WO2021120906A1 - 直写光刻系统和直写光刻方法 - Google Patents

直写光刻系统和直写光刻方法 Download PDF

Info

Publication number
WO2021120906A1
WO2021120906A1 PCT/CN2020/126362 CN2020126362W WO2021120906A1 WO 2021120906 A1 WO2021120906 A1 WO 2021120906A1 CN 2020126362 W CN2020126362 W CN 2020126362W WO 2021120906 A1 WO2021120906 A1 WO 2021120906A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light spot
direct
spot
deformed
Prior art date
Application number
PCT/CN2020/126362
Other languages
English (en)
French (fr)
Inventor
浦东林
朱鹏飞
朱鸣
邵仁锦
张瑾
王冠楠
陈林森
Original Assignee
苏州苏大维格科技集团股份有限公司
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格科技集团股份有限公司, 苏州大学 filed Critical 苏州苏大维格科技集团股份有限公司
Priority to KR1020227021405A priority Critical patent/KR20220106166A/ko
Priority to JP2022513961A priority patent/JP7345769B2/ja
Publication of WO2021120906A1 publication Critical patent/WO2021120906A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/704Scanned exposure beam, e.g. raster-, rotary- and vector scanning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose

Definitions

  • the present invention relates to the field of micro-nano processing technology, in particular to a direct-write lithography system and a direct-write lithography method.
  • Optoelectronics is a fast-developing high-tech after microelectronics.
  • Current laser devices, photodetectors, diffraction gratings, etc. are the initial development products of optoelectronics technology.
  • Optoelectronics technology has broad development prospects in display, imaging, and detection in the future.
  • the circuit in the microelectronic device is a 2D pattern, and the pattern duty cycle is not high, while the optoelectronic device pays more attention to the 3D surface morphology of the microstructure, with multiple steps and continuous morphology as the main features. Therefore, the processing requirements of 3D microstructures for new applications of optoelectronics are different from the current requirements of microelectronics, and the surface requirements have changed from 2D to 3D. Although microprisms and microlenses, which are commonly used in current products, also have 3D structures, they are still regular structures. With the development of technology, the microstructure requirements for optoelectronic applications have changed from regular 3D to complex 3D. The processing methods of complex 3D structures are of great scientific significance for many research supports in the field of optoelectronics, and are of strategic significance for the development of new industries and new applications.
  • the main micro-processing techniques to achieve 3D micro-nano morphology include precision diamond turning, 3D printing, and photolithography.
  • Diamond turning is the preferred method for making tens of microns in size and regularly arranged 3D topography microstructures. Its typical application is microprism film; 3D printing technology can produce complex 3D structures, but the resolution of traditional galvanometer scanning 3D printing technology is Tens of microns; DLP projection 3D printing has a resolution of 10-20um; two-photon 3D printing technology, although the resolution can reach sub-micrometers, is a serial processing method with extremely low efficiency.
  • the microlithography technology based on the photoresist exposure mode is still the mainstream technology of modern micromachining. Its photoresist material is mature and the process is controllable, and it is the highest precision processing method that can be achieved so far.
  • 3D topography lithography technology is still in its infancy and has not formed a mature technology system.
  • the current progress is as follows:
  • the traditional mask engraving method is used to make multi-step structures, combined with ion etching to control the depth of the structure, the process requires multiple alignments, and the process requirements are high, and it is difficult to process continuous 3D topography.
  • the gray-scale mask exposure method The technical solution is to make a half-tone mask (half-tone). After the mercury lamp light source is irradiated, a gray-scale distributed light field is generated, and the photoresist is exposed to light to form a 3D surface structure. .
  • this type of reticle is difficult to manufacture, has poor structural resolution, complicated processes, and is very expensive.
  • the moving mask exposure method is more suitable for making regular microlens arrays and other structures.
  • the acousto-optic scanning direct writing method uses single-beam direct writing, which has low efficiency and also has the problem of graphic stitching.
  • Electron beam gray-scale direct writing method representative manufacturers and product models include: Japan Joel JBX9300, Germany Vistec, Leica VB6, this method is oriented to relatively large-format devices with extremely low production efficiency, limited by the energy of the electron beam, and 3D appearance The depth control ability is insufficient and can only be applied to the preparation of small-scale 3D microstructures.
  • Digital gray-scale photolithography is a micro-nano processing technology developed by combining gray-scale masks and digital light processing technologies.
  • DMD spatial light modulators are used as digital masks to process continuous three-dimensional surface shapes through one exposure.
  • the embossed microstructure of adopts a step-by-step stitching method for graphics larger than one exposure field of view.
  • the main disadvantage is that the gray-scale modulation capability is limited by the gray-scale level of the DMD, there are obvious steps and gaps between the fields of view, and the uniformity of the light intensity within the spot will affect the surface quality of the 3D profile.
  • the purpose of the present invention is to provide a direct-write lithography system and a direct-write lithography method to realize maskless grayscale lithography with complex surface three-dimensional topography and structure, and to improve lithography accuracy and lithography efficiency.
  • a direct writing lithography system which includes a direct writing light source, a movement mechanism, a central controller, a light spot pattern input device, and a projection optical device;
  • the direct writing light source is used to provide a starting light beam
  • the movement mechanism is used to control the projection optical device to scan along a preset path relative to the photolithography to be exposed, and is used to send out position data of a reference point;
  • the central controller is configured to read the corresponding spot image data in the spot pattern file sequence according to the position data, and upload the spot image data to the spot pattern input device;
  • the light spot pattern input device is used to modulate the initial light beam provided by the direct writing light source to generate pattern light according to the light spot image data, and input the pattern light into the projection optical device;
  • the projection optical device controls the pattern light to project a deformed spot on the surface of the photolithography element, and scans along the preset path under the control of a motion mechanism. During the scanning process, the spot image data varies with the position data. And change, forming a preset controllable deformable light spot.
  • the direct writing lithography system further includes a three-dimensional profile generation device and a three-dimensional profile analysis device;
  • the three-dimensional shape generating device is used to generate three-dimensional shape data
  • the three-dimensional profile analysis device is used to generate a light spot pattern file sequence according to the three-dimensional profile data and preset parameters of the direct writing lithography system, the light spot pattern file sequence including a coordinate sequence and a sequence corresponding to the coordinate sequence Corresponding light spot image data sequence.
  • the inside of the deformed light spot has a fixed light intensity
  • the light spot image data includes a light spot shape
  • the preset parameters of the direct writing lithography system include the preset path, scanning speed, and the fixed light intensity
  • the inside of the deformed light spot is gray-scale distribution light intensity
  • the light spot image data includes the light spot shape and the light intensity distribution within the light spot
  • the preset parameters of the direct writing lithography system include the preset path and scanning speed.
  • the central controller is also used to transmit a displacement instruction to the motion mechanism, so that the projection optical device moves in a three-dimensional direction relative to the photolithography element, so as to realize the displacement and focus of the projection optical device .
  • the present invention also provides a direct writing lithography method, which includes the following steps:
  • S2 Generate a spot pattern file sequence according to the three-dimensional topography data and preset parameters of the direct writing lithography system, the spot pattern file sequence including a coordinate sequence and a spot image data sequence corresponding to the coordinate sequence;
  • S3 Generate pattern light according to the light spot image data sequence, project the pattern light onto the surface of the photolithography to be exposed to form a deformed light spot, and scan along a preset path. During the scanning process, the shape of the deformed light spot changes The position data changes to form a preset controllable deformable light spot.
  • the light intensity distribution of the deformed spot during the scanning process also changes with the position data.
  • step S3 specifically includes:
  • Steps S31 to S35 are repeated until the direct write lithography ends.
  • the step of scanning along a preset path specifically includes controlling the deformed light spot to scan along a plurality of preset paths in a sequential order; the plurality of preset paths are discontinuous or continuous from end to end, so The several paths are parallel or intersect.
  • the projection optical device uses a parallel imaging mode for the projection of the deformed light spot.
  • step S3 the following steps may be further included:
  • the preset parameters of the direct-write lithography system include a photoresist exposure sensitivity curve.
  • the present invention provides a direct-write lithography system and a direct-write lithography method, which adopts a deformed light spot whose shape and/or light intensity distribution constantly changes during a drag scan process to expose the surface of a photolithography element, so that the surface of the photolithography element is exposed.
  • Each evaluation point is exposed to variable doses to realize maskless grayscale lithography of complex surface three-dimensional topography and structure, and to improve lithography accuracy and lithography efficiency.
  • FIG. 1 is a schematic diagram of the shape change of the deformed spot in the drag scanning process and the lithography groove type of the lithography element in the direct writing lithography system of the present invention.
  • Fig. 2a is a schematic diagram of the shape of the deformed light spot at a certain moment in the direct writing lithography system of the present invention.
  • 2b is a schematic cross-sectional view of the deformed light spot scanning the surface of the photolithography element at a certain moment in the direct writing lithography method of the present invention.
  • FIG. 3 is a schematic diagram of the framework of the direct writing lithography system according to the first embodiment of the present invention.
  • FIG. 4 is a flow chart of the steps of the direct write lithography method according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart of specific steps of step S3 in the direct write lithography method shown in FIG. 4.
  • 6a to 6c are schematic diagrams of various preset paths in the direct-write lithography method according to the first embodiment of the present invention.
  • the present invention provides a direct-write lithography system and a direct-write lithography method.
  • a deformed light spot 10 whose shape and/or light intensity distribution changes continuously during a drag scanning process is used to expose the surface of a photolithography element 20, so that the photolithography element
  • Each evaluation point on 20 is exposed to variable dose to achieve maskless grayscale lithography of complex surface three-dimensional topography structure.
  • FIG. 1 shows a schematic diagram of the shape change of the deformed spot 10 of the present invention during the drag scanning process and the lithography groove type of the photolithography element 20.
  • the deformed spot 10 is refreshed at intervals, and the refresh is controlled by the central controller 35, such as refreshing at a fixed time interval at a frame rate, or refreshing at a non-equal time interval according to the requirements of the three-dimensional shape.
  • the central controller 35 such as refreshing at a fixed time interval at a frame rate, or refreshing at a non-equal time interval according to the requirements of the three-dimensional shape.
  • the shape of the deformed light spot 10 changes.
  • the interior of the deformed light spot 10 is gray-scale distribution light intensity.
  • the shape and/or light intensity distribution of the deformed light spot 10 changes.
  • Figure 2a shows a schematic diagram of the shape of the deformed spot 10 at a certain moment.
  • the projection area generated by the direct-write optical head of the projection optical device 37 includes a bright area 101 and a light-shielding area 102.
  • the area 101 is the inside of the deformed light spot 10.
  • FIG. 2b shows a schematic cross-sectional view of the deformed spot 10 scanning the surface of the photolithography 20 at a certain moment. For any evaluation point Q on the surface of the photolithography 20, the deformed light spot 10 scans the evaluation point Q along a certain scanning path and a certain scanning speed.
  • the direct writing lithography method of the present invention controls the front end 11 and the tail end 12 of the deformed light spot 10
  • the exposure time and/or light intensity distribution across the evaluation point Q, the exposure time and light intensity distribution affect the exposure amount at the evaluation point Q, and the etching depth of multiple evaluation points nearby defines the lithography 20 at this position Lithography groove type.
  • the points on the inner line A-A' sequentially scan through the evaluation point Q, and the exposure at the evaluation point Q is affected by the sum of the light intensity of each point on the line A-A'
  • the scanning speed is affected; when the deformed spot 10 scans along another path, the points on the inner line B-B' scan through the evaluation point Q in turn, and the exposure at the evaluation point Q is affected by the points on the line B-B'
  • the influence of light intensity and scanning speed is affected by the points on the line B-B' The influence of light intensity and scanning speed.
  • a series of calculations can be calculated and designed.
  • the shape and/or light intensity of the light spot has a corresponding relationship with the (x, y) coordinates passed by the scanning path.
  • the series of specific two-dimensional light spot shapes and/or the corresponding relationship between light intensity and position data constitute a light spot pattern file sequence.
  • the direct writing lithography system of the present invention generates a deformed light spot 10 whose shape and/or light intensity distribution continuously changes during the drag scanning process according to the light spot pattern file sequence.
  • the direct writing lithography system of this embodiment includes: a three-dimensional profile generating device 31, a three-dimensional profile analyzing device 32, a direct writing light source 33, a movement mechanism 34, a central controller 35, a spot pattern input device 36, and Projection optics 37.
  • the three-dimensional shape generating device 31, the three-dimensional shape analyzing device 32 and the central controller 35 can be set in one or more computers or servers.
  • the three-dimensional topography generating device 31 is used for generating three-dimensional topography data.
  • the three-dimensional topography data includes, but is not limited to, the x, y lateral coordinates of each point of the three-dimensional topography and the corresponding z-direction height data.
  • the three-dimensional topography data is generated by a three-dimensional modeling software, which can be exported for computer analysis
  • a general three-dimensional data format such as STL, 3DS, STP, IGS, OBJ, etc., and preferably a vector file.
  • the three-dimensional shape analysis device 32 is used for generating a spot pattern file sequence according to the three-dimensional shape data and preset parameters of the direct writing lithography system.
  • the spot pattern file sequence includes a coordinate sequence and a spot image data sequence corresponding to the coordinate sequence.
  • a fixed light intensity is used inside the deformed light spot 10
  • each light spot image data in the light spot image data sequence includes a light spot shape
  • the way of defining the light spot shape in the light spot image data is multiple coordinates describing the outline of the light spot, or The binary light intensity data of each point in the projected area generated by the direct-write optical head.
  • the preset parameters of the direct write lithography system include the preset path P, the scanning speed, and the fixed light intensity, and are not limited thereto.
  • the light spot pattern file sequence is sequentially stored in the memory after being generated, and the central controller 35 can perform operations such as reading and matching the light spot pattern file sequence in the memory.
  • the direct writing light source 33 is used to provide the starting light beam to the spot pattern input device 36.
  • the direct-write light source 33 may be an LED, semiconductor laser, solid-state laser, gas laser, etc. that photosensitize the lithographic material on the lithography element 20, and is preferably an incoherent continuous light source.
  • the movement mechanism 34 is used to control the projection optical device 37 to scan along the preset path P relative to the photolithography 20 to be exposed, and is used to send position data. It should be noted that the scanning, movement or displacement referred to in the present invention refers to the relative displacement of the projection optical device 37 and the photolithography element 20.
  • the movement mechanism 34 includes a first stepping shaft and a first driving motor that drive the projection optical device 37 to move in the horizontal direction, and a second stepping shaft and a second drive motor that drive the projection optical device 37 to move up and down; or,
  • the movement mechanism 34 includes a first stepping shaft and a first drive motor that drive the stage carrying the photolithography 20 to move in the horizontal direction, and a second stepping shaft and a second drive motor that drive the stage to move up and down;
  • a combination of two exercise modes can be used.
  • the movement of the projection optical device 37 or the stage in the horizontal direction adopts a rectangular coordinate system or a polar coordinate system.
  • the movement mechanism 34 obtains position data by means of laser or ultrasound.
  • the position data includes but is not limited to: the coordinates of the reference point in the deformed spot 10, the coordinates of the reference point on the projection optical device 37, and the reference point of the movement mechanism 34. Coordinates etc.
  • the central controller 35 reads the corresponding spot image data in the spot pattern file sequence according to the position data, and uploads the spot image data to the spot pattern input device 36. Specifically, the central controller 35 matches the stored spot pattern file sequence with the position data, reads the spot shape corresponding to the position data, and controls the spot pattern input device 36 to generate and refresh the corresponding pattern light. Further, the central controller 35 is also used to transmit a displacement instruction to the motion mechanism 34, so that the projection optical device 37 moves in a three-dimensional direction relative to the photolithography 20, so as to realize the displacement and focus of the projection optical device 37.
  • the spot pattern input device 36 is used to modulate the initial light beam provided by the direct writing light source 33 to generate pattern light according to the spot image data, and input the pattern light into the projection optical device 37.
  • the spot pattern input device 36 adopts a spatial light modulator with a two-dimensional array structure, such as a digital micromirror array (DMD), a liquid crystal on silicon (LCOS), and the like.
  • DMD digital micromirror array
  • LCOS liquid crystal on silicon
  • the projection optical device 37 is used to control the pattern light to project a dynamically deformed structure spot on the surface of the photolithography member 20, and scan along a preset path P driven by the movement mechanism 34.
  • the projection optical device 37 also adjusts the focus with the assistance of the central controller 35 and the movement mechanism 34, and controls the projection area of the deformed light spot 10 of a certain shape on the surface of the photolithography 20 through the focus adjustment.
  • the position data of the reference point is continuously uploaded to the central controller 35, and the shape of the graphic light is refreshed accordingly. Therefore, the shape of the deformed spot 10 changes with the position data to form a preset controllable deformed spot.
  • the deformed spot 10 maintains the shape after the nth refresh, so the scanning method of the projection optical device 37 is drag and step scan.
  • the projection optical device 37 uses a parallel imaging method for the projection of the deformed light spot 10, such as a flat-field miniature imaging projection optical method instead of a serial imaging method such as an acousto-optic modulation optical method and a galvanometer optical method.
  • the direct writing lithography system may further include a beam shaper that shapes the initial light beam emitted by the direct writing light source 33, and the beam shaper is located between the direct writing light source 33 and the spot pattern input device 36.
  • this embodiment also provides a direct write lithography method, which includes the following steps:
  • the spot pattern file sequence includes a coordinate sequence and a spot image data sequence corresponding to the coordinate sequence;
  • S3 Generate pattern light according to the spot image data sequence, project the pattern light onto the surface of the photolithography 20 to be exposed to form a deformed spot 10, and scan along the preset path P.
  • the shape of the deformed spot 10 varies with the position data And change, forming a preset controllable deformable light spot.
  • step S3 includes:
  • Steps S31 to S35 are repeated until the direct write lithography ends.
  • step S3 the step of scanning along the preset path P specifically includes controlling the deformed light spot 10 to scan along a number of preset paths P in a sequential order.
  • the preset paths P are discontinuous or continuous at the beginning and end, and among the plurality of paths Parallel or cross.
  • FIGS. 6a to 6c show three special examples of the scanning path.
  • the deformed spot 10 scans along a continuous preset path P, and the scanning area of the direct-write optical head of the projection optical device 37 forms a continuous strip.
  • the graphics 13 are spliced without overlap to form a format pattern; in Figure 6b, the deformed spot 10 scans along an intermittent preset path P, the scanning area of the direct-write optical head forms a plurality of striped patterns 13, and the plurality of preset paths P are parallel and The strip pattern 13 has an overlapping area 14 to form a format pattern; in Figure 6c, the deformed spot 10 scans along a preset path P, and the preset path P has an intersection.
  • the scanning area of the direct write optical head forms multiple strip patterns 13 and has Overlapping and splicing to form a format graphic.
  • step S3 the following steps may be included:
  • a corresponding thickness of photoresist 22 is coated on the surface of the substrate 21;
  • the preset parameters of the direct-write lithography system include the photoresist 22 exposure sensitivity curve, which is the corresponding relationship between the exposure amount and the photoresist exposure sensitivity, and the photoresist exposure sensitivity refers to the photoresist exposure sensitivity curve.
  • the preset parameters of the direct-write lithography system also include the thickness of the photoresist 22, the contrast of the photoresist 22, etc.
  • the contrast of the photoresist 22 refers to the steep transition of the photoresist 22 from the exposed area to the non-exposed area. degree.
  • step S3 it can also include the steps of: performing chemical treatments such as development on the photoresist 20, and removing part of the photoresist 22 in gray scale.
  • the removal depth of the photoresist 22 is related to the exposure of each point on the surface, so that Obtain the three-dimensional micro-nano structure graphic master with the expected three-dimensional morphology.
  • it may further include the steps of performing ion etching, duplication, electroplating and the like on the basis of the three-dimensional micro-nano structure pattern master.
  • This embodiment provides a direct-write lithography system and a direct-write lithography method.
  • the difference between the direct-write lithography method of this embodiment and the above-mentioned first embodiment is as follows:
  • the inside of the deformed light spot 10 is gray-scale distribution light intensity
  • the light spot image data includes the light spot shape and the light intensity distribution in the light spot.
  • the preset parameters of the direct-write lithography system include the preset path P and the scanning speed, and the preset parameters may further include the exposure sensitivity curve, thickness, contrast, etc. of the photoresist 22.
  • a spot pattern file sequence is generated according to the three-dimensional shape data, the preset path P, and the scanning speed.
  • the spot pattern file sequence includes a coordinate sequence, a spot image data sequence corresponding to the coordinate sequence, and a light spot corresponding to the coordinate sequence. Strongly distributed sequence.
  • step S3 the light intensity distribution of the deformed spot 10 also changes with the position data during the scanning process.
  • step S32 the step of reading the corresponding spot image data in the spot pattern file sequence according to the position data specifically includes reading the corresponding spot shape and light intensity distribution in the spot in the spot pattern file sequence according to the position data.
  • the deformed spot 10 of the nth (n is a positive integer) refresh and the deformed spot 10 of the n+1th refresh may have the same shape and different light intensity distributions, or may have different shapes and different lights. Strong distribution.
  • the present invention provides a direct-write lithography system and a direct-write lithography method.
  • the deformed light spot 10 whose shape and/or light intensity distribution is constantly changing during the drag scan process is used to perform the process on the surface of the photolithography element 20.
  • Exposure makes each evaluation point on the photolithography member 20 subject to variable dose exposure to achieve maskless grayscale lithography. Due to the high flexibility of the light spot pattern file sequence, it can achieve complex surface three-dimensional topography and structure without the need for high-level fabrication.
  • the precision halftone mask saves costs and improves the lithography accuracy and lithography efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

一种直写光刻系统和直写光刻方法,其中直写光刻系统包括直写光源(33)、运动机构(34)、中央控制器(35)、光斑图形输入装置(26)以及投影光学装置(37);运动机构(34)用于带动投影光学装置(37)沿预设路径(P)扫描,并用于发出参考点的位置数据;中央控制器(35)用于根据位置数据读取光斑图形文件序列中对应的光斑图像数据;光斑图形输入装置(26)用于根据光斑图像数据将直写光源(33)提供的起始光束调制生成图形光;投影光学装置(37)用于根据图形光向光刻件(20)的表面投影出变形光斑(10),并在运动机构(34)的带动下沿预设路径(P)扫描,在扫描过程中光斑图像数据随位置数据而变化,形成预设的可控变形光斑。直写光刻系统和直写光刻方法实现了复杂表面三维形貌结构的无掩模灰度光刻,并提高了光刻精度和光刻效率。

Description

直写光刻系统和直写光刻方法
本申请要求了申请日为2019年12月17日,申请号为201911303595.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及微纳米加工技术领域,尤其涉及一种直写光刻系统和直写光刻方法。
背景技术
光电子是继微电子之后迅速发展的高新技术,当前的激光器件、光探测器、衍射光栅等是光电子技术的初始发展产品,光电子技术未来在显示、成像、探测等方面有着广阔的发展前景。
从器件微结构分析,微电子器件中的电路是2D图形,且图形占空比不高,而光电子器件更关注微结构的表面3D形貌,多台阶、连续形貌是主要特征。所以面向光电子新应用的3D微结构的加工需求与当前微电子需求不同,面型需求从2D转变到3D。虽然当前产品应用较普遍的微棱镜、微透镜等也具有3D结构,但还属于规则结构,随着技术发展,光电子应用微结构需求从规则3D到复杂3D转变。复杂3D结构的加工方法对于光电子领域诸多研究支撑极具科学意义,对于新行业、新应用的发展具有战略意义。
当前,实现3D微纳形貌的主要微加工技术手段有精密金刚石车削、3D打印、光刻等技术。金刚石车削是制作数十微米尺寸、规则排列3D形貌微结构的优选方法,其典型应用是微棱镜膜;3D打印技术可以制作复杂的3D结构,但传统振镜扫描3D打印技术的分辨率为数十微米;DLP投影式3D打印的分辨率为10-20um;双光子3D打印技术,虽然分辨率能达到亚微米,但属于串行加工方式,效率极低。基于光刻胶曝光模式的微光刻技术仍然是现代微加工的主流技术手段,其光刻胶材料成熟,工艺可控,是目前为止所能 达到的最高精度的加工手段。
2D投影光刻技术已经广泛应用于微电子领域,3D形貌光刻技术目前还处于初级阶段,没有形成成熟的技术体系,目前进展如下:
1、传统掩模套刻法,用于做多台阶结构,结合离子刻蚀控制结构深度,工艺过程需要多次对准,工艺要求高,难以加工连续的3D形貌。
2、灰度掩模曝光法,其技术方案是制作半色调掩模版(half-tone),汞灯光源照射后产生灰度分布的透过光场,对光刻胶进行感光,形成3D表面结构。然而,这类掩模版制作难度大,结构分辨率差,流程复杂,且价格非常昂贵。
3、移动掩膜曝光法,较适于制作规则的微透镜阵列等结构。
4、声光扫描直写法,使用单光束直写,效率较低,还存在图形拼缝问题。
5、电子束灰度直写法,代表厂商及产品型号包括:日本Joel JBX9300、德国Vistec、Leica VB6,该方法面向较大幅面的器件制备效率极低,受限于电子束的能量,3D形貌深度调控能力不足,只能适用于制备小尺度的3D形貌微结构。
6、数字灰度光刻法,属于将灰度掩模和数字光处理技术结合而发展来的微纳加工技术,采用DMD空间光调制器作为数字掩膜,通过一次曝光加工出连续三维面形的浮雕微结构,对于大于一个曝光视场的图形采用步进拼接的方法。主要不足是灰度调制能力受DMD灰度等级的限制,存在明显台阶问题和视场间拼缝问题,并且光斑内部光强均匀性会影响3D形貌的面型品质。
综上,3D形貌光刻的研究现状与前沿需求之间存在着明显差距,因此,实现任意3D形貌的高品质光刻方法成为了相关领域对微光刻技术提出的重要且迫切的需求。
发明内容
本发明的目的在于提供一种直写光刻系统和直写光刻方法,以实现复杂表面三维形貌结构的无掩模灰度光刻,并提高光刻精度和光刻效率。
根据本发明的目的提供一种直写光刻系统,该直写光刻系统包括直写光源、运动机构、中央控制器、光斑图形输入装置以及投影光学装置;
所述直写光源用于提供起始光束;
所述运动机构用于控制所述投影光学装置相对于待曝光的光刻件沿预设路径扫描,并用于发出参考点的位置数据;
所述中央控制器用于根据所述位置数据读取光斑图形文件序列中对应的光斑图像数据,并将所述光斑图像数据上载至所述光斑图形输入装置;
所述光斑图形输入装置用于根据所述光斑图像数据将所述直写光源提供的起始光束调制生成图形光,并将所述图形光输入投影光学装置;
所述投影光学装置控制所述图形光向所述光刻件的表面投影出变形光斑,并在运动机构的控制下沿所述预设路径扫描,在扫描过程中所述光斑图像数据随位置数据而变化,形成预设的可控变形光斑。
进一步地,所述直写光刻系统还包括三维形貌生成装置和三维形貌分析装置;
所述三维形貌生成装置用于生成三维形貌数据;
所述三维形貌分析装置用于根据所述三维形貌数据和所述直写光刻系统的预设参数生成光斑图形文件序列,所述光斑图形文件序列包括坐标序列和与所述坐标序列相对应的光斑图像数据序列。
进一步地,所述变形光斑的内部为固定光强,所述光斑图像数据包括光斑形状;所述直写光刻系统的预设参数包括所述预设路径、扫描速度以及所述固定光强。
进一步地,所述变形光斑的内部为灰度分布光强,所述光斑图像数据包括光斑形状和光斑内光强分布;所述直写光刻系统的预设参数包括所述预设路径以及扫描速度。
进一步地,所述中央控制器还用于向所述运动机构传输位移指令,以使得所述投影光学装置相对于所述光刻件进行三维方向的运动,实现所述投影光学装置的位移与聚焦。
本发明还提供了一种直写光刻方法,该直写光刻方法包括以下步骤:
S1:生成三维形貌数据;
S2:根据所述三维形貌数据和直写光刻系统的预设参数生成光斑图形文件序列,所述光斑图形文件序列包括坐标序列和与所述坐标序列相对应的光斑图像数据序列;
S3:根据所述光斑图像数据序列生成图形光,将所述图形光投影至待曝光的光刻件的表面形成变形光斑,并沿预设路径扫描,在扫描过程中所述变形光斑的形状随位置数据而变化,形成预设的可控变形光斑。
进一步地,在所述步骤S3中,在扫描过程中所述变形光斑的光强分布也随位置数据而变化。
进一步地,所述步骤S3具体包括:
S31:获取参考点的位置数据;
S32:根据所述位置数据读取所述光斑图形文件序列中对应的光斑图像数据;
S33:根据所述光斑图像数据生成所述图形光,
S34:将所述图形光投影至所述光刻件的表面形成所述变形光斑;
S35:控制所述变形光斑进行一定位移;
重复执行步骤S31~S35,至直写光刻结束。
进一步地,在所述步骤S3中,沿预设路径扫描的步骤具体包括,控制所述变形光斑按先后顺序沿若干条预设路径扫描;所述若干条预设路径首尾间断或者首尾连续,所述若干条路径之间平行或者存在交叉。
进一步地,所述投影光学装置对所述变形光斑的投影采用并行成像方式。
进一步地,在所述步骤S3之前还可以包括步骤:
提供基板;
根据三维形貌的需求,在所述基板的表面涂布相应厚度的光刻胶;
所述步骤S2中,所述直写光刻系统的预设参数包括光刻胶曝光灵敏度曲线。
本发明提供一种直写光刻系统和直写光刻方法,采用在拖曳扫描过程中形状和/或光强分布不断变化的变形光斑对光刻件的表面进行曝光,使得光刻件上的各个评估点受到变剂量曝光,以实现复杂表面三维形貌结构的无掩模灰度光刻,并提高了光刻精度和光刻效率。
附图说明
图1为本发明的直写光刻系统中变形光斑在拖曳扫描过程中的形状变化和光刻件的光刻槽型示意图。
图2a为本发明的直写光刻系统中变形光斑在某一时刻的形状示意图。
图2b为本发明的直写光刻方法中在某一时刻变形光斑扫描过光刻件表面的剖面示意图。
图3为本发明第一实施例的直写光刻系统的框架示意图。
图4为本发明第一实施例的直写光刻方法的步骤流程图。
图5为图4所示直写光刻方法中步骤S3的具体步骤流程图。
图6a~图6c为本发明第一实施例的直写光刻方法中多种预设路径的示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明提供一种直写光刻系统和直写光刻方法,采用在拖曳扫描过程中形状和/或光强分布不断变化的变形光斑10对光刻件20的表面进行曝光,使 得光刻件20上的各个评估点受到变剂量曝光,以实现复杂表面三维形貌结构的无掩模灰度光刻。
请参阅图1和图3,图1示出了本发明的变形光斑10在拖曳扫描过程中的形状变化和光刻件20的光刻槽型示意图。沿扫描路径,变形光斑10进行间隔刷新,该刷新由中央控制器35进行控制,例如以固定的时间间隔进行帧频刷新,或者根据三维形貌的需求进行非等时间间隔的刷新。每次刷新后,变形光斑10的形状发生变化,进一步地,变形光斑10的内部为灰度分布光强,每次刷新后,变形光斑10的形状和/或光强分布发生变化。
请参阅图2a和图2b,图2a示出了变形光斑10在某一时刻的形状示意图,投影光学装置37的直写光学头所生成的投影面积内包括亮区101和遮光区102,称亮区101为变形光斑10的内部。图2b示出了在某一时刻变形光斑10扫描过光刻件20表面的剖面示意图。对于光刻件20表面的任一评估点Q,变形光斑10沿一定扫描路径和一定扫描速度扫过该评估点Q,本发明的直写光刻方法调控变形光斑10的前端11和尾端12掠过评估点Q的曝光时间和/或光强分布,曝光时间和光强分布影响评估点Q处的曝光量,进而附近多个评估点的刻蚀深度定义了光刻件20在该位置的光刻槽型。例如,当变形光斑10沿一路径扫描时,内部线条A-A’上的各点依次扫过评估点Q,评估点Q处的曝光量受线条A-A’上的各点的光强和扫描速度影响;当变形光斑10沿另一路径扫描时,内部线条B-B’上的各点依次扫过该评估点Q,评估点Q处的曝光量受线条B-B’上的各点的光强和扫描速度影响。
因此,根据所需光刻形成的三维形貌,结合直写光学系统中扫描路径、扫描速度等预设参数,再配合光刻件20针对曝光量的敏感度等因素,可以推算设计出一系列特定的二维光斑,光斑的形状和/或光强与扫描路径所经过的(x,y)坐标具有对应关系。该系列特定的二维光斑的形状和/或光强与位置数据的对应关系构成光斑图形文件序列。本发明的直写光刻系统根据光斑图形文件序列产生在拖曳扫描过程中形状和/或光强分布不断变化的变形光斑10。
第一实施例
请参阅图3,本实施例的直写光刻系统包括:三维形貌生成装置31、三维形貌分析装置32、直写光源33、运动机构34、中央控制器35、光斑图形输入装置36以及投影光学装置37。其中,三维形貌生成装置31和三维形貌分析装置32和中央控制器35可以设置于一台或多台计算机或服务器中。
三维形貌生成装置31用于生成三维形貌数据。三维形貌数据包含但不限于,三维形貌各个点位的x、y横向坐标及对应的z向高度数据,该三维形貌数据通过三维造型软件生成,该三维造型软件可以导出供计算机解析的通用三维数据格式,例如:STL、3DS、STP、IGS、OBJ等,并优选地为矢量文件。
三维形貌分析装置32用于根据三维形貌数据和直写光刻系统的预设参数生成光斑图形文件序列,光斑图形文件序列包括坐标序列和与坐标序列相对应的光斑图像数据序列。本实施例中,变形光斑10的内部采用固定光强,光斑图像数据序列中的每个光斑图像数据包括光斑形状,光斑形状在光斑图像数据中的限定方式为描述光斑轮廓的多个坐标,或者直写光学头所生成的投影面积内各点的二值化光强数据。直写光刻系统的预设参数包括预设路径P、扫描速度以及该固定光强,且不限于此。光斑图形文件序列在生成后按顺序存储在存储器中,中央控制器35可对存储器中的光斑图形文件序列进行读取、匹配等操作。
直写光源33用于向光斑图形输入装置36提供起始光束。直写光源33可以采用对光刻件20上的光刻材料感光的LED、半导体激光器、固体激光器、气体激光器等,优选地为非相干性的连续光源。
运动机构34用于控制投影光学装置37相对于待曝光的光刻件20沿预设路径P扫描,并用于发出位置数据。需要说明的是,本发明所称扫描、运动或位移为投影光学装置37和光刻件20的相对位移。具体地,运动机构34包括带动投影光学装置37在水平方向移动的第一步进轴和第一驱动电机,以及 带动投影光学装置37上下移动的第二步进轴和第二驱动电机;或者,运动机构34包括带动承载光刻件20的载物台在水平方向移动的第一步进轴和第一驱动电机,以及带动载物台上下移动的第二步进轴和第二驱动电机;也可以采用两种运动方式的结合。投影光学装置37或载物台在水平方向上的移动采用直角坐标系统或极坐标系统。运动机构34通过激光或超声波等方式获取位置数据,该位置数据包括且不限于:变形光斑10内参考点的坐标、投影光学装置37上参考点的坐标、运动机构34上进行移动的参考点的坐标等。
中央控制器35根据位置数据读取光斑图形文件序列中对应的光斑图像数据,并将光斑图像数据上载至光斑图形输入装置36。具体地,中央控制器35将存储的光斑图形文件序列和位置数据进行匹配,读取与位置数据对应的光斑形状,控制光斑图形输入装置36生成对应的图形光并刷新。进一步地,中央控制器35还用于向运动机构34传输位移指令,以使得投影光学装置37相对于光刻件20进行三维方向的运动,实现投影光学装置37的位移与聚焦。
光斑图形输入装置36用于根据光斑图像数据将直写光源33提供的起始光束调制生成图形光,并将图形光输入投影光学装置37。光斑图形输入装置36采用二维阵列结构的空间光调制器,例如数字微镜阵列(DMD)、硅基液晶(LCOS)等。
投影光学装置37用于控制图形光向光刻件20的表面投影出动态变形结构光斑,并在运动机构34的带动下沿预设路径P扫描。投影光学装置37还在中央控制器35和运动机构34的辅助下进行调焦,通过调焦控制一定形状的变形光斑10在光刻件20表面的投影面积。由于在扫描过程中,参考点的位置数据被不断上传至中央控制器35,图形光的形状随之进行刷新,因此变形光斑10的形状随位置数据而变化,形成预设的可控变形光斑。在第n(n为正整数)次刷新和第n+1次刷新的间隔时间内,变形光斑10保持第n次刷新后的形状,因此投影光学装置37的扫描方式为拖曳步进式扫描。投影光学装置37对变形光斑10的投影采用并行成像方式,如采用平场微缩成像投影 光学方法,而非声光调制光学方法、振镜光学方法等串行成像方式。
进一步地,直写光刻系统还可以包括对直写光源33发出的起始光束进行整形的光束整形器,光束整形器位于直写光源33和光斑图形输入装置36之间。
请参图4,本实施例还提供了一种直写光刻方法,该方法包括以下步骤:
S1:生成三维形貌数据;
S2:根据三维形貌数据和直写光刻系统的预设参数生成光斑图形文件序列,光斑图形文件序列包括坐标序列和与坐标序列相对应的光斑图像数据序列;
S3:根据光斑图像数据序列生成图形光,将图形光投影至待曝光的光刻件20的表面形成变形光斑10,并沿预设路径P扫描,在扫描过程中变形光斑10的形状随位置数据而变化,形成预设的可控变形光斑。
具体地,请参图5,步骤S3包括:
S31:获取位置数据;
S32:根据位置数据读取光斑图形文件序列中对应的光斑图像数据;
S33:根据光斑图像数据生成图形光,
S34:将图形光投影至光刻件20的表面形成变形光斑10;
S35:控制变形光斑10进行一定位移;
重复执行步骤S31~S35,至直写光刻结束。
在步骤S3中,沿预设路径P扫描的步骤具体包括,控制变形光斑10按先后顺序沿若干条预设路径P扫描,该若干条预设路径P首尾间断或者首尾连续,且若干条路径之间平行或者存在交叉。请参图6a至图6c,示出了扫描路径的三个特例,图6a中变形光斑10沿连续的预设路径P扫描,投影光学装置37的直写光学头的扫描面积形成连续的条带图形13并无重叠地拼接,构成幅面图形;图6b中变形光斑10沿间断的预设路径P扫描,直写光学头的扫描面积形成多个条带图形13,多条预设路径P平行且条带图形13存在 交叠区域14,构成幅面图形;图6c中变形光斑10沿预设路径P扫描,预设路径P存在交叉,直写光学头的扫描面积形成多个条带图形13并有重叠地拼接,构成幅面图形。
在步骤S3之前还可以包括步骤:
提供基板21;
根据三维形貌的需求,在基板21的表面涂布相应厚度的光刻胶22;
在上述步骤S2中,直写光刻系统的预设参数包括光刻胶22曝光灵敏度曲线,该曲线为曝光量和光刻胶曝光灵敏度的对应关系,光刻胶曝光灵敏度是指在光刻胶22上产生一个良好的图形所需一定波长光的最小能量值。进一步地,直写光刻系统的预设参数还包括光刻胶22的厚度、光刻胶22的对比度等,光刻胶22的对比度指光刻胶22从曝光区到非曝光区过渡的陡度。
在上述步骤S3之后还可以包括步骤:对光刻件20进行显影等化学处理,灰度化地去除部分光刻胶22,光刻胶22的去除深度与表面各点获得的曝光量相关,从而获得具有预期三维形貌的三维微纳结构图形母版。其后还可以进一步包括步骤,在三维微纳结构图形母版的基础上进行离子刻蚀、复制、电镀等步骤。
第二实施例
本实施例提供一种直写光刻系统和直写光刻方法。本实施例的直写光刻方法与上述第一实施例的区别点在于:
变形光斑10的内部为灰度分布光强,光斑图像数据包括光斑形状和光斑内光强分布。直写光刻系统的预设参数包括预设路径P以及扫描速度,该预设参数还可以进一步包括光刻胶22的曝光灵敏度曲线、厚度、对比度等。
本实施例的直写光刻方法与上述第一实施例的区别点在于:
在步骤S2中,根据三维形貌数据、预设路径P、扫描速度生成光斑图形文件序列,光斑图形文件序列包括坐标序列、与坐标序列相对应的光斑图像数据序列以及与坐标序列相对应的光强分布序列。
在步骤S3中,在扫描过程中变形光斑10的光强分布也随位置数据而变化。进一步地,在步骤S32中,根据位置数据读取光斑图形文件序列中对应的光斑图像数据的步骤具体为,根据位置数据读取光斑图形文件序列中对应的光斑形状和光斑内光强分布。
在本实施例中,第n(n为正整数)次刷新的变形光斑10和第n+1次刷新的变形光斑10,可能具有相同形状和不同光强分布,也可能具有不同形状和不同光强分布。
综上所述,本发明提供了一种直写光刻系统和直写光刻方法,采用在拖曳扫描过程中形状和/或光强分布不断变化的变形光斑10对光刻件20的表面进行曝光,使得光刻件20上的各个评估点受到变剂量曝光,以实现无掩模灰度光刻,由于光斑图形文件序列具有高度灵活性,可以实现复杂表面三维形貌结构,不需要制作高精度的半色调掩模版,节约了成本,并提高了光刻精度和光刻效率。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不矛盾,都应当认为是本说明书记载的范围。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种直写光刻系统,其特征在于,包括直写光源(33)、运动机构(34)、中央控制器(35)、光斑图形输入装置(36)以及投影光学装置(37);
    所述直写光源(33)用于提供起始光束;
    所述运动机构(34)用于控制所述投影光学装置(37)相对于待曝光的光刻件(20)沿预设路径(P)扫描,并用于发出参考点的位置数据;
    所述中央控制器(35)用于根据所述位置数据读取光斑图形文件序列中对应的光斑图像数据,并将所述光斑图像数据上载至所述光斑图形输入装置(36);
    所述光斑图形输入装置(36)用于根据所述光斑图像数据将所述直写光源(33)提供的起始光束调制生成图形光,并将所述图形光输入投影光学装置(37);
    所述投影光学装置(37)控制所述图形光向所述光刻件(20)的表面投影出变形光斑(10),并在运动机构(34)的控制下沿所述预设路径(P)扫描,在扫描过程中所述光斑图像数据随位置数据而变化,形成预设的可控变形光斑。
  2. 根据权利要求1所述的直写光刻系统,其特征在于,所述直写光刻系统还包括三维形貌生成装置(31)和三维形貌分析装置(32);
    所述三维形貌生成装置(31)用于生成三维形貌数据;
    所述三维形貌分析装置(32)用于根据所述三维形貌数据和所述直写光刻系统的预设参数生成光斑图形文件序列,所述光斑图形文件序列包括坐标序列和与所述坐标序列相对应的光斑图像数据序列。
  3. 根据权利要求1所述的直写光刻系统,其特征在于,所述变形光斑(10)的内部为固定光强,所述光斑图像数据包括光斑形状;所述直写光刻系统的预设参数包括所述预设路径(P)、扫描速度以及所述固定光强。
  4. 根据权利要求1所述的直写光刻系统,其特征在于,所述变形光斑(10)的内部为灰度分布光强,所述光斑图像数据包括光斑形状和光斑内光强分布; 所述直写光刻系统的预设参数包括所述预设路径(P)以及扫描速度。
  5. 根据权利要求1所述的直写光刻系统,其特征在于,所述中央控制器(35)还用于向所述运动机构(34)传输位移指令,以使得所述投影光学装置(37)相对于所述光刻件(20)进行三维方向的运动,实现所述投影光学装置(37)的位移与聚焦。
  6. 一种直写光刻方法,其特征在于,包括以下步骤:
    S1:生成三维形貌数据;
    S2:根据所述三维形貌数据和直写光刻系统的预设参数生成光斑图形文件序列,所述光斑图形文件序列包括坐标序列和与所述坐标序列相对应的光斑图像数据序列;
    S3:根据所述光斑图像数据序列生成图形光,将所述图形光投影至待曝光的光刻件(20)的表面形成变形光斑(10),并沿预设路径(P)扫描,在扫描过程中所述变形光斑(10)的形状随位置数据而变化,形成预设的可控变形光斑。
  7. 根据权利要求6所述的直写光刻方法,其特征在于,在所述步骤S3中,在扫描过程中所述变形光斑(10)的光强分布也随位置数据而变化。
  8. 根据权利要求6所述的直写光刻方法,其特征在于,所述步骤S3具体包括:
    S31:获取参考点的位置数据;
    S32:根据所述位置数据读取所述光斑图形文件序列中对应的光斑图像数据;
    S33:根据所述光斑图像数据生成所述图形光,
    S34:将所述图形光投影至所述光刻件(20)的表面形成所述变形光斑(10);
    S35:控制所述变形光斑(10)进行一定位移;
    重复执行步骤S31~S35,至直写光刻结束。
  9. 根据权利要求6所述的直写光刻方法,其特征在于,在所述步骤S3中,沿预设路径(P)扫描的步骤具体包括,控制所述变形光斑(10)按先后顺序 沿若干条预设路径(P)扫描;所述若干条预设路径(P)首尾间断或者首尾连续,所述若干条路径之间平行或者存在交叉。
  10. 根据权利要求6所述的直写光刻方法,其特征在于,在所述步骤S3之前还可以包括步骤:
    提供基板(21);
    根据三维形貌的需求,在所述基板(21)的表面涂布相应厚度的光刻胶(22);
    所述步骤S2中,所述直写光刻系统的预设参数包括光刻胶曝光灵敏度曲线。
PCT/CN2020/126362 2019-12-17 2020-11-04 直写光刻系统和直写光刻方法 WO2021120906A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227021405A KR20220106166A (ko) 2019-12-17 2020-11-04 직접 기록 포토에칭 시스템 및 직접 기록 포토에칭 방법
JP2022513961A JP7345769B2 (ja) 2019-12-17 2020-11-04 直接描画露光システム及び直接描画露光方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911303595.7 2019-12-17
CN201911303595.7A CN112987501B (zh) 2019-12-17 2019-12-17 直写光刻系统和直写光刻方法

Publications (1)

Publication Number Publication Date
WO2021120906A1 true WO2021120906A1 (zh) 2021-06-24

Family

ID=76342464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126362 WO2021120906A1 (zh) 2019-12-17 2020-11-04 直写光刻系统和直写光刻方法

Country Status (4)

Country Link
JP (1) JP7345769B2 (zh)
KR (1) KR20220106166A (zh)
CN (1) CN112987501B (zh)
WO (1) WO2021120906A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114114848A (zh) * 2021-10-26 2022-03-01 江苏迪盛智能科技有限公司 扫描光刻的控制方法、装置、设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113934115B (zh) * 2021-10-22 2023-10-27 合肥芯碁微电子装备股份有限公司 控制直写式光刻机的方法和直写式光刻机
CN115629480A (zh) * 2022-08-18 2023-01-20 西北大学 一种基于矢量图结构和光场调制的激光刻印系统与方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055424A (zh) * 2007-05-23 2007-10-17 芯硕半导体(合肥)有限公司 综合式直写光刻方法
CN101339300A (zh) * 2008-08-13 2009-01-07 哈尔滨工业大学 双光束干涉可调增益激光写入滤波方法与装置
US20120164587A1 (en) * 2010-07-06 2012-06-28 Massachusetts Institute Of Technology Hybrid lithographic method for fabricating complex multidimensional structures
CN102837128A (zh) * 2012-08-28 2012-12-26 中国科学院光电研究院 采用液晶光阀整形的激光直写加工系统
CN103744271A (zh) * 2014-01-28 2014-04-23 苏州苏大维格光电科技股份有限公司 一种激光直写系统与光刻方法
CN105480939A (zh) * 2015-12-03 2016-04-13 中国科学院物理研究所 一种具有液体全超憎功能的三维结构的制备方法
CN105700302A (zh) * 2016-03-18 2016-06-22 天津中精微仪器设备有限公司 一种快速光刻系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626176A1 (de) * 1996-06-29 1998-01-08 Deutsche Forsch Luft Raumfahrt Lithographie-Belichtungseinrichtung und Lithographie-Verfahren
JP3704994B2 (ja) 1999-02-23 2005-10-12 ノーリツ鋼機株式会社 焼付装置の光量調整方法
TW478032B (en) * 1999-11-04 2002-03-01 Seiko Epson Corp Method and device for laser plotting, hologram master and the manufacturing method thereof
US6730256B1 (en) * 2000-08-04 2004-05-04 Massachusetts Institute Of Technology Stereolithographic patterning with interlayer surface modifications
EP2017833A1 (en) 2007-07-16 2009-01-21 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Scanned writing of an exposure pattern on a substrate
CN102357735B (zh) * 2011-09-22 2015-05-13 中国航天科技集团公司第五研究院第五一0研究所 基于可控光束剖面形状与功率分布的双扫描三维激光刻蚀加工方法
JP6030597B2 (ja) 2014-04-04 2016-11-24 株式会社松浦機械製作所 三次元造形装置及び三次元形状造形物の製造方法
US10434600B2 (en) 2015-11-23 2019-10-08 Nlight, Inc. Fine-scale temporal control for laser material processing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055424A (zh) * 2007-05-23 2007-10-17 芯硕半导体(合肥)有限公司 综合式直写光刻方法
CN101339300A (zh) * 2008-08-13 2009-01-07 哈尔滨工业大学 双光束干涉可调增益激光写入滤波方法与装置
US20120164587A1 (en) * 2010-07-06 2012-06-28 Massachusetts Institute Of Technology Hybrid lithographic method for fabricating complex multidimensional structures
CN102837128A (zh) * 2012-08-28 2012-12-26 中国科学院光电研究院 采用液晶光阀整形的激光直写加工系统
CN103744271A (zh) * 2014-01-28 2014-04-23 苏州苏大维格光电科技股份有限公司 一种激光直写系统与光刻方法
CN105480939A (zh) * 2015-12-03 2016-04-13 中国科学院物理研究所 一种具有液体全超憎功能的三维结构的制备方法
CN105700302A (zh) * 2016-03-18 2016-06-22 天津中精微仪器设备有限公司 一种快速光刻系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114114848A (zh) * 2021-10-26 2022-03-01 江苏迪盛智能科技有限公司 扫描光刻的控制方法、装置、设备及存储介质
CN114114848B (zh) * 2021-10-26 2023-12-15 江苏迪盛智能科技有限公司 扫描光刻的控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JP7345769B2 (ja) 2023-09-19
CN112987501B (zh) 2023-01-24
CN112987501A (zh) 2021-06-18
JP2022547841A (ja) 2022-11-16
KR20220106166A (ko) 2022-07-28

Similar Documents

Publication Publication Date Title
WO2021120906A1 (zh) 直写光刻系统和直写光刻方法
US7095484B1 (en) Method and apparatus for maskless photolithography
US10663869B2 (en) Imprint system and imprinting process with spatially non-uniform illumination
TWI491997B (zh) 相對於繞射光學移動光束以降低干擾圖案
JP5258226B2 (ja) 描画装置および描画方法
Dinh et al. Maskless lithography based on digital micromirror device (DMD) and double sided microlens and spatial filter array
JP4281041B2 (ja) 位相格子マスク
CN105137720A (zh) 基于数字微镜阵列制作不同深度的多台阶光栅的无掩模光刻机
KR102484974B1 (ko) 다이렉트 이미징 노광 장치 및 다이렉트 이미징 노광 방법
TWI413868B (zh) 製作週期性圖案的步進排列式干涉微影方法及其裝置
JP2004249508A (ja) 光造形装置
JP5336036B2 (ja) 描画システム
WO2022188562A1 (zh) 激光直写光刻机制作的三维微纳形貌结构及其制备方法
WO2018176762A1 (zh) 混合光刻系统及混合光刻方法
Kuo et al. Resolution enhancement using pulse width modulation in digital micromirror device-based point-array scanning pattern exposure
JP2006319098A (ja) 描画装置
TWM554999U (zh) 通過掃描實現高精度灰度曝光的裝置
JP2021529341A (ja) ラインうねりを低減するためのパターンのシフト
KR102027290B1 (ko) 마스크리스 노광장치
WO2004001508A2 (en) Method and apparatus for maskless photolithography
WO2023190516A1 (ja) 原盤の製造方法、転写物の製造方法、レプリカ原盤の製造方法、および原盤の製造装置
JP4556143B2 (ja) 位相格子マスクの製造方法及びフォトマスクの製造方法
JP4632103B2 (ja) フォトマスク
KR20230094148A (ko) 광기계적 성형 시스템에 사용하기 위한 조명 패턴 세트를 생성하는 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513961

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227021405

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901811

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20901811

Country of ref document: EP

Kind code of ref document: A1