WO2022148037A1 - 光刻系统的扫描方法和光刻系统 - Google Patents

光刻系统的扫描方法和光刻系统 Download PDF

Info

Publication number
WO2022148037A1
WO2022148037A1 PCT/CN2021/116740 CN2021116740W WO2022148037A1 WO 2022148037 A1 WO2022148037 A1 WO 2022148037A1 CN 2021116740 W CN2021116740 W CN 2021116740W WO 2022148037 A1 WO2022148037 A1 WO 2022148037A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmd
move
lithography
machine
controlling
Prior art date
Application number
PCT/CN2021/116740
Other languages
English (en)
French (fr)
Inventor
陈国军
吴景舟
马迪
Original Assignee
江苏迪盛智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110019610.6A external-priority patent/CN112764324B/zh
Priority claimed from CN202120038045.3U external-priority patent/CN214751320U/zh
Application filed by 江苏迪盛智能科技有限公司 filed Critical 江苏迪盛智能科技有限公司
Priority to JP2023541514A priority Critical patent/JP2024502160A/ja
Publication of WO2022148037A1 publication Critical patent/WO2022148037A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to the technical field of lithography, in particular to a scanning method and a lithography system of a lithography system.
  • Photolithography refers to the technology of printing patterns on photosensitive recording materials by means of optical replication, and then transferring the patterns to wafers by etching to make electronic circuits.
  • DMD Digital Micromirror Device, digital micromirror device
  • DMD Digital Micromirror Device, digital micromirror device
  • the main principle is to input the required lithography pattern into the DMD chip through software through the computer, change the rotation angle of the DMD chip micromirror according to the distribution of black and white pixels in the image, and use the collimated light source
  • a light image consistent with the desired pattern is projected onto the surface of the substrate, and large-area microstructure preparation is realized by controlling the movement of the sample stage.
  • the DMD maskless lithography machine does not need a mask, which saves the production cost and cycle.
  • a scanning method of a lithography system is provided, which is applied to a lithography system, wherein the lithography system includes a machine, a workbench, and a digital micromirror device DMD, and the DMD is arranged on the machine,
  • the workbench is used for setting the object to be lithography, and the method includes:
  • the method includes controlling a moving subject to move, so that the DMD and the object to be lithography move relative to each other in a first direction and a second direction at the same time, the
  • the moving body includes at least one of the following: the DMD, the machine table and the work table. That is to say, by controlling the movement of the moving body to realize the inclination of the DMD and the object to be lithography, the problem of high cost of replacing the DMD with different parameters when the definition needs to be changed in the existing solution is avoided, and the movement of the moving body can be adjusted. The speed is then convenient and quick to realize the effect of sharpness adjustment.
  • the DMD includes a plurality of micromirrors, each of the micromirrors is rectangular in shape, the length of the first side of the micromirror is denoted as m, and the length of the second side of the micromirror
  • the length of ⁇ is denoted as n
  • the target length is denoted as p
  • the angle formed by the relative movement direction between the DMD and the object to be lithography and the acute angle formed by the first direction is denoted as ⁇ ; the method further includes : Determine ⁇ from m, n, and p.
  • the relative velocity of the DMD and the lithographic object in the first direction is V 1
  • the relative velocity in the second direction is V 2
  • the method further includes: according to ⁇ , determining V 1 and V 2 .
  • V 2 /V 1 tan ⁇ .
  • the scanning resolution of the DMD can be controlled by controlling the moving speed of the moving subject, and then The effect of reducing the cost when adjusting the scan sharpness of the DMD.
  • the DMD is fixedly arranged on the machine table;
  • the controlling the movement body to move includes: controlling the machine table to move in a first direction and a second direction at the same time; or, controlling the movement of the machine table
  • the worktable moves in the first direction and the second direction at the same time; or, the machine table is controlled to move in the first direction, and the worktable is controlled to move in the second direction at the same time; or, the machine is controlled to move in the second direction.
  • the table moves in the second direction while controlling the table to move in the first direction.
  • the motion control of the moving subject is realized through the above-mentioned various control methods, which can be appropriately selected according to different application scenarios, improves the flexibility of actual scanning, and expands the application scope.
  • the DMD is non-fixedly disposed on the machine; the controlling the moving body to move includes: controlling the machine to move in a first direction, and simultaneously controlling the DMD to move in a second direction Or, the machine is controlled to move in the second direction, while the DMD is controlled to move in the first direction.
  • the motion control of the moving subject is realized through the above-mentioned various control methods, which can be appropriately selected according to different application scenarios, improves the flexibility of the actual scanning, and expands the application scope.
  • the DMD is non-fixedly disposed on the machine table; the controlling the movement body to move includes: controlling the work table to move in a first direction, while controlling the DMD to move in a second direction Or, control the table to move in the second direction, while controlling the DMD to move in the first direction.
  • the motion control of the moving subject is realized through the above-mentioned various control methods, which can be appropriately selected according to different application scenarios, improves the flexibility of actual scanning, and expands the application scope.
  • the DMD includes k DMDs superimposed in the height direction, where k is an integer greater than 1.
  • the method further includes: obtaining evaluation parameters of at least two lithography configuration schemes, the evaluation parameters including at least one of hardware configuration parameters, process costs, and man-hours; and according to each lithography configuration The evaluation parameters of the scheme are recommended for lithography configuration.
  • the obtaining the evaluation parameters of the at least two lithography configuration schemes includes: for each lithography configuration scheme in the at least two lithography configuration schemes, assigning the configuration of the lithography configuration scheme The parameters are input to the target neural network, and the output of the target neural network is the evaluation parameter of the lithography configuration scheme, and the target neural network is the configuration parameters according to the sample lithography configuration scheme and the parameters of each sample lithography configuration scheme. Evaluate the parameters of the pre-trained network.
  • the method further comprises: setting an angle between the plane where the DMD is located and the plane where the object to be lithography is located as a preset angle ⁇ .
  • a lithography system comprising: a digital micromirror device DMD; a machine for setting the DMD; a workbench for setting an object to be lithography; a memory for program instructions; and a processor capable of reading the one or more program instructions, the processor loading and executing the one or more program instructions to implement any of the above methods.
  • a lithography system comprising: a machine, a workbench, and a digital micromirror device DMD, the DMD is arranged on the machine, and the workbench is used to set the lithography object, the angle between the plane where the DMD is located and the plane where the object to be lithography is located is a preset angle ⁇ .
  • the DMD includes a plurality of micromirrors, each of the micromirrors is rectangular in shape, the length of the first side of the micromirror is denoted as m, and the length of the second side of the micromirror The length of is denoted as n, the target length is denoted as p, and the preset angle ⁇ is determined by the m, the n and the p.
  • the DMD includes k DMDs superimposed in the height direction, where k is an integer greater than 1.
  • k 2.
  • the DMD and the object to be lithographed move relative to each other in a first direction and a second direction.
  • the DMD is fixedly arranged on the machine table; the machine table moves in the first direction and the second direction simultaneously; or the work table moves in the first direction and the second direction simultaneously. moving in the second direction; or, the machine table is moving in the first direction, while the work table is moving in the second direction; or, the machine table is moving in the second direction movement while the table moves in the first direction.
  • the relative motion of the DMD and the lithographic object in the first direction and the second direction is realized through the above-mentioned various control methods, which can be appropriately selected according to different application scenarios, improves the flexibility of actual scanning, and expands the application scope.
  • the DMD is not fixedly disposed on the machine; the machine moves in the first direction while the DMD moves in the second direction; or, the The table moves in the second direction while the DMD moves in the first direction.
  • the relative motion of the DMD and the lithographic object in the first direction and the second direction is realized through the above-mentioned various control methods, which can be appropriately selected according to different application scenarios, improves the flexibility of actual scanning, and expands the application scope.
  • the DMD is not fixedly disposed on the machine table; the table moves in the first direction while the DMD moves in the second direction; or, the The table moves in the second direction while the DMD moves in the first direction.
  • the relative motion of the DMD and the lithographic object in the first direction and the second direction is realized through the above-mentioned various control methods, which can be appropriately selected according to different application scenarios, improves the flexibility of actual scanning, and expands the application scope.
  • the DMD includes a plurality of micromirrors, each of the micromirrors is rectangular in shape, the length of the first side of the micromirror is denoted as m, and the length of the second side of the micromirror
  • the length of the DMD is denoted as n
  • the target length is denoted as p
  • the acute angle ⁇ formed by the relative movement direction between the DMD and the object to be lithography and the first direction is determined by the m, the n, the The p and the ⁇ are determined.
  • FIG. 1 is a system schematic diagram of a lithography system provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a DMD provided by an embodiment of the present invention.
  • FIG. 3 is another possible structural schematic diagram of a lithography system provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of scanning in a scanning process of a lithography system provided by an embodiment of the present invention.
  • FIG. 6 is another schematic diagram of scanning in the scanning process of the lithography system provided by the embodiment of the present invention.
  • FIG. 7 is a system schematic diagram of another lithography system provided by an embodiment of the present invention.
  • the lithography system includes a machine 11 , a workbench 12 and a DMD 13 , the DMD 13 is arranged on the machine 11 , and the workbench 12 is used for setting the object to be lithography 100.
  • Both the machine 11 and the worktable 12 can be controlled by the mechanical arm to realize the movement, and the DMD13 can be moved together with the machine 11 by controlling the movement of the machine 11. Similarly, by controlling the movement of the worktable 12, it can be realized accordingly. Movement of the lithographic object 100 .
  • the above only takes the control of the movement of the machine 11 and the table 12 as an example.
  • the DMD 13 on the machine 11 can also be directly controlled by the mechanical arm to realize the movement.
  • the lithography object 100 can also be directly connected to the machine. The movement of the object 100 to be lithography is realized by controlling the movement of the robot arm.
  • the lithography system may further include other devices, such as a DMD controller 14 , a stage controller 15 , and an image generator 16 .
  • the light emitted by the light source is processed by the DMD13 and then sent to the lithographic object 100; the DMD controller 14 is used to control the DMD13, and the control of the DMD13 described here includes controlling the machine 11 where the DMD13 is placed, or, the DMD13 can also be During movement, the DMD controller 14 is used to control the machine table 11 on which the DMD 13 is placed and the DMD 13 at the same time; similarly, the work table controller 15 is used to control the work table 12 .
  • the image generator 16 is used to generate an image according to the scan of the DMD 13, and after the image is generated, it can be sent to other devices for processing, which will not be repeated here.
  • the DMD13 includes a plurality of micromirrors 131, each micromirror 131 is rectangular in shape, and the DMD13 composed of the plurality of micromirrors 131 is a rectangle with a larger size, for example, please refer to FIG. 2, which shows a possible DMD13 Schematic.
  • the number of micromirrors 131 in the DMD13 can be set according to actual needs, for example, a 3*5 micromirror matrix, or a 5*8 micromirror matrix, etc. This embodiment does not Not limited.
  • FIG. 3 shows a schematic structural diagram of a possible lithography system.
  • FIG. 4 shows a method flowchart of a scanning method of a lithography system provided by an embodiment of the present application. The method is applied to the lithography system shown in FIG. 1. As shown in FIG. 4, the Methods include:
  • Step 401 controlling a moving subject to move, so that the DMD13 and the object 100 to be lithography move relative to each other in a first direction and a second direction at the same time, and the moving subject includes at least one of the following: the DMD13, The machine table 11 and the work table 12 .
  • DMD13 scans a strip along the first direction, then DMD13 steps a DMD size along the second direction, continues to scan a strip in the reverse direction of the first direction, and then scans a strip along the reverse direction of the first direction. Continue scanning after stepping one DMD size in the reverse direction of the second direction, and repeat this cycle until all scanning ends.
  • the first direction may be the main scanning direction of DMD13 scanning
  • the second direction may be the sub-scanning direction of DMD13 scanning
  • the sub-scanning direction may be the direction of DMD13 stepping.
  • the first direction is the main scanning direction
  • the second direction is the sub-scanning direction for illustration.
  • n is the length of the second side of the micromirror 131 in the DMD13
  • p is the target length
  • the motion speed V 1 of the moving body in the first direction and the motion speed V 2 of the relative motion in the second direction can be determined according to ⁇ .
  • this step (that is, controlling the moving subject to move) may include the following possible implementations:
  • the first type when the DMD13 is fixed on the machine 11, this step includes:
  • the machine table 11 is controlled to move in the second direction, while the work table 12 is controlled to move in the first direction.
  • the machine table 11 is controlled to move in the second direction, while the DMD 13 is controlled to move in the first direction.
  • this step includes:
  • the table 12 is controlled to move in the second direction, while the DMD 13 is controlled to move in the first direction.
  • FIG. 6 shows a scanning schematic diagram of the DMD13 lithography scanning after the moving body moves.
  • p may be greater than m, or may be less than or equal to m, that is, using the method provided in this embodiment, Its target length may be smaller than the length of the first side of the micromirror 131 .
  • the method includes controlling a moving subject to move, so that the DMD 13 and the object 100 to be lithography are simultaneously moved in the first direction and the second direction
  • the relative movement of the moving body includes at least one of the following: the DMD 13 , the machine table 11 and the work table 12 . That is to say, by controlling the movement of the moving body to realize the inclination of the DMD13 and the lithography object 100, the problem of high cost of replacing the DMD13 with different parameters when the definition needs to be changed in the existing solution is avoided, and the adjustment of the moving body can be achieved.
  • the speed of movement is then convenient and quick to achieve the effect of sharpness adjustment.
  • the motion control of the moving subject is realized through the above-mentioned various control methods, which can be appropriately selected according to different application scenarios, improves the flexibility of actual scanning, and expands the application range.
  • the DMD 13 there may be one DMD 13 , and may also include k ones that are superimposed and arranged in the height direction, where k is an integer greater than 1.
  • the height direction refers to the setting direction of the lithographic object 100 and the DMD 13 , that is, the DMD 13 is above the lithographic object 100 .
  • the k DMD 13 can be stacked in the same direction.
  • k is 2
  • the width of the overlapping portion after the two DMDs 13 are stacked is determined according to the width of each DMD 13 and the width of the lithography object 100 , and the width of the overlapping portion is also different according to different application scenarios. This embodiment This is not limited.
  • the configuration of the lithography system may be various.
  • the above method may also include:
  • evaluation parameters of at least two lithography configuration schemes where the evaluation parameters include at least one of hardware configuration parameters, process costs, and man-hours;
  • the lithography configuration scheme may include multiple configuration parameters, and the evaluation parameters of each lithography configuration scheme may be determined according to the corresponding relationship between the configuration parameters and the evaluation parameters.
  • the corresponding relationship between the configuration parameters and the evaluation parameters may be the corresponding relationship preset according to the big data.
  • the evaluation parameters of each lithography configuration scheme can also be obtained through a neural network.
  • this step may include:
  • the configuration parameters of the lithography configuration scheme are input into the target neural network, and the output of the target neural network is the lithography configuration scheme
  • the target neural network is a network pre-trained according to the configuration parameters of the sample lithography configuration scheme and the evaluation parameters of each sample lithography configuration scheme.
  • the configuration parameters of the lithography configuration scheme may include at least one of the number of DMD 13 , the precision of DMD 13 , and the size of DMD 13 .
  • lithography configuration recommendations are made according to the evaluation parameters of each lithography configuration scheme.
  • the lithography configuration recommendation can be made according to the evaluation parameters.
  • users can set their own usage requirements, and the lithography system makes recommendations according to the set usage requirements. For example, if the user needs the highest definition, the lithography configuration scheme with the highest definition can be recommended according to the evaluation parameters of various schemes; for another example, if the user needs the lowest cost, the lithography configuration with the lowest cost can be recommended according to the evaluation parameters of various schemes The scheme will not be repeated here.
  • the method may further include: setting the angle between the plane where the DMD 13 is located and the plane where the object 100 to be lithography is located as a preset angle ⁇ .
  • the DMD 13 may include a plurality of micromirrors 131, and the shape of each micromirror 131 is a rectangle.
  • the length of the first side of the micromirror 131 is denoted as m
  • the length of the second side of 131 is denoted as n
  • the target length is denoted as p
  • the preset angle ⁇ is determined by the m, the n and the p.
  • the DMD 13 may include k DMD 13 superimposed in the height direction, where k is an integer greater than 1.
  • k 2.
  • the DMD 13 and the object to be lithography 100 can move relatively in a first direction and a second direction.
  • the DMD 13 may be fixedly disposed on the machine table 11; the machine table 11 moves in the first direction and the second direction at the same time; move in the first direction and the second direction; or, the machine table 11 moves in the first direction, while the work table 12 moves in the second direction; or, the machine table 11 Moves in the second direction while the table 12 moves in the first direction.
  • the DMD 13 may be non-fixedly disposed on the machine table 11; the machine table 11 moves in the first direction while the DMD 13 moves in the second direction; or , the machine 11 moves in the second direction, while the DMD 13 moves in the first direction.
  • the present application also provides a lithography system, the system includes: a digital micromirror 131 device DMD13 ; a machine 11 for setting the DMD13 ; a lithography object 100 for setting a workbench 12; a memory for storing one or more program instructions; and a processor capable of reading the one or more program instructions by loading and executing the one or more program instructions program instructions to implement any of the above methods.
  • the DMD 13 includes a plurality of micromirrors 131, and the shape of each of the micromirrors 131 is a rectangle.
  • the length of the first side of the micromirror 131 is denoted as m
  • the length of the second side is denoted as n
  • the target length is denoted as p
  • the acute angle formed by the relative movement direction between the DMD13 and the lithographic object 100 and the first direction is denoted as ⁇ ;
  • the processor is further configured to determine ⁇ based on m, n and p.
  • the relative velocity of the DMD 13 and the lithographic object 100 in the first direction is V 1
  • the relative velocity in the second direction is V 2
  • the processor is further configured according to ⁇ , determine V 1 and V 2 .
  • V 2 /V 1 tan ⁇ .
  • the DMD 13 is fixedly arranged on the machine table 11; the processor is further configured to: control the machine table 11 to move in the first direction and the second direction at the same time; or, control The worktable 12 moves in the first direction and the second direction at the same time; or, the machine table 11 is controlled to move in the first direction, and the worktable 12 is controlled to move in the second direction at the same time; or , control the machine table 11 to move in the second direction, and control the work table 12 to move in the first direction at the same time.
  • the DMD 13 is not fixedly disposed on the machine table 11; the processor is further configured to: control the machine table 11 to move in the first direction, and control the DMD 13 to move in the first direction at the same time. Move in the second direction; or, control the machine 11 to move in the second direction, and simultaneously control the DMD 13 to move in the first direction.
  • the DMD 13 is not fixedly disposed on the machine table 11; the processor is further configured to: control the table 12 to move in the first direction, and control the DMD 13 to move in the first direction at the same time. Move in the second direction; or, control the table 12 to move in the second direction, and control the DMD 13 to move in the first direction at the same time.
  • the DMD13 includes k DMD13 superimposed in the height direction, where k is an integer greater than 1.
  • the processor is further configured to: obtain evaluation parameters of at least two lithography configuration schemes, the evaluation parameters include at least one of hardware configuration parameters, process costs, and man-hours; and according to each The evaluation parameters of the lithography configuration scheme are used for lithography configuration recommendation.
  • the processor is further configured to: for each of the at least two lithography profiles, input configuration parameters of the lithography profiles to the target neural network,
  • the output of the target neural network is the evaluation parameter of the lithography configuration scheme
  • the target neural network is a network pre-trained according to the configuration parameters of the sample lithography configuration scheme and the evaluation parameters of each sample lithography configuration scheme.
  • the processor is further configured to: set the angle between the plane where the DMD 13 is located and the plane where the object 100 to be lithographed is located as a preset angle ⁇ .
  • the DMD 13 includes a plurality of micromirrors 131, and the shape of each of the micromirrors 131 is a rectangle.
  • the length of the first side of the micromirror 131 is denoted as m
  • the length of the second side of is denoted as n
  • the target length is denoted as p
  • the preset angle ⁇ is determined by the m, the n and the p.
  • the DMD 13 includes a plurality of micromirrors 131, and the shape of each of the micromirrors 131 is a rectangle.
  • the length of the first side of the micromirror 131 is denoted as m
  • the length of the second side is denoted as n
  • the target length is denoted as p
  • the acute angle ⁇ formed by the relative movement direction between the DMD13 and the object 100 to be lithography and the first direction is defined by the m
  • the n, the p and the ⁇ are determined.
  • an embodiment of the present application further provides a lithography system, the system includes: a machine 11 , a workbench 12 and a digital micromirror device DMD13 , the DMD13 is arranged on the machine 11 , so The worktable 12 is used for setting the object 100 to be lithography, and the angle between the plane where the DMD 13 is located and the plane where the object 100 is located is a preset angle ⁇ .
  • FIG. 3 shows a schematic structural diagram of a possible lithography system.
  • the angle between the plane where the DMD 13 is located and the plane where the object 100 to be lithography is located is a preset angle ⁇ .
  • is a preset angle, and ⁇ can be set to different values according to actual requirements, which will not be repeated here.
  • the length of the first side of the micromirror 131 is marked as m
  • the length of the second side of the micromirror 131 is marked as n
  • the target length is marked as p
  • the preset angle ⁇ is determined by the m
  • the n and the p are determined, and the specific corresponding relationship thereof is not limited in this application.
  • the angle and position of the light source can be adjusted according to actual application requirements, which is not limited in this embodiment.
  • the DMD 13 there may be one DMD 13 , and may also include k ones that are superimposed in the height direction, where k is an integer greater than 1.
  • the height direction refers to the setting direction of the lithography object 100 and the DMD 13 , that is, the DMD 13 is above the lithography object 100 .
  • the k DMD 13 can be stacked in the same direction.
  • k is 2
  • the width of the overlapping portion after the two DMDs 13 are stacked is determined according to the width of each DMD 13 and the width of the lithography object 100 , and the width of the overlapping portion is also different according to different application scenarios. This embodiment This is not limited.
  • DMD13 scans a strip along the first direction, then DMD13 steps one DMD13 size along the second direction, continues to scan a strip in the reverse direction of the first direction, and then Step one DMD13 size in the reverse direction of the second direction, and then continue to scan, and this cycle is repeated until all scans are completed.
  • the first direction may be the main scanning direction of the DMD13 scanning
  • the second direction may be the sub-scanning direction of the DMD13 scanning
  • the sub-scanning direction is the stepping direction of the DMD13.
  • the first direction is the main scanning direction
  • the second direction is the sub-scanning direction for illustration.
  • the DMD 13 and the object to be lithography 100 move relatively in the first direction and the second direction
  • the relative movement modes may include the following possible implementation modes:
  • the movement modes include:
  • the machine table 11 moves in the first direction and the second direction at the same time; or,
  • the table 12 moves in the first direction and the second direction simultaneously; or,
  • the machine table 11 moves in the first direction, while the work table 12 moves in the second direction; or,
  • the machine table 11 moves in the second direction, while the table 12 moves in the first direction.
  • the machine table 11 moves in the first direction, while the DMD 13 moves in the second direction; or,
  • the machine table 11 moves in the second direction, while the DMD 13 moves in the first direction.
  • the relative movement modes include:
  • the table 12 moves in the first direction while the DMD 13 moves in the second direction; or,
  • the table 12 moves in the second direction while the DMD 13 moves in the first direction.
  • the acute angle ⁇ formed by the relative movement direction between the DMD 13 and the object 100 to be lithography and the first direction is formed by the m, the n, the p and the The ⁇ is determined.
  • the motion speed V 1 of the moving subject in the first direction and the motion speed V 2 of the relative motion in the second direction can be determined according to the determination.
  • FIG. 6 shows a scanning schematic diagram of the lithography scanning of the DMD 13 after the relative movement of the DMD 13 and the object 100 to be lithography occurs.
  • a lithography system including a machine table 11, a worktable 12 and a digital micromirror device DMD13
  • the DMD13 is arranged on the machine table 11, and the worktable 12 is used to set the photolithography system.
  • the object 100 is engraved, and the angle between the plane where the DMD 13 is located and the plane where the object 100 to be engraved is located is a preset angle ⁇ . It avoids the problem of high cost of replacing the DMD13 with different parameters when the definition needs to be changed in the existing solution, and achieves the definition that can be conveniently and quickly achieved by adjusting the angle between the plane where the DMD13 is located and the plane where the object 100 to be lithography is located. adjustment effect.
  • the configuration of the lithography system can be various.
  • the above lithography system can also achieve the following functions:
  • evaluation parameters of at least two lithography configuration schemes where the evaluation parameters include at least one of hardware configuration parameters, process costs, and man-hours;
  • the lithography configuration scheme may include multiple configuration parameters, and the evaluation parameters of each lithography configuration scheme may be determined according to the corresponding relationship between the configuration parameters and the evaluation parameters.
  • the corresponding relationship between the configuration parameter and the evaluation parameter may be a corresponding relationship preset according to big data.
  • the evaluation parameters of each lithography configuration scheme can also be obtained through a neural network.
  • this step can include:
  • the configuration parameters of the lithography configuration scheme are input into the target neural network, and the output of the target neural network is the lithography configuration scheme
  • the target neural network is a network pre-trained according to the configuration parameters of the sample lithography configuration scheme and the evaluation parameters of each sample lithography configuration scheme.
  • the configuration parameters of the lithography configuration scheme may include at least one of the number of DMD 13 , the precision of DMD 13 , and the size of DMD 13 .
  • lithography configuration recommendations are made according to the evaluation parameters of each lithography configuration scheme.
  • the lithography configuration recommendation can be made according to the evaluation parameters.
  • the user can set his own usage requirements, and the lithography system makes recommendations according to the usage requirements of the user settings. For example, if the user needs the highest definition, the lithography configuration scheme with the highest definition can be recommended according to the evaluation parameters of various schemes; for another example, if the user needs the lowest cost, the lithography configuration with the lowest cost can be recommended according to the evaluation parameters of various schemes The scheme will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种光刻系统的扫描方法和光刻系统,涉及光刻技术领域,光刻系统包括机台(11)、工作台(12)和数字微镜器件DMD(13),DMD(13)设置在机台(11)上,工作台(12)用于设置被光刻对象(100),扫描方法包括:控制运动主体进行运动,以使DMD(13)与被光刻对象(100)同时发生第一方向和第二方向上的相对运动,运动主体包括以下至少一种:DMD(13)、机台(12)和工作台(13)。避免了现有方案中在需要更改清晰度时需要更换不同参数的DMD(13)成本较高的问题,达到了可以通过调整运动主体的运动速度进而方便快捷地实现清晰度调整的效果。

Description

光刻系统的扫描方法和光刻系统
本申请要求于2021年1月7日提交的申请号为2021100196106、2021200380453的中国专利的优先权,上述中国专利通过全文引用的形式并入。
技术领域
本发明涉及光刻技术领域,尤其涉及光刻系统的扫描方法和光刻系统。
背景技术
光刻是指利用光学复制的方法把图形印制在光敏记录材料上,然后通过刻蚀的方法将图形转移到晶圆片上来制作电子电路的技术。
DMD(Digital Micromirror Device,数字微镜器件)无掩膜光刻技术是从传统光学光刻技术衍生出的一种新技术,因为其曝光成像的方式与传统投影光刻基本相似,区别在于使用数字DMD代替传统的掩膜,其主要原理是通过计算机将所需的光刻图案通过软件输入到DMD芯片中,根据图像中的黑白像素的分布来改变DMD芯片微镜的转角,并通过准直光源照射到DMD芯片上形成与所需图形一致的光图像投射到基片表面,通过控制样品台的移动实现大面积的微结构制备。相对于传统的光刻设备,DMD无掩膜光刻机无需掩膜,节约了生产成本和周期。
然而现有方案中,为了增加DMD的扫描清晰度,通常将DMD中的各微镜错开设置,然而在该方案中如果需要更改清晰度,只能更换不同参数的DMD,成本较高。
发明内容
本发明的目的在于提供光刻系统的扫描方法和光刻系统,进而解决现有方案中在需要更改清晰度时需要更换不同参数的DMD更换成本较高的问题。
本发明的目的采用以下技术方案实现:
第一方面,提供了一种光刻系统的扫描方法,应用于光刻系统,所述光刻系统包括机台、工作台和数字微镜器件DMD,所述DMD设置在所述机台上,所述工作台用于设置被光刻对象,所述方法包括:
控制运动主体进行运动,以使所述DMD与所述被光刻对象同时发生第一方向和第二方向上的相对运动,所述运动主体包括以下至少一种:所述DMD、所述机台和所述工作台。
通过提供一种应用于光刻系统的扫描方法,该方法包括控制运动主体进行运动,以使 所述DMD与所述被光刻对象同时发生第一方向和第二方向上的相对运动,所述运动主体包括以下至少一种:所述DMD、所述机台和所述工作台。也即通过控制运动主体运动以实现DMD和被光刻对象倾斜,避免了现有方案中在需要更改清晰度时需要更换不同参数的DMD成本较高的问题,达到了可以通过调整运动主体的运动速度进而方便快捷的实现清晰度调整的效果。
在一些实施例中,所述DMD包括多个微镜,每个所述微镜的形状是矩形,将所述微镜的第一边的长度记为m,将所述微镜的第二边的长度记为n,将目标长度记为p,将所述DMD与所述被光刻对象之间的相对运动方向与所述第一方向形成的锐角夹角记为θ;所述方法进一步包括:根据m、n和p,确定θ。
在一些实施例中,p和θ之间的关系满足:p=(n×tanθ+m)×cosθ。
通过计算θ,进而控制运动主体按照计算得到的θ进行运动,达到了可以准确控制DMD扫描的清晰度的效果。
在一些实施例中,所述DMD与所述被光刻对象在第一方向上的相对速度是V 1,在第二方向上的相对速度是V 2;所述方法进一步包括:根据θ,确定V 1和V 2
在一些实施例中,V 2/V 1=tanθ。
通过根据计算得到的θ进而确定运动主体在第一方向的相对运动速度以及在第二方向的相对运动速度,达到了可以通过控制运动主体的运动速度的方式来实现控制DMD的扫描清晰度,进而降低在调整DMD的扫描清晰度时的成本的效果。
在一些实施例中,所述DMD固定设置在所述机台上;所述控制运动主体进行运动包括:控制所述机台同时在第一方向和第二方向上进行运动;或者,控制所述工作台同时在第一方向和第二方向上进行运动;或者,控制所述机台在第一方向上进行运动,同时控制所述工作台在第二方向上进行运动;或者,控制所述机台在第二方向上进行运动,同时控制所述工作台在第一方向上进行运动。
通过上述多种控制方式实现运动主体的运动控制,达到了可以根据不同应用场景适当选择,提高了实际扫描的灵活度,扩大应用范围的效果。
在一些实施例中,所述DMD非固定地设置在所述机台上;所述控制运动主体进行运动包括:控制所述机台在第一方向上进行运动,同时控制所述DMD在第二方向上进行运动;或者,控制所述机台在第二方向上进行运动,同时控制所述DMD在第一方向上进行运动。
通过上述多种控制方式实现运动主体的运动控制,达到了可以根据不同应用场景适当 选择,提高了实际扫描的灵活度,扩大应用范围的效果。
在一些实施例中,所述DMD非固定地设置在所述机台上;所述控制运动主体进行运动包括:控制所述工作台在第一方向上进行运动,同时控制所述DMD在第二方向上进行运动;或者,控制所述工作台在第二方向上进行运动,同时控制所述DMD在第一方向上进行运动。
通过上述多种控制方式实现运动主体的运动控制,达到了可以根据不同应用场景适当选择,提高了实际扫描的灵活度,扩大应用范围的效果。
在一些实施例中,所述DMD包括在高度方向上叠加设置的k个DMD,k为大于1的整数。
通过在高度方向上叠加设置k个DMD,达到了在扫描过程中DMD的扫描精度。
在一些实施例中,所述方法进一步包括:获取至少两种光刻配置方案的评价参数,所述评价参数包括硬件配置参数、工艺成本以及工时中的至少一种;以及根据每种光刻配置方案的评价参数进行光刻配置推荐。
通过计算多种光刻配置方案的评价参数,进而根据计算得到的评价参数来推荐光刻配置方案,达到了可以为用户提供建议,帮助用户选择适合自身使用需求的方案的效果。
在一些实施例中,其中所述获取至少两种光刻配置方案的评价参数包括:对于所述至少两种光刻配置方案中的每种光刻配置方案,将所述光刻配置方案的配置参数输入至目标神经网络,所述目标神经网络的输出即为所述光刻配置方案的评价参数,所述目标神经网络为根据样本光刻配置方案的配置参数以及每个样本光刻配置方案的评价参数预先训练得到的网络。
通过使用训练后的目标神经网络来获取评价参数,达到了可以提高评价参数的获取准确率以及获取效率的效果。
在一些实施例中,所述方法进一步包括:将所述DMD所在平面与所述被光刻对象所在平面之间的角度设置为预设角度γ。
通过将DMD所在平面与被光刻对象所在平面之间的角度设置为预设角度,避免了现有方案中在需要更改清晰度时需要更换不同参数的DMD成本较高的问题,达到了可以通过调整DMD所在平面与被光刻对象所在平面之间的角度方便快捷的实现清晰度调整的效果。
第二方面,提供了一种光刻系统,所述系统包括:数字微镜器件DMD;用于设置所述DMD的机台;用于设置被光刻对象的工作台;用于存储一条或多条程序指令的存储器; 以及处理器,所述处理器能够读取所述一条或多条程序指令,所述处理器通过加载并执行所述一条或多条程序指令以实现上述任一项方法。
第三方面,提供了一种光刻系统,所述系统包括:机台、工作台和数字微镜器件DMD,所述DMD设置在所述机台上,所述工作台用于设置被光刻对象,所述DMD所在平面与所述被光刻对象所在平面之间的角度为预设角度γ。
通过将DMD所在平面与被光刻对象所在平面之间的角度设置为预设角度,避免了现有方案中在需要更改清晰度时需要更换不同参数的DMD成本较高的问题,达到了可以通过调整DMD所在平面与被光刻对象所在平面之间的角度方便快捷的实现清晰度调整的效果。
在一些实施例中,所述DMD包括多个微镜,每个所述微镜的形状是矩形,将所述微镜的第一边的长度记为m,将所述微镜的第二边的长度记为n,将目标长度记为p,所述预设角度γ由所述m、所述n和所述p确定。
在一些实施例中,所述DMD包括在高度方向上叠加设置的k个DMD,k为大于1的整数。
通过在高度方向上叠加设置k个DMD,达到了在扫描过程中DMD的扫描精度。
在一些实施例中,k=2。
在一些实施例中,所述DMD与所述被光刻对象在第一方向和第二方向上相对运动。
通过控制DMD和被光刻对象在第一方向和第二方向上相对运动,避免了现有方案中在需要更改清晰度时需要更换不同参数的DMD成本较高的问题,达到了可以通过调整运动主体的运动速度进而方便快捷的实现清晰度调整的效果。
在一些实施例中,DMD固定设置在所述机台上;所述机台同时在所述第一方向和所述第二方向上运动;或者,所述工作台同时在所述第一方向和所述第二方向上运动;或者,所述机台在所述第一方向上运动,同时所述工作台在所述第二方向上运动;或者,所述机台在所述第二方向上运动,同时所述工作台在所述第一方向上运动。
通过上述多种控制方式实现DMD和被光刻对象在第一方向和第二方向上的相对运动,达到了可以根据不同应用场景适当选择,提高了实际扫描的灵活度,扩大应用范围的效果。
在一些实施例中,所述DMD非固定地设置在所述机台上;所述机台在所述第一方向上运动,同时所述DMD在所述第二方向上运动;或者,所述机台在所述第二方向上运动,同时所述DMD在所述第一方向上运动。
通过上述多种控制方式实现DMD和被光刻对象在第一方向和第二方向上的相对运动,达到了可以根据不同应用场景适当选择,提高了实际扫描的灵活度,扩大应用范围的效果。
在一些实施例中,所述DMD非固定地设置在所述机台上;所述工作台在所述第一方向上运动,同时所述DMD在所述第二方向上运动;或者,所述工作台在所述第二方向上运动,同时所述DMD在所述第一方向上运动。
通过上述多种控制方式实现DMD和被光刻对象在第一方向和第二方向上的相对运动,达到了可以根据不同应用场景适当选择,提高了实际扫描的灵活度,扩大应用范围的效果。
在一些实施例中,所述DMD包括多个微镜,每个所述微镜的形状是矩形,将所述微镜的第一边的长度记为m,将所述微镜的第二边的长度记为n,将目标长度记为p,所述DMD与所述被光刻对象之间的相对运动方向与所述第一方向形成的锐角夹角θ由所述m、所述n、所述p和所述γ确定。
通过计算θ,进而控制运动主体按照计算得到的θ进行运动,达到了可以准确控制DMD扫描的清晰度的效果。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明实施例提供的一种光刻系统的系统示意图;
图2是本发明实施例提供的DMD的结构示意图;
图3是本发明实施例提供的光刻系统的另一种可能的结构示意图;
图4为本发明实施例提供的光刻系统的扫描方法的方法流程图;
图5为本发明实施例提供的光刻系统在扫描过程中的扫描示意图;
图6为本发明实施例提供的光刻系统在扫描过程中的另一扫描示意图;
图7是本发明实施例提供的另一种光刻系统的系统示意图。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
为了便于描述,首先对本申请所涉及的实施环境做简单介绍。
请参考图1或者图7,本申请提供的光刻系统包括机台11、工作台12和DMD13,所述DMD13设置在所述机台11上,所述工作台12用于设置被光刻对象100。机台11和工作台12均可以通过机械臂控制进而实现运动,并且,可以通过控制机台11运动进而实现DMD13跟随机台11一起运动,类似的,通过控制工作台12运动可以相应的实现被光刻对象100的运动。上述仅以控制机台11和工作台12运动来举例说明,实际实现时,机台11上的DMD13还可以通过机械臂直接控制来实现运动,类似的,被光刻对象100也可以直接连接机械臂,进而通过控制机械臂运动来实现被光刻对象100的运动。
在一些实施例中,如图1或者图7所示,所述光刻系统中还可以包括其他器件,比如包括DMD控制器14、工作台控制器15、图像生成器16。其中,光源发出的光经过DMD13处理后发送到被光刻对象100;DMD控制器14用于控制DMD13,并且此处所述的控制DMD13包括控制放置DMD13的机台11,或者,在DMD13也可以运动时,DMD控制器14同时用于控制放置DMD13的机台11以及DMD13;类似的,工作台控制器15用于控制工作台12。图像生成器16用于根据DMD13的扫描生成图像,并且在生成图像之后可以发送至其他设备进行处理,在此不再赘述。
DMD13包括多个微镜131,每个微镜131的形状为矩形,多个微镜131组成的DMD13为尺寸更大的矩形,比如,请参考图2,其示出了DMD13的一种可能的结构示意图。实际实现时,DMD13中的微镜131的个数可以根据实际需求设置,比如,为3*5的微镜矩阵,又比如,为5*8的微镜矩阵等等,本实施例对此并不做限定。
以控制机台11的机械臂为拖链17来举例说明,请参考图3,其示出了一种可能的光刻系统的结构示意图。
请参考图4,其示出了本申请一个实施例提供的光刻系统的扫描方法的方法流程图,所述方法应用于图1所示的光刻系统中,如图4所示,所述方法包括:
步骤401,控制运动主体进行运动,以使所述DMD13与所述被光刻对象100同时发生第一方向和第二方向上的相对运动,所述运动主体包括以下至少一种:所述DMD13、所述机台11和所述工作台12。
实际实现时,DMD13在光刻扫描过程中,DMD13沿着第一方向扫描一条带,之后DMD13沿着第二方向步进一个DMD尺寸,继续沿着第一方向的反向扫描一条带,再沿着第二方向的反向步进一个DMD尺寸之后继续扫描,以此循环,直至全部扫描结束。也即,在本实施例中,第一方向可以为DMD13扫描的主扫描方向,第二方向为DMD13扫 描的副扫描方向,副扫描方向为DMD13步进的方向。以下除特殊说明外,均以第一方向为主扫描方向,第二方向为副扫描方向来举例说明。
在一些实施例中,为了能准确控制运动主体的运动,在本步骤之前,先确定DMD13与被光刻对象100之间的相对运动方向与第一方向形成的夹角θ,θ为锐角,请参考图5,其示出了一种可能的示意图。其中,确定夹角θ的步骤包括:
根据m、n和p,确定θ。其中,m为DMD13中微镜131的第一边的长度,n为DMD13中微镜131的第二边的长度,p为目标长度。
在一些实施例中,p和θ之间的关系满足:p=(n×tanθ+m)×cosθ。
在确定得到θ之后,即可根据θ确定运动主体在第一方向上的运动速度V 1以及在第二方向上相对运动的运动速度V 2。确定得到的V 2/V 1=tanθ。
在确定得到V 1和V 2之后,即可控制运动主体进行运动,在一些实施例中,本步骤(即控制运动主体进行运动)可以包括如下可能的实现方式:
第一种:当DMD13固定设置在机台11上时,本步骤包括:
控制所述机台11同时在第一方向和第二方向上进行运动;或者,
控制所述工作台12同时在第一方向和第二方向上进行运动;或者,
控制所述机台11在第一方向上进行运动,同时控制所述工作台12在第二方向上进行运动;或者,
控制所述机台11在第二方向上进行运动,同时控制所述工作台12在第一方向上进行运动。
第二种,当所述DMD13非固定地设置在所述机台11上时,本步骤包括:
控制所述机台11在第一方向上进行运动,同时控制所述DMD13在第二方向上进行运动;或者,
控制所述机台11在第二方向上进行运动,同时控制所述DMD13在第一方向上进行运动。
第三种,当所述DMD13非固定地设置在所述机台11上时,本步骤包括:
控制所述工作台12在第一方向上进行运动,同时控制所述DMD13在第二方向上进行运动;或者,
控制所述工作台12在第二方向上进行运动,同时控制所述DMD13在第一方向上进行运动。
以上仅以通过上述控制方式控制运动主体运动来举例说明,实际实现时,还可能包括更多的实现方式,仅需满足V 2/V 1=tanθ即可,本实施例对其具体运动方式并不做限定。
请参考图6,其示出了运动主体运动之后,DMD13光刻扫描的扫描示意图。
在上述扫描方法中,当需要调整扫描的清晰度时,即可通过调整θ角,也即调整V 2和V 1的比值来实现,本实施例在此不再多做赘述。
请参考表1,其示出了当m=10.8微米、n=6微米时,随着θ的变化,p值和(p-m)的值随之变化的情况。
表1
m(微米) n(微米) θ(度) p=(n×tanθ+m)×cosθ(微米) p-m(微米)
10.8 6 1 10.90307 0.10307
10.8 6 2 11.00282 0.202818
10.8 6 3 11.09921 0.299215
10.8 6 4 11.19223 0.392231
10.8 6 5 11.28184 0.481837
10.8 6 6 11.36801 0.568007
10.8 6 7 11.45071 0.650714
10.8 6 8 11.52993 0.729934
10.8 6 9 11.60564 0.805641
10.8 6 10 11.67781 0.877813
10.8 6 11 11.74643 0.946428
10.8 6 12 11.81146 1.011464
10.8 6 13 11.8729 1.072903
10.8 6 14 11.93073 1.130725
10.8 6 15 11.98491 1.184913
请参考表2,其示出了当m=10.8微米、n=1微米时,随着θ的变化,p值和(p-m)的值随之变化的情况。
表2
m(微米) n(微米) θ(度) p=(n×tanθ+m)×cosθ(微米) p-m(微米)
10.8 1 1 10.81581 0.015808
10.8 1 2 10.82832 0.02832
10.8 1 3 10.83753 0.037535
10.8 1 4 10.84345 0.043448
10.8 1 5 10.84606 0.046058
10.8 1 6 10.84536 0.045365
10.8 1 7 10.84137 0.041368
10.8 1 8 10.83407 0.034068
10.8 1 9 10.82347 0.023469
10.8 1 10 10.80957 0.009572
10.8 1 11 10.79238 -0.00762
10.8 1 12 10.77191 -0.02809
10.8 1 13 10.74815 -0.05185
10.8 1 14 10.72112 -0.07888
10.8 1 15 10.69082 -0.10918
由此可见,随着m、n、θ的取值不同,p和m之间的大小关系会发生变化,p可能大于m,也可以小于或者等于m,即,采用本实施例提供的方法,其目标长度可以小于微镜131的第一边的长度。
综上所述,通过提供一种应用于光刻系统的扫描方法,该方法包括控制运动主体进行运动,以使所述DMD13与所述被光刻对象100同时发生第一方向和第二方向上的相对运动,所述运动主体包括以下至少一种:所述DMD13、所述机台11和所述工作台12。也即通过控制运动主体运动以实现DMD13和被光刻对象100倾斜,避免了现有方案中在需要更改清晰度时需要更换不同参数的DMD13成本较高的问题,达到了可以通过调整运动主体的运动速度进而方便快捷的实现清晰度调整的效果。
通过上述多种控制方式实现运动主体的运动控制,达到了可以根据不同应用场景适当选择,提高了实际扫描的灵活度,扩大应用范围的效果。
在上述实施例中,DMD13可以有一个,也可以包括在高度方向上叠加设置的k个,k为大于1的整数。高度方向是指被光刻对象100和DMD13的设置方向,也即DMD13处于被光刻对象100的上方,在DMD13包括k个时,k个DMD13可以按照相同的方向叠加。通常情况下k为2,且2个DMD13叠加后交叠部分的宽度根据每个DMD13的宽度以及被光刻对象100的宽度决定,并且根据不同的应用场景叠加的宽度也有所不同,本实施例对此并不做限定。
通过叠加k个DMD13,进而通过叠加后的DMD13进行扫描,提高了DMD13的扫描精度。
此外,实际使用时实现同样的光刻效果,光刻系统的配置可以有多种,在本实施例中,上述方法还可以包括:
第一,获取至少两种光刻配置方案的评价参数,所述评价参数包括硬件配置参数、工艺成本以及工时中的至少一种;
在一些实施例中,光刻配置方案可以包括多种配置参数,可以根据配置参数与评价参数之间的对应关系来确定每种光刻配置方案的评价参数。其中,配置参数和评价参数之间 的对应关系可以为根据大数据预先设置的对应关系。
作为另一种可能的实现方式,还可以通过神经网络来获取每种光刻配置方案的评价参数,此时,本步骤可以包括:
对于所述至少两种光刻配置方案中的每种光刻配置方案,将所述光刻配置方案的配置参数输入至目标神经网络,所述目标神经网络的输出即为所述光刻配置方案的评价参数,所述目标神经网络为根据样本光刻配置方案的配置参数以及每个样本光刻配置方案的评价参数预先训练得到的网络。
光刻配置方案的配置参数可以包括,DMD13的个数、DMD13的精度、DMD13的尺寸中的至少一种。
第二,根据每种光刻配置方案的评价参数进行光刻配置推荐。
在获取到每种方案的评价参数之后,即可根据评价参数进行光刻配置推荐。在一些实施例中,用户在使用光刻系统之前,可以设置自己的使用需求,光刻系统根据用设置的使用需求进行推荐。比如,用户需要清晰度最高,则可以根据各种方案的评价参数推荐清晰度最高的光刻配置方案;又比如,需要成本最低,则可以根据各种方案的评价参数推荐成本最低的光刻配置方案,在此不再赘述。
请参考图7,在一些实施例中,所述方法可以进一步包括:将所述DMD13所在平面与所述被光刻对象100所在平面之间的角度设置为预设角度γ。
通过将DMD13所在平面与被光刻对象100所在平面之间的角度设置为预设角度,避免了现有方案中在需要更改清晰度时需要更换不同参数的DMD13成本较高的问题,达到了可以通过调整DMD13所在平面与被光刻对象100所在平面之间的角度方便快捷的实现清晰度调整的效果。
在一些实施例中,所述DMD13可以包括多个微镜131,每个所述微镜131的形状是矩形,将所述微镜131的第一边的长度记为m,将所述微镜131的第二边的长度记为n,将目标长度记为p,所述预设角度γ由所述m、所述n和所述p确定。
在一些实施例中,所述DMD13可以包括在高度方向上叠加设置的k个DMD13,k为大于1的整数。
在一些实施例中,k=2。
在一些实施例中,所述DMD13与所述被光刻对象100可以在第一方向和第二方向上相对运动。
在一些实施例中,DMD13可以固定设置在所述机台11上;所述机台11同时在所述第一方向和所述第二方向上运动;或者,所述工作台12同时在所述第一方向和所述第二方向上运动;或者,所述机台11在所述第一方向上运动,同时所述工作台12在所述第二方向上运动;或者,所述机台11在所述第二方向上运动,同时所述工作台12在所述第一方向上运动。
在一些实施例中,所述DMD13可以非固定地设置在所述机台11上;所述机台11在所述第一方向上运动,同时所述DMD13在所述第二方向上运动;或者,所述机台11在所述第二方向上运动,同时所述DMD13在所述第一方向上运动。
在一些实施例中,所述DMD13可以非固定地设置在所述机台11上;所述工作台12在所述第一方向上运动,同时所述DMD13在所述第二方向上运动;或者,所述工作台12在所述第二方向上运动,同时所述DMD13在所述第一方向上运动。
请参考图1或者图7,本申请还提供了一种光刻系统,所述系统包括:数字微镜131器件DMD13;用于设置所述DMD13的机台11;用于设置被光刻对象100的工作台12;用于存储一条或多条程序指令的存储器;以及处理器,所述处理器能够读取所述一条或多条程序指令,所述处理器通过加载并执行所述一条或多条程序指令以实现上述任一项方法。
在一些实施例中,所述处理器被配置成:控制运动主体进行运动,以使所述DMD13与所述被光刻对象100同时发生第一方向和第二方向上的相对运动,所述运动主体包括以下至少一种:所述DMD13、所述机台11和所述工作台12。
在一些实施例中,所述DMD13包括多个微镜131,每个所述微镜131的形状是矩形,将所述微镜131的第一边的长度记为m,将所述微镜131的第二边的长度记为n,将目标长度记为p,将所述DMD13与所述被光刻对象100之间的相对运动方向与所述第一方向形成的锐角夹角记为θ;所述处理器被进一步配置成根据m、n和p,确定θ。
在一些实施例中,p和θ之间的关系满足:p=(n×tanθ+m)×cosθ。
在一些实施例中,所述DMD13与所述被光刻对象100在第一方向上的相对速度是V 1,在第二方向上的相对速度是V 2;所述处理器被进一步配置成根据θ,确定V 1和V 2
在一些实施例中,V 2/V 1=tanθ。
在一些实施例中,所述DMD13固定设置在所述机台11上;所述处理器被进一步配置成:控制所述机台11同时在第一方向和第二方向上进行运动;或者,控制所述工作台 12同时在第一方向和第二方向上进行运动;或者,控制所述机台11在第一方向上进行运动,同时控制所述工作台12在第二方向上进行运动;或者,控制所述机台11在第二方向上进行运动,同时控制所述工作台12在第一方向上进行运动。
在一些实施例中,所述DMD13非固定地设置在所述机台11上;所述处理器被进一步配置成:控制所述机台11在第一方向上进行运动,同时控制所述DMD13在第二方向上进行运动;或者,控制所述机台11在第二方向上进行运动,同时控制所述DMD13在第一方向上进行运动。
在一些实施例中,所述DMD13非固定地设置在所述机台11上;所述处理器被进一步配置成:控制所述工作台12在第一方向上进行运动,同时控制所述DMD13在第二方向上进行运动;或者,控制所述工作台12在第二方向上进行运动,同时控制所述DMD13在第一方向上进行运动。
在一些实施例中,所述DMD13包括在高度方向上叠加设置的k个DMD13,k为大于1的整数。
在一些实施例中,所述处理器被进一步配置成:获取至少两种光刻配置方案的评价参数,所述评价参数包括硬件配置参数、工艺成本以及工时中的至少一种;以及根据每种光刻配置方案的评价参数进行光刻配置推荐。
在一些实施例中,所述处理器被进一步配置成:对于所述至少两种光刻配置方案中的每种光刻配置方案,将所述光刻配置方案的配置参数输入至目标神经网络,所述目标神经网络的输出即为所述光刻配置方案的评价参数,所述目标神经网络为根据样本光刻配置方案的配置参数以及每个样本光刻配置方案的评价参数预先训练得到的网络。
在一些实施例中,所述处理器被进一步配置成:将所述DMD13所在平面与所述被光刻对象100所在平面之间的角度设置为预设角度γ。
在一些实施例中,所述DMD13包括多个微镜131,每个所述微镜131的形状是矩形,将所述微镜131的第一边的长度记为m,将所述微镜131的第二边的长度记为n,将目标长度记为p,所述预设角度γ由所述m、所述n和所述p确定。
在一些实施例中,所述DMD13包括多个微镜131,每个所述微镜131的形状是矩形,将所述微镜131的第一边的长度记为m,将所述微镜131的第二边的长度记为n,将目标长度记为p,所述DMD13与所述被光刻对象100之间的相对运动方向与所述第一方向形成的锐角夹角θ由所述m、所述n、所述p和所述γ确定。
请参考图7,本申请实施例还提供了一种光刻系统,所述系统包括:机台11、工作台12和数字微镜器件DMD13,所述DMD13设置在所述机台11上,所述工作台12用于设置被光刻对象100,所述DMD13所在平面与所述被光刻对象100所在平面之间的角度为预设角度γ。
以控制机台11的机械臂为拖链17来举例说明,请参考图3,其示出了一种可能的光刻系统的结构示意图。
在上述光刻系统中,DMD13所在的平面与被光刻对象100所在平面之间的角度为预设角度γ。γ为预先设定的角度,并且,根据实际需求γ可以设置为不同的值,在此不做赘述。
DMD13包括多个微镜131,每个微镜131的形状为矩形,多个微镜131组成的DMD13为尺寸更大的矩形,比如,请参考图2,其示出了DMD13的一种可能的结构示意图。实际实现时,DMD13中的微镜131的个数可以根据实际需求设置,比如,为3×5的微镜矩阵,又比如,为5×8的微镜矩阵等等,本实施例对此并不做限定。
将所述微镜131的第一边的长度记为m,将所述微镜131的第二边的长度记为n,将目标长度记为p,所述预设角度γ由所述m、所述n和所述p确定,其具体对应关系本申请并不做限定。
在将DMD13所在平面和被光刻对象100所在平面之间的角度设置为预设角度之后,可以根据实际应用需求调整光源的角度和位置,本实施例在此并不做限定。
在上述实施例中,DMD13可以有一个,也可以包括在高度方向上叠加设置的k个,k为大于1的整数。高度方向是指被光刻对象100和DMD13的设置方向,也即DMD13处于被光刻对象100的上方,在DMD13包括k个时,k个DMD13可以按照相同的方向叠加。通常情况下k为2,且2个DMD13叠加后交叠部分的宽度根据每个DMD13的宽度以及被光刻对象100的宽度决定,并且根据不同的应用场景叠加的宽度也有所不同,本实施例对此并不做限定。
通过叠加k个DMD13,进而通过叠加后的DMD13进行扫描,提高了DMD13的扫描精度。
实际实现时,DMD13在光刻扫描过程中,DMD13沿着第一方向扫描一条带,之后DMD13沿着第二方向步进一个DMD13尺寸,继续沿着第一方向的反向扫描一条带,再沿着第二方向的反向步进一个DMD13尺寸之后继续扫描,以此循环,直至全部扫描结束。也即,在本实施例中,第一方向可以为DMD13扫描的主扫描方向,第二方向为DMD13 扫描的副扫描方向,副扫描方向为DMD13步进的方向。以下除特殊说明外,均以第一方向为主扫描方向,第二方向为副扫描方向来举例说明。
在上述实施例中,DMD13和被光刻对象100在第一方向和第二方向上相对运动,其相对运动方式可以包括如下几种可能的实现方式:
第一种,在DMD13固定设置在机台11上时,运动方式包括:
所述机台11同时在所述第一方向和所述第二方向上运动;或者,
所述工作台12同时在所述第一方向和所述第二方向上运动;或者,
所述机台11在所述第一方向上运动,同时所述工作台12在所述第二方向上运动;或者,
所述机台11在所述第二方向上运动,同时所述工作台12在所述第一方向上运动。
第二种,在所述DMD13非固定地设置在所述机台11上,相对运动方式包括:
所述机台11在所述第一方向上运动,同时所述DMD13在所述第二方向上运动;或者,
所述机台11在所述第二方向上运动,同时所述DMD13在所述第一方向上运动。
第三种,在所述DMD13非固定地设置在所述机台11上,相对运动方式包括:
所述工作台12在所述第一方向上运动,同时所述DMD13在所述第二方向上运动;或者,
所述工作台12在所述第二方向上运动,同时所述DMD13在所述第一方向上运动。
以上仅以通过上述控制方式控制运动主体运动来举例说明,实际实现时,还可能包括更多的实现方式,本实施例对其具体运动方式并不做限定。
在一种可能的实施方式中,DMD13与所述被光刻对象100之间的相对运动方向与所述第一方向形成的锐角夹角θ由所述m、所述n、所述p和所述γ确定。并且,在确定得到θ之后,即可根据确定运动主体在第一方向上的运动速度V 1以及在第二方向上相对运动的运动速度V 2,请参考图5,其示出了一种可能的光刻扫描方式。确定得到的V 2/V 1=tanθ。
另外,请参考图6,其示出了DMD13和被光刻对象100发生相对运动之后,DMD13光刻扫描的扫描示意图。
综上所述,通过提供一种包括机台11、工作台12和数字微镜器件DMD13的光刻系统,所述DMD13设置在所述机台11上,所述工作台12用于设置被光刻对象100,所述DMD13所在平面与所述被光刻对象100所在平面之间的角度为预设角度γ。避免了现有方案中在需要更改清晰度时需要更换不同参数的DMD13成本较高的问题,达到了可以通 过调整DMD13所在平面与被光刻对象100所在平面之间的角度方便快捷的实现清晰度调整的效果。
此外,实际使用时实现同样的光刻效果,光刻系统的配置可以有多种,在本实施例中,上述光刻系统还可以实现如下功能:
第一,获取至少两种光刻配置方案的评价参数,所述评价参数包括硬件配置参数、工艺成本以及工时中的至少一种;
可选的,光刻配置方案可以包括多种配置参数,可以根据配置参数与评价参数之间的对应关系来确定每种光刻配置方案的评价参数。其中,配置参数和评价参数之间的对应关系可以为根据大数据预先设置的对应关系。
作为另一种可能的实现方式,还可以通过神经网络来获取每种光刻配置方案的评价参数,此时,本步骤可以包括:
对于所述至少两种光刻配置方案中的每种光刻配置方案,将所述光刻配置方案的配置参数输入至目标神经网络,所述目标神经网络的输出即为所述光刻配置方案的评价参数,所述目标神经网络为根据样本光刻配置方案的配置参数以及每个样本光刻配置方案的评价参数预先训练得到的网络。
光刻配置方案的配置参数可以包括,DMD13的个数、DMD13的精度、DMD13的尺寸中的至少一种。
第二,根据每种光刻配置方案的评价参数进行光刻配置推荐。
在获取到每种方案的评价参数之后,即可根据评价参数进行光刻配置推荐。可选的,用户在使用光刻系统之前,可以设置自己的使用需求,光刻系统根据用设置的使用需求进行推荐。比如,用户需要清晰度最高,则可以根据各种方案的评价参数推荐清晰度最高的光刻配置方案;又比如,需要成本最低,则可以根据各种方案的评价参数推荐成本最低的光刻配置方案,在此不再赘述。
本发明从使用目的上,效能上,进步及新颖性等观点进行阐述,其设置有的实用进步性,已符合专利法所强调的功能增进及使用要件,本发明以上的说明及附图,仅为本发明的较佳实施例而已,并非以此局限本发明,因此,凡一切与本发明构造,装置,特征等近似、雷同的,即凡依本发明专利申请范围所作的等同替换或修饰等,皆应属本发明的专利申请保护的范围之内。

Claims (10)

  1. 一种光刻系统的扫描方法,应用于光刻系统,所述光刻系统包括机台、工作台和数字微镜器件DMD,所述DMD设置在所述机台上,所述工作台用于设置被光刻对象,所述方法包括:
    控制运动主体进行运动,以使所述DMD与所述被光刻对象同时发生第一方向和第二方向上的相对运动,所述运动主体包括以下至少一种:所述DMD、所述机台和所述工作台。
  2. 根据权利要求1所述的方法,其中所述DMD包括多个微镜,每个所述微镜的形状是矩形,将所述微镜的第一边的长度记为m,将所述微镜的第二边的长度记为n,将目标长度记为p,将所述DMD与所述被光刻对象之间的相对运动方向与所述第一方向形成的锐角夹角记为θ;
    所述方法进一步包括:
    根据m、n和p,确定θ。
  3. 根据权利要求2所述的方法,其中p和θ之间的关系满足:
    p=(n×tanθ+m)×cosθ。
  4. 根据权利要求2所述的方法,其中所述DMD与所述被光刻对象在第一方向上的相对速度是V1,在第二方向上的相对速度是V2;
    所述方法进一步包括:
    根据θ,确定V1和V2。
  5. 根据权利要求4所述的方法,其中V2/V1=tanθ。
  6. 根据权利要求1所述的方法,其中所述DMD固定设置在所述机台上;
    所述控制运动主体进行运动包括:
    控制所述机台同时在第一方向和第二方向上进行运动;或者,
    控制所述工作台同时在第一方向和第二方向上进行运动;或者,
    控制所述机台在第一方向上进行运动,同时控制所述工作台在第二方向上进行运动;或者,
    控制所述机台在第二方向上进行运动,同时控制所述工作台在第一方向上进行运动。
  7. 根据权利要求1所述的方法,其中所述DMD非固定地设置在所述机台上;
    所述控制运动主体进行运动包括:
    控制所述机台在第一方向上进行运动,同时控制所述DMD在第二方向上进行运动;或者,
    控制所述机台在第二方向上进行运动,同时控制所述DMD在第一方向上进行运动。
  8. 根据权利要求1所述的方法,其中所述DMD非固定地设置在所述机台上;
    所述控制运动主体进行运动包括:
    控制所述工作台在第一方向上进行运动,同时控制所述DMD在第二方向上进行运动;或者,
    控制所述工作台在第二方向上进行运动,同时控制所述DMD在第一方向上进行运动。
  9. 根据权利要求1所述的方法,进一步包括:
    将所述DMD所在平面与所述被光刻对象所在平面之间的角度设置为预设角度γ。
  10. 一种光刻系统,所述系统包括:
    数字微镜器件DMD;
    用于设置所述DMD的机台;
    用于设置被光刻对象的工作台;
    用于存储一条或多条程序指令的存储器;以及
    处理器,所述处理器通过加载并执行所述一条或多条程序指令以实现如权利要求1至9任一项所述的方法。
PCT/CN2021/116740 2021-01-07 2021-09-06 光刻系统的扫描方法和光刻系统 WO2022148037A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023541514A JP2024502160A (ja) 2021-01-07 2021-09-06 リソグラフィシステムの走査方法及びリソグラフィシステム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110019610.6A CN112764324B (zh) 2021-01-07 2021-01-07 光刻系统的扫描方法和光刻系统
CN202120038045.3U CN214751320U (zh) 2021-01-07 2021-01-07 光刻系统
CN202120038045.3 2021-01-07
CN202110019610.6 2021-01-07

Publications (1)

Publication Number Publication Date
WO2022148037A1 true WO2022148037A1 (zh) 2022-07-14

Family

ID=82357705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116740 WO2022148037A1 (zh) 2021-01-07 2021-09-06 光刻系统的扫描方法和光刻系统

Country Status (3)

Country Link
JP (1) JP2024502160A (zh)
TW (1) TWI790790B (zh)
WO (1) WO2022148037A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226520A (ja) * 2003-01-21 2004-08-12 Fuji Photo Film Co Ltd 露光装置及び露光装置の調整方法
CN104865800A (zh) * 2015-05-27 2015-08-26 中山新诺科技股份有限公司 无掩模光刻设备的同步脉冲曝光方法和数字激光直写系统
CN106647184A (zh) * 2016-12-31 2017-05-10 江苏九迪激光装备科技有限公司 一种直写式丝网制版设备及其使用方法
CN107561876A (zh) * 2017-10-19 2018-01-09 苏州源卓光电科技有限公司 一种新型无掩膜光刻系统及其工艺流程
CN209297103U (zh) * 2019-01-25 2019-08-23 中山新诺科技股份有限公司 数字化双面光刻或曝光系统
CN112415866A (zh) * 2020-12-17 2021-02-26 张家港中贺自动化科技有限公司 一种能够高效曝光的无掩模光刻系统
CN112764324A (zh) * 2021-01-07 2021-05-07 江苏迪盛智能科技有限公司 光刻系统的扫描方法和光刻系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226520A (ja) * 2003-01-21 2004-08-12 Fuji Photo Film Co Ltd 露光装置及び露光装置の調整方法
CN104865800A (zh) * 2015-05-27 2015-08-26 中山新诺科技股份有限公司 无掩模光刻设备的同步脉冲曝光方法和数字激光直写系统
CN106647184A (zh) * 2016-12-31 2017-05-10 江苏九迪激光装备科技有限公司 一种直写式丝网制版设备及其使用方法
CN107561876A (zh) * 2017-10-19 2018-01-09 苏州源卓光电科技有限公司 一种新型无掩膜光刻系统及其工艺流程
CN209297103U (zh) * 2019-01-25 2019-08-23 中山新诺科技股份有限公司 数字化双面光刻或曝光系统
CN112415866A (zh) * 2020-12-17 2021-02-26 张家港中贺自动化科技有限公司 一种能够高效曝光的无掩模光刻系统
CN112764324A (zh) * 2021-01-07 2021-05-07 江苏迪盛智能科技有限公司 光刻系统的扫描方法和光刻系统

Also Published As

Publication number Publication date
JP2024502160A (ja) 2024-01-17
TWI790790B (zh) 2023-01-21
TW202227903A (zh) 2022-07-16

Similar Documents

Publication Publication Date Title
KR101072514B1 (ko) 코너에서의 라운딩 및 챔퍼들을 이용한 광근접성 보정 방법
KR100563157B1 (ko) 마스크 오차 인자 보상에 의한 duv 스캐너 선폭 제어
JP5339671B2 (ja) 描画システム
CN112764324B (zh) 光刻系统的扫描方法和光刻系统
JP3101473B2 (ja) 露光方法及び該露光方法を用いるデバイス製造方法
KR101446484B1 (ko) 묘화 시스템
JP2012049433A (ja) 露光装置
JP4532200B2 (ja) 描画装置
WO2022148037A1 (zh) 光刻系统的扫描方法和光刻系统
JP5662717B2 (ja) 露光装置及びデバイスの製造方法
TW201719300A (zh) 投影曝光裝置
US6809798B1 (en) Stage control method, exposure method, exposure apparatus and device manufacturing method
CN214751320U (zh) 光刻系统
JP5357617B2 (ja) 露光装置
WO2021093631A1 (zh) 三维微纳结构光刻系统及其方法
JP2000077301A (ja) 露光装置
JP7105582B2 (ja) 決定方法、露光方法、露光装置、物品の製造方法及びプログラム
US20140340661A1 (en) Exposure apparatus and method of manufacturing article
JP6581417B2 (ja) 露光装置、露光方法及び物品の製造方法
US11762299B2 (en) Exposure apparatus and method of manufacturing article
US20070072128A1 (en) Method of manufacturing an integrated circuit to obtain uniform exposure in a photolithographic process
JP5986538B2 (ja) 露光装置および物品の製造方法
JP7105627B2 (ja) 露光方法、露光装置、および物品の製造方法
JP2010114164A (ja) 露光方法及び露光装置、並びにリソグラフィシステム
JP2003257819A (ja) パターン露光方法および露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917080

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541514

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/10/2023)