WO2023008851A1 - 히트싱크 일체형 세라믹 기판 및 그 제조방법 - Google Patents

히트싱크 일체형 세라믹 기판 및 그 제조방법 Download PDF

Info

Publication number
WO2023008851A1
WO2023008851A1 PCT/KR2022/010854 KR2022010854W WO2023008851A1 WO 2023008851 A1 WO2023008851 A1 WO 2023008851A1 KR 2022010854 W KR2022010854 W KR 2022010854W WO 2023008851 A1 WO2023008851 A1 WO 2023008851A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic substrate
heat sink
bonding
metal layer
heat
Prior art date
Application number
PCT/KR2022/010854
Other languages
English (en)
French (fr)
Inventor
이지형
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210098312A external-priority patent/KR102720892B1/ko
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Priority to US18/293,022 priority Critical patent/US20240347416A1/en
Publication of WO2023008851A1 publication Critical patent/WO2023008851A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/4807Ceramic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Definitions

  • the present invention relates to a heat sink-integrated ceramic substrate and a manufacturing method thereof, and more particularly, to a heat sink-integrated ceramic substrate having a bonding structure between a heat sink having a plurality of radiating fins for water-cooled heat dissipation and a ceramic substrate, and a manufacturing method thereof ( CERAMIC SUBSTRATE WITH HEAT SINK AND MANUFACTURING METHOD THEREOF).
  • electric vehicles require an inverter that converts DC voltage provided from a high-voltage battery into AC three-phase voltage for driving a motor.
  • Such an inverter is assembled with a power module for adjusting and supplying a high voltage of a driving battery to a state suitable for a motor.
  • the power module includes a semiconductor chip for power conversion, and the semiconductor chip generates high-temperature heat due to high-voltage and high-current operation. If this heat continues, there is a problem in that the semiconductor chip deteriorates and the performance of the power module deteriorates.
  • a heat sink is provided on at least one surface of a ceramic or metal substrate to prevent deterioration of a semiconductor chip due to heat through a heat dissipation function of the heat sink.
  • Heat sinks are made of metal materials with high thermal conductivity, such as copper and aluminum. Even heat sinks made of these metals have limitations in heat dissipation.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a heat sink-integrated ceramic substrate and a manufacturing method thereof capable of effectively dissipating heat generated from a semiconductor chip.
  • a heat sink-integrated ceramic substrate for achieving the above object includes a ceramic substrate having metal layers on upper and lower surfaces of a ceramic substrate and a heat sink bonded to one surface of the metal layer, may include a flat portion, one surface of which contacts the metal layer, and a plurality of heat dissipation fins protruding from the other surface of the flat portion at a distance from each other and contacting the liquid refrigerant.
  • the material of the heat sink may be any one of Cu, Al, and Cu alloy.
  • a volume ratio obtained by dividing the total volume of the plurality of heat dissipation fins by the total volume of the planar portion may be in the range of 0.9 to 1.1.
  • the plurality of heat dissipation fins may be formed thicker than the thickness of the flat portion.
  • a plurality of radiating fins are disposed in the external refrigerant circulation unit, and the liquid refrigerant circulating through the refrigerant circulation unit may exchange heat with the plurality of radiating fins.
  • the plurality of heat dissipation fins may be provided in at least one shape of a square pillar, a cylinder, a polygonal pillar, a teardrop shape, and a diamond shape.
  • a bonding layer disposed between the metal layer of the ceramic substrate and the planar portion of the heat sink may be further included, and the bonding layer may be made of a material including at least one of Ag, AgCu, and AgCuTi.
  • a heat sink-integrated ceramic substrate manufacturing method includes preparing a ceramic substrate having metal layers on upper and lower surfaces of a ceramic substrate, preparing a heat sink having a planar portion and a plurality of radiating fins, Including the step of bonding one surface of the metal layer and one surface of the flat part, and preparing the heat sink, a plurality of heat dissipation fins protrude from the other surface of the flat part at intervals from each other, and may be provided to contact the liquid refrigerant.
  • a volume ratio obtained by dividing the total volume of the plurality of radiating fins by the total volume of the planar portion may be in the range of 0.9 to 1.1.
  • the bonding may include disposing a bonding layer between one surface of the metal layer and one surface of the planar portion, and brazing the one surface of the metal layer and the one surface of the planar portion by melting the bonding layer.
  • a bonding layer having a thickness of 0.005 mm or more and 1.0 mm or less may be disposed by any one of plating, paste application, and foil attachment.
  • the bonding layer may be made of a material including at least one of Ag, AgCu, and AgCuTi.
  • a heat sink having a flat surface and a plurality of radiating fins and having high thermal conductivity is brazed integrally bonded to a metal layer of a ceramic substrate, thereby suppressing a warping phenomenon caused by a volume difference between upper and lower metal layers of a ceramic substrate.
  • the volume ratio of the flat portion and the plurality of radiating fins in the heat sink is controlled to be within a specific range, it is possible to suppress a warping phenomenon due to brazing.
  • the present invention is a water-cooled heat dissipation structure in which a plurality of heat dissipation fins are directly contacted and cooled by a continuously circulating liquid-type refrigerant, it is possible to quickly absorb and dissipate heat by adjusting the flow rate of the liquid-type refrigerant, and to dissipate heat in a conventional air-cooled heat dissipation manner. Compared to the structure, the heat dissipation effect can be maximized.
  • the present invention even if high-temperature heat is generated from a semiconductor chip or the like, it is forcibly cooled by a continuously circulating liquid refrigerant to prevent overheating of the ceramic substrate and to maintain the semiconductor chip at a constant temperature so as not to deteriorate.
  • the liquid refrigerant is provided to move between the plurality of radiating fins, the flow rate and cooling efficiency of the liquid refrigerant can be easily controlled by changing the shape, number, and arrangement of the plurality of radiating fins.
  • FIG. 1 is a side view illustrating a heat sink-integrated ceramic substrate according to an exemplary embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a heat sink-integrated ceramic substrate according to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view illustrating a heat sink-integrated ceramic substrate according to an embodiment of the present invention.
  • FIG. 4 is a rear view illustrating a heat sink-integrated ceramic substrate according to an embodiment of the present invention.
  • FIG. 5 is a conceptual diagram illustrating a configuration in which a heat sink-integrated ceramic substrate according to an embodiment of the present invention is mounted on a refrigerant circulation unit and a circulation driving unit is connected to the refrigerant circulation unit.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a heat sink-integrated ceramic substrate according to an embodiment of the present invention.
  • FIG. 1 is a side view illustrating a heat sink-integrated ceramic substrate according to an exemplary embodiment of the present invention.
  • a heat sink-integrated ceramic substrate 1 may be integrally provided including a ceramic substrate 10 and a heat sink 100 .
  • the ceramic substrate 10 may be any one of an active metal brazing (AMB) substrate, a direct bonded copper (DBC) substrate, and a thick printing copper (TPC) substrate. These substrates are substrates in which a metal is directly bonded to a ceramic substrate.
  • the ceramic substrate 10 includes a ceramic substrate 11 and an upper metal layer 12 and a lower metal layer 13 on the upper and lower surfaces of the ceramic substrate 11 so as to increase heat dissipation efficiency of the semiconductor chip. ) may be provided.
  • the ceramic substrate 11 may be made of an oxide-based or nitride-based ceramic material.
  • the ceramic substrate 11 may be any one of alumina (Al 2 O 3 ), AlN, SiN, Si 3 N 4 , ZTA (Zirconia Toughened Alumina), but is not limited thereto.
  • the upper metal layer 12 and the lower metal layer 13 may be made of one of Cu, Al, and Cu alloys having excellent thermal conductivity.
  • differences in area and thickness of the upper metal layer 12 and the lower metal layer 13 may occur depending on the design pattern. . When this difference exceeds a certain ratio, a phenomenon in which the ceramic substrate 1 is bent occurs in a high-temperature environment.
  • the volume ratio of the upper metal layer 12 and the lower metal layer 13 is in the range of 0.75 to 0.85, the degree of warping exceeds 0.4% and is inevitable to be discarded as a defect.
  • the heat sink 100 is brazed integrally to the lower metal layer 13 of the ceramic substrate 10, the warpage caused by the volume difference between the upper and lower metal layers 12 and 13 The phenomenon can be suppressed, and in addition, since it is a direct cooling structure and a water-cooled heat dissipation structure, there is an advantage in that heat dissipation performance can be maximized.
  • the heat sink 100 may include a flat portion 110 in contact with one surface of the lower metal layer 13 and a plurality of heat dissipation fins 120 protruding from the other surface 112 of the flat portion 110 at a distance from each other. . As will be described later, the plurality of heat dissipation fins 120 may be provided to directly contact the liquid refrigerant.
  • the heat sink 100 may be made of a material such as Cu, Al, or a Cu alloy having high thermal conductivity for heat dissipation.
  • a material such as Cu, Al, or a Cu alloy having high thermal conductivity for heat dissipation.
  • Cu having high thermal conductivity
  • the thermal expansion coefficient is 17 ppm/K
  • warpage due to thermal expansion may occur in a high temperature environment such as brazing bonding, and the heat dissipation function may be deteriorated. When such warping occurs, heat transfer between the ceramic substrate 10 and the heat sink 100 is not properly performed.
  • the present invention is characterized in that the volume ratio of the flat portion 110 and the plurality of heat sink fins 120 is adjusted within a specific range to minimize warping during brazing bonding between the ceramic substrate 10 and the heat sink 100.
  • the heat sink 100 is preferably designed so that the volume ratio of the total volume of the plurality of radiating fins 120 divided by the total volume of the flat portion 110 is within the range of 0.9 to 1.1, and the volume ratio is 1.0 to minimize warping. It is more preferable to be designed to be close to .
  • the thickness is adjusted so that the volume ratio is within the range of 0.9 to 1.1.
  • the present invention manufactures the heat sink 100 integrally bonded to the ceramic substrate 10 such that the volume ratio of the flat portion 110 disposed on the upper portion and the plurality of heat dissipation fins 120 disposed on the lower portion falls within a specific range. Because of this, it is possible to suppress the warpage caused by brazing bonding.
  • Figure 2 is a perspective view showing a heat sink integrated ceramic substrate according to an embodiment of the present invention
  • Figure 3 is an exploded perspective view showing a heat sink integrated ceramic substrate according to an embodiment of the present invention
  • Figure 4 is an embodiment of the present invention It is a rear view showing the heat sink-integrated ceramic substrate according to the example.
  • the upper metal layer 12 is formed on the upper surface of the ceramic substrate 11 and may be provided in a circuit pattern shape.
  • the upper metal layer 12 may be formed as an electrode pattern in a region where a semiconductor chip or a peripheral component is to be mounted.
  • the semiconductor chip (c) (see FIG. 5) may be a semiconductor chip such as SiC, GaN, Si, LED, or VCSEL.
  • the semiconductor chip (c) may be bonded to the upper surface of the upper metal layer 12 in a flip chip form by a bonding layer (b) including solder or silver paste.
  • the lower metal layer 13 is formed on the lower surface of the ceramic substrate 11 and may be provided as a flat plate to facilitate heat transfer. Since the volume difference of the lower metal layer 13 in the flat form is larger than the total volume of the upper metal layer 12 formed of the electrode pattern, the ceramic substrate 10 may be bent in a high-temperature environment. Therefore, the present invention is generated by the difference in volume between the upper and lower metal layers 12 and 13 by brazing the heat sink 100 having the flat portion 110 and the plurality of radiating fins 120 integrally with the ceramic substrate 10. warping phenomenon can be suppressed.
  • One surface 110 of the flat portion 110 may be formed in a flat plate shape so that one surface 111 directly contacts one surface of the lower metal layer 13 and a bonding area with the lower metal layer 13 is maximized to increase bonding strength.
  • a plurality of heat dissipation fins 120 may protrude from the other surface 112 of the flat portion 110 at intervals from each other.
  • the plurality of heat dissipation fins 120 are in the shape of a square column is shown, but is not limited thereto, and the plurality of heat dissipation fins 120 are provided in various shapes such as a cylinder, a polygonal column, a teardrop shape, and a diamond shape. It can be.
  • the shape of the heat dissipation fin may be implemented by mold processing, etching processing, milling processing, or other processing.
  • FIG. 5 is a conceptual diagram illustrating a configuration in which a heat sink-integrated ceramic substrate according to an embodiment of the present invention is mounted on a refrigerant circulation unit and a circulation driving unit is connected to the refrigerant circulation unit.
  • a plurality of heat dissipation fins 120 may be disposed in the refrigerant circulation unit 2 .
  • the refrigerant circulation unit 2 may include an inlet 2a through which the liquid refrigerant flows, an outlet 2b through which the liquid refrigerant is discharged, and an internal flow path (not shown) from the inlet 2a to the outlet 2b. At this time, the liquid refrigerant introduced through the inlet 2a of the refrigerant circulation unit 2 may be discharged through the outlet 2b through the internal passage.
  • the circulation driving unit 3 is connected to the refrigerant circulation unit 2 and may circulate the liquid refrigerant by using a driving force of a pump (not shown).
  • the inlet 2a of the refrigerant circulation unit 2 may be connected to the circulation driving unit 3 through the first circulation line L1
  • the outlet 2b of the refrigerant circulation unit 2 may be connected to the second circulation line ( It may be connected to the circulation driving unit 3 through L2). That is, the circulation driving unit 3 may continuously circulate the liquid refrigerant along a circulation path including the first circulation line L1, the refrigerant circulation unit 2, and the second circulation line L2.
  • the liquid refrigerant may be deionized water, but is not limited thereto, and liquid nitrogen, alcohol, or other solvents may be used as necessary.
  • the liquid refrigerant supplied from the circulation drive unit 3 flows into the inlet 2a of the refrigerant circulation unit 2 through the first circulation line L1, and moves along the internal flow path formed in the refrigerant circulation unit 2 to the outlet. It is discharged through (2b), and can then move to the circulation drive unit 3 again through the second circulation line (L2).
  • the circulation driver 3 may include a heat exchanger (not shown). The heat exchanger of the circulation drive unit 3 can lower the temperature of the liquid refrigerant whose temperature has risen while passing through the internal passage of the refrigerant circulation unit 2, and the circulation drive unit 3 transfers the liquid refrigerant whose temperature has been lowered by the heat exchanger to the pump. It can be supplied to the first circulation line (L1) again by using the driving force.
  • the refrigerant circulation unit 2 may be provided so that the liquid refrigerant supplied from the circulation driving unit 3 continuously circulates.
  • the plurality of heat dissipation fins 120 are disposed in the inner flow path of the refrigerant circulation unit 2, and can directly contact and exchange heat with the liquid refrigerant continuously circulating along the inner flow path. That is, the plurality of heat dissipation fins 120 have a water-cooled heat dissipation structure that can be directly cooled by a continuously circulating liquid refrigerant.
  • the plurality of heat dissipation fins 120 are forcibly cooled by the continuously circulating liquid refrigerant to prevent overheating of the ceramic substrate 10 and prevent the semiconductor chip (c) from deteriorating. It can be maintained at a constant temperature so that it does not. That is, even if high-temperature heat of about 100° C. or higher is generated in the semiconductor chip (c), the temperature of the liquid refrigerant circulating along the internal flow path of the refrigerant circulation unit 2 is about 25° C. Heat can be quickly cooled.
  • a base plate for heat dissipation is soldered or Ag sintered to a ceramic substrate.
  • soldering paste such as Ag epoxy or Ag sintering film used at this time
  • the thermal conductivity is as low as about 110W/m K, so the cooling efficiency is low.
  • the manufacturing process is complicated because a process of coating a TIM (Thermal Interface Materials) material such as graphite must be additionally performed.
  • the heat sink 100 having the flat portion 110 and the plurality of radiating fins 120 is brazed to the ceramic substrate 10, and materials such as Ag, AgCu, and AgCuTi used for brazing are Since the thermal conductivity is about 350 W/m K or more, the thermal conductivity is about 4 times higher than that of the prior art, so the heat dissipation effect can be maximized. In addition, compared to the prior art, the process can be simplified and energy and cost can be saved.
  • the heat sink-integrated ceramic substrate 1 has a configuration in which a pin-fin structure heat sink 100 and a ceramic substrate 10 are integrated, and the semiconductor chip C Because it has a structure that can directly cool the generated heat, it is possible to increase heat dissipation performance while realizing light weight and miniaturization.
  • the heat sink-integrated ceramic substrate 1 since the heat sink-integrated ceramic substrate 1 according to the embodiment of the present invention has a water-cooled heat dissipation structure, it can rapidly absorb and dissipate heat by varying the flow rate of the liquid refrigerant, thereby dissipating heat more than the conventional air-cooled heat dissipation structure. effect can be maximized.
  • the shape, number, and arrangement of the plurality of heat dissipation fins 120 may be variously changed according to a preliminary simulation result during design. Since the liquid refrigerant moves between the plurality of heat radiating fins 120, the flow rate and cooling efficiency of the liquid refrigerant can be easily controlled by changing the shape, number, and arrangement of the plurality of heat radiating fins 120.
  • the ceramic substrate 10 and the heat sink 100 may be bonded to each other by a bonding layer 200.
  • the bonding layer 200 includes at least one of Ag, AgCu, and AgCuTi. It can be made of a material containing Ag, AgCu, and AgCuTi have high thermal conductivity, so they can increase bonding strength and facilitate heat transfer, thereby increasing heat dissipation efficiency.
  • the bonding layer 200 may be formed by any one of plating, paste application, and foil attachment, and may have a thickness of about 0.005 mm to about 1.0 mm.
  • the bonding layer 200 may be disposed between the lower metal layer 13 of the ceramic substrate 10 and the planar portion 110 of the heat sink 100, and the ceramic substrate 10 and the heat sink 100 are bonded at a brazing temperature. can be joined integrally.
  • the brazing temperature may be 800°C to 950°C.
  • Brazing bonding melts only the bonding layer 200 at a temperature below the melting point of the parent material, and then infiltrates and diffuses the bonding between the parent materials to be joined using wetting and capillary phenomena. Since the bonding strength is excellent, general welding Compared to bonding, etc., bonding reliability is excellent.
  • the ceramic substrate 10 and the heat sink 100 may be bonded by brazing after being temporarily bonded through thermochemical bonding.
  • the thermochemical bonding may be bonding using thermal fusion, an adhesive, an adhesive, or the like.
  • the ceramic substrate 10 and the heat sink 100 may be airtightly bonded to each other by a bonding method such as brazing bonding or thermochemical bonding, and may have high bonding strength capable of withstanding water pressure, hydraulic pressure, and the like.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a heat sink-integrated ceramic substrate according to an embodiment of the present invention.
  • the ceramic substrate manufacturing method includes the steps of preparing a ceramic substrate 10 having metal layers 12 and 13 on the upper and lower surfaces of a ceramic substrate 11 (S10); , preparing a heat sink 100 equipped with a flat portion 110 and a plurality of heat dissipation fins 120 (S20), and bonding one surface of the metal layer 13 and one surface 111 of the flat portion 110 Step (S30) may be included.
  • the step of preparing the ceramic substrate 10 (S10) and the step of preparing the heat sink 100 (S20) may be sequentially performed, may be performed in reverse order, or may be performed substantially simultaneously.
  • the ceramic substrate 10 may be any one of an active metal brazing (AMB) substrate, a direct bonded copper (DBC) substrate, and a thick printing copper (TPC) substrate.
  • AMB active metal brazing
  • DRC direct bonded copper
  • TPC thick printing copper
  • the ceramic substrate 10 is provided with a ceramic substrate 11 and an upper metal layer 12 and a lower metal layer 13 on the upper and lower surfaces of the ceramic substrate 11 to increase heat dissipation efficiency of the heat generated from the semiconductor chip.
  • the heat sink 100 may be made of a material such as Cu, Al, or a Cu alloy having high thermal conductivity for heat dissipation, and includes a flat portion 110 and a plurality of radiating fins. (120) may be provided.
  • the flat portion 110 is a portion where one surface 111 comes into contact with the lower metal layer 13, and may be provided in a flat plate shape to maximize a bonding area.
  • a plurality of heat dissipation fins 120 may protrude from the other surface 112 of the flat portion 110 at intervals from each other.
  • the plurality of heat dissipation fins 120 may be disposed in the external refrigerant circulation unit 2 (see FIG. 5 ) to directly contact liquid refrigerant circulating through the refrigerant circulation unit 2 .
  • the plurality of heat dissipation fins 120 may be provided in at least one shape of a square column, a cylinder, a polygonal column, a teardrop shape, and a diamond shape, and these various shapes are implemented by mold processing, etching processing, milling processing, and other processing. It can be. In this embodiment, an example in which the plurality of heat dissipation fins 120 are formed in the step of preparing the heat sink 100 is described, but the plurality of heat dissipation fins 120 may be formed after the joining step (S30).
  • a plurality of heat dissipation fins 120 are formed by removing a portion thereof by etching or milling. can also be formed.
  • a volume ratio obtained by dividing the total volume of the plurality of radiating fins 120 by the total volume of the planar portion 110 may be 0.9 to 1.1. Since the plurality of heat dissipation fins 120 are spaced apart from each other with a space therebetween, a bending phenomenon occurs in a high-temperature environment when the volume difference from the flat portion 110 formed of a flat plate is large.
  • the present invention controls the volume ratio of the plurality of heat dissipation fins 120 and the flat portion 110 to be within the range of 0.9 to 1.1 by forming the thickness of the plurality of heat dissipation fins 120 thicker than the thickness of the flat portion 110, which Through this, the warpage phenomenon caused by the volume difference can be suppressed.
  • the step of bonding the one surface of the metal layer 13 and the one surface 111 of the planar portion 110 may include a step of disposing the bonding layer 200 (S31) and a brazing bonding step (S32).
  • the bonding layer 200 having a thickness of 0.005 mm or more and 1.0 mm or less may be disposed by any one of plating, paste application, and foil attachment. .
  • the bonding layer 200 may be disposed between one surface of the lower metal layer 13 and one surface 111 of the planar portion 110 .
  • the bonding layer 200 may be made of a material including at least one of Ag, AgCu, and AgCuTi.
  • a step of melting the bonding layer 200 and brazing one surface of the metal layer 13 and one surface 111 of the planar portion 110 is performed. can do.
  • the bonding layer 200 interposed between one surface of the lower metal layer 13 and one surface 111 of the planar portion 110 may be melted at 800 ° C to 950 ° C to perform brazing bonding.
  • top weight or pressure may be applied to increase bonding strength.
  • the present invention brazes the heat sink to the ceramic substrate and bonds it with a bonding layer containing at least one of Ag, AgCu and AgCuTi, so the thermal conductivity is about 4 times higher than that of the prior art, maximizing the heat dissipation effect.
  • a pin-fin structure heat sink and a ceramic substrate are integrated, and since the heat generated from the semiconductor chip can be directly cooled, the heat dissipation performance can be improved while reducing the weight and size. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

본 발명은 히트싱크 일체형 세라믹 기판 및 그 제조방법에 관한 것으로, 세라믹 기재의 상하면에 금속층이 구비된 세라믹 기판과, 금속층의 일면에 접합된 히트싱크를 포함하고, 히트싱크는, 금속층에 일면이 접하는 평면부와, 평면부의 타면에 서로 간격을 두고 돌출 형성되고, 액체형 냉매와 접촉하는 복수의 방열핀을 구비할 수 있다.

Description

히트싱크 일체형 세라믹 기판 및 그 제조방법
본 발명은 히트싱크 일체형 세라믹 기판 및 그 제조방법에 관한 것으로, 더욱 상세하게는 수냉식 방열을 위한 복수의 방열핀을 구비한 히트싱크와 세라믹 기판의 접합 구조를 갖는 히트싱크 일체형 세라믹 기판 및 그 제조방법(CERAMIC SUBSTRATE WITH HEAT SINK AND MANUFACTURING METHOD THEREOF)에 관한 것이다.
일반적으로 전기차는 고전압 배터리에서 제공되는 직류 전압을, 모터를 구동하기 위한 교류 3상 전압으로 변환시키는 인버터가 필요하다.
이러한 인버터는 구동용 배터리의 높은 전압을 모터에 적합한 상태로 조절하여 공급하기 위한 파워모듈이 조립된다. 파워모듈은 전력의 변환을 위한 반도체 칩을 포함하는데, 이러한 반도체 칩은 고전압 고전류 동작으로 인해 고온의 열이 발생한다. 이러한 열이 지속되면 반도체 칩이 열화되고, 파워모듈의 성능이 저하되는 문제가 있다.
이를 해결하기 위해 세라믹 또는 금속 기판의 적어도 일면에 히트싱크를 구비하여, 히트싱크의 방열 기능을 통해 열에 의한 반도체 칩의 열화 현상을 방지하고 있다.
히트싱크는 구리, 알루미늄 등의 열전도도가 높은 금속재로 제조되는데, 이러한 금속의 히트 싱크의 경우에도 방열에 한계가 있어 한계 이상의 열이 발생할 경우 냉각 효율이 급격히 떨어져 고장의 원인이 되고 있다.
아울러, 반도체 칩이 실장되는 기판의 경우에도 열로 인한 휨 등이 발생하여 특성이 저하되는 문제점이 있다.
본 발명은 상술한 문제점을 해결하고자 안출된 것으로서, 본 발명은 반도체 칩에서 발생하는 열을 효과적으로 방열할 수 있도록 한 히트싱크 일체형 세라믹 기판 및 그 제조방법을 제공하는 데 그 목적이 있다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 실시예에 따른 히트싱크 일체형 세라믹 기판은, 세라믹 기재의 상하면에 금속층이 구비된 세라믹 기판과, 금속층의 일면에 접합된 히트싱크를 포함하고, 히트싱크는, 금속층에 일면이 접하는 평면부와, 평면부의 타면에 서로 간격을 두고 돌출 형성되고, 액체형 냉매와 접촉하는 복수의 방열핀을 구비할 수 있다. 히트싱크의 재질은 Cu, Al, Cu 합금 중 어느 하나일 수 있다.
복수의 방열핀의 전체 부피를 평면부의 전체 부피로 나눈 부피비는 0.9 내지 1.1일 수 있다. 여기서, 복수의 방열핀의 두께는 평면부의 두께보다 두껍게 형성될 수 있다.
복수의 방열핀은 외부의 냉매 순환부에 배치되고, 냉매 순환부를 통해 순환하는 액체형 냉매는 복수의 방열핀과 열교환할 수 있다. 이러한 복수의 방열핀은 사각기둥, 원기둥, 다각기둥, 눈물방울 형상, 다이아몬드 형상 중 적어도 하나의 형상으로 구비될 수 있다.
세라믹 기판의 금속층과 히트싱크의 평면부 사이에 배치된 접합층을 더 포함하고, 접합층은 Ag, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어질 수 있다.
본 발명의 실시예에 따른 히트싱크 일체형 세라믹 기판 제조 방법은, 세라믹 기재의 상하면에 금속층이 구비된 세라믹 기판을 준비하는 단계와, 평면부와 복수의 방열핀이 구비된 히트싱크를 준비하는 단계와, 금속층의 일면과 평면부의 일면을 접합하는 단계를 포함하고, 히트싱크를 준비하는 단계에서, 복수의 방열핀은 평면부의 타면에 서로 간격을 두고 돌출 형성되며, 액체형 냉매와 접촉하도록 구비될 수 있다.
히트싱크를 준비하는 단계에서, 복수의 방열핀의 전체 부피를 평면부의 전체 부피로 나눈 부피비는 0.9 내지 1.1일 수 있다.
접합하는 단계는, 금속층의 일면과 평면부의 일면 사이에 접합층을 배치하는 단계와, 접합층을 용융시켜 금속층의 일면과 평면부의 일면을 브레이징 접합하는 단계를 포함할 수 있다.
접합층을 배치하는 단계는, 도금, 페이스트 도포, 포일(foil) 부착 중 어느 하나의 방법으로 0.005mm 이상 1.0mm 이하의 두께를 갖는 접합층을 배치할 수 있다. 또한, 접합층을 배치하는 단계에서, 접합층은 Ag, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어질 수 있다.
본 발명은 평면부와 복수의 방열핀을 구비하고 열전도도가 높은 히트싱크를 세라믹 기판의 금속층에 일체형으로 브레이징 접합함으로써, 세라믹 기판의 상하부 금속층의 부피 차이에 의해 발생하는 휨 현상을 억제할 수 있다.
또한, 본 발명은 히트싱크에서 평면부와 복수의 방열핀의 부피비를 특정 범위 내에 있도록 제어하여 브레이징 접합으로 인한 휨 현상을 억제할 수 있다.
또한, 본 발명은 복수의 방열핀이 연속해서 순환하는 액체형 냉매에 의해 직접적으로 접촉하여 냉각되는 수냉식 방열 구조이므로, 액체형 냉매의 유속을 조절하여 신속하게 열을 흡수하고 방열시킬 수 있고, 기존의 공냉식 방열 구조에 비해 방열 효과를 극대화할 수 있다.
또한, 본 발명은 반도체 칩 등으로부터 고온의 열이 발생하더라도 연속 순환하는 액체형 냉매에 의해 강제 냉각되어 세라믹 기판의 과열을 방지할 수 있고, 반도체 칩이 열화하지 않도록 일정한 온도로 유지시킬 수 있다.
또한, 본 발명은 액체형 냉매가 복수의 방열핀 사이를 이동하도록 구비되기 때문에, 복수의 방열핀의 형상, 개수 및 배치 형태를 변경함에 따라 액체형 냉매의 유속, 냉각 효율 등을 용이하게 제어할 수 있다.
도 1은 본 발명의 실시예에 따른 히트싱크 일체형 세라믹 기판을 도시한 측면도이다.
도 2는 본 발명의 실시예에 의한 히트싱크 일체형 세라믹 기판을 도시한 사시도이다.
도 3은 본 발명의 실시예에 의한 히트싱크 일체형 세라믹 기판을 도시한 분해 사시도이다.
도 4는 본 발명의 실시예에 의한 히트싱크 일체형 세라믹 기판을 도시한 배면도이다.
도 5는 본 발명의 실시예에 따른 히트싱크 일체형 세라믹 기판이 냉매 순환부에 장착되고, 냉매 순환부에 순환 구동부가 연결된 구성을 도시한 개념도이다.
도 6은 본 발명의 실시예에 따른 히트싱크 일체형 세라믹 기판 제조방법을 도시한 흐름도이다.
이하 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명하기로 한다.
도 1은 본 발명의 실시예에 따른 히트싱크 일체형 세라믹 기판을 도시한 측면도이다.
도 1에 도시된 바에 의하면, 본 발명의 실시예에 따른 히트싱크 일체형 세라믹 기판(1)은 세라믹 기판(10) 및 히트싱크(100)를 포함한 일체형으로 구비될 수 있다.
세라믹 기판(10)은 AMB(Active Metal Brazing) 기판, DBC(Direct Bonded Copper) 기판, TPC(Thick Printing Copper) 기판 중 어느 하나일 수 있다. 이러한 기판들은 세라믹 기재에 금속이 직접적으로 본딩되어 있는 기판들이다. 본 발명의 실시예에서 세라믹 기판(10)은 반도체 칩으로부터 발생하는 열의 방열 효율을 높일 수 있도록, 세라믹 기재(11)와 상기 세라믹 기재(11)의 상하면에 상부 금속층(12) 및 하부 금속층(13)이 구비될 수 있다.
세라믹 기재(11)는 산화물계 또는 질화물계 세라믹 재료로 이루어질 수 있다. 예컨대, 세라믹 기재(11)는 알루미나(Al2O3), AlN, SiN, Si3N4, ZTA(Zirconia Toughened Alumina) 중 어느 하나일 수 있으나, 이에 한정되는 것은 아니다.
상부 금속층(12) 및 하부 금속층(13)은 열전도도가 우수한 Cu, Al, Cu 합금 중 하나로 이루어진 것을 일 예로 할 수 있다. 세라믹 기재(11)의 상하면에 상부 금속층(12) 및 하부 금속층(13)을 형성시킴에 있어서, 설계 패턴에 따라 상부 금속층(12) 및 하부 금속층(13)의 면적, 두께의 차이가 발생할 수 있다. 이 차이가 일정 비율을 초과할 경우, 고온 환경에서 세라믹 기판(1)이 휘어지는 현상이 발생한다. 경험적 데이터에 의하면, 상부 금속층(12) 및 하부 금속층(13)의 부피비가 0.75 내지 0.85 범위일 경우, 휘어지는 정도가 0.4%를 초과하여 불량으로 폐기될 수밖에 없다.
상기와 같은 문제를 해결하기 위하여, 본 발명은 세라믹 기판(10)의 하부 금속층(13)에 히트싱크(100)를 일체형으로 브레이징 접합하므로 상하부 금속층(12,13)의 부피 차이에 의해 발생하는 휨 현상을 억제할 수 있고, 이와 더불어 직접 냉각 구조이면서 수냉식 방열 구조이므로 방열 성능도 극대화할 수 있다는 장점이 있다.
히트싱크(100)는 하부 금속층(13)의 일면과 접하는 평면부(110)와, 평면부(110)의 타면(112)에 서로 간격을 두고 돌출 형성된 복수의 방열핀(120)을 구비할 수 있다. 후술하겠지만, 복수의 방열핀(120)은 액체형 냉매와 직접적으로 접촉하도록 구비될 수 있다.
히트싱크(100)는 방열을 위해 열전도도가 높은 Cu, Al, Cu 합금 등의 재질로 이루어질 수 있다. 열전도도가 높은 Cu의 경우 열팽창 계수가 17ppm/K이므로, 브레이징 접합과 같은 고온 환경에서 열팽창으로 인한 휨이 발생하여 방열 기능이 저하될 수 있다. 이러한 휨이 발생하면 세라믹 기판(10)과 히트싱크(100) 간의 열 전달이 제대로 이루어지지 않는다.
따라서, 본 발명은 세라믹 기판(10)과 히트싱크(100)의 브레이징 접합 시 휨을 최소화할 수 있도록 평면부(110)와 복수의 방열핀(120)의 부피비를 특정 범위 내로 조절하는 것을 특징으로 한다. 구체적으로, 히트싱크(100)는 복수의 방열핀(120)의 전체 부피를 평면부(110)의 전체 부피로 나눈 부피비가 0.9 내지 1.1 범위 내에 있도록 설계되는 것이 바람직하고, 휨을 최소화하기 위해 부피비는 1.0에 가깝도록 설계되는 것이 더 바람직하다. 이때, 전체 부피는 전체 면적과 두께의 곱으로 계산되기 때문에 복수의 방열핀(120)의 전체 면적과 평면부(110)의 전체면적이 다른 경우, 두께를 조절하여 부피비가 0.9 내지 1.1 범위 내에 있도록 할 수 있다. 즉, 공간을 사이에 두고 서로 이격된 복수의 방열핀(120)의 전체 면적은 평면부(110)의 전체 면적보다 더 작으므로 두께가 동일할 경우 부피가 대략 4배 이상 차이가 있을 수 있다. 따라서, 복수의 방열핀(120)의 두께(높이)는 평면부(110)의 두께보다 더 두껍게 형성되는 것이 바람직하다.
이와 같이, 본 발명은 세라믹 기판(10)과 일체형으로 접합되는 히트싱크(100)에서 상부에 배치된 평면부(110)와 하부에 배치된 복수의 방열핀(120)의 부피비가 특정 범위 내에 있도록 제조되기 때문에 브레이징 접합으로 인한 휨 현상을 억제할 수 있다.
도 2는 본 발명의 실시예에 의한 히트싱크 일체형 세라믹 기판을 도시한 사시도이고, 도 3은 본 발명의 실시예에 의한 히트싱크 일체형 세라믹 기판을 도시한 분해 사시도이며, 도 4는 본 발명의 실시예에 의한 히트싱크 일체형 세라믹 기판을 도시한 배면도이다.
도 2 내지 도 4에 도시된 바에 의하면, 상부 금속층(12)은 세라믹 기재(11)의 상면에 형성되고, 회로패턴 형상으로 구비될 수 있다. 예컨대, 상부 금속층(12)은 반도체 칩 또는 주변 부품이 실장될 영역에 전극패턴으로 형성될 수 있다. 여기서, 반도체 칩(c)(도 5 참조)은 SiC, GaN, Si, LED, VCSEL 등의 반도체 칩일 수 있다. 이러한 반도체 칩(c)은 솔더(Solder) 또는 은 페이스트(Ag Paste)를 포함하는 본딩층(b)에 의해 상부 금속층(12)의 상면에 플립칩(flip chip) 형태로 접합될 수 있다.
하부 금속층(13)은 세라믹 기재(11)의 하면에 형성되고, 열 전달이 용이하도록 평판으로 구비될 수 있다. 이러한 평판 형태의 하부 금속층(13)은 전극패턴으로 형성된 상부 금속층(12)의 전체 부피와 비교했을 때 부피 차이가 크기 때문에 고온 환경에서 세라믹 기판(10)이 휘어지는 현상이 발생할 수 있다. 따라서, 본 발명은 평면부(110) 및 복수의 방열핀(120)을 구비한 히트싱크(100)를 세라믹 기판(10)과 일체형으로 브레이징 접합함으로써 상하부 금속층(12,13)의 부피 차이에 의해 발생하는 휨 현상을 억제할 수 있다.
평면부(110)는 일면(111)이 하부 금속층(13)의 일면과 직접적으로 접하며, 하부 금속층(13)과의 접합 면적을 최대한 크게 하여 접합력을 높일 수 있도록 평판 형태로 형성될 수 있다. 복수의 방열핀(120)은 평면부(110)의 타면(112)에 서로 간격을 두고 돌출 형성될 수 있다. 본 실시예에서는 복수의 방열핀(120)이 사각기둥 형상인 예를 도시하고 있으나, 이에 한정되지 않으며, 복수의 방열핀(120)은 원기둥, 다각기둥, 눈물방울 형상, 다이아몬드 형상 등의 다양한 형상으로 구비될 수 있다. 이러한 방열핀의 형상은 금형 가공, 에칭 가공, 밀링 가공, 기타 가공에 의해 구현될 수 있다.
도 5는 본 발명의 실시예에 따른 히트싱크 일체형 세라믹 기판이 냉매 순환부에 장착되고, 냉매 순환부에 순환 구동부가 연결된 구성을 도시한 개념도이다.
도 5에 도시된 바에 의하면, 복수의 방열핀(120)은 냉매 순환부(2)에 배치될 수 있다. 냉매 순환부(2)는 액체형 냉매가 유입되는 유입구(2a), 액체형 냉매가 배출되는 배출구(2b) 및 유입구(2a)에서 배출구(2b)까지의 내부 유로(미도시)가 구비될 수 있다. 이때, 냉매 순환부(2)의 유입구(2a)를 통해 유입된 액체형 냉매는 상기 내부 유로를 거쳐 배출구(2b)를 통해 배출될 수 있다. 유입구(2a)와 배출구(2b) 사이에서 액체형 냉매가 이동하는 경로인 내부 유로의 형태와 크기는 다양하게 설계 변경될 수 있으므로, 냉매 순환부(2)의 내부 유로 자체에 대한 상세한 설명은 생략하기로 한다.
순환 구동부(3)는 냉매 순환부(2)와 연결되고, 펌프(미도시)의 구동력을 이용하여 액체형 냉매를 순환시킬 수 있다. 여기서, 냉매 순환부(2)의 유입구(2a)는 제1 순환라인(L1)을 통해 순환 구동부(3)와 연결될 수 있고, 냉매 순환부(2)의 배출구(2b)는 제2 순환라인(L2)을 통해 순환 구동부(3)와 연결될 수 있다. 즉, 순환 구동부(3)는 제1 순환라인(L1), 냉매 순환부(2) 및 제2 순환라인(L2)을 포함한 순환 경로를 따라 액체형 냉매를 연속해서 순환시킬 수 있다. 여기서, 액체형 냉매는 탈이온수(Deionized Water)일 수 있으나, 이에 한정되지 않으며, 필요에 따라 액체질소, 알코올, 기타 용매를 사용할 수도 있다.
순환 구동부(3)로부터 공급되는 액체형 냉매는 제1 순환라인(L1)을 통해 냉매 순환부(2)의 유입구(2a)로 유입되고, 냉매 순환부(2)에 형성된 내부 유로를 따라 이동하여 배출구(2b)를 통해 배출되며, 이후에 제2 순환라인(L2)을 통해 다시 순환 구동부(3)로 이동할 수 있다. 비록 자세히 도시되지는 않았으나, 순환 구동부(3)는 열교환기(미도시)를 포함할 수 있다. 순환 구동부(3)의 열교환기는 냉매 순환부(2)의 내부 유로를 통과하면서 온도가 올라간 액체형 냉매의 온도를 낮출 수 있고, 순환 구동부(3)는 열교환기에 의해 온도가 낮춰진 액체형 냉매를 펌프의 구동력을 이용하여 다시 제1 순환라인(L1)으로 공급할 수 있다.
이와 같이, 냉매 순환부(2)는 순환 구동부(3)로부터 공급된 액체형 냉매가 연속해서 순환하도록 구비될 수 있다. 이때, 복수의 방열핀(120)은 냉매 순환부(2)의 내부 유로 내에 배치되고, 내부 유로를 따라 연속해서 순환하는 액체형 냉매와 직접적으로 접촉하여 열교환할 수 있다. 즉, 복수의 방열핀(120)은 연속 순환하는 액체형 냉매에 의해 직접 냉각될 수 있는 수냉식 방열 구조를 가진다.
복수의 방열핀(120)은 반도체 칩(c) 등으로부터 고온의 열이 발생하더라도 연속 순환하는 액체형 냉매에 의해 강제 냉각되어 세라믹 기판(10)의 과열을 방지할 수 있고, 반도체 칩(c)이 열화하지 않도록 일정한 온도로 유지시킬 수 있다. 즉, 반도체 칩(c)에 약 100℃ 이상의 고온의 열이 발생하더라도, 냉매 순환부(2)의 내부 유로를 따라 순환하는 액체형 냉매의 온도는 약 25℃이므로 복수의 방열핀(120)으로 전달된 열을 빠르게 냉각시킬 수 있다.
종래에는 세라믹 기판에 방열을 위한 베이스 플레이트를 솔더링 접합하거나 Ag sintering 접합하는데, 이때 사용되는 Ag 에폭시 등의 Soldering paste나 Ag sintering Film의 경우 열전도도가 약 110W/m·K 정도로 낮아 냉각 효율이 떨어지고, 그라파이트(graphite)와 같은 TIM(Thermal Interface Materials) 물질을 코팅하는 공정 등이 추가로 수행되어야 하기 때문에 제조 공정이 복잡하다는 문제점이 있다.
반면, 본 발명은 평면부(110) 및 복수의 방열핀(120)을 구비한 히트싱크(100)를 세라믹 기판(10)에 브레이징 접합하며, 브레이징 접합 시 사용되는 Ag, AgCu, AgCuTi와 같은 재료는 열전도도가 약 350W/m·K 이상이므로 종래에 비해 열전도도가 약 4배 이상 높아 방열 효과를 극대화할 수 있다. 또한, 종래에 비해 공정을 단순화할 수 있고 에너지와 비용을 절감할 수 있다.
이와 더불어, 본 발명의 실시예에 따른 히트싱크 일체형 세라믹 기판(1)은 핀휜(pin-fin) 구조의 히트싱크(100)와 세라믹 기판(10)이 일체화된 구성으로서, 반도체 칩(C)으로부터 발생한 열을 직접 냉각할 수 있는 구조이기 떄문에 경량화 및 소형화를 구현하면서도 방열 성능을 높일 수 있다.
또한, 본 발명의 실시예에 따른 히트싱크 일체형 세라믹 기판(1)은 수냉식 방열 구조이므로 액체형 냉매의 유속을 가변시켜 신속하게 열을 흡수하고 방열시킬 수 있고, 이로 인해 기존의 공냉식 방열 구조에 비해 방열 효과를 극대화할 수 있다.
복수의 방열핀(120)의 형상, 개수 및 배치 형태는 설계 시 사전 시뮬레이션 결과에 따라 다양하게 변경 가능하다. 액체형 냉매는 복수의 방열핀(120) 사이를 이동하므로, 복수의 방열핀(120)의 형상, 개수 및 배치 형태를 변경함에 따라 액체형 냉매의 유속, 냉각 효율 등이 용이하게 제어될 수 있다.
한편, 비록 도시되지는 않았으나, 세라믹 기판(10) 및 히트싱크(100)는 접합층(200)에 의해 서로 접합될 수 있다, 이때, 접합층(200)은 Ag, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어질 수 있다. Ag, AgCu 및 AgCuTi는 열전도도가 높아 접합력을 높이는 역할과 동시에 열 전달을 용이하게 하여 방열 효율을 높일 수 있다. 접합층(200)은 도금, 페이스트 도포, 포일(foil) 부착 중 어느 하나의 방법에 의해 형성될 수 있고, 두께는 약 0.005mm 내지 1.0mm일 수 있다.
접합층(200)은 세라믹 기판(10)의 하부 금속층(13)과 히트싱크(100)의 평면부(110) 사이에 배치될 수 있고, 브레이징 온도에서 세라믹 기판(10)과 히트싱크(100)를 일체로 접합시킬 수 있다. 브레이징 온도는 800℃ 내지 950℃일 수 있다. 브레이징 접합은 모재의 용융점 이하의 온도에서 접합층(200)만 용융시킨 뒤 접합하고자 하는 모재들 사이에 젖음 현상과 모세관 현상 등을 이용하여 침투, 확산시켜 접합하는 것으로, 접합 강도가 우수하므로 일반 용접 접합 등에 비해 접합 신뢰성이 우수하다.
한편, 세라믹 기판(10)과 히트싱크(100)는 열화학적 접합을 통해 가접착된 후 브레이징 접합될 수도 있다. 이때, 열화학적 접합은 열융착, 접착제, 점착제 등을 이용한 접합일 수 있다. 이와 같이, 세라믹 기판(10)과 히트싱크(100)는 브레이징 접합, 열화학적 접합과 같은 접합 방식에 의해 서로 기밀하게 접합될 수 있고, 수압, 유압 등에 견딜 수 있는 높은 접합 강도를 가질 수 있다.
도 6은 본 발명의 실시예에 따른 히트싱크 일체형 세라믹 기판 제조방법을 도시한 흐름도이다.
본 발명의 실시예에 따른 세라믹 기판 제조방법은 도 6에 도시된 바와 같이, 세라믹 기재(11)의 상하면에 금속층(12,13)이 구비된 세라믹 기판(10)을 준비하는 단계(S10)와, 평면부(110)와 복수의 방열핀(120)이 구비된 히트싱크(100)를 준비하는 단계(S20)와, 금속층(13)의 일면과 평면부(110)의 일면(111)을 접합하는 단계(S30)를 포함할 수 있다. 여기서, 세라믹 기판(10)을 준비하는 단계(S10), 히트싱크(100)를 준비하는 단계(S20)는 순차적으로 수행되거나, 서로 순서를 바꾸어 수행될 수 있고, 실질적으로 동시에 수행될 수도 있다.
세라믹 기판(10)을 준비하는 단계(S10)에서, 세라믹 기판(10)은 AMB(Active Metal Brazing) 기판, DBC(Direct Bonded Copper) 기판, TPC(Thick Printing Copper) 기판 중 어느 하나일 수 있다. 여기서, 세라믹 기판(10)은 반도체 칩으로부터 발생하는 열의 방열 효율을 높일 수 있도록, 세라믹 기재(11)와 상기 세라믹 기재(11)의 상하면에 상부 금속층(12) 및 하부 금속층(13)이 구비될 수 있다.
히트싱크(100)를 준비하는 단계(S20)에서, 히트싱크(100)는 방열을 위해 열전도도가 높은 Cu, Al, Cu 합금 등의 재질로 이루어질 수 있고, 평면부(110) 및 복수의 방열핀(120)이 구비될 수 있다. 평면부(110)는 일면(111)이 하부 금속층(13)과 접하는 부분으로 접합 면적을 최대한 크게 할 수 있도록 평판 형태로 구비될 수 있다. 복수의 방열핀(120)은 평면부(110)의 타면(112)에 서로 간격을 두고 돌출 형성될 수 있다. 이러한 복수의 방열핀(120)은 외부의 냉매 순환부(2)(도 5 참조)에 배치되어 냉매 순환부(2)를 통해 순환하는 액체형 냉매와 직접적으로 접촉하도록 구비될 수 있다.
복수의 방열핀(120)은 사각기둥, 원기둥, 다각기둥, 눈물방울 형상, 다이아몬드 형상 중 적어도 하나의 형상으로 구비될 수 있고, 이러한 다양한 형상은 금형 가공, 에칭 가공, 밀링 가공, 기타 가공에 의해 구현될 수 있다. 본 실시예에서 복수의 방열핀(120)은 히트싱크(100)를 준비하는 단계에서 형성된 예를 설명하고 있으나, 복수의 방열핀(120)은 접합하는 단계(S30) 이후에 형성될 수도 있다. 예를 들어, 두꺼운 평판 형태의 히트싱크(100)를 준비하여 세라믹 기판(10)의 하부 금속층(13)에 접합한 후, 에칭 가공, 밀링 가공 등에 의해 일부분을 제거하여 복수의 방열핀(120)을 형성할 수도 있다.
또한, 히트싱크(100)를 준비하는 단계(S20)에서, 복수의 방열핀(120)의 전체 부피를 평면부(110)의 전체 부피로 나눈 부피비는 0.9 내지 1.1일 수 있다. 복수의 방열핀(120)은 공간을 사이에 두고 서로 이격되게 배치되기 때문에, 평판으로 형성된 평면부(110)와의 부피 차이가 클 경우 고온 환경에서 휘어지는 현상이 발생한다. 따라서, 본 발명은 복수의 방열핀(120)의 두께를 평면부(110)의 두께보다 두껍게 형성하여 복수의 방열핀(120) 및 평면부(110)의 부피비를 0.9 내지 1.1 범위 내에 있도록 제어하고, 이를 통해 부피 차이에 의해 발생하는 휨 현상을 억제할 수 있다.
금속층(13)의 일면과 평면부(110)의 일면(111)을 접합하는 단계(S30)는, 접합층(200)을 배치하는 단계(S31)와, 브레이징 접합하는 단계(S32)를 포함할 수 있다.
접합층(200)을 배치하는 단계(S31)는, 도금, 페이스트 도포, 포일(foil) 부착 중 어느 하나의 방법으로 0.005mm 이상 1.0mm 이하의 두께를 갖는 접합층(200)을 배치할 수 있다. 이때, 접합층(200)은 하부 금속층(13)의 일면과 평면부(110)의 일면(111) 사이에 배치할 수 있다. 접합층(200)은 Ag, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어질 수 있다.
접합층(200)을 배치하는 단계(S31) 이후에, 접합층(200)을 용융시켜 금속층(13)의 일면과 평면부(110)의 일면(111)을 브레이징 접합하는 단계(S32)를 수행할 수 있다. 브레이징 접합하는 단계(S32)는, 하부 금속층(13)의 일면과 평면부(110)의 일면(111) 사이에 개재된 접합층(200)을 800℃ 내지 950℃에서 용융시켜 브레이징 접합할 수 있고, 이때 접합력을 높이기 위해 상부 중량 또는 가압을 실시할 수 있다.
이와 같이, 본 발명은 세라믹 기판에 히트싱크를 브레이징 접합하며, Ag, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 접합층으로 브레이징 접합하기 때문에 종래에 비해 열전도도가 약 4배 이상 높아 방열 효과를 극대화할 수 있다.
아울러, 본 발명은 핀휜(pin-fin) 구조의 히트싱크와 세라믹 기판이 일체화된 것으로, 반도체 칩으로부터 발생한 열을 직접 냉각할 수 있는 구조이기 떄문에 경량화 및 소형화를 구현하면서도 방열 성능을 높일 수 있다.
본 발명은 도면과 명세서에 최적의 실시예가 개시되었다. 여기서, 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 발명은 기술분야의 통상의 지식을 가진 자라면, 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 권리범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (12)

  1. 세라믹 기재의 상하면에 금속층이 구비된 세라믹 기판; 및
    상기 금속층의 일면에 접합된 히트싱크를 포함하고,
    상기 히트싱크는,
    상기 금속층에 일면이 접하는 평면부; 및
    상기 평면부의 타면에 서로 간격을 두고 돌출 형성되고, 액체형 냉매와 접촉하는 복수의 방열핀을 구비하는 히트싱크 일체형 세라믹 기판.
  2. 제1항에 있어서,
    상기 복수의 방열핀의 전체 부피를 상기 평면부의 전체 부피로 나눈 부피비는 0.9 내지 1.1인 히트싱크 일체형 세라믹 기판.
  3. 제1항에 있어서,
    상기 복수의 방열핀의 두께는 상기 평면부의 두께보다 두꺼운 히트싱크 일체형 세라믹 기판.
  4. 제1항에 있어서,
    상기 복수의 방열핀은 외부의 냉매 순환부에 배치되고,
    상기 냉매 순환부를 통해 순환하는 액체형 냉매는 상기 복수의 방열핀과 열교환하는 히트싱크 일체형 세라믹 기판.
  5. 제1항에 있어서,
    상기 복수의 방열핀은 사각기둥, 원기둥, 다각기둥, 눈물방울 형상, 다이아몬드 형상 중 적어도 하나의 형상으로 구비된 히트싱크 일체형 세라믹 기판.
  6. 제1항에 있어서,
    상기 히트싱크의 재질은 Cu, Al, Cu 합금 중 어느 하나인 히트싱크 일체형 세라믹 기판.
  7. 제1항에 있어서,
    상기 세라믹 기판의 금속층과 상기 히트싱크의 평면부 사이에 배치된 접합층을 더 포함하고,
    상기 접합층은 Ag, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어진 히트싱크 일체형 세라믹 기판.
  8. 세라믹 기재의 상하면에 금속층이 구비된 세라믹 기판을 준비하는 단계;
    평면부와 복수의 방열핀이 구비된 히트싱크를 준비하는 단계; 및
    상기 금속층의 일면과 상기 평면부의 일면을 접합하는 단계를 포함하고,
    상기 히트싱크를 준비하는 단계에서,
    상기 복수의 방열핀은 상기 평면부의 타면에 서로 간격을 두고 돌출 형성되며, 액체형 냉매와 접촉하도록 구비된 히트싱크 일체형 세라믹 기판 제조방법.
  9. 제8항에 있어서,
    상기 히트싱크를 준비하는 단계에서,
    상기 복수의 방열핀의 전체 부피를 상기 평면부의 전체 부피로 나눈 부피비는 0.9 내지 1.1인 히트싱크 일체형 세라믹 기판 제조방법.
  10. 제8항에 있어서,
    상기 접합하는 단계는,
    상기 금속층의 일면과 상기 평면부의 일면 사이에 접합층을 배치하는 단계; 및
    상기 접합층을 용융시켜 상기 금속층의 일면과 상기 평면부의 일면을 브레이징 접합하는 단계를 포함하는 히트싱크 일체형 세라믹 기판 제조방법.
  11. 제10항에 있어서,
    상기 접합층을 배치하는 단계는,
    도금, 페이스트 도포, 포일(foil) 부착 중 어느 하나의 방법으로 0.005mm 이상 1.0mm 이하의 두께를 갖는 접합층을 배치하는 히트싱크 일체형 세라믹 기판 제조방법.
  12. 제10항에 있어서,
    상기 접합층을 배치하는 단계에서,
    상기 접합층은 Ag, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어진 히트싱크 일체형 세라믹 기판 제조방법.
PCT/KR2022/010854 2021-07-27 2022-07-25 히트싱크 일체형 세라믹 기판 및 그 제조방법 WO2023008851A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/293,022 US20240347416A1 (en) 2021-07-27 2022-07-25 Heatsink-integrated ceramic substrate and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0098312 2021-07-27
KR1020210098312A KR102720892B1 (ko) 2021-07-27 히트싱크 일체형 세라믹 기판 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2023008851A1 true WO2023008851A1 (ko) 2023-02-02

Family

ID=85087110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010854 WO2023008851A1 (ko) 2021-07-27 2022-07-25 히트싱크 일체형 세라믹 기판 및 그 제조방법

Country Status (2)

Country Link
US (1) US20240347416A1 (ko)
WO (1) WO2023008851A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080031381A (ko) * 2005-07-07 2008-04-08 가부시키가이샤 도요다 지도숏키 방열 장치 및 파워 모듈
US7521789B1 (en) * 2004-12-18 2009-04-21 Rinehart Motion Systems, Llc Electrical assembly having heat sink protrusions
KR101610973B1 (ko) * 2008-03-17 2016-04-08 미쓰비시 마테리알 가부시키가이샤 히트 싱크가 부착된 파워 모듈용 기판 및 그 제조 방법, 그리고 히트 싱크가 부착된 파워 모듈, 파워 모듈용 기판
KR20160041991A (ko) * 2013-09-04 2016-04-18 미쓰비시덴키 가부시키가이샤 반도체 모듈 및 인버터 장치
KR102105734B1 (ko) * 2012-12-27 2020-04-28 미쓰비시 마테리알 가부시키가이샤 파워 모듈용 기판, 금속 부재 장착 파워 모듈용 기판, 금속 부재 장착 파워 모듈, 파워 모듈용 기판의 제조 방법, 및 금속 부재 장착 파워 모듈용 기판의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521789B1 (en) * 2004-12-18 2009-04-21 Rinehart Motion Systems, Llc Electrical assembly having heat sink protrusions
KR20080031381A (ko) * 2005-07-07 2008-04-08 가부시키가이샤 도요다 지도숏키 방열 장치 및 파워 모듈
KR101610973B1 (ko) * 2008-03-17 2016-04-08 미쓰비시 마테리알 가부시키가이샤 히트 싱크가 부착된 파워 모듈용 기판 및 그 제조 방법, 그리고 히트 싱크가 부착된 파워 모듈, 파워 모듈용 기판
KR102105734B1 (ko) * 2012-12-27 2020-04-28 미쓰비시 마테리알 가부시키가이샤 파워 모듈용 기판, 금속 부재 장착 파워 모듈용 기판, 금속 부재 장착 파워 모듈, 파워 모듈용 기판의 제조 방법, 및 금속 부재 장착 파워 모듈용 기판의 제조 방법
KR20160041991A (ko) * 2013-09-04 2016-04-18 미쓰비시덴키 가부시키가이샤 반도체 모듈 및 인버터 장치

Also Published As

Publication number Publication date
US20240347416A1 (en) 2024-10-17
KR20230016833A (ko) 2023-02-03

Similar Documents

Publication Publication Date Title
JP2007335663A (ja) 半導体モジュール
WO2023282598A1 (ko) 세라믹 기판 및 그 제조방법
JP2004022973A (ja) セラミック回路基板および半導体モジュール
WO2022174396A1 (zh) 封装结构、动力电气控制系统及制造方法
EP3890009A1 (en) Power module of double-faced cooling with bonding layers including anti-tilting members
WO2023008851A1 (ko) 히트싱크 일체형 세라믹 기판 및 그 제조방법
US6057612A (en) Flat power pack
JP2002164485A (ja) 半導体モジュール
CN113225934B (zh) 算力板及其制造方法
WO2022145869A1 (ko) 전력반도체 모듈의 제조방법 및 이에 의해 제조된 전력반도체 모듈
KR102720892B1 (ko) 히트싱크 일체형 세라믹 기판 및 그 제조방법
WO2024101737A1 (ko) 파워모듈용 세라믹 기판 및 그 제조방법
WO2023163438A1 (ko) 세라믹 기판 유닛 및 그 제조방법
WO2023132595A1 (ko) 세라믹 기판 유닛 및 그 제조방법
WO2023163423A1 (ko) 세라믹 기판 유닛 및 그 제조방법
WO2023163439A1 (ko) 세라믹 기판 유닛 및 그 제조방법
WO2024063410A1 (ko) 히트싱크 일체형 파워모듈용 기판 및 그 제조방법
WO2023149774A1 (ko) 세라믹 기판 유닛 및 그 제조방법
KR20230105364A (ko) 세라믹 기판 유닛 및 그 제조방법
KR20230105373A (ko) 세라믹 기판 유닛 및 그 제조방법
WO2022250382A1 (ko) 히트싱크 일체형 세라믹 기판 및 그 제조방법
WO2024058495A1 (ko) 히트싱크 일체형 파워모듈용 기판 및 그 제조방법
WO2024010240A1 (ko) 파워모듈 및 그 제조방법
WO2024049182A1 (ko) 세라믹 기판 유닛 및 그 제조방법
WO2023211106A1 (ko) 세라믹 기판 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22849827

Country of ref document: EP

Kind code of ref document: A1