WO2022148318A1 - 聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法 - Google Patents

聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法 Download PDF

Info

Publication number
WO2022148318A1
WO2022148318A1 PCT/CN2021/143797 CN2021143797W WO2022148318A1 WO 2022148318 A1 WO2022148318 A1 WO 2022148318A1 CN 2021143797 W CN2021143797 W CN 2021143797W WO 2022148318 A1 WO2022148318 A1 WO 2022148318A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
whisker
nano
polyglycerol
dendrimer
Prior art date
Application number
PCT/CN2021/143797
Other languages
English (en)
French (fr)
Inventor
许淑琴
毛宝亮
陈敬华
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2022148318A1 publication Critical patent/WO2022148318A1/zh
Priority to US18/125,690 priority Critical patent/US11760843B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/003Dendrimers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/005Hyperbranched macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/06Rendering cellulose suitable for etherification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2615Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen the other compounds containing carboxylic acid, ester or anhydride groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose

Definitions

  • the invention relates to the technical field of dendritic macromolecular nanomaterials, in particular to a polyglycerol nano-whisker cellulose dendritic macromolecular nanomaterial and a preparation method thereof.
  • Dendrimers are a new class of nano-scale monodisperse polymers.
  • the highly branched structure and unique monodispersity endow them with special properties and functions.
  • the molecule has a beautiful shape, a wide cavity inside, and a large number of active groups outside.
  • dendrimers have been widely used in catalysts, metal nanomaterials, nanocomposites, membrane materials, surfactants, medicine, etc. attention of scientists.
  • the research of dendrimers has involved many fields such as inorganic chemistry, organic chemistry, polymer chemistry, life science and coordination chemistry.
  • the synthetic method of dendrimer namely how to synthesize dendrimer with designed structure simply, quickly and accurately, is one of the hotspots in the current dendrimer research.
  • the synthesis method of dendrimers is different from ordinary linear polymers.
  • the commonly used methods are generally divergent synthesis method, convergent synthesis method, and divergent-convergent combination method.
  • the preparation of dendritic macromolecular nanomaterials in the prior art has many steps, a long period, and poor biocompatibility, which is difficult to apply to the field of biological materials.
  • the particle size of dendrimer nanomaterials is not conducive to control.
  • the invention provides a hyperbranched polyglycerol nano-whisker cellulose dendrimer nanomaterial and a preparation method thereof.
  • the dendrimer nanomaterial is synthesized by using nano-whisker cellulose and glycidol with good biocompatibility.
  • the synthesis method is simple and fast, and the surface of the material has a large number of hydroxyl groups. After modification, it can be used to prepare micelles, nanoparticles, microspheres and other biocomposite materials, and by repeating the steps, dendritic macromolecules with different particle sizes can be obtained. nanomaterials.
  • the invention provides a hyperbranched polyglycerol nano-whisker cellulose dendrimer nanomaterial and a preparation method thereof.
  • the dendrimer nanomaterial is synthesized by using nano-whisker cellulose and glycidol with good biocompatibility.
  • the synthesis method is simple and fast, and the surface of the material has a large number of hydroxyl groups, which can be used to prepare micelles, nanoparticles, microspheres and other biological composite materials after modification.
  • the present invention provides a hyperbranched polyglycerol nano-whisker cellulose dendrimer nanomaterial and a preparation method thereof. Repeating the steps can control to obtain dendrimer nanomaterials with different particle sizes.
  • a method for preparing a polyglycerol nano-whisker cellulose dendritic macromolecular nanomaterial uses raw cotton linter pulp as a raw material to prepare a polyglycerol nano-whisker cellulose dendritic macromolecular nanomaterial;
  • the method also includes replacing the carboxylated nano-whisker cellulose in step (3) with the polyglycerol nano-whisker cellulose dendrimer nanomaterial obtained in step (3), repeating step (3), and further Polyglycerol nano-whisker cellulose dendrimer nanomaterials with different particle sizes were obtained.
  • step (1) the sulfuric acid concentration is 25-70%, the reaction temperature is 29-70° C., the reaction time is 6-12h, and in the ultrasonic crushing, the power of the ultrasonic is 30-50%, and the crushing is 8-15min, Then, the supernatant is collected by centrifugation at 7000-13000 rpm/min to obtain the nano-whisker cellulose.
  • the water-soluble concentration of the nano-whisker cellulose described in step (2) is 1-20 mg/ml.
  • the TEMPO oxidation is specifically mixing the nano-whisker cellulose solution with tetramethylpiperidine nitrogen oxide and sodium bromide, adding sodium hypochlorite, and the pH is 9.8 ⁇ 11.2, and the temperature is 25 ⁇ 45°C. The reaction is continued for 3 to 24 hours.
  • the oxidation rate of the carboxylated nano-whisker cellulose described in step (2) is 5-20%.
  • step (3) the concentration of glycidol is 5-25%, and the mass ratio of the carboxylated nano-whisker cellulose to glycidol is 1:5-1:15.
  • step (3) the stirring time is 30-90 min, the speed is 300-800 rpm/min, and the temperature is 80-120°C.
  • step (3) the speed of gradually dripping glycidol is 10-150 ⁇ l/min, and the dripping time is 4h-24h.
  • step (3) the centrifugal rotation speed is 6000 ⁇ 10000rpm/min, and the time is 8 ⁇ 15min.
  • the polyglycerol nano-whisker cellulose dendrimer nanomaterial has a particle size range of 300-1000 nm.
  • the second object of the present invention is to provide the polyglycerol nano-whisker cellulose dendrimer nanomaterial prepared by the method.
  • the nano-whisker cellulose and glycidol with good biocompatibility are used to synthesize dendritic macromolecular nanomaterials
  • the synthesis method is simple and fast, and the surface of the material has a large number of Hydroxyl groups, after modification, can be used to prepare micelles, nanoparticles, microspheres and other biocomposites.
  • dendrimer nanomaterials with different particle sizes can be controlled to be obtained.
  • Figure 1 is the DLS particle size distribution of the hyperbranched polyglycerol nanowhisker cellulose dendrimers in Example 1.
  • Figure 2 is a transmission electron microscope (TEM) image of hyperbranched polyglycerol nanowhisker cellulose dendrimers.
  • Example 3 is the DLS particle size distribution of the hyperbranched polyglycerol nanowhisker cellulose dendrimers of Example 2.
  • the raw cotton linter pulp was pulverized into cotton floc-like fibers by mechanically pulverizing, and 15 g of the raw cotton was fed into 200 ml of sulfuric acid with a concentration of 30%, and reacted in a water bath at 60°C for 6 hours.
  • Add water to dilute to terminate the reaction centrifuge at 8000rpm/min for 10min three times, take the precipitate, then adjust the pH to neutral with sodium hydroxide, and then dialyze the pure water for three days, and change the pure water frequently.
  • ultrasonic cell disruption technology was used, that is, disruption was performed for 10 minutes, and the power was 40%. Centrifuge at 10,000 rpm/min for 15 min, and take the supernatant to obtain nano-whisker cellulose with a size of 200 nm-300 nm, a uniform particle size and a rod-like shape.
  • reaction solution was centrifuged at 8000rpm/min for 10min, then washed three times with 10ml DMF, and vacuum-dried; then washed with water once and centrifuged to obtain a precipitate, which was redissolved and dialyzed for one day; freeze-dried to obtain a generation of polyglycerolated nanocrystals Dry cellulose nanomaterials.
  • Figure 1 shows that the DLS particle size distribution of the hyperbranched polyglycerol nanowhisker cellulose dendrimers is mainly a single symmetrical peak, indicating that the size is uniform and the Rh value is about 420 nm.
  • the projection electron microscope (TEM) image of the hyperbranched polyglycerol nanowhisker cellulose dendrimers shown in FIG. 2 is about 400 nm in size, which is basically consistent with the results of DLS.
  • the raw cotton linter pulp was pulverized into cotton floc-like fibers by mechanically pulverizing, and 15 g of the raw cotton was fed into 200 ml of sulfuric acid with a concentration of 30%, and reacted in a water bath at 60°C for 6 hours.
  • Add water to dilute to terminate the reaction centrifuge at 8000rpm/min for 10min three times, take the precipitate, then adjust the pH to neutral with sodium hydroxide, and then dialyze the pure water for three days, and change the pure water frequently.
  • ultrasonic cell disruption technology was used, that is, disrupted for 10 minutes, and the power was 40%. Centrifuge at 10000rpm/min for 15min, take the supernatant to prepare nano-whisker cellulose with a size of 200nm-300nm, a uniform particle size and a rod-like shape.
  • reaction solution was centrifuged at 8000 rpm/min for 10 min, then washed three times with 10 ml of DMF, and dried in vacuum; then washed with water once and centrifuged to obtain a precipitate, which was redissolved and dialyzed for one day; freeze-dried to obtain a dry product of the first-generation polyglycerolated nanowhisker cellulose nanomaterial.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公布了一种聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法。本发明将原棉短绒原浆粉碎为棉絮状纤维,投料于硫酸中反应,经离心、透析以及超声细胞破碎技术得到纳米晶须纤维素。进一步地利用TEMPO氧化的方法,透析,冻干得到羧基化纳米晶须纤维素。进一步地将羧基化纳米晶须投料于DMF中,氮气保护,搅拌加热,将缩水甘油逐步接枝到表面羟基上,结束后离心、真空干燥、透析以及冻干得到一代聚甘油化纳米晶须纤维素纳米材料。该方法可以通过控制反应次数制备得到不同粒径范围的树状大分子,表面含有大量羟基,可进行多种修饰。本发明提供的制备方法简便,反应快,表面含有大量羟基,可进行多种修饰,且生物相容性好,生物应用更广。

Description

聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法 技术领域
本发明涉及树状大分子纳米材料技术领域,特别是涉及一种聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法。
背景技术
树状分子是一类纳米级的单分散性新型聚合物,高度支化的结构和独特的单分散性使其具有特殊的性质和功能。例如:分子具有精美的外形、内部具有广阔的空腔、外部具有大量的活性基团等。近年来,树状大分子在催化剂、金属纳米材料、纳米复合材料、膜材料、表面活性剂、医学等等领域的应用越来越广,树状分子的研究引起了越来越多的国内外科学工作者的重视。
树状大分子的研究已涉及无机化学、有机化学、聚合物化学、生命科学以及配位化学等多个领域。树状大分子的合成方法,即如何简便、快速、准确地合成具有设计结构的树状大分子是目前树状大分子研究中的热点之一。树状大分子的合成方法与普通的线形聚合物不同,常用的方法大体有发散合成法、收敛合成法、发散收敛结合法。但现有技术中树状大分子纳米材料的制备,步骤比较多,周期较长,生物相容性较差,较难应用于生物材料领域的问题。而且树状大分子纳米材料的粒径大小不利于控制。
本发明中提供了一种超支化聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法,利用生物相容性良好的纳米晶须纤维素和缩水甘油合成树状大分子纳米材料,合成方式简便、快速,且材料表面具有大量羟基,经过修饰后可以应用于制备胶束、纳米粒子、微球以及其他生物复合材料,并且通过重复步骤,可以控制得到不同粒径的树状大分子纳米材料。
发明内容
为解决现有技术中树状大分子纳米材料的制备,步骤比较多,周期较长,生物相容性较差,较难应用于生物材料领域的问题。本发明中提供了一种超支化聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法,利用生物相容性良好的纳米晶须纤维素和缩水甘油合成树状大分子纳米材料,合成方式简便、快速,且材料表面具有大量羟基,经过修饰后可以应用于制备胶束、纳米粒子、微球以及其他生物复合材料。
为解决现有技术中,树状大分子纳米材料的粒径大小不利于控制的问题,本发明提供了 一种超支化聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法,通过重复步骤,可以控制得到不同粒径的树状大分子纳米材料。
一种聚甘油纳米晶须纤维素树状大分子纳米材料的制备方法,所述方法以原棉短绒原浆为原料制备聚甘油纳米晶须纤维素树状大分子纳米材料;
具体包括以下步骤:
(1)将原棉短绒原浆粉碎为棉絮状纤维,投料于硫酸中反应,经离心、透析以及超声破碎得到纳米晶须纤维素;
(2)将纳米晶须纤维素溶于水,利用TEMPO氧化的方法进行氧化,氧化后透析,冻干得到羧基化纳米晶须纤维素;
(3)将羧基化纳米晶须纤维素投料于有机溶剂中,并氮气保护,搅拌加热,滴加缩水甘油使其接枝到羧基化纳米晶须纤维素表面羟基上,反应结束后离心、真空干燥、透析以及冻干得到聚甘油纳米晶须纤维素树状大分子纳米材料。
进一步地,所述方法还包括将步骤(3)中羧基化纳米晶须纤维素替换为步骤(3)得到的聚甘油纳米晶须纤维素树状大分子纳米材料,重复步骤(3),进一步得到不同粒径的聚甘油纳米晶须纤维素树状大分子纳米材料。
进一步地,步骤(1)中,硫酸浓度为25~70%,反应温度为29~70℃,反应时间为6~12h,超声破碎中,超声的功率为30~50%,破碎8~15min,然后采用7000~13000rpm/min离心取上清,得到所述的纳米晶须纤维素。
进一步地,步骤(2)所述的纳米晶须纤维素溶于水的浓度为1~20mg/ml。
进一步地,所述的TEMPO氧化具体是将纳米晶须纤维素溶液与四甲基哌啶氮氧化物、溴化钠混匀,加入次氯酸钠,在pH为9.8~11.2,温度为25~45℃条件下反应3~24h。
进一步地,步骤(2)所述的羧基化纳米晶须纤维素的氧化率为5~20%。
进一步地,步骤(3)中,缩水甘油浓度为5~25%,所述的羧基化纳米晶须纤维素与缩水甘油质量比为1:5~1:15。
进一步地,步骤(3)中,所述搅拌时间为30~90min,速度为300~800rpm/min,温度为80~120℃。
进一步地,步骤(3)中,逐步滴加缩水甘油的速度为10~150μl/min,滴加时间为4h~24h。
进一步地,步骤(3)中,所述的离心转速为6000~10000rpm/min,时间为8~15min。
进一步地,步骤(3)中,所述聚甘油纳米晶须纤维素树状大分子纳米材料粒径范围在 300~1000nm。
本发明的第二个目的是提供所述的方法制备得到的聚甘油纳米晶须纤维素树状大分子纳米材料。
本发明的有益效果:
与现有技术相比,采用本发明所述的制备方法,利用生物相容性良好的纳米晶须纤维素和缩水甘油合成树状大分子纳米材料,合成方式简便、快速,且材料表面具有大量羟基,经过修饰后可以应用于制备胶束、纳米粒子、微球以及其他生物复合材料。通过重复步骤,可以控制得到不同粒径的树状大分子纳米材料。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。
附图说明
图1是实施例1超支化聚甘油纳米晶须纤维素树状大分子的DLS粒径分布。
图2是超支化聚甘油纳米晶须纤维素树状大分子投射电镜图(TEM)。
图3是实施例2超支化聚甘油纳米晶须纤维素树状大分子的DLS粒径分布。
具体实施方式
以下结合具体的实施例和附图对本发明作进一步说明,本发明内容并不限于所列实施例,研究人员根据上述内容对该方法进行的非本质改进和调整,仍属于本发明的保护范围:
实施例1
(1)纳米晶须纤维素的制备
先用机械搅碎的方法将原棉短绒原浆粉碎为棉絮状纤维,取15g投料于200ml30%浓度的硫酸,在60℃水浴下反应6小时。加水稀释终止反应,8000rpm/min离心10min三次,都取沉淀,然后使用氢氧化钠调节pH为中性,之后纯水透析三天,勤换纯水。之后使用超声细胞破碎技术,即破碎10min,功率40%。10000rpm/min离心15min,取上清制得到200nm-300nm大小,粒径均一、棒状的纳米晶须纤维素。
(2)羧基化纳米晶须纤维素的制备
取1%浓度的纳米晶须纤维素100ml,与140mgTEMPO,360mgNaBr混合均匀,添加18mlNaClO,调节PH为10.5,在37℃,反应4h,并维持pH为10.5,调节pH为中性终止反应,然后纯水透析2天,冻干得到干品羧基化纳米晶须纤维素。
(3)超支化聚甘油纳米晶须纤维素
取300mg羧基化纳米晶须投料于9mlDMF中,并氮气保护,500rpm/min搅拌30min,继续搅拌,然后在100℃下,通过17μl/min逐步滴加12.5ml的20%浓度的缩水甘油12h逐步接枝到表面羟基上,继续反应12h后,将反应液8000rpm/min离心10min,之后用10mlDMF清洗三次,真空干燥;然后水洗一次离心得沉淀,复溶透析一天;冻干得到一代聚甘油化纳米晶须纤维素纳米材料干品。
图1示出超支化聚甘油纳米晶须纤维素树状大分子的DLS粒径分布主要为单一的对称峰,表明其尺寸均一,Rh值为约为420nm。图2示出的超支化聚甘油纳米晶须纤维素树状大分子投射电镜图(TEM),尺寸约为约为400nm,与DLS的结果基本一致。
实施例2
(1)纳米晶须纤维素的制备
先用机械搅碎的方法将原棉短绒原浆粉碎为棉絮状纤维,取15g投料于200ml30%浓度的硫酸,在60℃水浴下反应6小时。加水稀释终止反应,8000rpm/min离心10min三次,都取沉淀,然后使用氢氧化钠调节pH为中性,之后纯水透析三天,勤换纯水。之后使用超声细胞破碎技术,即破碎10min,功率40%。10000rpm/min离心15min,取上清制得到200nm-300nm大小,粒径均一、棒状的纳米晶须纤维素。
(2)羧基化纳米晶须纤维素的制备
取1%浓度的纳米晶须纤维素100ml,与140mgTEMPO,360mgNaBr混合均匀,添加18mlNaClO,调节PH为10.5,在37℃,反应4h,并维持pH为10.5,调节pH为中性终止反应,然后纯水透析2天,冻干得到干品羧基化纳米晶须纤维素。
(3)超支化聚甘油纳米晶须纤维素
取300mg羧基化纳米晶须投料于9mlDMF中,并氮气保护,然后在100℃下,通过17μl/min逐步滴加12.5ml的20%浓度的缩水甘油12h逐步接枝到表面羟基上,继续反应12h后,将反应液8000rpm/min离心10min,之后用10mlDMF清洗三次,真空干燥;然后水洗一次离心得沉淀,复溶透析一天;冻干得到一代聚甘油化纳米晶须纤维素纳米材料干品。
取300mg一代超支化聚甘油纳米晶须纤维素(粒径约400nm)投料于9mlDMF中,并氮气保护,500rpm/min搅拌30min,继续搅拌,然后在100℃下,通过逐步滴加12.5ml的20%浓度的缩水甘油逐步接枝到表面羟基上,反应12h后,将反应液8000rpm/min离心10min,之后用10mlDMF清洗三次,真空干燥;然后水洗一次离心得沉淀,复溶透析一天;冻干得到二代聚甘油化纳米晶须纤维素纳米材料干品。图3示出超支化聚甘油纳米晶须纤维素树状大分 子的DLS粒径分布主要为单一的对称峰,表明其尺寸均一,Rh值约为600nm。
以上仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种聚甘油纳米晶须纤维素树状大分子纳米材料的制备方法,其特征在于,所述方法以原棉短绒原浆为原料制备聚甘油纳米晶须纤维素树状大分子纳米材料;
    具体包括以下步骤:
    (1)将原棉短绒原浆粉碎为棉絮状纤维,投料于硫酸中反应,经离心、透析以及超声破碎得到纳米晶须纤维素;
    (2)将纳米晶须纤维素溶于水,利用TEMPO氧化的方法进行氧化,氧化后透析,冻干得到羧基化纳米晶须纤维素;
    (3)将羧基化纳米晶须纤维素投料于有机溶剂中,并氮气保护,搅拌加热,滴加缩水甘油使其接枝到羧基化纳米晶须纤维素表面羟基上,反应结束后离心、真空干燥、透析以及冻干得到聚甘油纳米晶须纤维素树状大分子纳米材料。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括将步骤(3)中羧基化纳米晶须纤维素替换为步骤(3)得到的聚甘油纳米晶须纤维素树状大分子纳米材料,重复步骤(3),进一步得到不同粒径的聚甘油纳米晶须纤维素树状大分子纳米材料。
  3. 根据权利要求1所述的方法,其特征在于,步骤(2)中,所述的TEMPO氧化具体是将纳米晶须纤维素溶液与四甲基哌啶氮氧化物、溴化钠混匀,加入次氯酸钠,纳米晶须纤维素溶液浓度为1~20mg/ml,在pH为9.8~11.2,温度为25~45℃条件下反应3~24h。
  4. 根据权利要求1所述的方法,其特征在于,步骤(2)所述的羧基化纳米晶须纤维素的氧化率为5~20%。
  5. 根据权利要求1所述的方法,其特征在于,步骤(1)中,硫酸浓度为25~70%,反应温度为29~70℃,反应时间为3~12h,超声的功率为30~50%,破碎4~35min,然后采用7000~13000rpm/min离心取上清,得到所述的纳米晶须纤维素。
  6. 根据权利要求1所述的方法,其特征在于,步骤(3)中,所述缩水甘油浓度为10~30%,所述的羧基化纳米晶须纤维素与缩水甘油质量比为1:5~1:15。
  7. 根据权利要求1所述的方法,其特征在于,步骤(3)中,所述搅拌时间为30~90min,速度为300~800rpm/min,温度为80~120℃。
  8. 根据权利要求1所述的方法,其特征在于,步骤(3)中,逐步滴加缩水甘油的速度为10~150μl/min,滴加时间为4h~24h。
  9. 根据权利要求2所述的方法,其特征在于,步骤(3)中,所述聚甘油纳米晶须纤维素树状大分子纳米材料的粒径范围在300~1000nm。
  10. 一种权利要求1~9任一项所述的方法制备得到的聚甘油纳米晶须纤维素树状大分子纳米材料。
PCT/CN2021/143797 2021-01-06 2021-12-31 聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法 WO2022148318A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/125,690 US11760843B2 (en) 2021-01-06 2023-03-23 Nanomaterial of polyglycerol grafted cellulose nanocrystal dendrimer and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110013564.9 2021-01-06
CN202110013564.9A CN112778532B (zh) 2021-01-06 2021-01-06 聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/125,690 Continuation US11760843B2 (en) 2021-01-06 2023-03-23 Nanomaterial of polyglycerol grafted cellulose nanocrystal dendrimer and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2022148318A1 true WO2022148318A1 (zh) 2022-07-14

Family

ID=75755840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143797 WO2022148318A1 (zh) 2021-01-06 2021-12-31 聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法

Country Status (3)

Country Link
US (1) US11760843B2 (zh)
CN (1) CN112778532B (zh)
WO (1) WO2022148318A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112778532B (zh) * 2021-01-06 2021-10-19 江南大学 聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130196883A1 (en) * 2012-01-31 2013-08-01 Halliburton Energy Services, Inc. Cellulose nanowhiskers in well services
CN105601878A (zh) * 2016-03-22 2016-05-25 华南理工大学 纳米纤维素晶须接枝水稀释型光固化pua树脂及制备与应用
US20160208087A1 (en) * 2013-09-06 2016-07-21 Teknologian Tutkimuskeskus Vtt Oy Surface-modified cellulose nanofibres, bio composite resin composition and method for producing the same
CA3005140A1 (en) * 2015-11-12 2017-05-18 Benjamin S. Hsiao Production of carboxylated nanocelluloses
CN108034007A (zh) * 2017-12-06 2018-05-15 江南大学 一种双醛纤维素纳米晶须的制备方法
CN108409997A (zh) * 2018-03-29 2018-08-17 武汉大学苏州研究院 一种含有纤维素纳米晶须的超高强度各向异性水凝胶的制备方法
US20190127625A1 (en) * 2017-10-31 2019-05-02 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Modified Cellulose Nanocrystals and Their Use in Drilling Fluids
CN110387028A (zh) * 2019-05-21 2019-10-29 江南大学 一种羧基化纳米纤维素晶须改性水性聚氨酯的制备方法
CN112778532A (zh) * 2021-01-06 2021-05-11 江南大学 聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2898513A1 (en) * 2015-07-27 2017-01-27 Stephan HEATH Methods, products, and systems relating to making, providing, and using nanocrystalline (nc) products comprising nanocrystalline cellulose (ncc), nanocrystalline (nc) polymers and/or nanocrystalline (nc) plastics or other nanocrystals of cellulose composites or structures, in combination with other materials
CN112089685B (zh) * 2020-09-18 2021-11-02 江南大学 一种温度响应型细菌纤维素抗菌纳米凝胶的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130196883A1 (en) * 2012-01-31 2013-08-01 Halliburton Energy Services, Inc. Cellulose nanowhiskers in well services
US20160208087A1 (en) * 2013-09-06 2016-07-21 Teknologian Tutkimuskeskus Vtt Oy Surface-modified cellulose nanofibres, bio composite resin composition and method for producing the same
CA3005140A1 (en) * 2015-11-12 2017-05-18 Benjamin S. Hsiao Production of carboxylated nanocelluloses
CN105601878A (zh) * 2016-03-22 2016-05-25 华南理工大学 纳米纤维素晶须接枝水稀释型光固化pua树脂及制备与应用
US20190127625A1 (en) * 2017-10-31 2019-05-02 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Modified Cellulose Nanocrystals and Their Use in Drilling Fluids
CN108034007A (zh) * 2017-12-06 2018-05-15 江南大学 一种双醛纤维素纳米晶须的制备方法
CN108409997A (zh) * 2018-03-29 2018-08-17 武汉大学苏州研究院 一种含有纤维素纳米晶须的超高强度各向异性水凝胶的制备方法
CN110387028A (zh) * 2019-05-21 2019-10-29 江南大学 一种羧基化纳米纤维素晶须改性水性聚氨酯的制备方法
CN112778532A (zh) * 2021-01-06 2021-05-11 江南大学 聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法

Also Published As

Publication number Publication date
US20230227615A1 (en) 2023-07-20
CN112778532B (zh) 2021-10-19
US11760843B2 (en) 2023-09-19
CN112778532A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
CN108034007B (zh) 一种双醛纤维素纳米晶须的制备方法
Ju et al. Continuous production of lignin nanoparticles using a microchannel reactor and its application in UV-shielding films
Li et al. Direct preparation of hollow nanospheres with kraft lignin: A facile strategy for effective utilization of biomass waste
Jiang et al. Effect of oxidation time on the properties of cellulose nanocrystals from hybrid poplar residues using the ammonium persulfate
CN106832437B (zh) 一种载银纳米纤维素-壳聚糖复合膜的制备方法
CN103588886B (zh) 一种易水分散纳米微晶纤维素及其制备方法
CN110384684B (zh) 一种单羧基壳聚糖/紫草素复合纳米颗粒及其制备方法
WO2022148318A1 (zh) 聚甘油纳米晶须纤维素树状大分子纳米材料及其制备方法
WO2021196270A1 (zh) 一种新型辛烯基琥珀酸颗粒淀粉酯的高效制备方法
CN110857337A (zh) 一种同步制备多种生物质材料的方法
Wang et al. Synthesis of nanocrystalline cellulose via ammonium persulfate-assisted swelling followed by oxidation and their chiral self-assembly
CN105949536A (zh) 具有高强度天然橡胶/碳纳米管导电复合薄膜的制备方法
CN113912911A (zh) 一种导电聚吡咯/纳米纤维素复合膜材料及其制备方法
Hakke et al. Ultrasound assisted synthesis of starch nanocrystals and it's applications with polyurethane for packaging film
CN111138719A (zh) 一种含纳米纤维素的粉体的制备方法
CN109485736A (zh) 一种制备纳米结晶纤维素的方法
WO2021063386A1 (zh) 一种聚乳酸接枝壳聚糖纳米晶须的制备方法
CN106564877B (zh) 一种碳量子点及其制备方法
CN115029808B (zh) 一种纤维素纳米材料及其连续制备方法
CN114752066B (zh) 一种响应性纤维素纳米晶须及其制备方法
CN114230680B (zh) 一种多羧基化的纤维素纳米晶体及其制备方法与应用
CN113456610B (zh) 一种用作抗氧化应激损伤的二氧化锰/丝胶蛋白杂化纳米颗粒及其制备方法
CN114868907A (zh) 双包埋β-胡萝卜素的淀粉基纳米颗粒及其制法与应用
Halloub et al. Production and characterization of rectangular cellulose nanocrystals (type II) from nutshells: argan nutshells (ANS) as a case study
CN114989577A (zh) 一种抗菌抗病毒功能母粒的制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917357

Country of ref document: EP

Kind code of ref document: A1