WO2022145869A1 - 전력반도체 모듈의 제조방법 및 이에 의해 제조된 전력반도체 모듈 - Google Patents

전력반도체 모듈의 제조방법 및 이에 의해 제조된 전력반도체 모듈 Download PDF

Info

Publication number
WO2022145869A1
WO2022145869A1 PCT/KR2021/019682 KR2021019682W WO2022145869A1 WO 2022145869 A1 WO2022145869 A1 WO 2022145869A1 KR 2021019682 W KR2021019682 W KR 2021019682W WO 2022145869 A1 WO2022145869 A1 WO 2022145869A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal sheet
base plate
power semiconductor
semiconductor module
brazing filler
Prior art date
Application number
PCT/KR2021/019682
Other languages
English (en)
French (fr)
Inventor
이지형
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Publication of WO2022145869A1 publication Critical patent/WO2022145869A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/345Arrangements for heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other

Definitions

  • the present invention relates to a method of manufacturing a power semiconductor module and a power semiconductor module manufactured thereby, and more particularly, to a method for manufacturing a power semiconductor module having a bonding structure of a base plate and a ceramic substrate, and a power semiconductor module manufactured by the method ( METHOD OF MANUFACTURING POWER SEMICONDUCTOR MODULE AND POWER SEMICONDUCTOR MODULE MANUFACTURED THEREBY).
  • the base plate is formed in a square plate shape and is made of aluminum or copper material.
  • a base plate may be used as a heat sink by being bonded to the lower surface of the ceramic substrate.
  • Such a base plate may be soldered to the lower surface of the ceramic substrate to be advantageous for heat dissipation.
  • the ceramic substrate and the base plate are joined with AlSiC or a similar material at a temperature of 250° C. or less.
  • the base plate is soldered to the ceramic substrate through a solder preform.
  • the solder preform uses SAC305 having a composition containing Sn, Ag, and Cu, and the soldering temperature is 230 to 350°C.
  • An object of the present invention is to improve the bonding reliability of a base plate and a ceramic substrate, to enable high-reliability bonding to various base plates, and to simplify the process and reduce process costs, and a method for manufacturing a power semiconductor module and a power semiconductor manufactured thereby to provide a module.
  • a method of manufacturing a power semiconductor module according to an embodiment of the present invention for achieving the above object includes the steps of: removing thermal stress by annealing a base plate to remove thermal stress; and disposing a brazing filler layer on the upper surface of the base plate and laminating a ceramic substrate on the base plate on which the brazing filler layer is disposed and brazing bonding.
  • the annealing temperature may be a temperature of 600 °C to 750 °C.
  • a brazing filler layer having a thickness of 5 ⁇ m or more and 100 ⁇ m or less may be disposed on the upper surface of the base plate by any one of paste application, foil attachment, and P-filler. .
  • the step of brazing bonding is performed at 800 to 950° C., and the upper weight or pressurization may be performed during brazing.
  • the power semiconductor module manufactured by the method of manufacturing a power semiconductor module according to an embodiment of the present invention includes a base plate from which thermal stress is removed by annealing heat treatment, a brazing filler layer disposed on the upper surface of the base plate, and a brazing filler It may include a ceramic substrate that is brazed to the upper surface of the base plate via a layer.
  • the base plate may be annealed at a temperature of 600 °C to 750 °C.
  • an electrode pattern made of a metal may be formed on the ceramic substrate.
  • the brazing filler layer may be formed of a material including at least one of Ag, Cu, AgCu, and AgCuTi.
  • the base plate may be made of at least one of Cu, Al, W, AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu, and Cu/W/Cu, or a composite material thereof.
  • the base plate may include a first metal sheet, a second metal sheet formed on an upper surface of the first metal sheet, and a third metal sheet formed on an upper surface of the second metal sheet, the first metal sheet and the third
  • the metal sheet may be formed of the same metal material
  • the second metal sheet may be formed of a metal material different from that of the first metal sheet and the third metal sheet.
  • the second metal sheet may be formed of one of Mo, W, CuMo, and CuW or a mixed metal sheet thereof, and the first metal sheet and the third metal sheet may be formed of a Cu metal sheet.
  • a brazing filler disposed between the first metal sheet and the second metal sheet and between the second metal sheet and the third metal sheet is included, and the first metal sheet, the second metal sheet, and the third metal sheet are brazed. It can be brazed through a filler.
  • the brazing filler may be made of a material including at least one of Ag, Cu, AgCu, and AgCuTi.
  • the bonding strength is increased by brazing the base plate to the ceramic substrate, and since it does not require vacuum bonding equipment like the use of solder preform, process simplification is possible, and pore defects are prevented from performing upper weight or pressurization, and bonding is performed. Since the strength is higher, there is an effect of increasing the bonding reliability.
  • the present invention removes the thermal stress of the base plate in advance and then melts the brazing filler layer to perform brazing bonding, the bonding reliability is improved, and the thermal conductivity property is three times higher than that of conventional soldering bonding.
  • the brazing filler layer of the present invention has the effect of maximizing the heat dissipation effect because the heat of the ceramic substrate is quickly moved to the base plate by facilitating the movement of heat.
  • FIG. 1 is an exploded perspective view showing a bonding structure of a base plate for a power semiconductor module and a ceramic substrate according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a bonding structure of a base plate for a power semiconductor module and a ceramic substrate according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a power semiconductor module according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a bonding structure of a base plate for a power semiconductor module and a ceramic substrate according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a bonding structure of a base plate for a power semiconductor module and a ceramic substrate according to another embodiment of the present invention.
  • the present invention is characterized in the bonding structure of the base plate and the ceramic substrate among the components included in the power semiconductor module, it will be mainly described.
  • FIG. 1 is an exploded perspective view showing a bonding structure of a base plate for a power semiconductor module and a ceramic substrate according to an embodiment of the present invention
  • FIG. 2 is a bonding structure of a base plate for a power semiconductor module and a ceramic substrate according to an embodiment of the present invention. is a cross-sectional view showing
  • the base plate 100 from which thermal stress is removed by annealing heat treatment, the brazing filler layer 200 and the brazing filler layer 200 disposed on the upper surface of the base plate 100 may include a ceramic substrate 300 that is brazed to the upper surface of the base plate 100 through the medium.
  • a semiconductor chip (not shown) may be mounted on the upper surface of the ceramic substrate 300 .
  • the semiconductor chip may be a semiconductor chip such as Si, LED, VCSEL, SiC, or GaN.
  • the ceramic substrate 300 may be any one of an Active Metal Brazing (AMB) substrate, a Direct Bonded Copper (DBC) substrate, and a Thick Printing Copper (TPC) substrate.
  • AMB Active Metal Brazing
  • DRC Direct Bonded Copper
  • TPC Thick Printing Copper
  • the ceramic substrate 300 may be provided with a ceramic substrate 310 and metal layers 320 and 330 formed on at least one surface of the ceramic substrate 310 so as to increase heat dissipation efficiency of heat generated from the semiconductor chip. .
  • the ceramic substrate 310 may be, for example, any one of alumina (Al2O3), AlN, SiN, and Si 3 N 4 .
  • the metal layers 320 and 330 may be formed of an electrode pattern for mounting a semiconductor chip and an electrode pattern for mounting a driving device by brazing a metal foil on the ceramic substrate 310 .
  • the metal layers 320 and 330 may be formed as electrode patterns in regions where semiconductor chips or peripheral components are to be mounted.
  • the metal foil may be an aluminum foil or a copper foil as an example. The metal foil is fired at 780° C. to 1100° C. on the ceramic substrate 310 to be brazed to the ceramic substrate 310 as an example.
  • Such a substrate is called an AMB (Active Metal Brazing) substrate.
  • an AMB substrate As an example, a DBC (Direct Bonding Copper) substrate, a TPC (Thick Printing Copper) substrate, and a DBA substrate (Direct Brazed Aluminum) may be applied.
  • the AMB substrate is most suitable in terms of durability and heat dissipation efficiency.
  • the ceramic substrate 310 may be any one of alumina (Al2O3), AlN, SiN, and Si 3 N 4 as an example, and the metal layers 320 and 330 may be made of one of Cu, Cu alloy, OFC, EPT Cu, and Al. This can be done as an example.
  • OFC is anaerobic copper.
  • the base plate 100 is bonded to the lower surface of the ceramic substrate 300 and used as a heat sink for dissipating heat generated from the semiconductor chip. It may be brazed to the substrate 300 .
  • the base plate 100 may be formed in a rectangular plate shape having a predetermined thickness.
  • the base plate 100 is formed of a material capable of increasing heat dissipation efficiency.
  • the base plate 100 may be made of at least one of Cu, Al, W, AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu, and Cu/W/Cu or a composite material thereof. .
  • the brazing filler layer 200 may be disposed on the upper surface of the base plate 100 .
  • the brazing filler layer 200 is for securing bonding characteristics between the base plate 100 and the ceramic substrate 300 .
  • the brazing filler layer 200 has a thickness of 5 ⁇ m or more and 100 ⁇ m or less.
  • the brazing filler layer 200 may be formed as a thin film having a multilayer structure.
  • the multi-layered thin film is intended to improve bonding strength by supplementing insufficient performance.
  • the brazing filler layer 200 may be formed of a material including at least one of Ag, Cu, AgCu, and AgCuTi.
  • Ag and Cu have high thermal conductivity, so they serve to increase bonding strength and at the same time facilitate heat transfer between the ceramic substrate 300 and the base plate 100 to increase heat dissipation efficiency.
  • Ti has good wettability and facilitates adhesion of Ag and Cu to the base plate 100 .
  • the brazing filler layer 200 may have a two-layer structure including an Ag layer and a Cu layer formed on the Ag layer.
  • the brazing filler layer 200 may have a three-layer structure including a Ti layer 200a, an Ag layer 200b formed on the Ti layer 200a, and a Cu layer 200c formed on the Ag layer 200b. have.
  • the brazing filler layer 200 is used for bonding the base plate 100 and the ceramic substrate 300 , and the boundary of the multilayer structure may be blurred after brazing bonding.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a power semiconductor module according to an embodiment of the present invention.
  • the method for manufacturing a power semiconductor module includes: removing thermal stress by annealing the base plate 100 to remove thermal stress (S10); and brazing on the upper surface of the base plate 100 It may include the step of disposing the filler layer 200 (S20) and the step of laminating the ceramic substrate 300 on the base plate 100 on which the brazing filler layer 200 is disposed and brazing bonding (S30). .
  • the base plate 100 is Cu, Al, W, AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu, A plate made of at least one of Cu/W/Cu or a composite material thereof is prepared.
  • the base plate 100 is made of at least one of AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu, Cu/W/Cu, or a composite material thereof.
  • AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu, and Cu/W/Cu materials have a lower coefficient of thermal expansion compared to Cu and Al, so it is possible to minimize warpage caused by the difference in thermal expansion coefficient at high temperatures. .
  • the thickness of the base plate 100 may be in the range of 1.0 mm to 3.0 mm.
  • the thickness of the base plate 100 is 2.0 mm or more, which is advantageous for heat dissipation and warpage can be minimized.
  • the step of removing thermal stress by annealing heat treatment of the base plate 100 is to remove the thermal stress of the base plate 100 in advance.
  • the base plate 100 and the ceramic substrate 300 may generate thermal stress due to a difference in thermal expansion coefficient during the brazing bonding process at a high temperature of 800 to 950°C.
  • a joint portion between the base plate 100 and the ceramic substrate 300 may be damaged by such thermal stress, and heat dissipation may be deteriorated due to poor heat transfer.
  • step (S30) of brazing bonding by completely melting the brazing filler layer 200 disposed between the base plate 100 and the ceramic substrate 300, annealing the base plate 100 to remove thermal stress.
  • step (S10) the thermal stress applied to the base plate 100 is removed in advance, and thereby heat generated by thermal expansion and thermal contraction in the process of brazing the base plate 100 and the ceramic substrate 300 to each other. The stress may be relieved to improve bonding reliability.
  • the bonding portion is not damaged, the heat transfer effect is excellent and the heat dissipation characteristics can be improved.
  • the thermal conductivity was 110 W/m.K
  • the brazing bonding structure of the base plate 100 and the ceramic substrate 300 according to the embodiment of the present invention showed a thermal conductivity of 370 W/m.K. . That is, it was found that the brazed joint structure of the present invention has about three times higher thermal conductivity than the conventional soldering joint structure.
  • the step of removing the thermal stress by annealing heat treatment may be carried out at a temperature of 600 ⁇ 750 °C in an electric furnace or a gas furnace. If the annealing temperature does not reach 600 °C, it may take more time to remove the thermal stress than necessary, and if the annealing temperature exceeds 750 °C, the effect of annealing is saturated and it is not economical. Therefore, it is preferable that the annealing temperature is 600-750 degreeC.
  • a sizing process may be additionally performed according to the material of the base plate 100 to increase dimensional accuracy or control warpage.
  • the step (S20) of disposing the brazing filler layer 200 on the upper surface of the base plate 100 is performed on the upper surface of the base plate 100 by any one of paste application, foil attachment, and P-filler 5
  • a brazing filler layer 200 having a thickness of not less than ⁇ m and not more than 100 ⁇ m is disposed.
  • the brazing filler layer 200 may be formed of a material including at least one of Ag, Cu, AgCu, and AgCuTi.
  • the ceramic substrate 300 is formed of a ceramic substrate 310 and a ceramic substrate 310.
  • the ceramic substrate 300 including the metal layers 320 and 330 brazed to at least one surface of the may be provided.
  • the ceramic substrate may include any one of an AMB substrate, a DBC substrate, a TPC substrate, and a DBA substrate.
  • the brazing bonding step (S30) may be performed at 450° C. or higher, preferably 800 to 950° C., and upper weight or pressurization may be performed to increase bonding strength during brazing.
  • a laminate in which a ceramic substrate 300 is laminated on a base plate 100 having a brazing filler layer 200 disposed on the upper surface is prepared, and the laminate is prepared by a brazing furnace. (not shown) may be disposed between the upper and lower pressure jigs in the interior to press the upper and lower surfaces of the laminate during heating.
  • the laminate may be placed in a brazing furnace and a weight may be placed on the upper surface of the laminate to be pressed from the top.
  • a weight may be placed on the upper surface of the laminate to be pressed from the top.
  • performing upper weight or pressure is for bonding without voids.
  • the brazing furnace controls the heating temperature to 800°C or higher, preferably in the range of 800 to 950°C, so that an efficient brazing process is performed.
  • the preferred brazing temperature is 870°C.
  • brazing bonding does not require vacuum bonding equipment like the use of solder preform, process simplification is possible, pore defects are prevented by applying upper weight or pressure, and bonding strength is increased, so bonding reliability is high.
  • the base plate 100 may be integrated with the ceramic substrate 300 .
  • the present invention shows an example in which the base plate 100 is bonded to the metal layer 320 of the ceramic substrate 300 , but is not limited thereto, and the base plate 100 is the metal layer 320 in the ceramic substrate 300 . ) may be joined through the brazing filler layer 200 even in an area where it is not formed.
  • the base plate 100 has a single-layer structure.
  • the base plate may have a multi-layered structure to have a low coefficient of thermal expansion (Low CTE).
  • FIG. 4 is a cross-sectional view showing a bonding structure of a base plate for a power semiconductor module and a ceramic substrate according to another embodiment of the present invention
  • FIG. 5 is a base plate for a power semiconductor module and a ceramic substrate according to another embodiment of the present invention. It is a cross-sectional view showing the bonding structure.
  • Another embodiment and another embodiment are different from the above-described embodiment in that the base plate has a multi-layered structure.
  • the base plate 100 ′ may be formed in a stacked structure of three or more layers to have a thickness of 1.0 mm or more.
  • the base plate 100 ′ may have a multi-layer structure in which metal sheets of different materials are stacked and have a thickness of 1.0 mm or more, which is advantageous for heat dissipation and minimizes the occurrence of warpage.
  • the base plate 100 ′ may include a first metal sheet 110 , a second metal sheet 120 , and a third metal sheet 130 . That is, in the base plate 100 ′, the second metal sheet 120 is formed on the upper surface of the first metal sheet 110 , and the third metal sheet 130 is formed on the upper surface of the second metal sheet 120 . It may have a layer structure.
  • the first metal sheet 110 and the third metal sheet 130 are made of the same metal material, and the second metal sheet 120 has a different metal material from the first metal sheet 110 and the third metal sheet 130 .
  • the plate 100' may be manufactured.
  • the first metal sheet 110 and the third metal sheet 130 are made of a Cu material sheet
  • the second metal sheet 120 is one of Mo, W, CuMo, CuW or a metal sheet thereof. It may be made of a mixed metal sheet.
  • the first metal sheet 110 of the base plate 100' is made of a Cu metal sheet
  • the second metal sheet 120 is made of a CuMo metal sheet
  • the third metal sheet 130 is made of Cu.
  • Material In the case of a CPC material made of a metal sheet, CuMo is for preventing warpage with a low coefficient of thermal expansion, and Cu is for securing thermal conductivity for heat dissipation.
  • the base plate 100 ′ has a three-layer metal sheet structure in which a Cu material metal sheet having a relatively high thermal expansion coefficient but a relatively high thermal expansion coefficient is formed on the upper and lower surfaces of the CuMo material sheet having a relatively low thermal expansion coefficient. have.
  • the base plate 100 ′ can absorb the curvature of the Cu material sheet by the CuMo material sheet, thereby reducing the curvature caused by the difference in the coefficient of thermal expansion at high temperature.
  • the base plate 100' may be formed in a three-layer structure of Cu/CuMo/Cu by infiltrating a CuMo metal sheet into the molten metal, coating the Cu layer on the upper and lower surfaces of the CuMo metal sheet, and then rolling.
  • the second metal sheet 120 is bonded to the top surface of the first metal sheet 110
  • the third metal sheet 120 is bonded to the top surface of the second metal sheet 120 . It may have a three-layer structure in which the metal sheet 130 is bonded.
  • the critical point for the thickness Without this, the base plate 100" of the desired thickness can be manufactured.
  • the base plate 100" is a second metal sheet 120 brazing bonded to the upper surface of the first metal sheet 110 via a brazing filler p, and a brazing filler (brazing filler) on the upper surface of the second metal sheet 120. It may have a three-layer laminated structure in which the third metal sheet 130 is brazed via p).
  • the brazing filler p may be made of a material including at least one of Ag, Cu, AgCu, and AgCuTi.
  • the brazing filler p may have a two-layer structure including an Ag layer and a Cu layer formed on the Ag layer.
  • the brazing filler p may have a three-layer structure including a Ti layer, an Ag layer formed on the Ti layer, and a Cu layer formed on the Ag layer.
  • a base plate 100 " with a thickness of 2.0 mm or more can be manufactured.
  • the base plate 100" When the base plate 100" is formed of a three-layer bonding metal sheet structure of Cu/CuMo/Cu or of AlSiC, it may have excellent bonding characteristics in bonding with the ceramic substrate 300, and the coefficient of thermal expansion is 6.8 ⁇ 12ppm/K, thermal conductivity may have a characteristic of 220 ⁇ 370W/m.K.
  • the base plate is brazed at the same time as the ceramic substrate at a high temperature, the bonding reliability is increased, the process can be simplified, and the process cost can be reduced.
  • brazing bonding does not require vacuum bonding equipment like the use of conventional solder preforms, process simplification is possible, pore defects are prevented by applying upper weight or pressure, and bonding strength is increased, so bonding reliability can be improved.
  • the base plate can improve bonding reliability because thermal stress is removed before being brazed to the ceramic substrate, and has excellent thermal conductivity to satisfy the heat dissipation conditions required by the power semiconductor module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

본 발명은 전력반도체 모듈의 제조방법 및 이에 의해 제조된 전력반도체 모듈에 관한 것으로, 베이스 플레이트를 소둔 열처리하여 열 응력을 제거하는 단계와, 베이스 플레이트의 상면에 브레이징 필러층을 배치하는 단계와, 브레이징 필러층이 배치된 베이스 플레이트 상에 세라믹기판을 적층하여 브레이징 접합하는 단계를 포함한다.

Description

전력반도체 모듈의 제조방법 및 이에 의해 제조된 전력반도체 모듈
본 발명은 전력반도체 모듈의 제조방법 및 이에 의해 제조된 전력반도체 모듈에 관한 것으로, 더욱 상세하게는 베이스 플레이트와 세라믹기판의 접합 구조를 갖는 전력반도체 모듈의 제조방법 및 이에 의해 제조된 전력반도체 모듈(METHOD OF MANUFACTURING POWER SEMICONDUCTOR MODULE AND POWER SEMICONDUCTOR MODULE MANUFACTURED THEREBY)에 관한 것이다.
일반적으로 전력반도체 모듈에서 베이스 플레이트는 사각 플레이트 형상으로 형성되며 알루미늄 또는 구리 재질로 형성된다. 이러한 베이스 플레이트는 세라믹기판의 하면에 접합되어 방열판으로 사용될 수 있다. 이러한 베이스 플레이트는 방열에 유리하도록 세라믹기판의 하면에 솔더링 접합될 수 있다.
그런데, 종래의 베이스 플레이트의 경우, 열팽창 계수가 17ppm/K이기 때문에 세라믹기판과의 접합 공정 중에 열팽창의 차이로 인한 휨이 발생할 수 있다. 또한 높은 온도에서 솔더페이스트가 녹아 베이스 플레이트의 휨, 결함 등이 유발될 수 있다.
이에 대한 해결 방안으로 AlSiC 또는 이와 유사한 재료로 250℃ 이하의 온도에서 세라믹기판과 베이스 플레이트를 접합한다. 종래의 베이스 플레이트와 세라믹기판의 접합 구조에 의하면, 베이스 플레이트는 솔더프리폼(Solder Preform)을 매개로 세라믹기판에 솔더링 접합된다. 이때, 솔더프리폼은 Sn, Ag, Cu를 포함하는 조성으로 이루어지는 SAC305를 사용하며, 솔더링 온도는 230~350℃이다.
그런데, 종래의 베이스 플레이트와 세라믹기판의 접합 구조는 접합에 사용되는 솔더페이스트와 솔더프리폼, 진공접합설비 등의 공정으로 인해 공정 비용이 상승하며, 접합 신뢰성과 수율 문제 등을 야기하고 있는 실정이다.
본 발명의 목적은 베이스 플레이트와 세라믹기판의 접합 신뢰성을 향상시키고, 다양한 베이스 플레이트에 대한 고신뢰성 접합이 가능하며, 공정 단순화 및 공정비용 절감이 가능한 전력반도체 모듈의 제조방법 및 이에 의해 제조된 전력반도체 모듈을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 실시예에 따른 전력반도체 모듈의 제조 방법은, 베이스 플레이트를 소둔 열처리하여 열 응력을 제거하는 단계와, 베이스 플레이트의 상면에 브레이징 필러층을 배치하는 단계와, 브레이징 필러층이 배치된 베이스 플레이트 상에 세라믹기판을 적층하여 브레이징 접합하는 단계를 포함할 수 있다.
소둔 열처리하는 단계에서, 소둔 온도는 600℃ 내지 750℃의 온도일 수 있다.
브레이징 필러층을 배치하는 단계에서, 페이스트 도포, 포일(foil) 부착, P-filler 중 어느 하나의 방법으로 베이스 플레이트의 상면에 5㎛ 이상 100㎛ 이하의 두께를 갖는 브레이징 필러층을 배치할 수 있다.
브레이징 접합하는 단계는, 800~950℃에서 수행하고, 브레이징 중에 상부 중량 또는 가압을 실시할 수 있다.
한편, 본 발명의 실시예에 따른 전력반도체 모듈의 제조방법에 의해 제조된 전력반도체 모듈은, 소둔 열처리되어 열 응력이 제거된 베이스 플레이트와, 베이스 플레이트의 상면에 배치되는 브레이징 필러층과, 브레이징 필러층을 매개로 베이스 플레이트의 상면에 브레이징 접합되는 세라믹기판을 포함할 수 있다.
여기서, 베이스 플레이트는 600℃ 내지 750℃의 온도에서 소둔 열처리될 수 있다.
세라믹기판은 세라믹 기재에 금속으로 이루어진 전극패턴이 형성될 수 있다.
브레이징 필러층은 Ag, Cu, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어질 수 있다.
베이스 플레이트는, Cu, Al, W, AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu 및 Cu/W/Cu 중 적어도 하나 또는 이들의 복합소재로 이루어질 수 있다.
한편, 베이스 플레이트는 제1 금속시트와, 제1 금속시트의 상면에 형성된 제2 금속시트와, 제2 금속시트의 상면에 형성된 제3 금속시트를 포함할 수 있고, 제1 금속시트와 제3 금속시트는 동일 금속재질로 형성될 수 있고, 제2 금속시트는 제1 금속시트 및 제3 금속시트와 다른 금속 재질일 수 있다.
여기서, 제2 금속시트는 Mo, W, CuMo, CuW 중 하나의 금속시트 또는 이들의 혼합 금속시트로 이루어질 수 있고, 제1 금속시트와 제3 금속시트는 Cu 금속시트로 이루어질 수 있다.
또한, 제1 금속시트와 제2 금속시트의 사이, 제2 금속시트와 제3 금속시트의 사이에 배치된 브레이징 필러를 포함하고, 제1 금속시트, 제2 금속시트 및 제3 금속시트는 브레이징 필러를 매개로 브레이징 접합될 수 있다.
여기서, 브레이징 필러는 Ag, Cu, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어질 수 있다.
본 발명은 베이스 플레이트를 세라믹기판에 브레이징 접합함으로써 접합강도가 높아지고, 솔더프리폼의 사용처럼 진공접합설비 등을 요구하지 않으므로 공정단순화가 가능하며, 상부 중량 또는 가압을 실시하는 것에서 기공 결함이 방지되고 접합강도가 더 높아지므로 접합 신뢰성을 높일 수 있는 효과가 있다.
또한, 본 발명은 베이스 플레이트의 열응력을 사전에 제거한 후 브레이징 필러층을 용융시켜 브레이징 접합하기 때문에 접합 신뢰성이 향상되고, 열전도도 특성이 기존 솔더링 접합에 비해 3배 이상 높다는 효과가 있다.
또한, 본 발명의 브레이징 필러층은 열의 이동을 용이하게 하여 세라믹기판의 열을 베이스 플레이트로 빠르게 이동하므로 방열 효과를 극대화할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 의한 전력반도체 모듈용 베이스 플레이트와 세라믹기판의 접합 구조를 보인 분해 사시도이다.
도 2는 본 발명의 실시예에 의한 전력반도체 모듈용 베이스 플레이트와 세라믹기판의 접합 구조를 보인 단면도이다.
도 3은 본 발명의 실시예에 따른 전력반도체 모듈 제조방법을 도시한 흐름도이다.
도 4는 본 발명의 다른 실시예에 의한 전력반도체 모듈용 베이스 플레이트와 세라믹기판의 접합 구조를 보인 단면도이다.
도 5는 본 발명의 또 다른 실시예에 의한 전력반도체 모듈용 베이스 플레이트와 세라믹기판의 접합 구조를 보인 단면도이다.
이하 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명하기로 한다.
본 발명은 전력반도체 모듈에 포함되는 구성 중 베이스 플레이트와 세라믹기판의 접합 구조에 특징이 있으므로, 이를 중심으로 설명하기로 한다.
도 1은 본 발명의 실시예에 의한 전력반도체 모듈용 베이스 플레이트와 세라믹기판의 접합 구조를 보인 분해 사시도이고, 도 2는 본 발명의 실시예에 의한 전력반도체 모듈용 베이스 플레이트와 세라믹기판의 접합 구조를 보인 단면도이다.
도 1 및 도 2에 도시된 바에 의하면, 본 발명은 소둔 열처리되어 열 응력이 제거된 베이스 플레이트(100), 베이스 플레이트(100)의 상면에 배치되는 브레이징 필러층(200) 및 브레이징 필러층(200)을 매개로 베이스 플레이트(100)의 상면에 브레이징 접합되는 세라믹기판(300)을 포함할 수 있다.
전력반도체 모듈은 세라믹기판(300)의 상면에 반도체 칩(미도시)이 실장될 수 있다. 반도체 칩은 Si, LED, VCSEL, SiC, GaN 등의 반도체 칩일 수 있다.
세라믹기판(300)은 AMB(Active Metal Brazing) 기판, DBC(Direct Bonded Copper) 기판, TPC(Thick Printing Copper) 기판 중 어느 하나일 수 있다. 여기서, 세라믹기판(300)은 반도체 칩으로부터 발생하는 열의 방열 효율을 높일 수 있도록, 세라믹기재(310)와 상기 세라믹기재(310)의 적어도 일면에 금속층(320,330)이 형성된 세라믹 기판으로 구비될 수 있다.
세라믹기재(310)는 알루미나(Al2O3), AlN, SiN, Si3N4 중 어느 하나인 것을 일 예로 할 수 있다. 금속층(320,330)은 세라믹기재(310) 상에 금속박이 브레이징 접합되어 반도체 칩을 실장하는 전극패턴 및 구동소자를 실장하는 전극패턴으로 형성될 수 있다. 예컨데, 금속층(320,330)은 반도체 칩 또는 주변 부품이 실장될 영역에 전극패턴으로 형성될 수 있다. 금속박은 알루미늄박 또는 동박인 것을 일 예로 한다. 금속박은 세라믹기재(310) 상에 780℃~1100℃로 소성되어 세라믹기재(310)와 브레이징 접합되는 것을 일 예로 한다. 이러한 기판을 AMB(Active Metal Brazing) 기판이라 한다. 실시예는 AMB 기판을 예로 들어 설명하나 DBC(Direct Bonding Copper) 기판, TPC(Thick Printing Copper) 기판, DBA 기판(Direct Brazed Aluminum)을 적용할 수도 있다. 여기서, AMB 기판은 내구성 및 방열 효율면에서 가장 적합하다.
세라믹기재(310)는 알루미나(Al2O3), AlN, SiN, Si3N4 중 어느 하나인 것을 일 예로 할 수 있고, 금속층(320,330)은 Cu, Cu합금, OFC, EPT Cu, Al 중 하나로 이루어지는 것을 일 예로 할 수 있다. OFC는 무산소동이다.
베이스 플레이트(100)는 세라믹기판(300)의 하면에 접합되어 반도체 칩에서 발생하는 열을 방열하기 위한 방열판으로 사용되며, 600℃ 내지 750℃의 온도에서 소둔 열처리되어 열 응력이 제거된 상태에서 세라믹기판(300)과 브레이징 접합될 수 있다.
베이스 플레이트(100)는 소정의 두께를 가지는 사각 플레이트 형상으로 형성될 수 있다. 베이스 플레이트(100)는 방열 효율을 높일 수 있는 소재로 형성된다. 일 예로, 베이스 플레이트(100)는 Cu, Al, W, AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu 및 Cu/W/Cu 중 적어도 하나 또는 이들의 복합소재로 이루어질 수 있다. Cu, Al, W, AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu 및 Cu/W/Cu의 소재는 열전도도가 우수하고, AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu 및 Cu/W/Cu의 소재는 저열팽창 계수를 가져 세라믹기판(300)과 접합 시 휨 발생을 최소화할 수 있다.
브레이징 필러층(200)은 베이스 플레이트(100)의 상면에 배치될 수 있다. 브레이징 필러층(200)은 베이스 플레이트(100)와 세라믹기판(300) 간의 접합 특성을 확보하기 위한 것이다.
브레이징 필러층(200)은 5㎛ 이상 100㎛ 이하의 두께를 가진다. 브레이징 필러층(200)은 다층 구조의 박막으로 형성할 수 있다. 다층 구조의 박막은 부족한 성능을 보완하여 접합력을 높이기 위한 것이다. 브레이징 필러층(200)은 Ag, Cu, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어질 수 있다. Ag와 Cu는 열전도도가 높아 접합력을 높이는 역할과 동시에 세라믹기판(300)과 베이스 플레이트(100) 간 열 전달을 용이하게 하여 방열 효율을 높인다. Ti는 젖음성이 좋아 베이스 플레이트(100)에 Ag와 Cu의 부착을 용이하게 한다.
일 예로, 브레이징 필러층(200)은 Ag층과 Ag층 상에 형성된 Cu층을 포함하는 2층 구조로 이루어질 수 있다. 또는 브레이징 필러층(200)은 Ti층(200a)과 Ti층(200a) 상에 형성된 Ag층(200b)과 Ag층(200b) 상에 형성된 Cu층(200c)을 포함하는 3층 구조로 이루어질 수 있다. 브레이징 필러층(200)은 베이스 플레이트(100)와 세라믹기판(300)의 접합에 사용되며, 브레이징 접합 후 다층 구조의 경계가 모호해질 수 있다.
도 3은 본 발명의 실시예에 따른 전력반도체 모듈 제조방법을 도시한 흐름도이다.
본 발명의 실시예에 따른 전력반도체 모듈 제조방법은 도 4에 도시된 바와 같이, 베이스 플레이트(100)를 소둔 열처리하여 열 응력을 제거하는 단계(S10)와, 베이스 플레이트(100)의 상면에 브레이징 필러층(200)을 배치하는 단계(S20)와, 브레이징 필러층(200)이 배치된 베이스 플레이트(100) 상에 세라믹기판(300)을 적층하여 브레이징 접합하는 단계(S30)를 포함할 수 있다.
베이스 플레이트(100)를 소둔 열처리하여 열 응력을 제거하는 단계(S10)에서, 베이스 플레이트(100)는 Cu, Al, W, AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu, Cu/W/Cu 중 적어도 하나 또는 이들의 복합소재로 이루어지는 플레이트를 준비한다. 바람직하게는 베이스 플레이트(100)는 AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu, Cu/W/Cu 중 적어도 하나 또는 이들의 복합소재로 이루어지는 플레이트를 준비한다. AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu, Cu/W/Cu 재질은 Cu와 Al에 비해 낮은 열팽창 계수를 가져 고온에서 열팽창 계수의 차이로 늘어나는 휨 현상을 최소화할 수 있다.
베이스 플레이트(100)의 두께는 1.0mm~3.0mm 범위일 수 있다. 바람직하게는 베이스 플레이트(100)의 두께는 2.0mm 이상으로 되어 방열에 유리하고 휨 발생이 최소화될 수 있다.
베이스 플레이트(100)를 소둔 열처리하여 열 응력을 제거하는 단계(S10)는, 베이스 플레이트(100)의 열 응력을 사전에 제거하기 위한 것이다.
베이스 플레이트(100)와 세라믹기판(300)은 800~950℃의 고온에서 브레이징 접합되는 공정 중에 열팽창 계수의 차이에 의해 열 응력이 발생할 수 있다. 이러한 열 응력에 의해 베이스 플레이트(100)와 세라믹기판(300)의 접합 부위가 손상될 수 있으며, 열 전달이 제대로 이루어지지 않아 방열 특성이 저하될 수 있다.
따라서, 베이스 플레이트(100)와 세라믹기판(300) 사이에 배치된 브레이징 필러층(200)을 완전 용융시켜 브레이징 접합하는 단계(S30) 이전에 베이스 플레이트(100)를 소둔 열처리하여 열 응력을 제거하는 단계(S10)를 거치면, 베이스 플레이트(100)에 부여된 열 응력이 사전에 제거되고, 이로 인해 베이스 플레이트(100)와 세라믹기판(300)을 브레이징 접합하는 과정에서 열팽창과 열수축에 의해 생성되는 열응력이 완화되어 접합 신뢰성을 향상시킬 수 있다. 또한, 접합 부위가 손상되지 않기 때문에 열 전달 효과가 우수해져 방열 특성을 향상시킬 수 있다. 기존의 솔더링을 이용한 접합 구조의 경우 열전도도가 110W/m.K으로 나타났고, 본 발명의 실시예에 따른 베이스 플레이트(100)와 세라믹기판(300)의 브레이징 접합 구조는 열전도도가 370W/m.K으로 나타났다. 즉, 본 발명의 브레이징 접합 구조가 기존의 솔더링 접합 구조보다 열전도도 특성이 약 3배 이상 높은 것으로 나타났다.
소둔 열처리하여 열 응력을 제거하는 단계(S10)는 전기로나 가스로에서 600~750℃의 온도로 실시될 수 있다. 소둔 온도가 600℃에 미치지 못하면 열 응력 제거 시간이 필요 이상으로 소요될 수 있고, 소둔 온도가 750℃를 초과하면 소둔에 의한 효과가 포화되어 경제적이지 않다. 따라서, 소둔 온도는 600~750℃인 것이 바람직하다.
또한, 소둔 열처리하여 열 응력을 제거하는 단계(S10) 이후에, 베이스 플레이트(100)의 재질에 따라 추가적으로 사이징(Sizing) 공정을 수행하여 치수의 정밀도를 높이거나 휨을 제어할 수도 있다.
베이스 플레이트(100)의 상면에 브레이징 필러층(200)을 배치하는 단계(S20)는, 페이스트 도포, 포일(foil) 부착, P-filler 중 어느 하나의 방법으로 베이스 플레이트(100)의 상면에 5㎛ 이상 100㎛ 이하의 두께를 갖는 브레이징 필러층(200)을 배치한다. 브레이징 필러층(200)은 Ag, Cu, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어질 수 있다.
브레이징 필러층(200)이 배치된 베이스 플레이트(100) 상에 세라믹기판(300)을 적층하여 브레이징 접합하는 단계(S30)에서, 세라믹기판(300)은 세라믹기재(310)와 세라믹기재(310)의 적어도 일면에 브레이징 접합된 금속층(320,330)을 포함하는 세라믹기판(300)이 구비될 수 있다. 일 예로, 세라믹기판은 AMB 기판, DBC 기판, TPC 기판, DBA 기판 중 어느 하나가 구비될 수 있다.
브레이징 접합하는 단계(S30)는 450℃ 이상, 바람직하게는 800~950℃에서 수행하고, 브레이징 중에 접합력을 높이기 위해 상부 중량 또는 가압을 실시할 수 있다.
일 예로, 브레이징 접합하는 단계(S30)는, 브레이징 필러층(200)이 상면에 배치된 베이스 플레이트(100) 상에 세라믹기판(300)을 적층한 적층체를 준비하고, 상기 적층체를 브레이징로(미도시) 내의 상부 가압지그와 하부 가압지그 사이에 배치하여 가열 중에 적층체의 상하면을 가압할 수 있다.
또는, 상기 적층체를 브레이징로 내에 배치하고 적층체의 상면에 중량체를 배치하여 상부에서 가압할 수도 있다. 브레이징 접합하는 단계에서 상부 중량 또는 가압을 실시하는 것은 보이드(Void)가 없는 접합을 위한 것이다.
브레이징로는 가열 온도를 800℃ 이상, 바람직하게는 800~950℃ 범위로 제어하여 효율적인 브레이징 공정이 이루어지도록 한다. 일 예로, 바람직한 브레이징 온도는 870℃이다.
브레이징 접합은 솔더프리폼의 사용처럼 진공접합설비 등을 요구하지 않으므로 공정단순화가 가능하고, 상부 중량 또는 가압을 실시함으로써 기공 결함이 방지되며 접합강도가 높아지므로 높은 접합 신뢰성을 갖는다.
브레이징 접합하는 단계(S30)를 거치면, 베이스 플레이트(100)는 세라믹기판(300)과 일체화될 수 있다.
여기서, 본 발명은 베이스 플레이트(100)가 세라믹기판(300)의 금속층(320)에 접합된 예를 도시하고 있으나, 이에 한정되지 않으며, 베이스 플레이트(100)는 세라믹기판(300)에서 금속층(320)이 형성되지 않은 영역에도 브레이징 필러층(200)을 매개로 접합될 수 있다.
전술한 실시예는 베이스 플레이트(100)가 단층 구조로 이루어진다. 그러나 베이스 플레이트는 저열팽창 계수(Low CTE)를 가지도록 다층 구조로 이루어질 수도 있다.
도 4는 본 발명의 다른 실시예에 의한 전력반도체 모듈용 베이스 플레이트와 세라믹기판의 접합 구조를 보인 단면도이고, 도 5는 본 발명의 또 다른 실시예에 의한 전력반도체 모듈용 베이스 플레이트와 세라믹기판의 접합 구조를 보인 단면도이다. 다른 실시예와 또 다른 실시예는 전술한 실시예와 대비하여 베이스 플레이트가 다층 구조로 이루어지는 것에 차이가 있다.
도 4에 도시된 바에 의하면, 베이스 플레이트(100')는 3층 이상의 적층 구조로 형성하여 두께가 1.0mm 이상이 되도록 할 수 있다. 일 예로, 베이스 플레이트(100')는 이종 재질의 금속시트가 적층된 다층 구조로 형성하고 두께가 1.0mm 이상이 되도록 하여 방열에 유리하고 휨 발생이 최소화되도록 할 수 있다.
베이스 플레이트(100')는 제1 금속시트(110), 제2 금속시트(120) 및 제3 금속시트(130)를 포함할 수 있다. 즉, 베이스 플레이트(100')는 제1 금속시트(110)의 상면에 제2 금속시트(120)가 형성되고, 제2 금속시트(120)의 상면에 제3 금속시트(130)가 형성된 3층 구조일 수 있다.
제1 금속시트(110)와 제3 금속시트(130)는 동일 금속재질로 형성되고, 제2 금속시트(120)는 제1 금속시트(110) 및 제3 금속시트(130)와 다른 금속재질로 형성될 수 있다. 제2 금속시트(120)는 열팽창 계수가 낮은 금속재질로 형성되고, 제1 금속시트(110) 및 제3 금속시트(130)는 열전도도가 우수한 재질로 형성됨이 바람직하다. 열팽창 계수가 낮은 금속재질의 제2 금속시트(120)의 상면과 하면에 열전도도가 우수한 금속재질의 제1 금속시트(110)와 제3 금속시트(130)를 접합하여 저열팽창 계수를 가지는 베이스 플레이트(100')를 제조할 수 있다.
일 예로, 제1 금속시트(110)와 제3 금속시트(130)는 Cu 재질 금속시트로 이루어지고, 제2 금속시트(120)는 Mo, W, CuMo, CuW 중 하나의 금속시트 또는 이들의 혼합 금속시트로 이루어질 수 있다.
여기서, 베이스 플레이트(100')의 제1 금속시트(110)가 Cu 재질 금속시트로 이루어지고, 제2 금속시트(120)가 CuMo 재질 금속시트로 이루어지며, 제3 금속시트(130)가 Cu 재질 금속시트로 이루어지는 CPC 소재일 경우, CuMo는 낮은 열팽창 계수로 휨 발생 방지를 위한 것이고, Cu는 방열을 위한 열전도도 확보를 위한 것이다.
즉, 베이스 플레이트(100')는 열팽창 계수가 상대적으로 낮은 CuMo 재질 금속시트의 상면과 하면에, 열팽창 계수는 상대적으로 높으나 열전도도가 높은 Cu 재질 금속시트가 형성된 3층 금속시트 구조로 구비될 수 있다. 이러한 베이스 플레이트(100')는 Cu 재질 금속시트의 휨을 CuMo 재질 금속시트가 흡수할 수 있고, 이로 인해 고온에서 열팽창 계수의 차이로 발생하는 휨 현상을 줄일 수 있다.
베이스 플레이트(100')는 CuMo 재질 금속시트를 용탕에 침투시켜 CuMo 재질 금속시트의 상면과 하면에 Cu층을 코팅한 다음, 압연하여 Cu/CuMo/Cu의 3층 구조로 형성할 수 있다.
또한, 도 5에 도시된 바와 같이, 베이스 플레이트(100")는 제1 금속시트(110)의 상면에 제2 금속시트(120)가 접합되고, 제2 금속시트(120)의 상면에 제3 금속시트(130)가 접합된 3층 구조일 수 있다. 제1 금속시트(110), 제2 금속시트(120) 및 제3 금속시트(130)를 접합하여 다층 구조로 형성하면 두께에 대한 임계점이 없이 원하는 두께의 베이스 플레이트(100")를 제조할 수 있다.
베이스 플레이트(100")는 제1 금속시트(110)의 상면에 브레이징 필러(p)를 매개로 제2 금속시트(120)가 브레이징 접합되고, 제2 금속시트(120)의 상면에 브레이징 필러(p)를 매개로 제3 금속시트(130)가 브레이징 접합된 3층의 적층형 구조일 수 있다.
브레이징 필러(p)는 Ag, Cu, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어질 수 있다. 일 예로, 브레이징 필러(p)는 Ag층과 Ag층 상에 형성된 Cu층을 포함하는 2층 구조로 이루어질 수 있다. 또는 브레이징 필러(p)는 Ti층과, Ti층 상에 형성된 Ag층과, Ag층 상에 형성된 Cu층을 포함하는 3층 구조로 이루어질 수 있다.
그리고, 일 예로, CuMo 재질 금속시트의 상면과 하면에 브레이징 필러(p)를 매개로 Cu 재질 금속시트를 접합하여 3층 구조 또는 다층 접합 구조로 형성하면 두께 2.0mm 이상인 베이스 플레이트(100")를 제조할 수 있다.
베이스 플레이트(100")는 Cu/CuMo/Cu의 3층 접합 금속시트 구조로 형성되거나 AlSiC로 형성되는 경우, 세라믹기판(300)과의 접합에서 우수한 접합 특성을 가질 수 있으며, 열팽창 계수는 6.8~12ppm/K, 열전도도는 220~370W/m.K인 특성을 가질 수 있다.
상술한 본 발명은 베이스 플레이트를 세라믹기판과 동시에 고온에서 브레이징 접합하므로 접합 신뢰성이 높아지고 공정 단순화가 가능하며 공정비용 절감에 기여할 수 있다.
특히, 브레이징 접합은 종래의 솔더프리폼의 사용처럼 진공접합설비 등을 요구하지 않으므로 공정단순화가 가능하고, 상부 중량 또는 가압을 실시함으로써 기공 결함이 방지되며 접합강도가 높아지므로 접합 신뢰성을 높일 수 있다.
또한, 베이스 플레이트는 세라믹기판과 브레이징 접합되기 전에 열 응력이 제거되기 때문에 접합 신뢰성을 향상시킬 수 있고, 우수한 열전도도를 가져 전력반도체 모듈에서 요구하는 방열 조건을 만족할 수 있다.
상술한 베이스 플레이트와 세라믹기판의 접합 구조는 전력반도체 모듈에 적용되는 것을 예로 들어 설명하였으나, 고신뢰성 접합이 요구되는 다양한 접합 구조에 적용 가능하다.
또한, 본 발명은 실시예, 다른 실시예 및 또 다른 실시예로 분리하여 설명하였으나 이들을 혼용하여 적용 가능하다.
본 발명은 도면과 명세서에 최적의 실시예들이 개시되었다. 여기서, 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 발명은 기술분야의 통상의 지식을 가진 자라면, 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 권리범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (13)

  1. 베이스 플레이트를 소둔 열처리하여 열 응력을 제거하는 단계;
    상기 베이스 플레이트의 상면에 브레이징 필러층을 배치하는 단계; 및
    상기 브레이징 필러층이 배치된 상기 베이스 플레이트 상에 세라믹기판을 적층하여 브레이징 접합하는 단계;
    를 포함하는 전력반도체 모듈의 제조방법.
  2. 제1항에 있어서,
    상기 소둔 열처리하여 열 응력을 제거하는 단계에서,
    소둔 온도는 600℃ 내지 750℃의 온도인 전력반도체 모듈의 제조방법.
  3. 제1항에 있어서,
    상기 브레이징 필러층을 배치하는 단계에서,
    페이스트 도포, 포일(foil) 부착, P-filler 중 어느 하나의 방법으로 상기 베이스 플레이트의 상면에 5㎛ 이상 100㎛ 이하의 두께를 갖는 브레이징 필러층을 배치하는 전력반도체 모듈의 제조방법.
  4. 제1항에 있어서,
    상기 브레이징 접합하는 단계는,
    800~950℃에서 수행하고, 브레이징 중에 상부 중량 또는 가압을 실시하는 전력반도체 모듈의 제조방법.
  5. 소둔 열처리되어 열 응력이 제거된 베이스 플레이트;
    상기 베이스 플레이트의 상면에 배치되는 브레이징 필러층; 및
    상기 브레이징 필러층을 매개로 상기 베이스 플레이트의 상면에 브레이징 접합되는 세라믹기판;
    을 포함하는 전력반도체 모듈.
  6. 제5항에 있어서,
    상기 베이스 플레이트는 600℃ 내지 750℃의 온도에서 소둔 열처리된 전력반도체 모듈.
  7. 제5항에 있어서,
    상기 세라믹기판은 세라믹 기재에 금속으로 이루어진 전극패턴이 형성된 전력반도체 모듈.
  8. 제5항에 있어서,
    상기 브레이징 필러층은 Ag, Cu, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어지는 전력반도체 모듈.
  9. 제5항에 있어서,
    상기 베이스 플레이트는,
    Cu, Al, W, AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu 및 Cu/W/Cu 중 적어도 하나 또는 이들의 복합소재로 이루어지는 전력반도체 모듈.
  10. 제5항에 있어서,
    상기 베이스 플레이트는,
    제1 금속시트;
    상기 제1 금속시트의 상면에 형성된 제2 금속시트; 및
    상기 제2 금속시트의 상면에 형성된 제3 금속시트를 포함하고,
    상기 제1 금속시트와 상기 제3 금속시트는 동일 금속재질로 형성되며,
    상기 제2 금속시트는 상기 제1 금속시트 및 상기 제3 금속시트와 다른 금속 재질인 전력반도체 모듈.
  11. 제10항에 있어서,
    상기 제2 금속시트는 Mo, W, CuMo, CuW 중 하나의 금속시트 또는 이들의 혼합 금속시트로 이루어지고,
    상기 제1 금속시트와 상기 제3 금속시트는 Cu 금속시트로 이루어진 전력반도체 모듈.
  12. 제10항에 있어서,
    상기 제1 금속시트와 상기 제2 금속시트의 사이, 상기 제2 금속시트와 상기 제3 금속시트의 사이에 배치된 브레이징 필러를 포함하고,
    상기 제1 금속시트, 상기 제2 금속시트 및 상기 제3 금속시트는 상기 브레이징 필러를 매개로 브레이징 접합된 전력반도체 모듈.
  13. 제12항에 있어서,
    상기 브레이징 필러는 Ag, Cu, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어지는 전력반도체 모듈.
PCT/KR2021/019682 2020-12-28 2021-12-23 전력반도체 모듈의 제조방법 및 이에 의해 제조된 전력반도체 모듈 WO2022145869A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200184611A KR102580589B1 (ko) 2020-12-28 2020-12-28 전력반도체 모듈의 제조방법 및 이에 의해 제조된 전력반도체 모듈
KR10-2020-0184611 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145869A1 true WO2022145869A1 (ko) 2022-07-07

Family

ID=82259495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019682 WO2022145869A1 (ko) 2020-12-28 2021-12-23 전력반도체 모듈의 제조방법 및 이에 의해 제조된 전력반도체 모듈

Country Status (2)

Country Link
KR (1) KR102580589B1 (ko)
WO (1) WO2022145869A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240032414A (ko) * 2022-09-02 2024-03-12 주식회사 아모그린텍 세라믹 기판 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060122230A (ko) * 2005-05-26 2006-11-30 삼성전기주식회사 발광다이오드 패키지 제조방법
KR20100004875A (ko) * 2008-07-04 2010-01-13 가부시키가이샤 도요다 지도숏키 반도체 디바이스
KR20130020603A (ko) * 2011-08-17 2013-02-27 에이비비 테크놀로지 아게 전력 반도체 배열체, 다수의 전력 반도체 배열체들을 갖는 전력 반도체 모듈, 및 다수의 전력 반도체 모듈들을 구비하는 모듈 어셈블리
KR20140007271A (ko) * 2012-07-09 2014-01-17 세미크론 엘렉트로니크 지엠비에치 앤드 코. 케이지 하나 이상의 응력 저감용 조정 요소를 구비한 전력 반도체 모듈
KR20170048999A (ko) * 2015-10-27 2017-05-10 주식회사 아모센스 세라믹 기판 제조 방법 및 이 제조방법으로 제조된 세라믹 기판

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786161A (en) * 1980-11-17 1982-05-29 Sony Corp Tape loading device
JP2507614B2 (ja) * 1989-07-15 1996-06-12 日本碍子株式会社 セラミック部品と金属部品との加圧接合方法
JP5380621B1 (ja) * 2013-03-25 2014-01-08 Jx日鉱日石金属株式会社 導電性及び応力緩和特性に優れる銅合金板
JP6331867B2 (ja) * 2014-08-18 2018-05-30 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060122230A (ko) * 2005-05-26 2006-11-30 삼성전기주식회사 발광다이오드 패키지 제조방법
KR20100004875A (ko) * 2008-07-04 2010-01-13 가부시키가이샤 도요다 지도숏키 반도체 디바이스
KR20130020603A (ko) * 2011-08-17 2013-02-27 에이비비 테크놀로지 아게 전력 반도체 배열체, 다수의 전력 반도체 배열체들을 갖는 전력 반도체 모듈, 및 다수의 전력 반도체 모듈들을 구비하는 모듈 어셈블리
KR20140007271A (ko) * 2012-07-09 2014-01-17 세미크론 엘렉트로니크 지엠비에치 앤드 코. 케이지 하나 이상의 응력 저감용 조정 요소를 구비한 전력 반도체 모듈
KR20170048999A (ko) * 2015-10-27 2017-05-10 주식회사 아모센스 세라믹 기판 제조 방법 및 이 제조방법으로 제조된 세라믹 기판

Also Published As

Publication number Publication date
KR20220093662A (ko) 2022-07-05
KR102580589B1 (ko) 2023-09-20

Similar Documents

Publication Publication Date Title
JPH0364097A (ja) ヒート・シンク基板
WO2016171530A1 (ko) 세라믹 기판 제조 방법 및 이 제조방법으로 제조된 세라믹 기판
WO2022145869A1 (ko) 전력반도체 모듈의 제조방법 및 이에 의해 제조된 전력반도체 모듈
WO2010011009A1 (ko) 전자부품 모듈용 금속 기판과 이를 포함하는 전자부품 모듈 및 전자부품 모듈용 금속 기판 제조방법
WO2011111989A2 (ko) 금속접합 세라믹기판
WO2010114238A2 (ko) 회로 기판 및 그 제조 방법
WO2022045694A1 (ko) 양면 냉각형 파워 모듈용 세라믹 회로 기판, 그 제조방법 및 이를 구비한 양면 냉각형 파워 모듈
WO2021162369A1 (ko) 파워모듈 및 그 제조방법
WO2023282598A1 (ko) 세라믹 기판 및 그 제조방법
WO2020235865A1 (ko) 세라믹 기판 제조 방법
WO2020009338A1 (ko) 세라믹 메탈라이징 기판과 그 제조 방법
WO2022039441A1 (ko) 파워모듈 및 그 제조방법
US5754403A (en) Constraining core for surface mount technology
WO2022203288A1 (ko) 파워모듈 및 그 제조방법
WO2021235721A1 (ko) 세라믹 회로 기판의 제조방법
WO2017155249A1 (ko) 세라믹 기판 제조용 적층 시스템 및 이를 이용한 세라믹 기판의 제조 방법
WO2022211329A1 (ko) 파워모듈의 제조방법
WO2021261805A1 (ko) 하이브리드 베이스 플레이트 및 그 제조방법
WO2023163439A1 (ko) 세라믹 기판 유닛 및 그 제조방법
WO2023163438A1 (ko) 세라믹 기판 유닛 및 그 제조방법
WO2023008851A1 (ko) 히트싱크 일체형 세라믹 기판 및 그 제조방법
WO2023033425A1 (ko) 파워모듈용 세라믹 기판, 그 제조방법 및 이를 구비한 파워모듈
WO2023163423A1 (ko) 세라믹 기판 유닛 및 그 제조방법
WO2024144121A1 (ko) 파워모듈용 세라믹 기판 및 이를 포함하는 파워모듈
KR20210133069A (ko) 접착제 전사 필름 및 이를 이용한 파워모듈용 기판 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915667

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18269940

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915667

Country of ref document: EP

Kind code of ref document: A1