をハードセグメントとし、脂肪族ポリエーテルまたは脂肪族ポリエステルをソフトセグメントとして構成される。ポリエステル系エラストマー樹脂は、例えば、SKchemical社製「SKYPEL」、東レ・デュポン株式会社製「ハイトレル」、東洋紡績株式会社製「ペルプレン」等として上市されているものから、所定の硬度を有する樹脂を選択することができる。
 ポリアミド系エラストマー樹脂は、ポリアミド系エラストマー樹脂成分をハードセグメントとし、ポリエーテルブロックまたはポリエステルブロックをソフトセグメントとして構成されるポリエーテルブロックポリアミド、ポリエステルブロックポリアミド、ポリエステルエーテルブロックポリアミドであってもよい。
 ポリアミド系エラストマーは、例えば、炭素数6~22の脂肪族ポリアミドをハードセグメントとして有していてもよく、好ましくは素数9~20の脂肪族ポリアミドをハードセグメントとして有していてもよい。ここで、脂肪族ポリアミドとは、下記式(1)~(3)の繰り返し単位中の炭化水素基が飽和脂肪族炭化水素基であるポリアミドを意味している。
  -NH-R1-NH-   (1)
  -CO-(R2)-CO-   (2)
  -NH-R3-CO-   (3)
 ここで、R1,R2,R3は、同一または異なって、炭素数1~22の直鎖または分岐鎖の脂肪族炭化水素基であり、mは0または1の整数である。
 具体的には、例えば、ハードセグメントとして、ポリアミド6、ポリアミド6/6、ポリアミド6/11、ポリアミド6/12、ポリアミド9、ポリアミド11、またはポリアミド12などをハードセグメントとし、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどをソフトセグメントとして有するポリエーテルブロックポリアミドであってもよい。ポリアミド系エラストマー樹脂は、例えば、ダイセル・エボニック株式会社製「ベスタミド」「ダイアミド」、ARKEMA社製「ペバックス」、宇部興産株式会社製「UBESTAXPA」等として上市されているものから、所定の硬度を有する樹脂を選択することができる。
 なお、発色性を向上させる観点からアミノ基含有発色改良剤を併用してもよい。アミノ基含有発色改良剤は、少なくともアミノ基を有しており、ポリアミド系エラストマー樹脂とともに用いられ、所定の末端アミノ基濃度を付与することができる。アミノ基含有発色改良剤は、その末端アミノ基濃度が、例えば、100~2000μeq/gであってもよく、好ましくは、125~2000μeq/g、より好ましくは、200~1000μeq/gであってもよい。
 アミノ基含有発色改良剤は、ポリアミド系エラストマー樹脂の特性を損なわない範囲であれば、アミノ基含有発色改良剤の種類に応じて適当な割合で組み合わせることができる。例えば、ポリアミド系エラストマー樹脂とアミノ基含有発色改良剤との質量比は、発色性および相溶性の観点から、例えば、前者/後者として、99/1~70/30であってもよく、好ましくは98/2~75/25、より好ましくは95/5~80/20であってもよい。
 アミノ基含有発色改良剤としては、ポリアミド系エラストマー樹脂の特徴を損なわずに、ポリアミド系繊維の発色性を向上させる観点から、ポリアミドオリゴマー、多岐アミンなどのアミノ基含有化合物(例えば、3~12のアミノ基を有する、直鎖の脂肪族、脂環式または芳香族の多岐アミン等)が挙げられる。
 ポリアミドオリゴマーは、ポリアミド系エラストマー樹脂において記載した式(1)~(3)であらわされる繰り返し単位のいずれかで構成されているのが好ましい。式(1)~(3)であらわされる繰り返し単位で用いられる炭素数1~22の炭化水素基としては、例えば、炭素数1~22(好ましくは6~20、より好ましくは9~18)の直鎖または分岐鎖の飽和脂肪族炭化水素基、炭素数6~22(好ましくは6~20、より好ましくは6~18)の直鎖または分岐鎖の飽和脂環式炭化水素基、炭素数6~22(好ましくは6~20、より好ましくは6~18)の直鎖または分岐鎖の芳香族炭化水素基などがあげられる。これらの炭化水素基には、本発明の効果を阻害しない範囲で、置換基が存在していてもよい。
 好ましいポリアミドオリゴマーとしては、ポリアミド6オリゴマー、ポリアミド4/6オリゴマー、ポリアミド6/6オリゴマー、ポリアミド6/10オリゴマー、ポリアミド6/11オリゴマー、ポリアミド6/12オリゴマー、ポリアミド9オリゴマー、ポリアミド10オリゴマー、ポリアミド11オリゴマー、ポリアミド12オリゴマーなどが挙げられる。
 ポリアミド系エラストマー樹脂との相溶性の観点から、ポリアミドオリゴマーとポリアミド系エラストマー樹脂の繰り返し単位の炭化水素基は同程度の単素数を有するのが好ましく、例えば、ポリアミドオリゴマー中の繰り返し単位の炭化水素基は、その炭素数が、ポリアミド系エラストマー樹脂の繰り返し単位中の単素数±3の範囲内であってもよく、好ましくはポリアミド系エラストマー樹脂の繰り返し単位中の単素数±2の範囲内、より好ましくはポリアミド系エラストマー樹脂の繰り返し単位中の単素数±1の範囲内であってもよい。なお、ポリアミド系エラストマー樹脂がポリアミド系エラストマーである場合、ハードセグメント中のポリアミド系エラストマー樹脂成分の繰り返し単位の炭化水素基が、上述する関係を有しているのが好ましい。
 ポリアミドオリゴマーの数平均分子量は、例えば、500~10000であってもよく、好ましくは500~9000、より好ましくは1000~6000であってもよい。ここで、ポリアミドオリゴマーの分子量は、後述する実施例に記載された方法により測定される値である。
 島成分樹脂は、必要に応じて、通常使用されている各種添加剤を含んでいてもよい。添加剤としては、例えば、熱安定剤、酸化防止剤、光安定剤、紫外線吸収剤、帯電防止剤、着色剤(例えば着色顔料)、平滑剤、可塑剤、抗菌剤、防かび剤および消臭剤などの添加剤が挙げられる。また、島成分樹脂は、本発明の効果を阻害しない範囲で他の非熱可塑性エラストマー樹脂を含んでいてもよい。
 島成分樹脂は、繊維化を良好にする観点から、240℃における溶融粘度が、600~3000poiseであることが好ましい。該溶融粘度が3000poiseを超える場合には繊維化時の高速紡糸性が低下する場合がある。また、600poise未満となる場合には紡糸中に断糸しやすく生産性が乏しくなる場合があり、得られた繊維の強度も低いものとなる場合がある。島成分樹脂の溶融粘度は、より好ましくは800~2000pоiseである。
(海成分樹脂)
 海成分樹脂は、水溶性または易アルカリ溶解性の熱可塑性樹脂(B)で構成される。熱可塑性樹脂(B)としては、例えば、水(温水を含む)、アルカリにより溶解可能な熱可塑性樹脂が挙げられ、好ましくは、水に対して溶解可能な熱可塑性ポリビニルアルコール樹脂、アルカリに対して溶解可能な易溶解性ポリエステル樹脂などが挙げられる。
 熱可塑性ポリビニルアルコール樹脂は、例えば、100℃の熱水に浴比1:30で浸漬した際に、例えば60分以内、好ましくは50分以内、より好ましくは30分以内、特に好ましくは15分以内にほぼ完全に溶解(分解)してもよい。
 易溶解性ポリエステル樹脂は、例えば、100℃の2%水酸化ナトリウム水溶液に浴比1:30で浸漬した際に、例えば60分以内、好ましくは45分以内、より好ましくは30分以内、特に好ましくは15分以内にほぼ完全に溶解(分解)してもよい。
(熱可塑性ポリビニルアルコール樹脂)
 熱可塑性ポリビニルアルコール樹脂を構成するポリビニルアルコール(以下PVAと称する場合がある)は、ビニルアルコール単位を主として含んでおり、ビニルアルコール単位のホモポリマーであってもよいし、ビニルアルコール単位に加えて、共重合性単位および/または官能基を含む変性ポリマーであってもよい。
 本発明に用いられるPVAは、ビニルエステル系重合体のビニルエステル単位をケン化することにより得られる。ビニルエステル単位を形成するためのビニル化合物単量体としては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニルおよびバーサティック酸ビニル等が挙げられ、これらの中でもPVAを得る点からは酢酸ビニルが好ましい。
 また本発明で使用されるPVAは、ホモポリマーであっても共重合単位を導入した変性ポリマーであってもよいが、溶融紡糸性、水溶性、繊維物性の観点からは、共重合単位を導入した変性ポリビニルアルコールを用いることが好ましい。共重合単量体の種類としては、例えば、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセン等のα-オレフィン類、アクリル酸およびその塩、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル等のアクリル酸エステル類、メタクリル酸およびその塩、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル等のメタクリル酸エステル類、アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド等のアクリルアミド誘導体、メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド等のメタクリルアミド誘導体、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル等のビニルエーテル類、エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテル等のヒドロキシ基含有のビニルエーテル類、アリルアセテート、プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル類、オキシアルキレン基を有する単量体、ビニルトリメトキシシラン等のビニルシリル類、酢酸イソプロペニル、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オール等のヒドロキシ基含有のα-オレフィン類、フマール酸、マレイン酸、イタコン酸、無水マレイン酸、無水フタル酸、無水トリメリット酸または無水イタコン酸等に由来するカルボキシル基を有する単量体;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等に由来するスルホン酸基を有する単量体;ビニロキシエチルトリメチルアンモニウムクロライド、ビニロキシブチルトリメチルアンモニウムクロライド、ビニロキシエチルジメチルアミン、ビニロキシメチルジエチルアミン、N-アクリルアミドメチルトリメチルアンモニウムクロライド、N-アクリルアミドエチルトリメチルアンモニウムクロライド、N-アクリルアミドジメチルアミン、アリルトリメチルアンモニウムクロライド、メタアリルトリメチルアンモニウムクロライド、ジメチルアリルアミン、アリルエチルアミン等に由来するカチオン基を有する単量体が挙げられる。
 これらの単量体の中でも、入手のしやすさなどから、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセン等のα-オレフィン類、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル等のビニルエーテル類、エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテル等のヒドロキシ基含有のビニルエーテル類、アリルアセテート、プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル類、オキシアルキレン基を有する単量体、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オール等のヒドロキシ基含有のα-オレフィン類に由来する単量体が好ましく、特に好ましくはα-オレフィン類および/またはビニルエーテル類に由来する単量体である。
 特に、共重合性、溶融紡糸性および繊維の水溶性の観点からエチレン、プロピレン、1-ブテン、イソブテンの炭素数4以下のα-オレフィン類;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル等の、炭素数4以下の直鎖または分岐鎖のアルキレン基により連結されたビニルエーテル類がより好ましい。
 これらの単量体の含有量は、通常20モル%以下であり、好ましくは15モル%以下、より好ましくは13モル%であってもよい。単量体の下限値は特に限定されないが、例えば、0.1モル%以上、好ましくは3モル%以上、より好ましくは6モル%以上であってもよい。
 特に、α-オレフィンがエチレンである場合において、繊維物性が高くなることから、エチレン単位が4~15モル%、より好ましくは6~13モル%導入された変性ポリマーを使用することが好ましい。
 本発明に用いられるPVAの粘度平均重合度(以下、単に重合度と略記する)は、紡糸性および溶解性の観点から、200~500が好ましく、230~470がより好ましく、250~450が特に好ましい。特に重合度500以下のいわゆる低重合度のPVAを用いることにより、水溶液で海島型複合マルチフィラメントを溶解するときに溶解速度が速くなるばかりでなく海島型複合マルチフィラメントが溶解する時の収縮を小さくすることができる。
 PVAの重合度(P)は、JIS-K6726を参考にして測定される。すなわち、PVAを再ケン化し、精製した後、30℃の水中で測定した極限粘度[η](dl/g)から次式により求められるものである。
  P=([η]×10/8.29)(1/0.62)
 本発明に用いられるPVAは、紡糸性および溶解性の観点から、ケン化度が90~99.99モル%であることが好ましい。より好ましくは93~99.98モル%、さらに94~99.97モル%が好ましく、96~99.96モル%が特に好ましい。
 特に、本発明で使用される好ましいPVAは、ビニルアルコールユニットに対するトライアッド表示による水酸基3連鎖の中心水酸基のモル分率が70~99.9モル%であってもよく、72~99モル%がより好ましく、74~97モル%がさらに好ましく、76~95モル%が特に好ましい。
 なお、本発明において、ポリビニルアルコールのトライアッド表示による水酸基3連鎖の中心水酸基とは、PVAのd6-DMSO溶液での500MHz  プロトンNMR(JEOL  GX-500)装置、65℃測定による水酸基プロトンのトライアッドのタクティシティを反映するピーク(I)を意味する。ピーク(I)はPVAの水酸基のトライアッド表示のアイソタクティシティ連鎖(4.54ppm)、ヘテロタクティシティ連鎖(4.36ppm)およびシンジオタクティシティ連鎖(4.13ppm)の和で表されて、全てのビニルアルコールユニットにおける水酸基のピーク(II)はケミカルシフト4.05ppm~4.70ppmの領域に現れることから、本発明のビニルアルコールユニットに対するトライアッド表示による水酸基3連鎖の中心水酸基のモル分率は、100×(I)/(II)で表されるものである。
 また、本発明のPVAがエチレン変性のPVAである場合、下記式を満足することで本発明の効果は更に高くなるものである。
  -1.5×Et+100≧モル分率≧-Et+85
 ここで、モル分率(単位:モル%)はビニルアルコールユニットに対するトライアッド表示による水酸基3連鎖の中心水酸基のモル分率を表し、Etはビニルアルコール系重合体が含有するエチレン含量(単位:モル%)を表す。
 本発明に用いられるPVAの融点(Tm)は160~230℃であることが好ましく、170~227℃がより好ましく、175~224℃がさらに好ましく、180~220℃が特に好ましい。なお、PVAの融点は、DSCを用いて窒素中、昇温速度10℃/分で250℃まで昇温後、室温まで冷却し、再度昇温速度10℃/250℃まで昇温した場合のPVAの融点を示す吸熱ピークのピークトップの温度を意味する。
 本発明で使用されるPVAは、溶解性を向上する観点からアルカリ金属イオンを含むのが好ましく、アルカリ金属イオンの含有割合は、PVA100質量部に対してナトリウムイオン換算で0.0003~1質量部であることが好ましく、0.0003~0.8質量部がより好ましく、0.0005~0.6質量部がさらに好ましく、0.0005~0.5質量部が特に好ましい。アルカリ金属イオンとしては、カリウムイオン、ナトリウムイオン等があげられる。
 本発明において、特定量のアルカリ金属イオンをPVA中に含有させる方法は特に制限されず、PVAを重合した後にアルカリ金属イオン含有の化合物を添加する方法、ビニルエステルの重合体を溶媒中においてケン化するに際し、ケン化触媒としてアルカリイオンを含有するアルカリ性物質を使用することによりPVA中にアルカリ金属イオンを配合し、ケン化して得られたPVAを洗浄液で洗浄することにより、PVA中に含まれるアルカリ金属イオン含有量を制御する方法などが挙げられるが後者のほうが好ましい。なお、アルカリ金属イオンの含有量は、原子吸光法で求めることができる。
 また、熱可塑性ポリビニルアルコール樹脂は、PVAの高温での溶融流動性および曳糸性を向上させるため、必要に応じて、PVAに対して、ポリエチレングリコール、プロピレングリコールおよびそのオリゴマー、ブチレングリコール及びそのオリゴマー、ポリグリセリン誘導体やグリセリン等にエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドが付加したグリセリン誘導体、ソルビトールにエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドが付加した誘導体、ペンタエリスリトール等の多価アルコール及びその誘導体、PO/EOランダム共重合物等の可塑剤を1~30質量%、好ましくは2~20質量%の割合で含んでいてもよい。
 特に繊維化工程で熱分解が起こりにくく、良好な可塑化性、紡糸性を得るために、ソルビトールのアルキレンオキサイド付加物、ポリグリセリンアルキルモノカルボン酸エステル、PO/EOランダム共重合物などの可塑剤を1~30質量%、好ましくは2~20質量%配合することが好ましく、特にソルビトールのエチレンオキサイドを1~30モル付加した化合物が好ましい。
(易溶解性ポリエステル樹脂)
 易溶解性ポリエステル樹脂としては、例えば、極性基含有共重合ポリエステル、脂肪族ポリエステルなどが挙げられる。
 極性基含有共重合ポリエステルは、テレフタル酸、イソフタル酸などのジカルボン酸単位、エチレングリコールなどのジオール単位に加えて、エステル形成スルホン酸金属塩化合物(例えば、4-ナトリウムスルホイソフタル酸、5-カリウムスルホイソフタル酸、5-ナトリウムスルホイソフタル酸、4-ナトリウムスルホテレフタル酸、5-カリウムスルホテレフタル酸、4-ナトリウムスルホフタル酸など)を共重合した共重合ポリエステルなどが挙げられる。
 なお、ジカルボン酸単位としては、テレフタル酸、イソフタル酸の他に、ジフェニルスルフォンジカルボン酸、ベンゾフェノンジカルボン酸、4、4′-ジフェニルジカルボン酸、3、3′-ジフェニルジカルボン酸などの芳香族ジカルボン酸;アジピン酸、コハク酸、アゼライン酸、セバシン酸、ドデカンジオン酸などの脂肪族ジカルボン酸;ヘキサヒドロテレフタル酸、1、3-アダマンタンジカルボン酸などの脂環式ジカルボン酸などをあげることができる。
 ジオール単位としては、エチレングリコールの他に、クロロハイドロキノン、4、4′-ジヒドロキシビフェニル、4、4′-ジヒドロキシジフェニルスルフォン、4、4′-ジヒドロキシジフェニルスルフィド、4、4′-ジヒドロキシベンゾフェノン、p-キシレングリコールなどの芳香族ジオール;ジエチレングリコール、プロパンジオール、ブタンジオール、ヘキサンジオール、ネオペンチルグリコールなどの脂肪族ジオール、シクロヘキサンジメタノールなどの脂環式ジオールをあげることができる。
 エステル形成スルホン酸金属塩化合物は、水易溶性および耐水性の点から全ジカルボン酸成分に対して、例えば、1~20モル%、好ましくは1~12モル%、より好ましくは1~5モル%用いられてもよい。
 さらに、ポリアルキレングリコール(例えば、ポリプロピレングリコール、ポリエチレングリコールなどのポリC1-4アルキレングリコール)を共重合していてもよく、ポリアルキレングリコールは、極性基含有共重合ポリエステル中、例えば5~30質量%程度、好ましくは6~25質量%程度含まれていてもよい。
 また、脂肪族ポリエステルとしては、例えば、ポリ乳酸;ポリ(エチレンサクシネート)、ポリ(ブチレンサクシネート)、ポリ(ブチレンサクシネートcoブチレンアジペート)などの脂肪族ジオールと脂肪族カルボン酸とのポリエステル;ポリ(グリコール酸)、ポリ(3ヒドロキシ酪酸)、ポリ(3ヒドロキシ吉草酸)、ポリ(6ヒドロキシカプロン酸)等のポリヒドロキシカルボン酸;ポリ(εカプロラクトン)やポリ(δバレロラクトン)などのポリ(ωヒドロキシアルカノエート)などが挙げられる。これらの脂肪族ポリエステルは、単独でまたは二種以上組み合わせて使用してもよい。これらのうち、ポリ乳酸が好ましく、ポリ乳酸は、ポリD-乳酸、ポリL-乳酸またはそれらの混合物であってもよい。
 海成分樹脂は、繊維化を良好にする観点から、240℃における溶融粘度が、600~3000poiseであることが好ましい。該溶融粘度が3000poiseを超える場合には繊維化時の高速紡糸性が低下する場合がある。また、600poise未満となる場合には紡糸中に断糸しやすく生産性が乏しくなる場合があり、得られた繊維の強度も低いものとなる場合がある。海成分樹脂の溶融粘度は、より好ましくは800~2000pоiseである。
(海島型複合マルチフィラメントの製造方法)
 本発明の海島型複合マルチフィラメントは、従来公知の複合紡糸装置を用いて繊維化することが可能であるが、島成分として特定の硬度を有する熱可塑性エラストマー樹脂(A)を利用して島成分の極細化を行うため、海島型複合マルチフィラメントの単糸繊度を小さくする一方で、海島型複合マルチフィラメント中の島成分数を少なくすることにより、熱可塑性エラストマー樹脂を島成分として用いる場合であっても、島成分の極細化が可能となる。
 海島型複合マルチフィラメントの製造方法は、島成分樹脂と海成分樹脂とを、それぞれ別々の押出機により溶融混練し、溶融樹脂を得る溶融混練工程と、前記溶融樹脂をそれぞれ複合紡糸ノズルに導入して、島成分および海成分を所定の複合比で吐出する吐出工程と、吐出された糸条(または溶融原糸)を所定の引取り速度(または紡糸速度)で巻き取る巻き取り工程とを含んでいる。
 溶融混練工程では、島成分樹脂および海成分樹脂は、それぞれの融点に応じて溶融される。溶融混錬の際には、必要に応じて発色改良剤や可塑剤などの各種添加剤も混合してもよい。これらの添加剤は、直接添加してもよいし、一旦、マスターバッチを形成してから、島成分樹脂および海成分樹脂と混練してもよい。
 吐出工程では、糸条当たりの島部を少なくするのが好ましく、例えば、糸条当たり3~200島であってもよいが、高速紡糸性および製糸安定性を鑑み、好ましくは5~100島を有していてもよく、より好ましくは6~80島、さらに好ましくは7~60島であってもよい。島数が上記上限値を超える場合、熱可塑性エラストマーの伸縮性が高いことに起因して、島成分と海成分の樹脂が複合され冷却固化されるまでに島成分の収縮によって島同士が接着する場合がある。
 海成分と島成分の複合比は、質量比(海:島)として、高速紡糸性およびグリップ性を鑑み、(海:島)=20:80~70:30であることが好ましく、より好ましくは25:75~70:30、さらに好ましくは30:70~60:40であってもよい。
 吐出された吐出糸は、そのまま巻き取ることなく直接延伸(スピンドロー)するのが好ましい。例えば、吐出された吐出糸は、そのまま(必要に応じて冷却工程を経て)、直接延伸工程を経て、延伸糸として直接巻き取られてもよい。
 冷却工程では、吐出糸をクエンチングゾーンにおいて冷却してもよい。クエンチングゾーンでは、例えば、冷却風により吐出糸を冷却固化することができる。また、直接延伸工程では、冷却固化された冷却糸に対して延伸が行われてもよい。
 巻き取り工程では、例えば、2000~4000m/minの引き取り速度で引き取ってもよく、製糸安定性を鑑み引き取り速度は2200~3800m/minが好ましく、より好ましくは2300~3700m/minであってもよい。
 本発明の海島型複合マルチフィラメントは、熱可塑性エラストマー樹脂を島成分樹脂として用い、熱可塑性エラストマー樹脂を非熱可塑性エラストマー樹脂である海成分樹脂で被覆するため、紡糸性が良好であるとともに、巻き取り工程後に得られた海島型複合マルチフィラメントは、巻き返しの際の解舒性についても良好である。
 海島型複合マルチフィラメントの単糸繊度は、例えば、0.5~5dtexであってもよく、好ましくは0.8~4.5dtex、より好ましくは1~4dtexであってもよい。ここで、単糸繊度は、後述する実施例に記載された方法により測定される値である。単糸繊度が上記上限値を超えると、繊維の冷却固化が遅くなり、島成分と海成分の剥離が発生して、繊維物性や解舒性などの取り扱い性が悪くなる場合がある。
 海島型複合マルチフィラメントでは、平均単島繊度を小さくすることが可能であり、海島型複合マルチフィラメントの平均単島繊度は、例えば、0.005~0.5dtexであってもよく、好ましくは0.010~0.4dtex、より好ましくは0.015~0.3dtexであってもよい。ここで、平均単島繊度は、後述する実施例に記載された方法により測定される値である。
 海島型複合マルチフィラメントは、工程通過性の観点から、室温における繊維強度が、例えば1.0cN/dtex以上であってもよく、好ましくは1.1cN/dtex以上であってもよい。繊維強度の上限は特に限定されないが、島成分樹脂として熱可塑性エラストマー樹脂を用いているため、例えば、2.5cN/dtex以下であってもよい。ここで、繊維強度は、後述する実施例に記載された方法により測定される値である。
 製造された海島型複合マルチフィラメントは、連続フィラメントのまま使用してもよいし、切断してステープル等に加工してもよい。また、他の天然繊維や合成繊維と交編、交織あるいは混合して用いてもよい。
(海島型複合マルチフィラメントを含む繊維構造体)
 本発明の一態様は、海島型複合マルチフィラメントおよび/またはそのカットファイバーを少なくとも一部に含む繊維構造体を包含する。繊維構造体としては、海島型複合マルチフィラメントおよび/またはそのカットファイバーを含む紡績糸で構成される糸類、紐類、ロープ類などの一次元構造体であってもよいし、海島型複合マルチフィラメントおよび/またはそのカットファイバーを含む紡績糸で構成される織編物や、海島型複合マルチフィラメントのカットファイバーで構成される不織布などの二次元構造体、さらにこれらを用いた三次元構造体であってもよい。繊維構造体は、海島型複合マルチフィラメントのみで構成されてもよいし、海島型複合マルチフィラメント以外に、天然繊維、化学繊維、合成繊維などの他の繊維を含んでいてもよい。
(極細マルチフィラメントおよび極細繊維構造体)
 本発明の一態様では、上述した海島型複合マルチフィラメントから、熱可塑性樹脂(B)を溶解除去する工程を少なくとも含む、極細マルチフィラメントの製造方法により、極細マルチフィラメントを得てもよい。または、海島型複合マルチフィラメントおよび/またはそのカットファイバーを少なくとも一部に含む繊維構造体から、熱可塑性樹脂(B)を溶解除去する工程を少なくとも含む、極細繊維構造体の製造方法により、極細繊維構造体を得てもよい。
 海成分である熱可塑性樹脂(B)の除去は、海成分を構成する樹脂の種類に応じて、アルカリ処理、水処理などによって海成分を除去すればよい。水処理では、水、水系溶液が用いられてもよく、アルカリ処理では、アルカリ水溶液などが用いられてもよい。
 溶解除去工程は、処理液の種類などに応じて、例えば、50~120℃で行ってもよく、好ましくは80~100℃で行ってもよい。
 極細マルチフィラメントは、ショアA硬度90以下、ショアD硬度60以下、ロックウェル硬度(Rスケール)70以下のいずれかを満たす熱可塑性エラストマー樹脂(A)を含んでなり、糸-金属動摩擦係数が0.30以上であってもよい。極細マルチフィラメントの糸-金属動摩擦係数は、好ましくは0.33以上であってもよく、より好ましくは0.36以上であってもよい。糸-金属動摩擦係数の上限値は特に限定されないが、例えば1.0以下であってもよく、0.50以下であってもよい。糸-金属動摩擦係数は、後述する実施例に記載された方法により測定される値である。
 極細マルチフィラメントの単糸繊度は、例えば、0.005~0.5dtexであってもよく、好ましくは0.01~0.4dtex、より好ましくは0.015~0.3dtexであってもよい。ここで、単糸繊度は、後述する実施例に記載された方法により測定される値である。単糸繊度が小さい場合、摩擦係数を高めることができ、グリップ性を向上させることができる。
 極細マルチフィラメントは、室温における繊維強度が、例えば1.0cN/dtex以上であってもよく、好ましくは1.1cN/dtex以上、より好ましくは1.2cN/dtex以上であってもよい。繊維強度の上限は特に限定されないが、熱可塑性エラストマー樹脂を用いているため、例えば、2.5cN/dtex以下であってもよい。ここで、繊維強度は、後述する実施例に記載された方法により測定される値である。
 本発明の一態様は、極細マルチフィラメントおよび/または極細マルチフィラメントのカットファイバーを少なくとも一部に含む、極細繊維構造体を包含する。なお、本明細書において、極細マルチフィラメントおよび/または極細マルチフィラメントのカットファイバーを総称して、単に極細繊維と称する場合がある。本発明の極細マルチフィラメントおよび極細繊維集合体では、極細マルチフィラメントに由来する極細繊維によって単繊維間で摩擦が発生するためか、摩擦力により良好なグリップ性を発揮することができる。
 例えば、極細繊維構造体は、極細マルチフィラメントおよびそのカットファイバーの糸条物や織編物に加えて、極細マルチフィラメントのカットファイバーで構成される不織布などが挙げられる。極細繊維構造体は、極細繊維のみで構成されてもよいし、極細繊維とともに、天然繊維、化学繊維、合成繊維などの他の繊維を含んでいてもよい。
 極細繊維構造体としては、極細マルチフィラメントおよび/またはそのカットファイバーで構成される糸類、紐類、ロープ類などの一次元構造体であってもよいし、極細マルチフィラメントおよび/またはそのカットファイバーを含む紡績糸で構成される織編物や、極細マルチフィラメントのカットファイバーで構成される不織布などの二次元構造体、さらにこれらを用いた三次元構造体であってもよい。繊維構造体は、極細マルチフィラメントのみで構成されてもよいし、極細マルチフィラメント以外に、天然繊維、化学繊維、合成繊維などの他の繊維を含んでいてもよい。
 極細繊維構造体は、極細マルチフィラメントおよび/またはそのカットファイバーを、例えば、20~100質量%で含んでいてもよく、好ましくは30~100質量%で含んでいてもよく、更に好ましくは40~100質量%で含んでいてもよい。
 また、本発明の極細マルチフィラメントおよび/またはそのカットファイバーは、発色性に優れているため、極細マルチフィラメントおよび/またはそのカットファイバー、ならびに極細繊維構造体は、染色されてもよい。染色工程は、用いる染色剤に応じて、公知の方法によりおこなうことができる。
 染色剤としては、酸性染料、酸性媒染染料、金属錯塩酸性染料、分散染料などが挙げられる。これらのうち、発色性および紡糸性の観点から、酸性染料、酸性媒染染料、金属錯塩酸性染料が好ましい。
 酸性染料は、スルホン酸基、カルボキシル基、ヒドロキシ基等を可溶性基として含有する染料であり、アゾ系、トリフェニルメタン系、アントラキノン系、酸素アントラセン系、フタロシアニン系、インジゴイド系、ニトロソ基系及びピラゾロン系などの酸性染料が挙げられる。
 酸性媒染染料は、酸性染料による発色性を有しつつ、主として金属錯塩化(例えば、クロム原子との配位結合)ができる染料であり、アゾ系、トリフェニルメタン系、アントラキノン系、酸素アントラセン系、フタロシアニン系、インジゴイド系、ニトロソ基系及びピラゾロン系などの酸性媒染染料が挙げられる。
 金属錯塩酸性染料は、1個の金属原子と染料1分子が結合した1:1型染料と、1個の金属原子に染料2分子が結合した1:2型染料に大別され、アゾ系、トリフェニルメタン系、アントラキノン系、酸素アントラセン系、フタロシアニン系、インジゴイド系、ニトロソ基系及びピラゾロン系などの金属錯塩酸性染料が挙げられる。
 本発明の極細マルチフィラメントは、発色性に優れており、特に、濃紺、濃茶、黒色などの濃色染めにおける発色性に優れている。本発明の極細マルチフィラメントは、例えば、濃色染めにおけるL*値が70以下であってもよく、好ましくは60以下、より好ましくは50以下、さらに好ましくは45以下であってもよい。L*値が小さいほど濃色性が高くなり、下限は限定されないが、例えば10以上であってもよい。なお、L*値は、後述する実施例に記載された方法により測定される値である。
 本発明の極細繊維構造体は、洗濯堅牢度についても良好であり、例えば、JIS L 0844に定義される洗濯堅牢度試験において、4級以上を示すことができる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれにより何等限定されるものではない。
[硬度]
(ショアA硬度)
 JIS  K 7215に準拠して、タイプA圧子(先端円錐台状、先端径0.79mm、円錐角度35°)を用いてデュロメータにより、島成分樹脂のデュロメータ硬さ(ショアA硬度)を測定した。
(ショアD硬度)
 JIS  K 7215に準拠して、タイプD圧子(先端円錐状、先端径0.1mm、円錐角度30°)を用いてデュロメータにより、島成分樹脂のデュロメータ硬さ(ショアD硬度)を測定した。
(ロックウェル硬度(Rスケール))
 JIS  Z 2245に準拠して、径12.7mmの剛球を圧子として用いて、島成分樹脂のロックウェル硬さ(Rスケール)を測定した。
[平均単島径]
 平均単島径は以下の方法で測定した。実施例及び比較例で得られた海島型複合マルチフィラメントで筒編地を作製し、95℃の熱水中で浴比1:30で20分間処理し、海成分を溶解除去した後、乾燥した。その後、走査型電子顕微鏡(日本電子株式会社製、JCM-6000Plus)により繊維断面を観察し、繊維断面写真からランダムに選択した単糸10本について、各単糸の直径の長さを測定し、その平均値を求めた。
[繊度]
 JIS L 1013「化学繊維フィラメント糸試験方法」を参考にして、繊度を測定した。総繊度はマルチフィラメント全体の繊度であり、単糸繊度は、総繊度をフィラメント数で除した値である。
[紡糸性]
 海島型複合マルチフィラメントを3000m/minで紡糸した際の断糸の発生状況で評価した。
 A:24時間以上断糸なし
 B:3時間以上24時間未満で断糸が発生
 C:1時間を超え3時間未満で断糸が発生
 D:1時間以内で断糸が発生
[解舒性]
 紡糸後に巻き取った海島型複合マルチフィラメントを200m/minで巻き返す際の、300分間での断糸および毛羽・ループの発生状況で評価した。
 A:断糸が発生せず、毛羽・ループなし
 B:断糸が発生しないが、毛羽・ループあり
 C:断糸が発生
[繊維強度]
 JIS L 1013に準じ、試長20cm、初荷重0.1g/d、引張速度10cm/minの条件で破断強伸度(初期引張抵抗度)を求め、5点以上の平均値を採用した。
[糸-金属動摩擦係数]
 実施例及び比較例で得られた海島型複合マルチフィラメントを用い、海成分を溶解除去した後、糸-金属間走行摩擦測定機にて、摩擦体として径60mmの梨地クロムピンを用いて、走行速度300m/分、接触角180°、摩擦体入側張力10g(T1)で摩擦体出側の張力(T2)を測定した。糸-金属動摩擦係数(f)は、円筒上を走行するベルトの摩擦に関する良く知られた下記式より算出される。
f=(1/π)×ln(T2/T1)
[L*値]
 実施例及び比較例で得られた極細マルチフィラメントを丸編機(18ゲージ)を用いて丸編地にし、L*値は、コニカミノルタ製分光測色計「CM-3700A」を用いて、正反射処理:SCE、測定径:LAV(25.4mm)、UV条件:100%Full、視野:2度、主光源:D65光源の条件で測定した。
<染色条件>
 なお、得られた海島型複合マルチフィラメントから、丸編機(18ゲージ)を用いて丸編地を得た。その後100℃の熱水中で、浴比1:30で40分間処理し、海成分を溶解除去し、極細マルチフィラメントで形成された丸編地を得た。なお、実施例1~7および比較例3~5については、丸編地を酸性染料で染色し、実施例8および比較例1~2については、分散染料で染色した。得られた丸編地の評価を表1に示す。
<酸性染料での染色方法>
(染色条件)
染料:Kayanol Milling Black TLB(日本火薬株式会社製) 4%owf
助剤:ユニガールASS-10(明成化学工業株式会社製)2.0%owf
   硫酸アンモニウム(日本火薬株式会社製)0.5g/L
   酢酸 2%owf
浴比:1/50
染色温度×時間:90℃×40分
(ソーピング)
 ラッコールPSK(明成化学工業株式会社製) 1g/L
浴比:1/50
染色温度×時間:70℃×40分
<分散染料での染色方法>
(染色条件)
染料:Kayalon Polyester Black ECXN300 
   4.0%owf
助剤:Disper TL 1.0cc/L
   酢酸 1.0cc/L
浴比:1/50
染色温度×時間:120℃×40分
(還元洗浄)
水酸化ナトリウム:1.0g/L
ハイドロサルファイトナトリウム:1.0g/L
アミラジンD:1.0g/L
浴比:1/50
還元洗浄温度×時間:70℃×20分
[洗濯堅牢度]
 実施例及び比較例で得られた繊維を丸編機(18ゲージ)を用いて丸編地にし、L*値の測定と同様に染色を行い、得られた丸編地について、JIS L 0844 B-4号の測定方法に準拠して測定した。
[グリップ性評価]
 実施例及び比較例で得られた海島型複合マルチフィラメントから丸編機(18ゲージ)を用いて丸編地を作製した。得られた丸編地を、90℃の熱水に30分間浸漬した後、160℃で1分間トンネル型のセッターを通過させ、極細マルチフィラメントで形成された丸編地を得た。
 得られた丸編地を幅10cm、長さ50cmとし、腕に3周巻き付け、残った布帛の端に200gの荷重をかけ3分間静置後のずれ感を評価した。10人のパネラーは、以下の評価基準により官能評価を行った。
 「ずれを全く感じない」2点
 「若干のずれを感じる」1点
 「ずれを感じる」0点
 その後、各パネラーが評価した合計点を算出しグリップ性を評価した。
 A:15点以上
 B:11~14点
 C:7~10点
 D:6点以下
[動摩擦係数(生地)]
 ASTM D 1894に準拠し、インストロン5500R(インストロン社製、2810-005モデル)の摩擦係数用治具を使用して測定した。
 試験テーブルにバイオスキン(ビューラックス社製)を両面テープで固定し、グリップ性評価の場合と同様にして試験片として作製した極細マルチフィラメントで形成された丸編地を200gの稼働そりに両面テープで取り付け、速度100mm/min、測定距離150mmで測定した。
 試験片は1測定あたり1枚使用し、測定は5回行って、動摩擦係数は平均値の小数第3位を四捨五入して、小数第2位まで求めた。
[実施例1]
 島成分樹脂として、ポリアミド系エラストマーであるナイロン(Ny)12エラストマー1(ダイセル・エボニック株式会社製「ベスタミドE47-S1」)を用い、一方、海成分樹脂として、エチレン変性-ポリビニルアルコール共重合体(株式会社クラレ製、ケン化度:98.5モル%、エチレン含有量8.0モル%、重合度:380)を用い、島成分と海成分との複合比を50/50の質量比とし、それぞれを別々の押出し機で溶融させ、モノフィラメントあたりの島部の数が37である吐出糸を複合紡糸ノズルより吐出させた。
 ついで紡糸口金より吐出された吐出糸を、長さ1.0mの横吹付け型冷却風装置により冷却した後、連続して紡糸口金直下から1.3mの位置に設置した長さ1.0m、内径30mmのチューブヒーター(内壁温度:180℃)に導入してチューブヒーター内で直接延伸した後、チューブヒーターから出てきた繊維に油剤を付与し、引き続いてローラーを介して3000m/minの引取り速度で巻き取って、84dtex/24フィラメントの海島型複合マルチフィラメントを得た。
 得られた海島型複合マルチフィラメントを100℃の熱水中で、浴比1:30で40分間処理し、海成分を溶解除去し、熱可塑性エラストマー樹脂の極細マルチフィラメントを得た。得られた海島型複合マルチフィラメントおよび極細マルチフィラメントの評価を表1に示す。
[実施例2]
 海島型複合マルチフィラメントのモノフィラメント当たりの島部の数を12とした以外は、実施例1と同様の方法で紡糸し、海島型複合マルチフィラメントおよび熱可塑性エラストマー樹脂の極細マルチフィラメントを得た。得られた海島型複合マルチフィラメントおよび極細マルチフィラメントの評価を表1に示す。
[実施例3]
 海島型複合マルチフィラメントのモノフィラメント当たりの島部の数を7とし、島成分と海成分との複合比を30/70の質量比とした以外は、実施例1と同様の方法で紡糸し、海島型複合マルチフィラメントおよび熱可塑性エラストマー樹脂の極細マルチフィラメントを得た。得られた海島型複合マルチフィラメントおよび極細マルチフィラメントの評価を表1に示す。
[実施例4]
 海島型複合マルチフィラメントのフィラメント数を72とした以外は、実施例1と同様の方法で紡糸し、海島型複合マルチフィラメントおよび熱可塑性エラストマー樹脂の極細マルチフィラメントを得た。得られた海島型複合マルチフィラメントおよび極細マルチフィラメントの評価を表1に示す。
[実施例5]
 海島型複合マルチフィラメントのモノフィラメント当たりの島部の数を100とした以外は、実施例1と同様の方法で紡糸し、海島型複合マルチフィラメントおよび熱可塑性エラストマー樹脂の極細マルチフィラメントを得た。得られた海島型複合マルチフィラメントおよび極細マルチフィラメントの評価を表1に示す。
[実施例6]
 島成分樹脂として、ポリアミド系エラストマーであるNy12エラストマー2(ダイセル・エボニック株式会社製「ベスタミドE55-S4」)を用いた以外は、実施例1と同様の方法で紡糸し、海島型複合マルチフィラメントおよび熱可塑性エラストマー樹脂の極細マルチフィラメントを得た。得られた海島型複合マルチフィラメントおよび極細マルチフィラメントの評価を表1に示す。
[実施例7]
(1)ポリアミド12オリゴマーの作製
 オートクレーブを窒素置換し、ラウリルラクタム1.000g及びドデカンジアミン38gを少量の水及び少量の燐酸と共に添加し、得られた混合物を加熱下に攪拌した。反応系を徐々に昇温すると共に窒素ガスにより調圧し、17.5kgf/cm(1.7×10Pa)で270℃に保ち、約4時間加熱攪拌を続けた。次いで、反応系を徐々に常圧に戻し、さらに、ごく少量の窒素ガスを循環させながら、減圧に約1時間を要して系内の水分を排出した。その後、常圧で系を冷却しながらポリアミド12オリゴマーを溶融状態で取り出した。得られたポリアミド12オリゴマーをさらに冷却し、ややもろい固体として得た。ポリアミド12オリゴマーの数平均分子量は約5400と低分子量であり、末端アミノ基の含有量は、350μeq/gであった。このポリアミド12オリゴマーをアミノ基含有発色改良剤とした。
(2)上記で得たポリアミド12オリゴマーを島成分樹脂中に重量比率9%となるように添加した以外は、実施例1と同様の方法で紡糸し、海島型複合マルチフィラメントおよび熱可塑性エラストマー樹脂の極細マルチフィラメントを得た。得られた海島型複合マルチフィラメントおよび極細マルチフィラメントの評価を表1に示す。
[実施例8]
 島成分樹脂として、ポリエステル系エラストマーであるPETエラストマー(東レ・デュポン株式会社製「ハイトレル4047N」)を用いた以外は、実施例1と同様の方法で紡糸し、海島型複合マルチフィラメントおよび熱可塑性エラストマー樹脂の極細マルチフィラメントを得た。得られた海島型複合マルチフィラメントおよび極細マルチフィラメントの評価を表1に示す。
[比較例1]
 島成分樹脂として、汎用のポリエチレンテレフタレート(PET)を用いて、海島型複合マルチフィラメントのモノフィラメント当たりの島部の数を726とした以外は、実施例1と同様の方法で紡糸し、海島型複合マルチフィラメントおよび熱可塑性エラストマー樹脂の極細マルチフィラメントを得た。得られた海島型複合マルチフィラメントおよび極細マルチフィラメントの評価を表1に示す。
[比較例2]
 島成分樹脂として、汎用のポリエチレンテレフタレート(PET)を用いた以外は、実施例1と同様の方法で紡糸し、海島型複合マルチフィラメントおよび熱可塑性エラストマー樹脂の極細マルチフィラメントを得た。得られた海島型複合マルチフィラメントおよび極細マルチフィラメントの評価を表1に示す。
[比較例3]
 島成分樹脂として、ポリアミド系エラストマーであるNy12エラストマー3(ダイセル・エボニック株式会社製「ベスタミドE62-S1」)を用いた以外は、実施例1と同様の方法で紡糸し、海島型複合マルチフィラメントおよび熱可塑性エラストマー樹脂の極細マルチフィラメントを得た。得られた海島型複合マルチフィラメントおよび極細マルチフィラメントの評価を表1に示す。
[比較例4]
 島成分樹脂として、ナイロン(Ny)6(宇部興産株式会社製「1013B」)を用いた以外は、実施例1と同様の方法で紡糸し、海島型複合マルチフィラメントおよび熱可塑性エラストマー樹脂の極細マルチフィラメントを得た。得られた海島型複合マルチフィラメントおよび極細マルチフィラメントの評価を表1に示す。
[比較例5]
 島成分樹脂として、ポリアミド系エラストマーであるNy11エラストマー(ARKEMA株式会社製「ぺバックス Rnew 70R53」)を用いた以外は、実施例1と同様の方法で紡糸し、海島型複合マルチフィラメントおよび熱可塑性エラストマー樹脂の極細マルチフィラメントを得た。得られた海島型複合マルチフィラメントおよび極細マルチフィラメントの評価を表1に示す。
Figure JPOXMLDOC01-appb-T000001
   
 表1に示すように、実施例1~8では、いずれも極細マルチフィラメントを効率よく製造することができる海島型複合マルチフィラメントを得ることができた。また、実施例1~8の海島型複合マルチフィラメントを製造するに当たり、紡糸性および解舒性が良好であった。
 実施例1~8の極細マルチフィラメントでは、使用しているポリアミド系エラストマー樹脂が、特定の硬度を有しており、糸-金属動摩擦係数が0.30以上であり、グリップ性も良好であり、単糸繊度が小さくなると糸-金属動摩擦係数および動摩擦係数(生地)の双方が高くなる傾向にある。
 また、実施例1~7の極細マルチフィラメントおよび比較例3および5の極細マルチフィラメントは、極細マルチフィラメントに対して同じ染色剤で染色されているが、同じ単糸繊度を有する極細マルチフィラメント間で比較すると、実施例1、6および7の極細マルチフィラメントのL*値は、比較例3および5よりも総じて低く、特に、アミノ基含有発色改良剤を添加された実施例7は特に低いL*値を示し、発色性に優れている。
 さらに、実施例1~8の極細マルチフィラメントは、いずれも洗濯堅牢度も良好であり、ポリアミド系エラストマーの極細マルチフィラメントからなる実施例1~7は特に良好な洗濯堅牢度を示している。
 一方、比較例1では、海島型複合マルチフィラメントの島部の数が多すぎるため、紡糸性及び解舒性が不良であり、得られた極細マルチフィラメントは洗濯堅牢度が不十分である。また、平均単島径が最も大きい実施例3と比較した場合、その1/10程度の小さな平均単島径であるにもかかわらず、グリップ性はいずれの実施例よりも劣っている。
 比較例2および比較例4は紡糸性及び解舒性が良好であるものの、島成分樹脂が非エラストマー樹脂であるため、グリップ性を発揮することができない。また、単糸繊度が実施例1と同じであるにもかかわらず、糸-金属動摩擦係数および動摩擦係数(生地)の双方について、実施例1よりも顕著に小さな値を示している。
 また、比較例3および比較例5は、島成分樹脂として使用しているポリアミド系エラストマー樹脂が、特定の硬度を有していないため、同じ単糸繊度を有する実施例1の極細マルチフィラメントと比較して、動摩擦係数が低くなり、グリップ性を十分発揮することができない。
 本発明の海島型複合マルチフィラメントは、効率よく熱可塑性エラストマーの極細マルチフィラメントを形成することができ、得られた極細マルチフィラメントは、極細繊維として良好なグリップ性を発揮できるため、例えば、各種衣類(アウターウェア、インナーウェア、ユニフォーム、手術衣、病衣、白衣、作業服、水着、スキーウェア、エプロン、帽子、腹巻、靴下、手袋、マフラーなど)、各種生活用品(フトン、フトンカバー、マクラカバー、ベッド、ベッドカバー、毛布、シーツ、バスマット、タオル、テーブルクロス、カーテン、シャワーカーテン、ネット、ドアノブカバー、おむつカバー、スリッパなど)、建物用資材(カーペット、カーテンなど)、産業用資材(ネット、フィルター、ロープなど)、農林水産業資材(防虫・防草ネット、遮光カバー、漁網など)に有用である。
 以上のとおり、図面を参照しながら本発明の好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。

Claims (11)

  1.  島成分がショアA硬度90以下、ショアD硬度60以下、ロックウェル硬度(Rスケール)70以下のいずれかを満たす熱可塑性エラストマー樹脂(A)で構成され、海成分が水溶性または易アルカリ溶解性の熱可塑性樹脂(B)で構成され、平均単島径が8000nm以下である、海島型複合マルチフィラメント。
  2.  前記海成分の熱可塑性樹脂(B)が、α-オレフィン類および/またはビニルエーテル類に由来する単位がポリビニルアルコール系重合体中に存在する変性ポリビニルアルコール系重合体である、請求項1に記載の海島型複合マルチフィラメント。
  3.  前記海島型複合マルチフィラメントの島数が3~200島であり、前記海成分と前記島成分の複合質量比率(海成分:島成分)が20:80~70:30である、請求項1または2に記載の海島型複合マルチフィラメント。
  4.  前記熱可塑性エラストマー樹脂(A)がポリアミド系エラストマー樹脂またはポリエステル系エラストマー樹脂である、請求項1~3のいずれか一項に記載の海島型複合マルチフィラメント。
  5.  請求項1~4のいずれか一項に記載の海島型複合マルチフィラメントおよび/またはそのカットファイバーを少なくとも一部に含む、繊維構造体。
  6.  ショアA硬度90以下、ショアD硬度60以下、ロックウェル硬度(Rスケール)70以下のいずれかを満たす熱可塑性エラストマー樹脂(A)を含んでなり、糸-金属動摩擦係数が0.30以上である、極細マルチフィラメント。
  7.  単糸繊度が0.005~0.5dtexである、請求項6に記載の極細マルチフィラメント。
  8.  請求項6または7に記載の極細マルチフィラメントおよび/またはそのカットファイバーを少なくとも一部に含む、極細繊維構造体。
  9.  織物または編物である、請求項8に記載の極細繊維構造体。
  10.  請求項1~4のいずれか一項に記載の海島型複合マルチフィラメントから、熱可塑性樹脂(B)を溶解除去する工程を少なくとも含む、極細マルチフィラメントの製造方法。
  11.  請求項5に記載の繊維構造体から、熱可塑性樹脂(B)を溶解除去する工程を少なくとも含む、極細繊維構造体の製造方法。
PCT/JP2022/000846 2021-01-15 2022-01-13 海島型複合マルチフィラメントおよび極細マルチフィラメントならびに極細繊維構造体 WO2022154035A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280010106.2A CN116829774A (zh) 2021-01-15 2022-01-13 海岛型复合复丝、极细复丝、以及极细纤维结构体
EP22739440.0A EP4279644A1 (en) 2021-01-15 2022-01-13 Sea-island type composite multifilament, ultrafine multifilament, and ultrafine fiber structure
JP2022575622A JPWO2022154035A1 (ja) 2021-01-15 2022-01-13
US18/220,641 US20230366132A1 (en) 2021-01-15 2023-07-11 Sea-island type composite multifilament, ultrafine multifilament, and ultrafine fiber structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-004876 2021-01-15
JP2021004876 2021-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/220,641 Continuation US20230366132A1 (en) 2021-01-15 2023-07-11 Sea-island type composite multifilament, ultrafine multifilament, and ultrafine fiber structure

Publications (1)

Publication Number Publication Date
WO2022154035A1 true WO2022154035A1 (ja) 2022-07-21

Family

ID=82446323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000846 WO2022154035A1 (ja) 2021-01-15 2022-01-13 海島型複合マルチフィラメントおよび極細マルチフィラメントならびに極細繊維構造体

Country Status (5)

Country Link
US (1) US20230366132A1 (ja)
EP (1) EP4279644A1 (ja)
JP (1) JPWO2022154035A1 (ja)
CN (1) CN116829774A (ja)
WO (1) WO2022154035A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4735324B1 (ja) * 1968-10-25 1972-09-05
JP2012207220A (ja) * 2011-03-17 2012-10-25 Teijin Fibers Ltd 繊維強化エラストマー成形品
JP2014025153A (ja) * 2012-07-24 2014-02-06 Kuraray Co Ltd 熱可塑性ポリエステルエラストマーの極細繊維、その極細繊維の繊維絡合体、人工皮革、及びその極細繊維の製造方法
JP2014101613A (ja) 2012-11-22 2014-06-05 Teijin Ltd 極細繊維
JP2019189993A (ja) * 2018-04-20 2019-10-31 東レ株式会社 フッ素樹脂系繊維とその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4735324B1 (ja) * 1968-10-25 1972-09-05
JP2012207220A (ja) * 2011-03-17 2012-10-25 Teijin Fibers Ltd 繊維強化エラストマー成形品
JP2014025153A (ja) * 2012-07-24 2014-02-06 Kuraray Co Ltd 熱可塑性ポリエステルエラストマーの極細繊維、その極細繊維の繊維絡合体、人工皮革、及びその極細繊維の製造方法
JP2014101613A (ja) 2012-11-22 2014-06-05 Teijin Ltd 極細繊維
JP2019189993A (ja) * 2018-04-20 2019-10-31 東レ株式会社 フッ素樹脂系繊維とその製造方法

Also Published As

Publication number Publication date
US20230366132A1 (en) 2023-11-16
JPWO2022154035A1 (ja) 2022-07-21
CN116829774A (zh) 2023-09-29
EP4279644A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2013115094A1 (ja) 複合繊維、ポリウレタンエラストマー布帛の製造方法、およびポリウレタンエラストマー布帛
JP6793238B2 (ja) ポリアミド繊維の製造方法
JP6097527B2 (ja) 原着極細繊維の製造方法
JP5356771B2 (ja) グローブ用布帛および繊維製品
JP5819620B2 (ja) ポリエステル極細繊維
JP2011157646A (ja) ポリエステル極細繊維
JP2009167565A (ja) ストレッチ性編地およびその製造方法および繊維製品
JP2001348735A (ja) 海島型複合繊維および混繊糸
JP5216970B2 (ja) ポリエステル編地およびその製造方法および繊維製品
WO2022154035A1 (ja) 海島型複合マルチフィラメントおよび極細マルチフィラメントならびに極細繊維構造体
JP6002468B2 (ja) 複合繊維及び該複合繊維より得られる極細カチオン可染ポリエステル繊維
JP2008240183A (ja) 弾性経編地
JP5495286B2 (ja) 有毛編物の製造方法および有毛編物および繊維製品
JP2000054228A (ja) ポリアミド系複合繊維
JP4221801B2 (ja) 複合繊維、混繊糸および織編物
JP2010233865A (ja) 洗浄用具
JP5646387B2 (ja) 複合繊維および該複合繊維を用いた中空繊維の製造方法
JP4633247B2 (ja) 多孔中空繊維及びその製造方法
JP2000054227A (ja) ポリオレフィン系複合繊維
JPH11302926A (ja) ポリエステル系複合繊維
JP4007856B2 (ja) ポリエステル異収縮混繊糸
JP7269163B2 (ja) 弾性繊維混用融着編地およびその製造方法
JP4531244B2 (ja) 複合繊維および該複合繊維を用いた中空繊維の製造方法
JP4556290B2 (ja) 脂肪族ポリエステル系繊維含有繊維構造物の製造方法
JP3307383B2 (ja) ポリエステル中空短繊維

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575622

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280010106.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022739440

Country of ref document: EP

Effective date: 20230816