WO2022148032A1 - 一种具有多级孔结构的金属吸液芯材料及其制备方法 - Google Patents

一种具有多级孔结构的金属吸液芯材料及其制备方法 Download PDF

Info

Publication number
WO2022148032A1
WO2022148032A1 PCT/CN2021/115922 CN2021115922W WO2022148032A1 WO 2022148032 A1 WO2022148032 A1 WO 2022148032A1 CN 2021115922 W CN2021115922 W CN 2021115922W WO 2022148032 A1 WO2022148032 A1 WO 2022148032A1
Authority
WO
WIPO (PCT)
Prior art keywords
pores
level
metal
preparation
holes
Prior art date
Application number
PCT/CN2021/115922
Other languages
English (en)
French (fr)
Inventor
梁加淼
王俊
孙宝德
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2022148032A1 publication Critical patent/WO2022148032A1/zh
Priority to US18/219,879 priority Critical patent/US20230347415A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/148Agglomerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/18Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • B22F3/1025Removal of binder or filler not by heating only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1109Inhomogenous pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1115Making porous workpieces or articles with particular physical characteristics comprising complex forms, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1134Inorganic fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application relates to the field of additive manufacturing, and in particular, to a metal absorbent core material with a multi-level porous structure and a preparation method thereof.
  • Heat pipe is a device that uses heat conduction and phase change medium for rapid heat conduction. Compared with traditional heat sinks, it has the advantages of strong thermal conductivity and good temperature uniformity. It has important application prospects in aerospace, energy, chemical and electronic industries. .
  • the wick is an important part of the heat pipe, which is composed of porous materials, and its pore structure is closely related to the heat transfer performance of the heat pipe.
  • the main functions of the wick are: (1) to provide the channel required for the condensate to flow back from the condensation section to the evaporation section; (2) the capillary force generated by the surface capillary pores on the vapor-liquid interface can help the condensate to flow back; ( 3) Provide a heat flow path between the inner wall of the tube shell and the vapor-liquid interface. Therefore, improving the pore structure of the wick and improving the capillary capacity of the wick are the keys to improving the performance of the heat pipe.
  • the size of the capillary action of the wick is determined by two performance indicators: permeability and capillary pressure.
  • Permeability is a physical quantity that characterizes the degree of opening of the wick. The larger the pore size, the higher the permeability, and the smaller the energy required for the liquid to pass through the wick; the capillary pressure is a physical quantity that characterizes the suction of the wick to the liquid. Small, the greater the capillary force, the greater the driving force for the liquid to pass through the wick.
  • the pore-forming agent method is a common method for preparing hierarchical pore structures.
  • the process route of this method is as follows: firstly, the pore-forming agent and metal powder are uniformly mixed, then the mixed powder is sintered, and finally, according to the properties of the pore-forming agent, the solution or heat is used. volatilize to remove it.
  • some scholars mixed and sintered sodium chloride crystals and metal powders, and then immersed the sintered product in water to dissolve sodium chloride, and finally obtained a porous structure with two pore size distributions.
  • the sodium chloride crystals were used as pore-forming agents. After dissolution, macropores are formed, and pores of metal powders connected to each other by diffusion form small pores. According to the process method, a liquid-absorbent core material with a bi-level or even multi-level pore structure can be obtained, and the pore size can also be regulated by controlling the size of the pore-forming agent particles.
  • the disadvantage of this process method is that the obtained hierarchical pore structure is randomly distributed, which will increase the length of the capillary channel and the probability of closed pores in the material, thereby greatly reducing the working efficiency of the absorbent wick.
  • the technical problem to be solved by the present application is to provide a metal absorbent core material with a multi-level pore structure with controllable pore size and pore distribution, and a preparation method thereof.
  • One aspect of the present application provides a method for preparing a metal absorbent core material with a multi-level porous structure
  • the metal absorbent core material with a multi-level porous structure includes first-level pores, second-level pores and third-level pores ;
  • the aperture of the first-level hole is larger than the aperture of the second-level hole, and the aperture of the second-level hole is larger than the aperture of the third-level hole;
  • the first-level hole is obtained by 3D printing, and the The second-order pores are obtained by volatilizing the binder during the heating process of the water bath;
  • the third-order pores are obtained by forming pores by means of the diffusion connection of metal powder particles during the sintering process;
  • the method includes the following steps:
  • Step 1 Mix the metal powder particles and the binder to prepare the powder feed
  • Step 2 3D printing the powder feed according to a preset three-dimensional network structure model to obtain a first embryo
  • Step 3 heating the first body in the water bath to remove the binder in the first body to obtain a processed second body;
  • Step 4 drying the treated second body to obtain a third body
  • Step 5 sintering the third green body in a vacuum or reducing atmosphere to obtain the metal liquid absorbent core material with a multi-level porous structure.
  • the diameter of the first-stage pores is between 100-800 microns.
  • the distribution and shape of the first-level pores are determined by a preset three-dimensional network structure model.
  • the three-dimensional network structure model is determined by the setting of the computer program in 3D printing.
  • the pore size and porosity of the first-level pores can be determined according to the 3D network.
  • the nozzle diameter of the printing equipment, the printing filling rate and the reduction amount are regulated.
  • the diameter of the second-stage pores is between 30-80 microns.
  • the pore size of the secondary pores is regulated by the binder content.
  • the diameter of the third-order pores is between 1-10 microns.
  • the pore size and porosity of the tertiary pores are controlled by the sintering temperature and the size of the metal powder particles.
  • volume fraction of the binder in the powder feed in step 1 is between 40-60%.
  • the binder contains polyethylene glycol, polyoxymethylene and paraffin.
  • the metal is any one of nickel-based alloy, copper, stainless steel or titanium alloy.
  • the particle size of the metal powder particles is less than or equal to 15 microns.
  • the powder feed is a nearly spherical feed with a particle size range of 1-5 mm.
  • the powder feed is prepared by mixing and granulating.
  • the ejection diameter of the 3D printed nozzle is 0.1-0.8 mm
  • the printing filling rate is 40%-80%
  • the layer thickness (reduction) is 0.1-0.4 mm, preferably 0.15-0.3 mm.
  • the heating temperature of the water bath in step 3 is 50-70° C., and the heating time is 24-48 h.
  • the specific heating temperature can be adjusted according to the type and amount of the binder.
  • step 4 the drying described in step 4 is carried out under vacuum.
  • drying temperature in step 4 is 50-80° C.
  • drying time is 2-5h.
  • the reducing atmosphere in step 5 is a mixed atmosphere of H 2 and Ar.
  • the volume content of H2 in the reducing atmosphere is 5%.
  • the sintering temperature in step 5 is 800°C-1300°C, preferably 1100°C-1200°C, and the time is 1-4h, preferably 1-2h.
  • the specific sintering temperature and time can be determined according to the type of metal powder.
  • a second aspect of the present application provides a metal absorbent core material with a multi-level pore structure prepared by the above method, comprising first-level pores, second-level pores and third-level pores; the pore size of the first-level pores is greater than The pore size of the second-level holes is larger than that of the third-level holes; the first-level holes are obtained by 3D printing, and the second-level holes are glued during the heating process of the water bath.
  • the tertiary pores are obtained by volatilizing the binder; the tertiary pores are obtained by relying on the diffusion connection of metal powder particles to form pores during the sintering process.
  • the pore size of the first-level pores is between 100-800 microns
  • the pore size of the second-level pores is between 30-80 microns
  • the pore size of the third-level pores is between 1-10 microns .
  • the metal is any one of nickel-based alloy, copper, stainless steel or titanium alloy.
  • the shape of the first-stage hole is any one or more of square, hexagonal or circular.
  • a third aspect of the present application provides the application of the above-mentioned metal absorbent core material with a multi-level porous structure in a heat pipe.
  • This application uses 3D powder extrusion printing technology, combined with subsequent degreasing and sintering processes, to avoid the disordered distribution of pore sizes caused by traditional powder sintering and the addition of pore-forming agents, and obtain a tertiary pore structure with orderly distribution of pores , the method is novel and simple, and can be industrialized;
  • the orderly distribution of pores in the metal absorbent core material and the three different sizes of pores have a synergistic effect, which can simultaneously improve the permeability and capillary rate of the absorbent core, and the capillary effect is significantly higher than that of single pore size and random distribution of pore size
  • the multi-level porous wick material greatly improves the working efficiency of the heat pipe.
  • Fig. 1 is the schematic diagram of the multi-stage porous metal wick material sample of the present application
  • FIG. 2 is a schematic diagram of a grid-like structure metal absorbent core material obtained in a preferred embodiment of the present application; wherein FIG. 2A is a cross-sectional view of the grid-like structure metal absorbent core material, and FIG. 2B is a grid-like structure metal absorbent core material.
  • Low-magnification SEM photo of the vertical section of the liquid core material Figure 2C is a low-magnification SEM photo of the cross-section of the metal wick material with grid structure;
  • Fig. 3 is the scanning electron microscope photograph of the metal skeleton joint of the metal wick material obtained by a preferred embodiment of the present application;
  • Fig. 4 is the scanning electron microscope photograph inside the metal skeleton of the metal absorbent core material obtained by a preferred embodiment of the present application;
  • Fig. 5 is the low magnification scanning electron microscope photograph of the lattice structure metal liquid wick material obtained by a preferred embodiment of the present application;
  • Fig. 6 is the scanning electron microscope photograph inside the metal skeleton of the metal wick material obtained by a preferred embodiment of the present application;
  • Fig. 7 is the low magnification scanning electron microscope photograph of the metal liquid-absorbent core material of grid-like structure obtained by a preferred embodiment of the present application;
  • Fig. 9 is the capillary curve diagram of the metal liquid-absorbent core material with the multi-level porous structure of the present application.
  • Fig. 10 is the flow chart of the differential pressure curve of the metal liquid absorbent core material with the multi-stage pore structure of the present application
  • Fig. 11 is a flow chart of the preparation method of the metal absorbent core material with a multi-level porous structure of the present application.
  • the metal absorbent core material with multi-level pore structure provided by the present application is shown in Figures 1-8, the metal absorbent core material is a three-dimensional network structure, including first-level holes 1, second-level holes 2 and third-level holes Hole 3; the hole diameter of the first-level hole 1 is larger than that of the second-level hole 2, and the hole diameter of the second-level hole 2 is larger than that of the third-level hole 3.
  • the first-level hole 1 is obtained by 3D printing, the diameter is between 100-800 microns, and the shape is any one of square, hexagon or circle.
  • the second-level pores 2 are obtained by volatilization of the binder during the heating process of the water bath, and the pore size is between 30-80 microns.
  • the tertiary pores 3 are obtained by forming pores by means of the diffusion connection of metal powder particles during the sintering process, and the pore diameter is between 1-10 microns.
  • the metal in the metal wick material is any one of nickel-based alloy, copper, stainless steel or titanium alloy.
  • a method for preparing a nickel-based alloy liquid absorbent core material with a multi-level pore structure includes:
  • Step 1 Weigh 40% volume fraction of binder (main components are polyethylene glycol, polyoxymethylene and paraffin) and 60% volume fraction of nickel-based alloy powder (brand K438, particle size 0-15 micron), and then mix and granulate to prepare a nearly spherical powder feed with a particle size of 1-5 mm;
  • Step 2 Using the prepared powder feed as a raw material, perform powder extrusion 3D printing according to a preset three-dimensional grid structure model to obtain a printing embryo.
  • the nozzle diameter in 3D printing is 0.6 mm, and the filling rate is 40%.
  • the layer thickness is 0.3 mm; the printed embryo is a three-dimensional connected grid structure.
  • Step 3 The printed embryo body obtained by 3D printing is heated in a water bath, wherein the temperature of the water bath is 50°C, and the temperature is kept for 48 hours;
  • Step 4 drying the green body heated by the water bath in a vacuum drying box, the drying temperature is 50°C, and the temperature is kept for 2h;
  • Step 5 The dried green body is placed in a tube furnace for heating and sintering, wherein the sintering atmosphere is a mixture of H 2 and Ar, wherein the volume content of H 2 is 5%, the sintering temperature is 1100 ° C, and the holding time is 2 Hour.
  • the sintering atmosphere is a mixture of H 2 and Ar, wherein the volume content of H 2 is 5%, the sintering temperature is 1100 ° C, and the holding time is 2 Hour.
  • Example 2 Using scanning electron microscope to characterize the macrostructure of the liquid-absorbent core obtained in Example 1 as shown in Figure 2, it shows that the liquid-absorbent core material obtained by powder extrusion 3D printing has a three-dimensional network structure, and the pores obtained by 3D printing are the first-level holes 1 , the first-order pores 1 are distributed in an orderly manner, and the pore size is about 500 microns.
  • the surface of the connection shows the concave and convex shape of the metal powder. This is because the sintering process of the present invention adopts pressureless sintering, and the metal powders connected to each other by diffusion alone.
  • the second-order pores 2 remaining after the volatilization of the binder have a pore size of 30-80 microns.
  • the tertiary pores 3 formed by the diffusion connection between the metal powders in the metal skeleton have a pore size of 1-10 microns.
  • a method for preparing a nickel-based alloy liquid absorbent core material with a multi-level pore structure includes:
  • Step 1 Weigh 50% volume fraction of binder (main components are polyethylene glycol, polyoxymethylene and paraffin) and 50% volume fraction of nickel-based alloy powder (brand K418, particle size 0-15 micron), and then mix and granulate to prepare a nearly spherical powder feed with a particle size of 1-5 mm;
  • binder main components are polyethylene glycol, polyoxymethylene and paraffin
  • nickel-based alloy powder brand K418, particle size 0-15 micron
  • Step 2 Using the prepared powder feed as a raw material, perform powder extrusion 3D printing according to a preset three-dimensional network structure model to obtain a printing embryo.
  • the nozzle diameter in 3D printing is 0.6 mm, and the filling rate is 70%.
  • the layer thickness is 0.3 mm; the printed embryo is a three-dimensional connected grid structure.
  • Step 3 The printed embryo body obtained by 3D printing is heated in a water bath, wherein the temperature of the water bath is 60°C, and the temperature is kept for 48 hours;
  • Step 4 drying the green body heated by the water bath in a vacuum drying oven at a temperature of 70°C and keeping the temperature for 5h;
  • Step 5 Place the dried green body in a tube furnace for heating and sintering, wherein the sintering atmosphere is a mixture of H 2 and Ar, wherein the volume content of H 2 is 5%, the sintering temperature is 1200 ° C, and the holding time is 1 hour .
  • the sintering atmosphere is a mixture of H 2 and Ar, wherein the volume content of H 2 is 5%, the sintering temperature is 1200 ° C, and the holding time is 1 hour .
  • the macrostructure of the liquid-absorbent core obtained in Example 2 was characterized by scanning electron microscopy, as shown in Figure 5.
  • the liquid-absorbent core material obtained by powder extrusion 3D printing showed a three-dimensional grid-like structure, and the pores obtained by 3D printing were the first level Pores 1, the first-level pores 1 are distributed in an orderly manner, and the pore size is 100-150 microns.
  • a method for preparing a nickel-based alloy liquid absorbent core material with a multi-level pore structure includes:
  • Step 1 Weigh 60% volume fraction of binder (main components are polyethylene glycol, polyoxymethylene and paraffin) and 40% volume fraction of nickel-based alloy powder (brand K418B, particle size 0-15 microns) ), and then mix and granulate to prepare a nearly spherical powder feed with a particle size of 1-5 mm;
  • Step 2 Using the prepared powder feed as a raw material, perform powder extrusion 3D printing according to a preset three-dimensional network structure model to obtain a printing embryo.
  • the nozzle diameter in 3D printing is 0.6 mm, and the filling rate is 80%.
  • the layer thickness is 0.15 mm; the printed embryo is a three-dimensional connected grid structure.
  • Step 3 The printed embryo body obtained by 3D printing is heated in a water bath, wherein the temperature of the water bath is 70°C, and the temperature is kept for 32h;
  • Step 4 drying the green body heated by the water bath in a vacuum drying oven at a temperature of 80°C and keeping the temperature for 4h;
  • Step 5 The dried body is placed in a tube furnace for heating and sintering, wherein the sintering atmosphere is a mixture of H 2 and Ar, wherein the volume content of H 2 is 5%, the sintering temperature is 1150 ° C, and the holding time is 2 hours .
  • the sintering atmosphere is a mixture of H 2 and Ar, wherein the volume content of H 2 is 5%, the sintering temperature is 1150 ° C, and the holding time is 2 hours .
  • the liquid-absorbent core material obtained by 3D printing by powder extrusion shows a three-dimensional network structure, and the pores obtained by 3D printing are first-level pores. 1.
  • the first-level pores 1 are distributed in an orderly manner, and the pore size is 150-250 microns.
  • the metal skeleton of the liquid absorbent core as shown in Figure 8, it can be seen that the metal skeleton contains two kinds of holes with pore sizes, namely the second-level holes 2 left by the volatilization of the binder and the holes formed by the diffusion connection between the metal powders.
  • the capillary performance and permeation performance of the nickel-based alloy absorbent core materials with multi-level pore structure prepared in Examples 1-3 were compared with those of traditional single-stage pore absorbent core materials.
  • the traditional single-stage pore absorbent core material is prepared by powder loose sintering process, and its pore size is in the range of 10-50 microns, and the material is K418 nickel-based superalloy.
  • the liquid-absorbent core materials prepared in Examples 1-3 of the present application and the overall structure of the traditional single-stage hole liquid-absorbent core are all cylindrical, and the overall size and dimensions are the same.
  • the capillary performance is characterized by the capillary rate.
  • the test method is the capillary suction test method.
  • the specific steps of each sample test are: contact the bottom surface of each processed cylindrical sample with the liquid working medium, and use computer software and a balance to measure each sample.
  • the quality of the working medium pumped by the capillary of each sample changes with time, and the curve of the change of the capillary suction volume with time is drawn, and the capillary rate of each sample can be calculated according to the measured capillary curve.
  • the permeability is characterized by permeability, which is measured by the flow-pressure difference curve method.
  • the specific steps of each sample test are: first, use the FBP-3I porous material performance detector to measure the flow rate of the fluid flowing through each sample with the pressure difference Change, and plot the curve, and then calculate the permeability of each sample according to Darcy's law.
  • the capillary curves measured by Examples 1-3 and single-stage pore materials are shown in Figure 9, and the permeation curves are shown in Figure 10.
  • the capillary rate and permeability of the samples calculated from the capillary curves and permeation curves are shown in Table 1. .
  • the multi-stage porous metal absorbent core material prepared by the present invention has significantly improved capillary rate and permeability compared with the traditional single-stage porous absorbent core material, which can significantly improve the working efficiency of the heat pipe. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种具有多级孔结构的金属吸液芯材料,具有多级孔结构的金属吸液芯材料包括第一级孔(1),第二级孔(2)和第三级孔(3);第一级孔(1)的孔径大于第二级孔(2)的孔径,第二级孔(2)的孔径大于第三级孔(3)的孔径;第一级孔(1)由3D打印获得,第二级孔(2)由水浴加热过程中粘结剂挥发获得;第三级孔(3)由烧结过程中依靠金属粉末颗粒扩散连接形成孔隙获得。一种多级孔结构的金属吸液芯材料的制备方法:通过新型粉末挤出3D打印工艺制备出具有三维网络结构的有序第一级孔(1);然后采用水浴加热、烧结等后续处理工艺,在大孔骨架内部形成第二级孔(2)和第三级孔(3),从而构建出三级孔材料。

Description

一种具有多级孔结构的金属吸液芯材料及其制备方法 技术领域
本申请涉及增材制造领域,尤其涉及一种具有多级孔结构的金属吸液芯材料及其制备方法。
背景技术
热管是利用热传导和相变介质进行快速导热的装置,与传统的散热装置相比,它具有导热性能强、均温性能好等优点,在航空航天,能源化工以及电子工业等领域有着重要应用前景。吸液芯是热管的重要组成部分,由多孔材料构成,其孔结构与热管的传热性能密切相关。吸液芯的主要作用为:(1)提供冷凝液从冷凝段回流到蒸发段所需的通道;(2)汽-液分界面上的表面毛细孔产生的毛细力可帮助冷凝液回流;(3)提供管壳内壁与汽-液分界面之间的热流通路。因此改进吸液芯孔结构,提升吸液芯毛细能力成为提升热管性能的关键。
如何提高吸液芯的毛细作用一直是材料和工程热物理领域的研究热点。吸液芯毛细作用大小由两个性能指标共同决定:渗透率和毛细压力。渗透率是表征吸液芯开孔程度的物理量,孔径越大,渗透率越高,液体通过吸液芯所需的能量越小;毛细压力是表征吸液芯对液体吸力大小的物理量,孔径越小,毛细力越大,液体通过吸液芯的所受的驱动力越大。因此,单一增大或者减小吸液芯中的孔径,都不能同时提升吸液芯的为了同时提高吸液芯的渗透率和毛细压力,这导致多孔结构吸液芯的渗透率和毛细压力呈倒置关系。因此如何通过孔径结构设计,实现渗透率和毛细压力的同步提升,是热管用吸液芯研究面临的关键问题。
为了克服渗透率和毛细压力的矛盾,需要使吸液芯同时含有孔径不一的两级甚至多级孔。造孔剂法是制备多级孔结构的常用方法,该方法的工艺路线为:首先将造孔剂和金属粉末均匀混合,之后对混合粉末进行烧结,最后根据造孔剂的性质采用溶解或热挥发将其去除。比如,有学者将氯化钠晶体与金属粉末混合烧结,之后将烧结得到的产品浸没在水中使氯化钠溶解,最终得到具有两种孔径分布的多孔结构,氯化钠晶体作为造孔剂,溶解后形成大孔,金属粉末彼此通过扩散连接的孔隙则形成小孔。依照该工艺方法,能够得到具有双级甚至多级孔结构的吸液芯材料,也可以通过控制造孔剂颗粒的大小调控孔径大小。但是,该工艺方法不足之处在于得到的多级孔结构是随机分布的,这会增加毛细通道的长度和材料内部出现闭孔的几率,进而大大降低吸液芯的工作效率。
申请内容
有鉴于现有技术的上述缺陷,本申请所要解决的技术问题是提供一种孔径尺寸和孔隙分布可控的多级孔结构的金属吸液芯材料及其制备方法。
令人惊讶的是,利用3D粉末挤出打印技术,后续再结合脱脂和烧结工艺,可以制造出孔径尺寸和孔隙分布可控的多级孔结构,从而突破当前工艺无法调控多级孔尺寸和分布的难题。
本申请一方面提供一种具有多级孔结构的金属吸液芯材料的制备方法,所述具有多级孔结构的金属吸液芯材料包括第一级孔,第二级孔和第三级孔;所述第一级孔的孔径大于所述第二级孔的孔径,所述第二级孔的孔径大于所述第三级孔的孔径;所述第一级孔由3D打印获得,所述第二级孔由水浴加热过程中粘结剂挥发获得;所述第三级孔由烧结过程中依靠金属粉末颗粒扩散连接形成孔隙获得;
所述方法包括以下几个步骤:
步骤1:将金属粉末颗粒和粘结剂混合制得粉末喂料;
步骤2:将所述粉末喂料按照预设的三维网状结构模型进行3D打印,得到第一胚体;
步骤3:将所述第一坯体进行所述水浴加热,以去除所述第一坯体中的所述粘结剂,得到处理后的第二胚体;
步骤4:将所述处理后的第二坯体进行烘干,得到第三胚体;
步骤5:将所述第三坯体在真空或还原性气氛中进行所述烧结,得到所述具有多级孔结构的金属吸液芯材料。
进一步地,所述第一级孔的孔径在100-800微米之间。第一级孔的分布和形状由预设的三维网状结构模型来确定,三维网状结构模型通过3D打印中计算机程序的设定来确定,第一级孔的孔径大小和孔隙率可根据3D打印设备的喷嘴的喷射直径、打印填充率和压下量来调控。
进一步地,所述第二级孔的孔径在30-80微米之间。第二级孔的孔径大小由粘结剂含量来调控。
进一步地,所述第三级孔的孔径在1-10微米之间。第三级孔的孔径大小和孔隙率由烧结的温度及金属粉末颗粒的尺寸来调控。
进一步地,步骤1中所述粉末喂料中所述粘结剂的体积分数在40-60%之间。
进一步地,所述粘结剂包含聚乙二醇,聚甲醛和石蜡。
进一步地,所述金属为镍基合金、铜、不锈钢或钛合金中的任意一种。
进一步地,所述金属粉末颗粒的粒径≤15微米。
进一步地,所述粉末喂料为近球形喂料,粒径范围为1-5毫米。
进一步地,所述粉末喂料通过混合密炼和造粒的方法制备得到。
进一步地,所述3D打印的喷嘴的喷射直径为0.1-0.8毫米,打印填充率为 40%-80%,层厚(压下量)为0.1-0.4毫米,优选为0.15-0.3毫米。
进一步地,步骤3中所述水浴加热的温度为50-70℃,加热时间为24-48h。具体加热温度可根据粘结剂的种类和添加量调控。
进一步地,步骤4中所述烘干在真空下进行。
进一步地,步骤4中所述烘干温度为50-80℃,烘干时间为2-5h。
进一步地,步骤5中所述还原性气氛为H 2和Ar混合气氛。
优选地,H 2在还原性气氛中体积含量为5%。
进一步地,步骤5中所述烧结的温度为800℃-1300℃,优选为1100℃-1200℃,时间为1-4h,优选为1-2h。具体的烧结的温度和时间可根据金属粉末的种类来确定。
本申请第二方面提供一种由上述方法制备的具有多级孔结构的金属吸液芯材料,包括第一级孔,第二级孔和第三级孔;所述第一级孔的孔径大于所述第二级孔的孔径,所述第二级孔的孔径大于所述第三级孔的孔径;所述第一级孔由3D打印获得,所述第二级孔由水浴加热过程中粘结剂挥发获得;所述第三级孔由烧结过程中依靠金属粉末颗粒扩散连接形成孔隙获得。
进一步地,所述第一级孔的孔径在100-800微米之间,所述第二级孔的孔径在30-80微米之间,所述第三级孔的孔径在1-10微米之间。
进一步地,所述金属为镍基合金、铜、不锈钢或钛合金中的任意一种。
进一步地,所述第一级孔的形状为方形、六边形或圆形中的任意一种或多种。
本申请第三方面提供了上述具有多级孔结构的金属吸液芯材料在热管中的应用。
本申请提供的具有多级孔结构的金属吸液芯材料及其制备方法具备以下有益的技术效果:
1、本申请使用3D粉末挤出打印技术,并结合后续脱脂和烧结工艺,避免了传统粉末烧结和添加造孔剂造成的孔径无序分布的情况,得到了孔隙有序分布的三级孔结构,方法新颖且简单,可以进行工业化生产;
2、金属吸液芯材料中孔隙有序分布的、三种不同大小的孔具有协同作用,能够同时提升吸液芯的渗透率和毛细率,其毛细作用明显高于单一孔径和孔径随机分布的多级孔吸液芯材料,从而大大提升了热管的工作效率。
以下将结合附图对本申请的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本申请的目的、特征和效果。
附图说明
图1是本申请的多级孔金属吸液芯材料样品示意图;
图2是本申请的一个较佳实施例获得的网格状结构金属吸液芯材料示意图;其中图2A为网格状结构金属吸液芯材料的切面图,图2B为网格状结构金属吸液芯材料竖截面的低倍扫描电镜照片,图2C为网格状结构金属吸液芯材料横截面的低倍扫描电 镜照片;
图3是本申请的一个较佳实施例获得的金属吸液芯材料金属骨架连接处的扫描电镜照片;
[根据细则91更正 08.11.2021] 
图4是本申请的一个较佳实施例获得的金属吸液芯材料金属骨架内部的扫描电镜照片;
图5是本申请的一个较佳实施例获得的网格状结构金属吸液芯材料的低倍扫描电镜照片;
图6是本申请的一个较佳实施例获得的金属吸液芯材料金属骨架内部的扫描电镜照片;
图7是本申请的一个较佳实施例获得的网格状结构金属吸液芯材料的低倍扫描电镜照片;
图8是本申请的一个较佳实施例获得的金属吸液芯材料金属骨架内部的扫描电镜照片;
图9是本申请的具有多级孔结构的金属吸液芯材料毛细曲线图;
图10是本申请的具有多级孔结构的金属吸液芯材料流量压差曲线图;
图11是本申请的具有多级孔结构的金属吸液芯材料制备方法流程图。
其中:1-第一级孔;2-第二级孔;3-第三级孔。
具体实施方式
以下参考说明书附图介绍本申请的多个优选实施例,使其技术内容更加清楚和便于理解。本申请可以通过许多不同形式的实施例来得以体现,本申请的保护范围并非仅限于文中提到的实施例。
本申请提供的具有多级孔结构的金属吸液芯材料如图1-8所示,金属吸液芯材料为三维网状结构,包括第一级孔1,第二级孔2和第三级孔3;第一级孔1的孔径大于第二级孔2的孔径,第二级孔2的孔径大于第三级孔3的孔径。
第一级孔1由3D打印获得,孔径在100-800微米之间,形状为方形、六边形或圆形中的任意一种。
第二级孔2由水浴加热过程中粘结剂挥发获得,孔径在30-80微米之间。
第三级孔3由烧结过程中依靠金属粉末颗粒扩散连接形成孔隙获得,孔径在1-10微米之间。
金属吸液芯材料中的金属为镍基合金、铜、不锈钢或钛合金中的任意一种。
实施例1:
一种具有多级孔结构的镍基合金吸液芯材料的制备方法,如图11所示,包括:
步骤1:分别称取体积分数为40%的粘结剂(主要成分为聚乙二醇,聚甲醛和石 蜡)和体积分数为60%的镍基合金粉末(牌号K438,粒径为0-15微米),然后进行混合密炼和造粒,制备出粒径在1-5毫米之间的近球形粉末喂料;
步骤2:将制得的粉末喂料作为原料,按照预设的三维网格结构模型进行粉末挤出3D打印,得到打印胚体,3D打印中喷嘴的喷射直径为0.6毫米,填充率为40%,层厚为0.3毫米;打印胚体为三维连通网格状结构。
步骤3:将3D打印得到的打印胚体进行水浴加热,其中水浴温度为50℃,保温48h;
步骤4:将水浴加热后的坯体在真空干燥箱内烘干,烘干温度为50℃,保温2h;
步骤5:将烘干后的坯体置于管式炉中加热烧结,其中烧结气氛为H 2和Ar的混合气,其中H 2体积含量为5%,烧结温度为1100℃,保温时间为2小时。
利用扫描电镜表征实施例1得到的吸液芯宏观结构如图2所示,示出粉末挤出3D打印得到的吸液芯材料呈三维网状结构,3D打印得到的孔为第一级孔1,第一级孔1有序分布,孔径大小为500微米左右。将吸液芯金属骨架连接处部分放大可以看到,如图3所示,连接处的表面呈现金属粉末的凹凸状,这是由于本发明的烧结工艺采用的是无压烧结,金属粉末之间仅靠扩散作用彼此连接。另外从图3可以看到粘结剂挥发后残留的第二级孔2,孔径大小为30-80微米。将金属骨架部分继续放大,如图4所示,可以看到金属骨架内依靠金属粉末之间扩散连接形成的第三级孔3,孔径大小为1-10微米。
实施例2:
一种具有多级孔结构的镍基合金吸液芯材料的制备方法,如图11所示,包括:
步骤1:分别称取体积分数为50%的粘结剂(主要成分为聚乙二醇,聚甲醛和石蜡)和体积分数为50%的镍基合金粉末(牌号K418,粒径为0-15微米),然后进行混合密炼和造粒,制备出粒径在1-5毫米之间的近球形粉末喂料;
步骤2:将制得的粉末喂料作为原料,按照预设的三维网状结构模型进行粉末挤出3D打印,得到打印胚体,3D打印中喷嘴的喷射直径为0.6毫米,填充率为70%,层厚为0.3毫米;打印胚体为三维连通网格状结构。
步骤3:将3D打印得到的打印胚体进行水浴加热,其中水浴温度为60℃,保温48h;
步骤4:将水浴加热后的坯体在真空干燥箱内烘干,温度为70℃,保温5h;
步骤5:将烘干后的坯体置于管式炉中加热烧结,其中烧结气氛为H 2和Ar混合气,其中H 2体积含量为5%,烧结温度为1200℃,保温时间为1小时。
利用扫描电镜表征实施例2得到的吸液芯宏观结构如图5所示,示出的粉末挤出3D打印得到的吸液芯材料呈现三维网格状结构,3D打印得到的孔为第一级孔1,第一级孔1有序分布,孔径大小为100-150微米。将吸液芯金属骨架放大,如图6示, 从中可以看到金属骨架内部包含两种孔径的孔洞,即粘结剂挥发留下的第二级孔2和依靠金属粉末之间扩散连接形成的第三级孔3。
实施例3:
一种具有多级孔结构的镍基合金吸液芯材料的制备方法,如图11所示,包括:
步骤1:分别称取体积分数为60%的粘结剂(主要成分为聚乙二醇,聚甲醛和石蜡)和体积分数为40%的镍基合金粉末(牌号K418B,粒径0-15微米),然后进行混合密炼和造粒,制备出粒径在1-5毫米之间的近球形粉末喂料;
步骤2:将制得的粉末喂料作为原料,按照预设的三维网状结构模型进行粉末挤出3D打印,得到打印胚体,3D打印中喷嘴的喷射直径为0.6毫米,填充率为80%,层厚为0.15毫米;打印胚体为三维连通网格状结构。
步骤3:将3D打印得到的打印胚体进行水浴加热,其中水浴温度为70℃,保温32h;
步骤4:将水浴加热后的坯体在真空干燥箱内烘干,温度为80℃,保温4h;
步骤5:将烘干后的坯体置于管式炉中加热烧结,其中烧结气氛为H 2和Ar混合气,其中H 2体积含量为5%,烧结温度为1150℃,保温时间为2小时。
利用扫描电镜表征本实施例得到的吸液芯宏观结构如图7所示,示出的粉末挤出3D打印得到的吸液芯材料呈现三维网状结构,3D打印得到的孔为第一级孔1,第一级孔1有序分布,孔径大小为150-250微米。将吸液芯金属骨架放大,如图8示,从中可以看到金属骨架内部包含两种孔径的孔洞,即粘结剂挥发留下的第二级孔2和依靠金属粉末之间扩散连接形成的第三级孔3。
实施例4
将实施例1-3制备得到的具有多级孔结构的镍基合金吸液芯材料与传统单级孔吸液芯材料进行毛细性能和渗透性能的对比实验。传统单级孔吸液芯材料是利用粉末松装烧结工艺制备所得,其孔径范围在10-50微米之间,材料为K418镍基高温合金。本申请实施例1-3制备得到吸液芯材料以及传统单级孔吸液芯整体结构都呈圆柱形,整体的大小尺寸均相同。
毛细性能以毛细速率来表征,测试方法为毛细抽吸实验法,每个样品测试的具体步骤为:将加工好的每个圆柱形试样底面与液体工质接触,利用计算机软件和天平测量每个样品毛细抽吸的工质质量随时间的变化,并绘制出毛细抽吸量随时间变化曲线,根据测得的毛细曲线即可计算得到每个样品的毛细速率。
渗透性能以渗透率来表征,采用流量-压差曲线法测量,每个样品测试的具体步骤为:首先使用FBP-3I型多孔材料性能检测仪测量流体流经每个样品时的流量随压差变化,并绘制曲线,然后根据达西定律计算得到每个样品的渗透率。
实施例1-3和单级孔材料测得的毛细曲线如图9所示,渗透曲线如图10所示,通过毛细曲线和渗透曲线计算得到的样品的毛细速率和渗透率如表1所示。由表1和图9-10可知,本发明制备的多级孔金属吸液芯材料与传统单级孔吸液芯材料相比,毛细速率和渗透率有明显提升,能显著提升热管的工作效率。
表1不同样品毛细速率和渗透率性能对比
样品 毛细速率(g﹒cm -3﹒s -1) 渗透率(10 -12m 2)
实施例1 0.25 23
实施例2 0.33 7.8
实施例3 0.18 1.6
单级孔材料 0.14 1.1
以上详细描述了本申请的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本申请的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本申请的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (20)

  1. 一种具有多级孔结构的金属吸液芯材料的制备方法,其中,所述具有多级孔结构的金属吸液芯材料包括第一级孔,第二级孔和第三级孔;所述第一级孔的孔径大于所述第二级孔的孔径,所述第二级孔的孔径大于所述第三级孔的孔径;所述第一级孔由3D打印获得,所述第二级孔由水浴加热过程中粘结剂挥发获得;所述第三级孔由烧结过程中依靠金属粉末颗粒扩散连接形成孔隙获得;
    所述方法包括以下几个步骤:
    步骤1:将所述金属粉末颗粒和所述粘结剂混合制得粉末喂料;
    步骤2:将所述粉末喂料按照预设的三维网状结构模型进行3D打印,得到第一胚体;
    步骤3:将所述第一坯体进行所述水浴加热,以去除所述第一坯体中的所述粘结剂,得到处理后的第二胚体;
    步骤4:将所述第二坯体进行烘干,得到第三胚体;
    步骤5:将所述第三坯体在真空或还原性气氛中进行所述烧结,得到所述具有多级孔结构的金属吸液芯材料。
  2. 根据权利要求1所述的制备方法,其中,所述第一级孔的孔径在100-800微米之间。
  3. 根据权利要求1所述的制备方法,其中,所述第二级孔的孔径在30-80微米之间。
  4. 根据权利要求1所述的制备方法,其中,所述第三级孔的孔径在1-10微米之间。
  5. 根据权利要求1所述的制备方法,其中,所述粉末喂料中所述粘结剂的体积分数在40-60%之间。
  6. 根据权利要求1所述的制备方法,其中,所述粘结剂包含聚乙二醇,聚甲醛和石蜡。
  7. 根据权利要求1所述的制备方法,其中,所述金属为镍基合金、铜、不锈钢或钛合金中的任意一种。
  8. 根据权利要求1所述的制备方法,其中,所述金属粉末颗粒的粒径≤15微米。
  9. 根据权利要求1所述的制备方法,其中,所述粉末喂料为近球形喂料,粒径范围为1-5mm。
  10. 根据权利要求1所述的制备方法,其中,所述粉末喂料通过混合密炼和造粒的方法制备得到。
  11. 根据权利要求1所述的制备方法,其中,所述3D打印的喷射直径为0.1-0.8 毫米,打印填充率为40%-80%,层厚为0.1-0.4毫米。
  12. 根据权利要求1所述的制备方法,其中,步骤3中所述水浴加热的温度为50-70℃,加热时间为24-48h。
  13. 根据权利要求1所述的制备方法,其中,步骤4中所述烘干温度为50-80℃,烘干时间为2-5h。
  14. 根据权利要求1所述的制备方法,其中,步骤5中所述还原性气氛为H 2和Ar混合气氛。
  15. 根据权利要求14所述的制备方法,其中,所述H 2在所述还原性气氛中体积含量为5%。
  16. 根据权利要求1所述的制备方法,其中,,步骤5中所述烧结的温度为800℃-1300℃,时间为1-4h。
  17. 一种由权利要求1所述的方法制备的具有多级孔结构的金属吸液芯材料,其中,所述金属吸液芯材料包括第一级孔,第二级孔和第三级孔;所述第一级孔的孔径大于所述第二级孔的孔径,所述第二级孔的孔径大于所述第三级孔的孔径;所述第一级孔由3D打印获得,所述第二级孔由水浴加热过程中粘结剂挥发获得;所述第三级孔由烧结过程中依靠金属粉末颗粒扩散连接形成孔隙获得。
  18. 根据权利要求17所述的具有多级孔结构的金属吸液芯材料,其中,所述第一级孔的孔径在100-800微米之间,所述第二级孔的孔径在30-80微米之间,所述第三级孔的孔径在1-10微米之间。
  19. 根据权利要求17所述的具有多级孔结构的金属吸液芯材料,其中,所述金属吸液芯材料中的金属为镍基合金、铜、不锈钢或钛合金中的任意一种。
  20. 一种如权利要求17所述的具有多级孔结构的金属吸液芯材料在热管中的应用。
PCT/CN2021/115922 2021-01-11 2021-09-01 一种具有多级孔结构的金属吸液芯材料及其制备方法 WO2022148032A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/219,879 US20230347415A1 (en) 2021-01-11 2023-07-10 Metal wick material with hierarchical porous structures and its fabrication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110031731.2 2021-01-11
CN202110031731.2A CN112872355B (zh) 2021-01-11 2021-01-11 一种具有多级孔结构的金属吸液芯材料及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/219,879 Continuation-In-Part US20230347415A1 (en) 2021-01-11 2023-07-10 Metal wick material with hierarchical porous structures and its fabrication method

Publications (1)

Publication Number Publication Date
WO2022148032A1 true WO2022148032A1 (zh) 2022-07-14

Family

ID=76044037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115922 WO2022148032A1 (zh) 2021-01-11 2021-09-01 一种具有多级孔结构的金属吸液芯材料及其制备方法

Country Status (3)

Country Link
US (1) US20230347415A1 (zh)
CN (1) CN112872355B (zh)
WO (1) WO2022148032A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115746482A (zh) * 2022-11-02 2023-03-07 浙江大学杭州国际科创中心 一种3d打印制备多孔材料的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112872355B (zh) * 2021-01-11 2022-04-08 上海交通大学 一种具有多级孔结构的金属吸液芯材料及其制备方法
CN113423244B (zh) * 2021-06-28 2022-06-21 哈尔滨工业大学 一种铝基液冷散热结构的制备方法和应用
CN113547121A (zh) * 2021-07-27 2021-10-26 昆山思瑞奕电子有限公司 低密度金属及其制造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129640A1 (en) * 2009-11-30 2011-06-02 George Halsey Beall Method and binder for porous articles
CN102634687A (zh) * 2012-04-18 2012-08-15 北京科技大学 一种选择性激光烧结制备不锈钢生物多孔植入材料的方法
CN104075603A (zh) * 2014-07-08 2014-10-01 厦门大学 一种热管复合吸液芯及其制备方法
CN106891007A (zh) * 2017-03-13 2017-06-27 江苏省海洋资源开发研究院(连云港) 一种通孔结构金属多孔材料的3d打印制备工艺
CN107584631A (zh) * 2017-10-25 2018-01-16 西安工业大学 一种陶瓷坯体的3d打印方法
CN108101574A (zh) * 2017-12-29 2018-06-01 广东省材料与加工研究所 一种3d打印制备陶瓷多孔件的方法及陶瓷多孔件
CN109807320A (zh) * 2019-02-19 2019-05-28 南通理工学院 一种3dp法制备高温镍基合金多孔材料的方法及后处理工艺
CN110243213A (zh) * 2019-06-24 2019-09-17 华东理工大学 一种复合结构的平板吸液芯及其制造方法
CN110357657A (zh) * 2019-08-15 2019-10-22 河北大洲智造科技有限公司 一种3d打印用生物陶瓷料浆及其制备方法、一种生物陶瓷人工骨及其制备方法
CN110385436A (zh) * 2019-08-26 2019-10-29 厦门大学 一种具有多孔径结构特征的金属吸液芯及其制造方法
CN110950651A (zh) * 2019-11-26 2020-04-03 兰州大学 一种基于墨水直书写3d打印技术制备多级多孔陶瓷的方法
CN112872355A (zh) * 2021-01-11 2021-06-01 上海交通大学 一种具有多级孔结构的金属吸液芯材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2007011388A (es) * 2005-03-18 2007-11-13 Cinv Ag Proceso para la preparacion de materiales metalicos sinterizados porosos.
KR101776616B1 (ko) * 2015-10-02 2017-09-11 주식회사 쓰리디컨트롤즈 금속 분말 함유 원료를 이용한 3차원 프린팅 장치
EP3184207A1 (de) * 2015-12-21 2017-06-28 Siemens Aktiengesellschaft Verfahren zum herstellen eines porösen bauteils sowie poröses bauteil
CN106984805B (zh) * 2017-05-23 2020-07-10 昆山卡德姆新材料科技有限公司 一种3d打印用喂料及其制备方法和应用
US11173545B2 (en) * 2017-10-23 2021-11-16 Lawrence Livermore National Security, Llc Hierarchical porous metals with deterministic 3D morphology and shape via de-alloying of 3D printed alloys
US11114713B2 (en) * 2018-06-21 2021-09-07 California Institute Of Technology Thermal management systems for battery cells and methods of their manufacture
US11535360B1 (en) * 2019-06-07 2022-12-27 Hrl Laboratories, Llc Hypersonic leading-edge heat pipe with porous wick, and methods of making and using the same
US11680753B2 (en) * 2019-11-14 2023-06-20 Rolls-Royce Corporation Fused filament fabrication of heat pipe

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129640A1 (en) * 2009-11-30 2011-06-02 George Halsey Beall Method and binder for porous articles
CN102634687A (zh) * 2012-04-18 2012-08-15 北京科技大学 一种选择性激光烧结制备不锈钢生物多孔植入材料的方法
CN104075603A (zh) * 2014-07-08 2014-10-01 厦门大学 一种热管复合吸液芯及其制备方法
CN106891007A (zh) * 2017-03-13 2017-06-27 江苏省海洋资源开发研究院(连云港) 一种通孔结构金属多孔材料的3d打印制备工艺
CN107584631A (zh) * 2017-10-25 2018-01-16 西安工业大学 一种陶瓷坯体的3d打印方法
CN108101574A (zh) * 2017-12-29 2018-06-01 广东省材料与加工研究所 一种3d打印制备陶瓷多孔件的方法及陶瓷多孔件
CN109807320A (zh) * 2019-02-19 2019-05-28 南通理工学院 一种3dp法制备高温镍基合金多孔材料的方法及后处理工艺
CN110243213A (zh) * 2019-06-24 2019-09-17 华东理工大学 一种复合结构的平板吸液芯及其制造方法
CN110357657A (zh) * 2019-08-15 2019-10-22 河北大洲智造科技有限公司 一种3d打印用生物陶瓷料浆及其制备方法、一种生物陶瓷人工骨及其制备方法
CN110385436A (zh) * 2019-08-26 2019-10-29 厦门大学 一种具有多孔径结构特征的金属吸液芯及其制造方法
CN110950651A (zh) * 2019-11-26 2020-04-03 兰州大学 一种基于墨水直书写3d打印技术制备多级多孔陶瓷的方法
CN112872355A (zh) * 2021-01-11 2021-06-01 上海交通大学 一种具有多级孔结构的金属吸液芯材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115746482A (zh) * 2022-11-02 2023-03-07 浙江大学杭州国际科创中心 一种3d打印制备多孔材料的方法
CN115746482B (zh) * 2022-11-02 2024-03-22 浙江大学杭州国际科创中心 一种3d打印制备多孔材料的方法

Also Published As

Publication number Publication date
CN112872355A (zh) 2021-06-01
CN112872355B (zh) 2022-04-08
US20230347415A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
WO2022148032A1 (zh) 一种具有多级孔结构的金属吸液芯材料及其制备方法
WO2023000573A1 (zh) 微孔陶瓷雾化芯及其制备方法
WO2018041032A1 (zh) 一种泡沫铜粉及其制备方法
JP2009510266A (ja) 高気孔率金属二元細孔多孔質発泡体
CN103627920B (zh) 一种多孔镍的制备方法
JP2009256788A (ja) 多孔質アルミニウム焼結体およびその製造方法
CN109745870A (zh) 一种多孔金属膜的制备方法
US20140329018A1 (en) Reticulated open-cell foam modified by fibers extending across and between the cells of said foam and preparation methods thereof
CN112692287B (zh) 一种三维连通网格状分布的有序多孔钛制备方法
JP2010228932A (ja) 多孔質焼結体の製造方法
CN111504105B (zh) 采用复相造孔剂造孔的热管或均热板用吸液芯及其制法
JP2010037569A (ja) 金属多孔質電極基材およびその製造方法
CN110014164B (zh) 一种基于草酸镍和氯化钠共混还原法制备镍多孔材料的方法
CN104437112A (zh) 一种基于静电诱导纳米颗粒包覆制备多孔金属担载陶瓷膜的方法
CN106467939B (zh) 一种多级孔金属制备方法
CN102876908A (zh) 一种提高泡沫钛致密度的方法
CN115229186B (zh) 孔隙可控的多孔镍或镍合金的制备方法
WO2017076163A1 (zh) 一种多孔材料及制备方法
CN106674830B (zh) 一种多孔非金属材料
WO2017080418A1 (zh) 一种聚四氟乙烯超细纤维管式膜
KR101414218B1 (ko) 반도체 라인용 금속소결필터
WO2017080465A1 (zh) 一种聚四氟乙烯超细纤维管式膜
WO2017080466A1 (zh) 一种聚四氟乙烯超细纤维管式膜
JP2008007811A (ja) 金属多孔質体の製造方法
CN114082952B (zh) 一种高孔隙率小孔径钛分离膜材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917075

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21917075

Country of ref document: EP

Kind code of ref document: A1