WO2021093631A1 - 三维微纳结构光刻系统及其方法 - Google Patents

三维微纳结构光刻系统及其方法 Download PDF

Info

Publication number
WO2021093631A1
WO2021093631A1 PCT/CN2020/126064 CN2020126064W WO2021093631A1 WO 2021093631 A1 WO2021093631 A1 WO 2021093631A1 CN 2020126064 W CN2020126064 W CN 2020126064W WO 2021093631 A1 WO2021093631 A1 WO 2021093631A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano structure
dimensional micro
digital mask
substrate
worktable
Prior art date
Application number
PCT/CN2020/126064
Other languages
English (en)
French (fr)
Inventor
邵仁锦
浦东林
朱鹏飞
张瑾
朱鸣
陈林森
Original Assignee
苏州苏大维格科技集团股份有限公司
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格科技集团股份有限公司, 苏州大学 filed Critical 苏州苏大维格科技集团股份有限公司
Publication of WO2021093631A1 publication Critical patent/WO2021093631A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/704162.5D lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0037Production of three-dimensional images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control

Definitions

  • the invention relates to the technical field of micro-nano structure lithography, in particular to a three-dimensional micro-nano structure lithography system and a method thereof.
  • the processing technology of three-dimensional micro-nano structure is relatively common in the field of micro-nano manufacturing, and at the same time has a certain technical threshold.
  • the commonly used three-dimensional micro-structure processing technology includes: mask engraving exposure, electron beam exposure, laser direct writing light Carving, precision machining of diamond tools, etc.
  • the mask engraving technology faces problems such as the accuracy of the engraving and the expensive mask, and the process flow is complicated;
  • the electron beam or laser beam direct writing technology belongs to the point-by-point processing technology, and the processing efficiency is low and the cost is high, which is not conducive to batch processing;
  • the machining accuracy and shape of the tool precision machining technology are restricted by the diamond tip, and it is difficult to machine a micro-nano structure with high precision and high aspect ratio.
  • the present invention provides a three-dimensional micro-nano structure lithography system with simple structure, high precision, low cost, fast and efficient.
  • a three-dimensional micro-nano structure lithography system including a digital mask device, a spatial light modulator, a projection objective lens and a worktable, in which:
  • the digital mask device is electrically connected to the spatial light modulator, and the projection objective lens is arranged between the spatial light modulator and the worktable, and the worktable is used to fix the substrate to be lithographically performed;
  • the digital mask device is used to generate a digital mask.
  • the digital mask includes a patterned exposure area.
  • the digital mask device uploads the digital mask to the spatial light modulator.
  • the spatial light modulator is used to display the digital mask. The light passes through the spatial light modulator. After the graphic exposure area on the upper part is projected to the projection objective, the height of the graphic exposure area is proportional to the exposure dose;
  • the projection objective lens projects the graphic light on the substrate, and the worktable drives the substrate to move along the set path in the plane for exposure.
  • the above-mentioned three-dimensional micro-nano structure lithography system further includes a control system that is electrically connected to the projection objective lens and the worktable, and the control system is used to control the worktable according to The set path moves and controls the moving speed of the workbench.
  • the above-mentioned three-dimensional micro-nano structure lithography system further includes a light source, the light source is used to provide light to the spatial light modulator, the light source is electrically connected to the control system, and the control system Used to adjust and control the light intensity of the light source.
  • the above-mentioned three-dimensional micro-nano structure lithography system further includes a collimating lens, the collimating lens is arranged in the light emitting direction of the light source, and the light emitted by the light source passes through the collimating lens. Directed toward the spatial light modulator.
  • the above-mentioned pattern exposure area is a gray scale image.
  • the present invention also provides a three-dimensional micro-nano structure lithography method, the method includes:
  • a digital mask device use the digital mask device to generate a digital mask, the digital mask includes a pattern exposure area;
  • a spatial light modulator is provided, the digital mask is uploaded to the spatial light modulator, and when the digital mask is displayed using the spatial light modulator, light is emitted from the pattern exposure area, and the pattern is adjusted
  • the length of the exposure area realizes the adjustment of the exposure dose, and the length of the pattern exposure area is proportional to the exposure dose;
  • a worktable is provided, and the substrate is supported and fixed by the worktable, and the worktable drives the substrate to move and expose in a plane along a set path.
  • a control system is provided, and the control system is used to control the movement of the workbench according to a set path and control the movement speed of the workbench. By adjusting the movement speed of the workbench, adjustment is achieved. Exposure dose, the moving speed of the worktable is inversely proportional to the exposure dose.
  • a light source is provided, the light source is used to provide light to the spatial light modulator, the light source is in a normally-on mode when in working state, and the light intensity of the light source is adjusted and controlled by the control system By adjusting the light intensity of the light source, the exposure dose can be adjusted, and the light intensity of the light source is proportional to the exposure dose.
  • a collimating lens is provided, the collimating lens is arranged in the light emitting direction of the light source, and the light is collimated by the collimating lens.
  • the substrate is fixed in front of the worktable, photoresist is coated on the surface of the substrate, and the substrate is baked at a temperature of 85-110°C for a time 1 ⁇ 60min.
  • the exposed substrate is developed using NaOH developer solution, the concentration of the developer solution is 0.6%-1%, the temperature of the developer solution is 20-24°C, and the development time is 30-150s;
  • the developed substrate is washed and blow-dried to form a three-dimensional micro-nano structure on the surface of the substrate.
  • the above-mentioned pattern exposure area is a gray scale image.
  • the three-dimensional micro-nano structure photoetching system of the present invention Compared with diamond lathe processing, the three-dimensional micro-nano structure photoetching system of the present invention has a resolution of 1-2 orders of magnitude higher, and the photoetching resolution can reach 0.1um. Moreover, compared with mask registration lithography and gray-scale mask exposure, the three-dimensional micro-nano structure lithography system of the present invention has smoother three-dimensional structures, higher efficiency and lower cost.
  • Fig. 1 is a schematic diagram of a three-dimensional micro-nano structure lithography system according to a first embodiment of the present invention.
  • Fig. 2 is a partial schematic diagram of a three-dimensional micro-nano structure formed by photolithography of a three-dimensional micro-nano structure lithography system.
  • 3a to 3b are schematic diagrams of the movement path of the control worktable of the control system of the present invention.
  • Fig. 4 is a schematic diagram of a digital mask generated by the digital mask device of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a three-dimensional micro-nano structure formed by photolithography by the three-dimensional micro-nano structure photolithography system of the present invention.
  • FIG. 6 is a schematic partial top view of the three-dimensional micro-nano structure shown in FIG. 5.
  • FIG. 7 is a schematic top view of a three-dimensional micro-nano structure formed by photolithography by the three-dimensional micro-nano structure photolithography system of the present invention.
  • Fig. 8 is a schematic diagram of a digital mask generated by a digital mask device according to a second embodiment of the present invention.
  • Fig. 9 is a schematic diagram of a digital mask generated by a digital mask device according to a third embodiment of the present invention.
  • Fig. 10 is a schematic diagram of a digital mask generated by a digital mask device according to a fourth embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a digital mask generated by a digital mask device according to a fifth embodiment of the present invention.
  • Fig. 1 is a schematic diagram of a three-dimensional micro-nano structure lithography system according to a first embodiment of the present invention
  • Fig. 2 is a partial schematic diagram of a three-dimensional micro-nano structure formed by the three-dimensional micro-nano structure lithography system, as shown in Figs. 1 and 2
  • the three-dimensional micro-nano structure lithography system includes a digital mask device 11, a spatial light modulator 12, a projection objective 13 and a worktable 14, in which:
  • the digital mask device 11 is electrically connected to the spatial light modulator 12, and the projection objective lens 13 is arranged between the spatial light modulator 12 and the worktable 14, and the worktable 14 is used to fix the substrate 21 to be lithographically etched;
  • the digital mask device 11 is used to generate a digital mask 101.
  • the digital mask 101 includes a pattern exposure area 101a.
  • the digital mask device 11 uploads the digital mask 101 to the spatial light modulator 12, and the spatial light modulator 12 is used to display the digital In the mask 101, the light passes through the pattern exposure area 101a on the spatial light modulator 12 and then strikes the projection objective 13, and the height h of the pattern exposure area 101a is proportional to the exposure dose;
  • the projection objective 13 projects the graphic light on the substrate 21, and the worktable 14 drives the substrate 21 to move along a set path in the plane for exposure.
  • the worktable 14 can fix the substrate 21 by vacuum suction, but it is not limited to this.
  • the projection objective 13 first projects the graphic light on the edge of the substrate 21, and stops when the worktable 14 drives the substrate 21 to move to the other edge of the substrate 21 in a straight line. At this time, the spatial light modulator 12 stop exposure;
  • the projection lens 13 moves along the length or width direction of the substrate 21 for a period of distance.
  • the worktable 14 drives the substrate 21 to move again, while the spatial light modulator 12 continues to expose, and so on, until the entire format is scanned. exposure;
  • the exposed substrate 21 is developed with an alkaline developer (such as TMAH, KOH, NaOH), the concentration of the developer is 0.6%-1%, the temperature of the developer is 20-24°C, and the development time is 30-150s;
  • an alkaline developer such as TMAH, KOH, NaOH
  • the developed substrate 21 is rinsed and blow-dried to form a three-dimensional micro-nano structure 211 on the surface of the substrate 21.
  • the worktable 14 drives the substrate 21 to reciprocate twice or more to keep the projection objective 13 in position. At this time, the spatial light modulator 12 continues to expose, and when the worktable 14 stops When moving, the spatial light modulator 12 stops exposure.
  • the substrate 21 is fixed in front of the workbench 14, the photoresist 22 is coated on the surface of the substrate 21, and the substrate 21 is baked at a baking temperature of 85-110°C and a baking time of 1-60 min.
  • the thickness of the photoresist 22 is 10 um, but it is not limited to this, and a positive photoresist 22 or a negative photoresist 22 can be selected.
  • the digital mask device 11 includes a mobile terminal, a computer, an ipad, etc., a digital mask 101 is generated on the digital mask device 11 through software programming, and the format of the digital mask 101 is a Bmp bitmap (binary bitmap),
  • the shape of the pattern exposure area 101a of the digital mask 101 can be freely selected according to needs.
  • the pattern exposure area 101a is a right triangle as an example for description. As shown in FIGS. 1 and 2, the pattern exposure area 101a has three vertex angles.
  • the first apex angle A, the second apex angle B and the third apex angle C where the second apex angle B is a right angle, the exposure dose at the first apex angle A is the weakest, and the exposure at the second apex angle B The dose is the strongest. From the first vertex angle A to the third vertex angle C, the height h of the pattern exposure area 101a gradually increases, and the exposure dose gradually increases, corresponding to the depth of the three-dimensional micro-nano structure 211 on the surface of the substrate 21 Large, as shown in Figure 2.
  • the three-dimensional micro-nano structure 211 with different exposure depths can be obtained.
  • the height h direction of the pattern exposure area 101a is parallel to the width direction or the length direction of the spatial light modulator 12.
  • the digital mask 101 also includes a non-transmissive area 101b.
  • the non-transmissive area 101b is arranged on the peripheral side of the pattern exposure area 101a, and the non-transmissive area 101b is black.
  • the non-transmissive area 101b does not transmit light, and the pattern exposure area 101a transmits light, as shown in FIG.
  • FIGS. 3a to 3b are schematic diagrams of the control system of the present invention controlling the movement path of the worktable.
  • the three-dimensional micro-nano structure lithography system also includes a control system 15, a control system 15 and a projection objective lens. 13.
  • the workbench 14 is electrically connected, and the control system 15 is used to control the workbench 14 to move linearly according to the set path and control the moving speed of the workbench 14.
  • the control system 15 controls the worktable 14 to move along the X direction and the Y direction to realize the exposure of the substrate 21 in two directions; as shown in Fig. 3b, the control system 15 controls the worktable 14 to move along the X direction.
  • control worktable 14 moves along the direction of 120° to the X direction
  • control workbench 14 moves along the direction of 240° to the X direction to realize the exposure of the substrate 21 in three directions.
  • the control system 15 can control the exposure dose, so as to obtain three-dimensional micro-nano structures 211 with different exposure depths.
  • the three-dimensional micro-nano structure lithography system further includes a light source 16 for providing light to the spatial light modulator 12, and the light source 16 is electrically connected to a control system 15 for adjusting and controlling the light intensity of the light source 16.
  • control system 15 can adjust and control the light intensity of the light source 16 to realize the control and control of the exposure dose, so as to obtain the three-dimensional micro-nano structure 211 with different exposure depths.
  • the light source 16 is, for example, a mercury lamp, LED, laser, or other light-emitting devices that can sensitize the photoresist 22.
  • the three-dimensional micro-nano structure lithography system further includes a collimator lens 17 which is arranged in the light emitting direction of the light source 16, and the light emitted by the light source 16 passes through the collimator lens 17 and then is directed to the spatial light modulator 12.
  • the three-dimensional micro-nano structure lithography system of the present invention can control the exposure dose by adjusting the light intensity, controlling the speed of the worktable 14, and the height h of the pattern exposure area 101a.
  • the spatial light modulator 12 is a miniature display device such as DMD, LCD, or LCOS.
  • the zoom magnification range of the projection objective lens 13 is 5X-100X.
  • the high precision of the table 14 can support lithography of linch-12 inches format.
  • the three-dimensional micro-nano structure lithography system of the present invention can quickly lithographically produce a three-dimensional micro-nano structure.
  • the double-blazed groove-type three-dimensional micro-structure is taken as an example of lithography for illustration:
  • FIG. 4 is a schematic diagram of the digital mask generated by the digital mask device of the present invention
  • FIG. 5 is a schematic cross-sectional view of the three-dimensional micro-nano structure formed by the three-dimensional micro-nano structure lithography system of the present invention
  • the detailed steps are as follows:
  • the hot plate temperature is 90-120°C, and the baking time is 5-30 minutes.
  • a 4-inch substrate 21 is used.
  • the substrate 21 type is used. It can be glass, metal, ceramic or silicon wafer, etc.;
  • the digital mask device 11 software generates an inverted trapezoidal digital mask 101.
  • the pixel width of the digital mask 101 is calculated or adjusted according to the pixel unit size of the spatial light modulator 12 and the zoom ratio of the projection lens 13, such as the spatial light modulator 12.
  • the pixel unit size is 10.8um, and the zoom ratio of the projection objective 13 is 50X2.16, then the reduced spatial light modulator 12 pixel unit is 0.1um.
  • set 800 pixels here; turn on the three-dimensional micro-nano structure lithography system, upload the inverted trapezoidal digital mask 101 to the spatial light modulator 12, and the control system 15 follows the set path
  • the control table 14 moves to start exposure.
  • FIG. 7 is a schematic top view of the three-dimensional micro-nano structure formed by the three-dimensional micro-nano structure photolithography system of the present invention.
  • the digital mask device 11 is used to generate the digital mask 101 shown in FIG. 4 and the rectangular pattern Expose the digital mask 101 in the exposure area 101a and control the worktable 14 to move in the direction shown in FIG. 3a to form the three-dimensional micro-nano structure 211.
  • the three-dimensional micro-nano structure lithography system of the present invention has the advantages of simple structure, high precision, low cost, fast and high efficiency. Compared with diamond lathe processing, the three-dimensional micro-nano structure photoetching system of the present invention has a resolution of 1-2 orders of magnitude higher, and the photoetching resolution can reach 0.1um. Moreover, compared with mask registration lithography and gray-scale mask exposure, the three-dimensional micro-nano structure lithography system of the present invention has smoother three-dimensional structures, higher efficiency and lower cost.
  • FIG. 8 is a schematic diagram of a digital mask generated by the digital mask device of the second embodiment of the present invention. As shown in FIG. 8, the two-dimensional micro-nano structure lithography system of this embodiment and the three-dimensional micro-nano structure of the first embodiment The structure of the lithography system is roughly the same, and the difference lies in the shape of the digital mask 101 generated by the digital mask device 11.
  • the pattern exposure area 101a of the digital mask 101 is a plurality of right triangles whose height h gradually decreases.
  • FIG. 9 is a schematic diagram of a digital mask generated by a digital mask device according to a third embodiment of the present invention. As shown in FIG. 9, the three-dimensional micro-nano structure lithography system of this embodiment is compared with the three-dimensional micro-nano structured photolithography system of the first embodiment. The structure of the engraving system is roughly the same, and the difference lies in the shape of the digital mask 101 generated by the digital mask device 11 is different.
  • the pattern exposure area 101a of the digital mask 101 is a plurality of right triangles with the same height h and different areas.
  • FIG. 10 is a schematic diagram of a digital mask generated by a digital mask device according to a fourth embodiment of the present invention.
  • the three-dimensional micro-nano structure lithography system of this embodiment and the three-dimensional micro-nano structure lithography system of the first embodiment are The structure of the engraving system is roughly the same, and the difference lies in the shape of the digital mask 101 generated by the digital mask device 11 is different.
  • the pattern exposure area 101a of the digital mask 101 is stepped.
  • FIG. 11 is a schematic diagram of a digital mask generated by a digital mask device according to a fifth embodiment of the present invention. As shown in FIG. 11, the three-dimensional micro-nano structure lithography system of this embodiment is compared with the three-dimensional micro-nano structured photolithography system of the first embodiment. The structure of the engraving system is roughly the same, and the difference lies in the shape of the digital mask 101 generated by the digital mask device 11 is different.
  • the pattern exposure area 101a of the digital mask 101 has a sickle shape.
  • the three-dimensional micro-nano structure lithography system of the present embodiment has substantially the same structure as the three-dimensional micro-nano structure lithography system of the first embodiment. The difference lies in the shape of the digital mask 101 generated by the digital mask device 11.
  • the graphic exposure area 101a of the digital mask 101 is an equilateral triangle, and the graphic exposure area 101a is a grayscale image, which can further improve the design flexibility of the three-dimensional shape and exposure dose.
  • the gray level of the graphic exposure area 101a gradually increases or decreases from the middle to the two sides.
  • the gray level of the graphic exposure area 101a is 0 and the gray level on both sides is 255, but it is not limited to this.
  • the present invention also relates to a three-dimensional micro-nano structure lithography method, which includes:
  • the digital mask 101 includes a pattern exposure area 101a;
  • a spatial light modulator 12 is provided, and the digital mask 101 is last sent to the spatial light modulator 12.
  • the digital mask 101 is displayed using the spatial light modulator 12, light is emitted from the pattern exposure area 101a, and the length of the pattern exposure area 101a is adjusted , Realize the adjustment of the exposure dose, the length of the pattern exposure area 101a is proportional to the exposure dose;
  • a projection objective lens 13 to use the projection objective lens 13 to project the pattern light onto the substrate 21 to be lithography;
  • a worktable 14 is provided, and the worktable 14 is used to carry and fix the substrate 21, and the worktable 14 drives the substrate 21 to move and expose in a plane along a set path.
  • the worktable 14 can fix the substrate 21 by vacuum suction, but it is not limited to this.
  • the projection objective 13 first projects the graphic light on the edge of the substrate 21.
  • the worktable 14 drives the substrate 21 to move to the other edge of the substrate 21 along the set path, it stops moving. At this time, the spatial light The modulator 12 stops exposure;
  • the projection lens 13 moves along the length or width direction of the substrate 21 for a period of distance.
  • the worktable 14 drives the substrate 21 to move again, while the spatial light modulator 12 continues to expose, and so on, until the entire format is scanned. exposure.
  • the substrate 21 is fixed in front of the worktable 14 and the photoresist 22 is coated on the surface of the substrate 21, and the substrate 21 is baked at a temperature of 85-110° C. and a time of 1-60 min.
  • the thickness of the photoresist 22 is 10 um, but it is not limited to this, and a positive photoresist 22 or a negative photoresist 22 can be selected.
  • the exposed substrate 21 is developed with an alkaline developer (for example, TMAH, KOH, NaOH), the concentration of the developer is 0.6%-1%, the temperature of the developer is 20-24°C, and the developing time is 30- 150s;
  • an alkaline developer for example, TMAH, KOH, NaOH
  • the developed substrate 21 is rinsed and blow-dried to form a three-dimensional micro-nano structure 211 on the surface of the substrate 21.
  • control worktable 14 drives the substrate 21 to reciprocate two or more times, keeps the projection objective 13 in a position that does not move, and controls the spatial light modulator 12 to continue exposure.
  • the spatial light modulator 12 Stop the exposure, you can further control the exposure depth and exposure uniformity.
  • the digital mask device 11 includes a mobile terminal, a computer, an ipad, etc., a digital mask 101 is generated on the digital mask device 11 through software programming, and the format of the digital mask 101 is a Bmp bitmap (binary bitmap),
  • the shape of the pattern exposure area 101a of the digital mask 101 can be freely selected according to needs.
  • the pattern exposure area 101a is a right triangle as an example for description. Please refer to FIGS. 1 and 2.
  • the pattern exposure area 101a has three vertex angles.
  • the three-dimensional micro-nano structure 211 with different exposure depths can be obtained.
  • the height h direction of the pattern exposure area 101a is parallel to the width direction or the length direction of the spatial light modulator 12.
  • the digital mask 101 also includes a non-transmissive area 101b.
  • the non-transmissive area 101b is arranged on the peripheral side of the pattern exposure area 101a, and the non-transmissive area 101b is black.
  • the non-transmissive area 101b does not transmit light
  • the pattern exposure area 101a transmits light. Please refer to FIG. 1.
  • a control system 15 is provided.
  • the control system 15 is used to control the movement of the worktable 14 according to the set path and the movement speed of the worktable 14. By adjusting the movement speed of the worktable 14, the exposure dose and the movement of the worktable 14 can be adjusted. The speed is inversely proportional to the exposure dose.
  • the control system 15 controls the worktable 14 to move along the X direction and the Y direction to realize the exposure of the substrate 21 in two directions; please refer to Fig.
  • the control system 15 controls the worktable 14 to move along the X direction ,
  • the control workbench 14 moves along the direction of 120° to the X direction, and the control workbench 14 moves along the direction of 240° to the X direction to realize the exposure of the substrate 21 in three directions.
  • the control system 15 can control the exposure dose, so as to obtain three-dimensional micro-nano structures 211 with different exposure depths.
  • a light source 16 is provided, and the light source 16 is used to provide light to the spatial light modulator 12, and the light intensity of the light source 16 is adjusted and controlled by the control system 15.
  • the exposure dose can be adjusted.
  • the light intensity of the light source 16 is proportional to the exposure dose.
  • the control system 15 can adjust and control the light intensity of the light source 16 to realize the control and control of the exposure dose, so as to obtain the three-dimensional micro-nano structure 211 with different exposure depths.
  • the light source 16 is, for example, a mercury lamp, LED, laser, or other light-emitting devices that can sensitize the photoresist 22.
  • a collimating lens 17 is provided, and the collimating lens 17 is arranged in the light emitting direction of the light source 16, and the collimating lens 17 is used to collimate the light.
  • the three-dimensional micro-nano structure 211 photolithography method of the present invention can control the exposure dose by adjusting the light intensity, controlling the speed of the worktable 14, and the height h of the pattern exposure area 101a.
  • the spatial light modulator 12 is a miniature display device such as DMD, LCD, or LCOS.
  • the zoom magnification range of the projection objective lens 13 is 5X-100X.
  • the high precision of the table 14 can support lithography of linch-12 inches format.
  • the graphic exposure area 101a is a grayscale image, which can further improve the design flexibility of the three-dimensional shape and exposure dose.
  • the gray level of the graphic exposure area 101a gradually increases or decreases from the middle to the two sides.
  • the gray level of the graphic exposure area 101a is 0 and the gray level on both sides is 255, but it is not limited to this.
  • the three-dimensional micro-nano structure lithography method of the present invention adopts the three-dimensional micro-nano structure lithography system of the first embodiment.
  • the structure and function of the three-dimensional micro-nano structure lithography system please refer to the first embodiment, which will not be repeated here. .
  • the three-dimensional micro-nano structure lithography method of the present invention has the advantages of high lithography precision, rapidity and high efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

一种三维微纳结构光刻系统及三维微纳结构光刻方法,包括数字掩模装置(11)、空间光调制器(12)、投影物镜(13)和工作台(14),数字掩模装置(11)与空间光调制器(12)电性连接,投影物镜(13)设置于空间光调制器(12)与工作台(14)之间,工作台(14)用于固定待光刻的基片(21);数字掩模装置(11)用以生成数字掩模(101),数字掩模(101)包括图形曝光区(101a),数字掩模装置(11)将数字掩模(101)上传至空间光调制器(12),空间光调制器(12)用以显示数字掩模(101),光经过空间光调制器(12)上的图形曝光区(101a)后射向投影物镜(13)图形曝光区(101a)的高度与曝光剂量呈正比;投影物镜(13)将图形光投影在基片(21)上,工作台(14)驱使基片(21)在平面内沿设定路径移动曝光。三维微纳结构光刻系统结构简单、精度高、成本低、快速高效。

Description

三维微纳结构光刻系统及其方法
本申请要求了申请日为2019年11月14日,申请号为201911115004.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及微纳结构光刻技术领域,特别涉及一种三维微纳结构光刻系统及其方法。
背景技术
三维微纳结构的加工技术属于微纳制造领域中比较常见,同时又具备一定技术门槛的技术领域,目前常用的三维微结构加工技术包括:掩模套刻曝光、电子束曝光、激光直写光刻、金刚石刀具精密加工等。其中,掩模套刻技术面临套刻精度和掩模板昂贵等问题,且工艺流程复杂;电子束或激光束直写技术属于逐点加工技术,加工效率低且成本高,不利于批量加工;金刚石刀具精密加工技术的加工精度和形状受制于金刚石刀头,难以加工出高精度和高深宽比的微纳结构。
发明内容
有鉴于此,本发明提供一种三维微纳结构光刻系统,结构简单、精度高、成本低、快速高效。
一种三维微纳结构光刻系统,包括数字掩模装置、空间光调制器、投影物镜和工作台,其中:
数字掩模装置与空间光调制器电性连接,投影物镜设置于空间光调制器与工作台之间,工作台用于固定待光刻的基片;
数字掩模装置用以生成数字掩模,数字掩模包括图形曝光区,数字掩模 装置将数字掩模上传至空间光调制器,空间光调制器用以显示数字掩模,光经过空间光调制器上的图形曝光区后射向投影物镜,图形曝光区的高度与曝光剂量呈正比;
投影物镜将图形光投影在基片上,工作台驱使基片在平面内沿设定路径移动曝光。
在本发明的实施例中,上述三维微纳结构光刻系统还包括控制系统,所述控制系统与所述投影物镜、所述工作台电性连接,所述控制系统用以控制所述工作台按照设定的路径移动以及控制所述工作台的移动速度。
在本发明的实施例中,上述三维微纳结构光刻系统还包括光源,所述光源用以为所述空间光调制器提供光,所述光源与所述控制系统电性连接,所述控制系统用以调节控制所述光源的光强。
在本发明的实施例中,上述三维微纳结构光刻系统还包括准直透镜,所述准直透镜设置于所述光源的出光方向上,所述光源发出的光线经过所述准直透镜后射向所述空间光调制器。
在本发明的实施例中,上述图形曝光区为灰度图。
本发明还提供一种三维微纳结构光刻方法,所述方法包括:
提供数字掩模装置,利用所述数字掩模装置生成数字掩模,所述数字掩模包括图形曝光区;
提供空间光调制器,将所述数字掩模上载至所述空间光调制器,利用所述空间光调制器显示所述数字掩模时,光线从所述图形曝光区射出,通过调节所述图形曝光区的长度,实现调节曝光剂量,所述图形曝光区的长度与曝光剂量成正比;
提供投影物镜,利用所述投影物镜将图形光投影在待光刻的基片上;
提供工作台,利用所述工作台承载固定所述基片,所述工作台驱使所述基片在平面内沿设定路径移动曝光。
在本发明的实施例中,提供控制系统,利用所述控制系统控制所述工作 台按照设定的路径移动以及控制所述工作台的移动速度,通过调节所述工作台的移动速度,实现调节曝光剂量,所述工作台的移动速度与曝光剂量成反比。
在本发明的实施例中,提供光源,利用所述光源为所述空间光调制器提供光,所述光源在工作状态时为常开模式,利用所述控制系统调节控制所述光源的光强,通过调节所述光源的光强,实现调节曝光剂量,所述光源的光强与曝光剂量成正比。
在本发明的实施例中,提供准直透镜,所述准直透镜设置于所述光源的出光方向上,利用所述准直透镜准准直光线。
在本发明的实施例中,将所述基片固定在所述工作台前,在所述基片表面涂覆光刻胶,并对所述基片进行烘烤,温度85~110℃,时间1~60min。
在本发明的实施例中,利用NaOH显影液对曝光后的所述基片进行显影,显影液浓度为0.6%~1%,显影液温度为20~24℃,显影时间为30~150s;
对显影后的所述基片进行冲洗、吹干,使所述基片表面形成三维微纳结构。
在本发明的实施例中,上述图形曝光区为灰度图。
本发明的三维微纳结构光刻系统与金刚石车床加工相比,分辨率高出1-2个数量级,光刻分辨率可达到0.1um。而且,本发明的三维微纳结构光刻系统与掩模套准光刻、灰度掩模曝光相比,本系统光刻出的三维结构更加光滑,且效率更高、成本更低。
附图说明
图1是本发明第一实施例的三维微纳结构光刻系统的示意图。
图2是三维微纳结构光刻系统光刻形成的三维微纳结构的局部示意图。
图3a至图3b是本发明的控制系统控制工作台移动路径的示意图。
图4是本发明的数字掩模装置生成的数字掩模的示意图。
图5是本发明的三维微纳结构光刻系统光刻形成的三维微纳结构的剖视示意图。
图6是图5所示的三维微纳结构的局部俯视示意图。
图7是本发明的三维微纳结构光刻系统光刻形成的三维微纳结构的俯视示意图。
图8是本发明第二实施例的数字掩模装置生成的数字掩模的示意图。
图9是本发明第三实施例的数字掩模装置生成的数字掩模的示意图。
图10是本发明第四实施例的数字掩模装置生成的数字掩模的示意图。
图11是本发明第五实施例的数字掩模装置生成的数字掩模的示意图。
具体实施方式
第一实施例
图1是本发明第一实施例的三维微纳结构光刻系统的示意图,图2是三维微纳结构光刻系统光刻形成的三维微纳结构的局部示意图,如图1和图2所示,三维微纳结构光刻系统包括数字掩模装置11、空间光调制器12、投影物镜13和工作台14,其中:
数字掩模装置11与空间光调制器12电性连接,投影物镜13设置于空间光调制器12与工作台14之间,工作台14用于固定待光刻的基片21;
数字掩模装置11用以生成数字掩模101,数字掩模101包括图形曝光区101a,数字掩模装置11将数字掩模101上载至空间光调制器12,空间光调制器12用以显示数字掩模101,光经过空间光调制器12上的图形曝光区101a后射向投影物镜13,图形曝光区101a的高度h与曝光剂量呈正比;
投影物镜13将图形光投影在基片21上,工作台14驱使基片21在平面内沿设定路径移动曝光。在本实施例中,工作台14可采用真空吸附的方式固定基片21,但并不以此为限。
值得一提的是,投影物镜13首先将图形光投影在基片21的边缘,当工 作台14驱使基片21沿直线移动至基片21的另一边缘时停止移动,此时空间光调制器12停止曝光;
接着投影物镜13沿基片21的长度方向或宽度方向移动一个周期的距离,此时工作台14驱使基片21再次移动,同时空间光调制器12继续曝光,依次类推,直到完成整个幅面的扫描曝光;
之后利用碱性显影液(例如TMAH、KOH、NaOH)对曝光后的基片21进行显影,显影液浓度为0.6%~1%,显影液温度为20~24℃,显影时间为30~150s;
最后对显影后的基片21进行冲洗、吹干,使基片21表面形成三维微纳结构211。
为了进一步控制曝光深度和曝光均匀性,工作台14驱使基片21往复移动两次或两次以上,保持投影物镜13不移动位置,此时空间光调制器12可持续曝光,当工作台14停止移动时,空间光调制器12停止曝光。
进一步地,将基片21固定在工作台14前,在基片21表面涂覆光刻胶22,并对基片21进行烘烤,烘烤温度85~110℃,烘烤时间1~60min。在本实施例中,光刻胶22的厚度为10um,但并不以此为限,可选用正性光刻胶22或负性光刻胶22。
进一步地,数字掩模装置11包括移动终端、电脑、ipad等,通过软件编程在数字掩模装置11上生成数字掩模101,数字掩模101的格式为Bmp位图(2值位图),数字掩模101的图形曝光区101a形状可根据需要自由选择,本实施例以图形曝光区101a为直角三角形为例进行说明,如图1和图2所示,图形曝光区101a具有三个顶角,分别为第一顶角A、第二顶角B和第三顶角C,其中第二顶角B为直角,第一顶角A处的曝光剂量最弱,第二顶角B处的曝光剂量最强,从第一顶角A到第三顶角C的方向,图形曝光区101a的高度h逐渐增大,曝光剂量逐渐增大,对应基片21表面的三维微纳结构211的深度越大,如图2所示。值得一提的是,通过设计和调整图形曝光区101aBC边 长的长度(图形曝光区101a的高度h),进而控制曝光剂量,从而获得不同曝光深度的三维微纳结构211。在本实施例中,图形曝光区101a的高度h方向平行于空间光调制器12的宽度方向或长度方向。
进一步地,数字掩模101还包括非透光区101b,非透光区101b设置于图形曝光区101a的周侧,非透光区101b呈黑色,当空间光调制器12的显示屏整屏显示数字掩模101时,非透光区101b不透光,图形曝光区101a透光,如图1所示。
进一步地,图3a至图3b是本发明的控制系统控制工作台移动路径的示意图,如图3a和图3b所示,三维微纳结构光刻系统还包括控制系统15,控制系统15与投影物镜13、工作台14电性连接,控制系统15用以控制工作台14按照设定的路径直线移动以及控制工作台14的移动速度。如图3a所示,控制系统15控制工作台14沿着X方向移动和Y方向移动,实现对基片21两个方向的曝光;如图3b所示,控制系统15控制工作台14沿着X方向移动、控制工作台14沿着与X方向呈120°的方向移动、控制工作台14沿着与X方向呈240°的方向移动,实现对基片21三个方向的曝光。在本实施例中,控制系统15能控制曝光剂量,从而获得不同曝光深度的三维微纳结构211。进一步地,三维微纳结构光刻系统还包括光源16,光源16用以为空间光调制器12提供光,光源16与控制系统15电性连接,控制系统15用以调节控制光源16的光强。在本实施例中,控制系统15能调节控制光源16的光强,实现控制控制曝光剂量,从而获得不同曝光深度的三维微纳结构211。光源16例如为汞灯、LED、激光或者其他可以对光刻胶22进行感光的发光器件。
进一步地,三维微纳结构光刻系统还包括准直透镜17,准直透镜17设置于光源16的出光方向上,光源16发出的光线经过准直透镜17后射向空间光调制器12。
进一步地,本发明的三维微纳结构光刻系统可以通过调整光强、控制工作台14速度、图形曝光区101a的高度h等参量来控制曝光剂量。
进一步地,空间光调制器12为DMD、LCD或者LCOS等微型显示器件。
进一步地,投影物镜13微缩倍率范围采用5X~100X。
进一步地,工作台14的高精度可支持linch~12inch幅面的光刻。
本发明的三维微纳结构光刻系统可快速光刻出三维微纳结构,以双闪耀槽型三维微结构为光刻实例进行说明:
图4是本发明的数字掩模装置生成的数字掩模的示意图,图5是本发明的三维微纳结构光刻系统光刻形成的三维微纳结构的剖视示意图,图6是图5所示的三维微纳结构的局部俯视示意图,如图4、图5和图6所示,三维微纳结构的设计参数:单元宽度a=20um,高度h=10um,周期P=40um。详细步骤如下:
在基片21表面涂覆厚度10um的光刻胶21,并进行软烘烤,热板温度90-120°c,烘烤时间5-30分钟,采用4英寸的基片21,基片21类型可以为玻璃、金属、陶瓷或硅片等;
数字掩模装置11软件生成倒梯形的数字掩模101,数字掩模101的像素宽度根据空间光调制器12的像素单元大小和投影物镜13的微缩倍率来计算或调整,例如空间光调制器12的像素单元大小为10.8um,投影物镜13的微缩倍率50X2.16,那么微缩后的空间光调制器12像素单元为0.1um,经计算,倒梯形像素尺寸为a=200pixel,b=400pixel,h决定工作台14的移动方向,根据经验,这里设定800pixel;开启三维微纳结构光刻系统,将倒梯形数字掩模101上载到空间光调制器12上,控制系统15按照设定好的路径控制工作台14移动开始曝光。
图7是本发明的三维微纳结构光刻系统光刻形成的三维微纳结构的俯视示意图,如图7所示,利用数字掩模装置11生成图4所示数字掩模101以及生成矩形图形曝光区101a的数字掩模101,并控制工作台14按照图3a所示的方向移动即可形成三维微纳结构211。
本发明的三维微纳结构光刻系统的结构简单、精度高、成本低、快速高效等优点。本发明的三维微纳结构光刻系统与金刚石车床加工相比,分辨率高出 1-2个数量级,光刻分辨率可达到0.1um。而且,本发明的三维微纳结构光刻系统与掩模套准光刻、灰度掩模曝光相比,本系统光刻出的三维结构更加光滑,且效率更高、成本更低。
第二实施例
图8是本发明第二实施例的数字掩模装置生成的数字掩模的示意图,如图8所示,本实施例的二维微纳结构光刻系统与第一实施例的三维微纳结构光刻系统结构大致相同,不同点在于数字掩模装置11生成的数字掩模101形状不同。
具体地,数字掩模101的图形曝光区101a为多个高度h逐渐减小的直角三角形。
第三实施例
图9是本发明第三实施例的数字掩模装置生成的数字掩模的示意图,如图9所示,本实施例的三维微纳结构光刻系统与第一实施例的三维微纳结构光刻系统结构大致相同,不同点在于数字掩模装置11生成的数字掩模101形状不同。
具体地,数字掩模101的图形曝光区101a为多个高度h相同,面积不同的直角三角形。
第四实施例
图10是本发明第四实施例的数字掩模装置生成的数字掩模的示意图,如图10所示,本实施例的三维微纳结构光刻系统与第一实施例的三维微纳结构光刻系统结构大致相同,不同点在于数字掩模装置11生成的数字掩模101形状不同。
具体地,数字掩模101的图形曝光区101a为阶梯型。
第五实施例
图11是本发明第五实施例的数字掩模装置生成的数字掩模的示意图,如图11所示,本实施例的三维微纳结构光刻系统与第一实施例的三维微纳结构 光刻系统结构大致相同,不同点在于数字掩模装置11生成的数字掩模101形状不同。
具体地,数字掩模101的图形曝光区101a为镰刀型。
第六实施例
本实施例的三维微纳结构光刻系统与第一实施例的三维微纳结构光刻系统结构大致相同,不同点在于数字掩模装置11生成的数字掩模101形状不同。
具体地,数字掩模101的图形曝光区101a为等边三角形,且图形曝光区101a为灰度图,能进一步提高三维形状和曝光剂量的设计灵活度。图形曝光区101a的灰度从中部向着两侧逐渐增加或减少,例如图形曝光区101a中间灰度为0,两侧的灰度为255,但并不以此为限。
第七实施例
本发明还涉及一种三维微纳结构光刻方法,所述方法包括:
提供数字掩模装置11,利用数字掩模装置11生成数字掩模101,数字掩模101包括图形曝光区101a;
提供空间光调制器12,将数字掩模101上次至空间光调制器12,利用空间光调制器12显示数字掩模101时,光线从图形曝光区101a射出,通过调节图形曝光区101a的长度,实现调节曝光剂量,图形曝光区101a的长度与曝光剂量成正比;
提供投影物镜13利用投影物镜13将图形光投影在待光刻的基片21上;
提供工作台14,利用工作台14承载固定基片21,工作台14驱使基片21在平面内沿设定路径移动曝光。在本实施例中,工作台14可采用真空吸附的方式固定基片21,但并不以此为限。
值得一提的是,投影物镜13首先将图形光投影在基片21的边缘,当工作台14驱使基片21沿设定路径移动至基片21的另一边缘时停止移动,此时空间光调制器12停止曝光;
接着投影物镜13沿基片21的长度方向或宽度方向移动一个周期的距离,此时工作台14驱使基片21再次移动,同时空间光调制器12继续曝光,依次类推,直到完成整个幅面的扫描曝光。
进一步地,将基片21固定在工作台工作台14前,在基片21表面涂覆光刻胶22,并基片21进行烘烤,温度85~110℃,时间1~60min。在本实施例中,光刻胶22的厚度为10um,但并不以此为限,可选用正性光刻胶22或负性光刻胶22。
进一步地,利用碱性显影液(例如TMAH、KOH、NaOH)对曝光后的基片21进行显影,显影液浓度为0.6%~1%,显影液温度为20~24℃,显影时间为30~150s;
对显影后的基片21进行冲洗、吹干,使基片21表面形成三维微纳结构211。
进一步地,控制工作台14驱使基片21往复移动两次或两次以上,保持投影物镜13不移动位置,控制空间光调制器12持续曝光,当工作台14停止移动时,空间光调制器12停止曝光,可进一步控制曝光深度和曝光均匀性。
进一步地,数字掩模装置11包括移动终端、电脑、ipad等,通过软件编程在数字掩模装置11上生成数字掩模101,数字掩模101的格式为Bmp位图(2值位图),数字掩模101的图形曝光区101a形状可根据需要自由选择,本实施例以图形曝光区101a为直角三角形为例进行说明,请参照图1和图2,图形曝光区101a具有三个顶角,分别为第一顶角A、第二顶角B和第三顶角C,其中第二顶角B为直角,第一顶角A处的曝光剂量最弱,第二顶角B处的曝光剂量最强,从第一顶角A到第三顶角C的方向,图形曝光区101a的高度h逐渐增大,曝光剂量逐渐增大,对应基片21表面的三维微纳结构211的深度越大,请参照图2。值得一提的是,通过设计和调整图形曝光区101aBC边长的长度(图形曝光区101a的高度h),进而控制曝光剂量,从而获得不同曝光深度的三维微纳结构211。在本实施例中,图形曝光区101a的高度h方 向平行于空间光调制器12的宽度方向或长度方向。
进一步地,数字掩模101还包括非透光区101b,非透光区101b设置于图形曝光区101a的周侧,非透光区101b呈黑色,当空间光调制器12的显示屏整屏显示数字掩模101时,非透光区101b不透光,图形曝光区101a透光,请参照图1。
进一步地,提供控制系统15,利用控制系统15控制工作台14按照设定的路径移动以及控制工作台14的移动速度,通过调节工作台14的移动速度,实现调节曝光剂量,工作台14的移动速度与曝光剂量成反比。请参照图3a,控制系统15控制工作台14沿着X方向移动和Y方向移动,实现对基片21两个方向的曝光;请参照图3b,控制系统15控制工作台14沿着X方向移动、控制工作台14沿着与X方向呈120°的方向移动、控制工作台14沿着与X方向呈240°的方向移动,实现对基片21三个方向的曝光。在本实施例中,控制系统15能控制曝光剂量,从而获得不同曝光深度的三维微纳结构211。
进一步地,提供光源16,利用光源16为空间光调制器12提供光,利用控制系统15调节控制光源16的光强,光源16在工作状态时为常开模式,利用控制系统15调节控制光源16的光强,通过调节光源16的光强,实现调节曝光剂量,光源16的光强与曝光剂量成正比。在本实施例中,控制系统15能调节控制光源16的光强,实现控制控制曝光剂量,从而获得不同曝光深度的三维微纳结构211。光源16例如为汞灯、LED、激光或者其他可以对光刻胶22进行感光的发光器件。
进一步地,提供准直透镜17,准直透镜17设置于光源16的出光方向上,利用准直透镜17准准直光线。
进一步地,本发明的三维微纳结构211光刻方法可以通过调整光强、控制工作台14速度、图形曝光区101a的高度h等参量来控制曝光剂量。
进一步地,空间光调制器12为DMD、LCD或者LCOS等微型显示器件。
进一步地,投影物镜13微缩倍率范围采用5X~100X。
进一步地,工作台14的高精度可支持linch~12inch幅面的光刻。
进一步地,图形曝光区101a为灰度图,能进一步提高三维形状和曝光剂量的设计灵活度。图形曝光区101a的灰度从中部向着两侧逐渐增加或减少,例如图形曝光区101a中间灰度为0,两侧的灰度为255,但并不以此为限。
进一步地,本发明的三维微纳结构光刻方法采用第一实施例的三维微纳结构光刻系统关于三维微纳结构光刻系统的结构和功能请参照第一实施例,此处不再赘述。
本发明的三维微纳结构光刻方法具有光刻精度高、快速高效等优点。
本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (12)

  1. 一种三维微纳结构光刻系统,其特征在于,包括数字掩模装置、空间光调制器、投影物镜和工作台,其中:
    所述数字掩模装置与所述空间光调制器电性连接,所述投影物镜设置于所述空间光调制器与所述工作台之间,所述工作台用于固定待光刻的基片;
    所述数字掩模装置用以生成数字掩模,所述数字掩模包括图形曝光区,所述数字掩模装置将数字掩模上传至所述空间光调制器,所述空间光调制器用以显示所述数字掩模,光经过所述空间光调制器上的所述图形曝光区后射向所述投影物镜,所述图形曝光区的高度与曝光剂量呈正比;
    所述投影物镜将图形光投影在所述基片上,所述工作台驱使所述基片在平面内沿设定路径移动曝光。
  2. 如权利要求1所述的三维微纳结构光刻系统,其特征在于,所述三维微纳结构光刻系统还包括控制系统,所述控制系统与所述投影物镜、所述工作台电性连接,所述控制系统用以控制所述工作台按照设定的路径移动以及控制所述工作台的移动速度。
  3. 如权利要求2所述的三维微纳结构光刻系统,其特征在于,所述三维微纳结构光刻系统还包括光源,所述光源用以为所述空间光调制器提供光,所述光源与所述控制系统电性连接,所述控制系统用以调节控制所述光源的光强。
  4. 如权利要求3所述的三维微纳结构光刻系统,其特征在于,所述三维微纳结构光刻系统还包括准直透镜,所述准直透镜设置于所述光源的出光方向上,所述光源发出的光线经过所述准直透镜后射向所述空间光调制器。
  5. 如权利要求1所述的三维微纳结构光刻系统,其特征在于,所述图形曝光区为灰度图。
  6. 一种三维微纳结构光刻方法,其特征在于,所述方法包括:
    提供数字掩模装置,利用所述数字掩模装置生成数字掩模,所述数字掩 模包括图形曝光区;
    提供空间光调制器,将所述数字掩模上载至所述空间光调制器,利用所述空间光调制器显示所述数字掩模时,光线从所述图形曝光区射出,通过调节所述图形曝光区的长度,实现调节曝光剂量,所述图形曝光区的长度与曝光剂量成正比;
    提供投影物镜,利用所述投影物镜将图形光投影在待光刻的基片上;
    提供工作台,利用所述工作台承载固定所述基片,所述工作台驱使所述基片在平面内沿设定路径移动曝光。
  7. 如权利要求6所述的三维微纳结构光刻方法,其特征在于,提供控制系统,利用所述控制系统控制所述工作台按照设定的路径移动以及控制所述工作台的移动速度,通过调节所述工作台的移动速度,实现调节曝光剂量,所述工作台的移动速度与曝光剂量成反比。
  8. 如权利要求7所述的三维微纳结构光刻方法,其特征在于,提供光源,利用所述光源为所述空间光调制器提供光,所述光源在工作状态时为常开模式,利用所述控制系统调节控制所述光源的光强,通过调节所述光源的光强,实现调节曝光剂量,所述光源的光强与曝光剂量成正比。
  9. 如权利要求8所述的三维微纳结构光刻方法,其特征在于,提供准直透镜,所述准直透镜设置于所述光源的出光方向上,利用所述准直透镜准准直光线。
  10. 如权利要求6所述的三维微纳结构光刻方法,其特征在于,将所述基片固定在所述工作台前,在所述基片表面涂覆光刻胶,并对所述基片进行烘烤,温度85~110℃,时间1~60min。
  11. 如权利要求6所述的三维微纳结构光刻方法,其特征在于,利用碱性显影液对曝光后的所述基片进行显影,显影液浓度为0.6%~1%,显影液温度为20~24℃,显影时间为30~150s;
    对显影后的所述基片进行冲洗、吹干,使所述基片表面形成三维微纳结 构。
  12. 如权利要求6所述的三维微纳结构光刻方法,其特征在于,所述图形曝光区为灰度图。
PCT/CN2020/126064 2019-11-14 2020-11-03 三维微纳结构光刻系统及其方法 WO2021093631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911115004.3A CN112799285B (zh) 2019-11-14 2019-11-14 三维微纳结构光刻系统及其方法
CN201911115004.3 2019-11-14

Publications (1)

Publication Number Publication Date
WO2021093631A1 true WO2021093631A1 (zh) 2021-05-20

Family

ID=75803770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126064 WO2021093631A1 (zh) 2019-11-14 2020-11-03 三维微纳结构光刻系统及其方法

Country Status (2)

Country Link
CN (1) CN112799285B (zh)
WO (1) WO2021093631A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114675507A (zh) * 2022-04-11 2022-06-28 西湖大学 光刻装置和光刻系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050225859A1 (en) * 2004-01-29 2005-10-13 Asml Holding N.V. System and method for calibrating a spatial light modulator array using shearing interferometry
CN104375384A (zh) * 2013-08-14 2015-02-25 上海微电子装备有限公司 一种曝光方法及其曝光装置
CN105301912A (zh) * 2014-07-11 2016-02-03 上海微电子装备有限公司 一种用于光刻设备的曝光装置与曝光方法
CN108303856A (zh) * 2018-01-22 2018-07-20 合肥芯碁微电子装备有限公司 一种基于dmd的光刻机3d灰度图像曝光优化方法
CN108549198A (zh) * 2018-03-30 2018-09-18 深圳摩方新材科技有限公司 一种跨尺度微纳制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100470298C (zh) * 2002-08-24 2009-03-18 无掩模平版印刷公司 连续地直接写的光刻技术
CN101320222A (zh) * 2008-07-02 2008-12-10 中国科学院光电技术研究所 基于数字微镜阵列的步进式无掩模数字曝光装置
CN101393390A (zh) * 2008-09-18 2009-03-25 上海交通大学 移动样品平台实现pmma三维微加工的方法
CN102621816B (zh) * 2012-02-29 2013-11-27 天津芯硕精密机械有限公司 直写式光刻系统中采用灰度方式提高曝光图形质量的方法
CN104459839B (zh) * 2014-12-23 2016-08-24 南昌航空大学 一种利用数字掩模制作曲面微透镜阵列的方法
CN105137720A (zh) * 2015-09-18 2015-12-09 中国科学院光电技术研究所 基于数字微镜阵列制作不同深度的多台阶光栅的无掩模光刻机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050225859A1 (en) * 2004-01-29 2005-10-13 Asml Holding N.V. System and method for calibrating a spatial light modulator array using shearing interferometry
CN104375384A (zh) * 2013-08-14 2015-02-25 上海微电子装备有限公司 一种曝光方法及其曝光装置
CN105301912A (zh) * 2014-07-11 2016-02-03 上海微电子装备有限公司 一种用于光刻设备的曝光装置与曝光方法
CN108303856A (zh) * 2018-01-22 2018-07-20 合肥芯碁微电子装备有限公司 一种基于dmd的光刻机3d灰度图像曝光优化方法
CN108549198A (zh) * 2018-03-30 2018-09-18 深圳摩方新材科技有限公司 一种跨尺度微纳制造方法

Also Published As

Publication number Publication date
CN112799285B (zh) 2022-04-22
CN112799285A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
CN102103332B (zh) 高速数字扫描直写光刻装置
CN105137720A (zh) 基于数字微镜阵列制作不同深度的多台阶光栅的无掩模光刻机
JP2009117671A (ja) 空間光変調ユニット、照明光学装置、露光装置、およびデバイス製造方法
JP2018527610A (ja) クロススケール構造の協同的な作業におけるマスクレスフォトリソグラフィーシステム
CN102998914A (zh) 一种直写式光刻加工系统及光刻方法
WO2021120906A1 (zh) 直写光刻系统和直写光刻方法
KR101446484B1 (ko) 묘화 시스템
CN108549198A (zh) 一种跨尺度微纳制造方法
CN201993577U (zh) 高速数字扫描直写光刻装置
WO2021093631A1 (zh) 三维微纳结构光刻系统及其方法
CN111886543B (zh) 具有可变强度二极管的空间光调制器
JP5361239B2 (ja) 露光装置及びデバイス製造方法
WO2018176762A1 (zh) 混合光刻系统及混合光刻方法
WO2021093634A1 (zh) 三维微纳结构光刻系统及其方法
CN112764324A (zh) 光刻系统的扫描方法和光刻系统
TW201828331A (zh) 決定方法及裝置、程式、資訊記錄媒體、曝光裝置、布局資訊提供方法、布局方法、標記檢測方法、曝光方法、以及元件製造方法
JP2013011715A (ja) 露光方法及びその装置
KR101783076B1 (ko) 노광 방법, 노광 장치 및 물품의 제조 방법
CN214751320U (zh) 光刻系统
TWI755963B (zh) 形成三維微結構的方法和裝置
US20220357668A1 (en) Method and apparatus for greyscale lithography
CN104238278B (zh) 曝光装置以及制造物品的方法
US20230408928A1 (en) Automated metrology method for large devices
JP5682799B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
WO2013018799A1 (ja) 照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888371

Country of ref document: EP

Kind code of ref document: A1