WO2024010240A1 - 파워모듈 및 그 제조방법 - Google Patents
파워모듈 및 그 제조방법 Download PDFInfo
- Publication number
- WO2024010240A1 WO2024010240A1 PCT/KR2023/008234 KR2023008234W WO2024010240A1 WO 2024010240 A1 WO2024010240 A1 WO 2024010240A1 KR 2023008234 W KR2023008234 W KR 2023008234W WO 2024010240 A1 WO2024010240 A1 WO 2024010240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic substrate
- flow path
- metal layer
- power module
- path portion
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title abstract 2
- 239000000758 substrate Substances 0.000 claims abstract description 216
- 239000000919 ceramic Substances 0.000 claims abstract description 209
- 239000007788 liquid Substances 0.000 claims abstract description 34
- 239000003507 refrigerant Substances 0.000 claims abstract description 34
- 239000007769 metal material Substances 0.000 claims abstract description 6
- 229910052751 metal Inorganic materials 0.000 claims description 118
- 239000002184 metal Substances 0.000 claims description 118
- 239000004065 semiconductor Substances 0.000 claims description 20
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 238000005245 sintering Methods 0.000 claims description 14
- 229910017693 AgCuTi Inorganic materials 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 5
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 230000017525 heat dissipation Effects 0.000 abstract description 15
- 239000013585 weight reducing agent Substances 0.000 abstract description 4
- 238000005219 brazing Methods 0.000 description 17
- 239000010949 copper Substances 0.000 description 14
- 239000011888 foil Substances 0.000 description 11
- 238000001816 cooling Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 238000003754 machining Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910016525 CuMo Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49838—Geometry or layout
- H01L23/49844—Geometry or layout for devices being provided for in H01L29/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20218—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
- H05K7/20272—Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/20927—Liquid coolant without phase change
Definitions
- the present invention relates to a power module and a method of manufacturing the same, and more specifically, to a power module configured to enable effective heat dissipation by disposing a flow path between the upper and lower ceramic substrates, and to a method of manufacturing the same.
- electric vehicles require an inverter that converts direct current voltage provided by a high-voltage battery into alternating current three-phase voltage to drive the motor.
- This inverter is assembled with a power module to adjust and supply the high voltage of the driving battery to a state suitable for the motor.
- the power module includes semiconductor chips for power conversion, and these semiconductor chips generate high temperature heat due to high voltage and high current operation. If this heat continues, the semiconductor chip deteriorates and the performance of the power module deteriorates.
- a heat sink is provided on at least one side of the ceramic or metal substrate to prevent deterioration of the semiconductor chip due to heat through the heat dissipation function of the heat sink.
- Heat sinks are made of metal to dissipate heat, but heat sinks made of these metals also have limits to heat dissipation, so when heat exceeding the limit is generated, cooling efficiency drops rapidly, causing malfunctions.
- bonding characteristics are deteriorated due to warping due to heat.
- the present invention was developed to solve the above-mentioned problems.
- the present invention is a power module that maximizes the heat dissipation effect and enables miniaturization and weight reduction by arranging a flow path with a water-cooled direct cooling structure between the upper ceramic substrate and the lower ceramic substrate.
- the purpose is to provide and a manufacturing method thereof.
- the power module according to an embodiment of the present invention to achieve the above-described object is located between the upper ceramic substrate and the lower ceramic substrate, and the upper ceramic substrate and the lower ceramic substrate, and is provided with a plurality of flow channels through which the liquid refrigerant passes.
- the flow path portion may be formed of a metal material.
- Each of the plurality of flow channels may penetrate the interior of the flow path portion and extend in the longitudinal direction from one end surface of the flow path portion to the other end surface.
- Each of the plurality of flow channels may be formed by penetrating in a direction parallel to the upper surface of the lower ceramic substrate.
- Multiple flow channels may be arranged on the same line and spaced apart by a predetermined distance.
- Each of the plurality of flow channels may be bent and extended in a zigzag shape.
- Each of the plurality of flow channels may have a constant cross-sectional shape perpendicular to the direction in which the liquid refrigerant flows.
- the upper ceramic substrate may be provided with a metal layer on one side and the other side of the upper ceramic substrate
- the lower ceramic substrate may be provided with a metal layer on one side and the other side of the lower ceramic substrate.
- the upper ceramic substrate may include a first metal layer and a second metal layer provided on one side of the upper ceramic substrate, spaced apart from each other, and provided in a circuit pattern shape, and a third metal layer formed over the entire other side of the upper ceramic substrate. there is.
- the lower ceramic substrate may include a first metal layer and a second metal layer provided on one side of the lower ceramic substrate, spaced apart from each other, and provided in a circuit pattern shape, and a third metal layer formed over the entire other side of the lower ceramic substrate. there is.
- the upper ceramic substrate and the lower ceramic substrate may be arranged so that the third metal layers face each other with the flow path portion interposed therebetween.
- the upper ceramic substrate and the lower ceramic substrate may be disposed in a position where the first metal layers face each other vertically.
- the first metal layer may be configured to mount a power semiconductor chip
- the second metal layer may be configured to mount a drive IC chip.
- the first metal layer may be thicker than the second metal layer.
- the power module manufacturing method includes preparing an upper ceramic substrate, preparing a lower ceramic substrate, preparing a flow path portion with a plurality of flow channels through which liquid refrigerant passes, and the upper surface of the flow path portion. It includes the step of bonding an upper ceramic substrate to the flow path portion and bonding a lower ceramic substrate to the lower surface of the flow path portion, and in the step of preparing the flow path portion, the flow path portion may be formed of a metal material.
- each of the plurality of flow channel channels may penetrate the interior of the flow path portion and extend in the longitudinal direction from one end surface of the flow path portion to the other end surface.
- the upper ceramic substrate is provided on one side of the upper ceramic substrate, spaced apart from each other, and the first and second metal layers provided in a circuit pattern shape and the entire other side of the upper ceramic substrate. It may include a third metal layer formed over the surface.
- the lower ceramic substrate is provided on one side of the lower ceramic substrate, spaced apart from each other, and the first and second metal layers provided in a circuit pattern shape and the entire other side of the lower ceramic substrate. It may include a third metal layer formed over the surface.
- the step of bonding the upper ceramic substrate to the upper surface of the flow path portion and the lower ceramic substrate to the lower surface of the flow path portion involves bonding the upper ceramic substrate to the lower surface of the flow path portion through a bonding layer disposed between the upper ceramic substrate and the upper surface of the flow path portion and between the lower surface of the flow path portion and the lower ceramic substrate.
- the ceramic substrate, the flow path portion, and the lower ceramic substrate are bonded, and the bonding layer may be formed of a material containing at least one of Ag, Cu, AgCu, and AgCuTi, or may be formed of Ag sintering paste.
- the present invention has a structure in which a flow path portion provided with a plurality of flow channels through which liquid refrigerant passes is disposed between the upper ceramic substrate and the lower ceramic substrate, so that the upper ceramic substrate and the lower ceramic substrate can be cooled simultaneously through the flow path portion, thereby providing heat to each substrate. There is no need to install a separate heat sink, which allows for miniaturization and weight reduction, as well as cost savings.
- the present invention can quickly cool the heat of the power semiconductor chip and drive IC chip mounted on the upper and lower ceramic substrates through the liquid refrigerant passing through the plurality of flow channels provided in the flow portion.
- the present invention can further improve heat dissipation performance because the flow path portion is made of aluminum or copper with high thermal conductivity.
- the present invention is a water-cooled direct cooling structure in which a liquid refrigerant continuously circulates and releases heat to the outside, so heat can be released effectively and the performance of the power module can be improved by suppressing the temperature rise of the upper and lower ceramic substrates. You can.
- Figure 1 is a perspective view showing a power module according to an embodiment of the present invention.
- FIG. 2 is a perspective view of the power module shown in FIG. 1 viewed from the opposite direction.
- Figure 3 is an exploded perspective view of Figure 2.
- Figure 4 is a front view showing a power module according to an embodiment of the present invention.
- Figure 5 is a side view schematically showing a state in which a power semiconductor chip and a drive IC chip are mounted on a power module according to an embodiment of the present invention.
- FIG. 6 is a plan view of a portion of the cross section of the passage portion taken along line A-A' in FIG. 4.
- Figure 7 is a diagram showing a modified example of the flow path portion.
- Figure 8 is a conceptual diagram schematically showing a configuration in which a connection part is mounted on a power module according to an embodiment of the present invention, and a circulation drive unit is connected to the connection part.
- Figure 9 is a flowchart showing a power module manufacturing method according to an embodiment of the present invention.
- each layer (film), region, pattern or structure is said to be formed “on” or “under” the substrate, each layer (film), region, pad or pattern.
- “on” and “under” include both being formed “directly” or “indirectly” through another layer.
- the standards for the top or bottom of each floor are based on the drawing.
- FIG. 1 is a perspective view showing a power module according to an embodiment of the present invention
- FIG. 2 is a perspective view of the power module shown in FIG. 1 viewed from the opposite direction
- FIG. 3 is an exploded perspective view of FIG. 2
- FIG. 4 is an exploded perspective view of the power module shown in FIG. It is a front view showing a power module according to an embodiment of the present invention
- Figure 5 is a side view schematically showing a state in which a power semiconductor chip and a drive IC chip are mounted on the power module according to an embodiment of the present invention.
- the power module 1 may be configured to include an upper ceramic substrate 100, a lower ceramic substrate 200, and a flow path portion 300. .
- the upper ceramic substrate 100 and the lower ceramic substrate 200 may be any one of an AMB (Active Metal Brazing) substrate, a DBC (Direct Bonding Coppe) substrate, a TPC (Tick Printing Copper) substrate, and a DBA substrate, and may be durable and heat dissipating. In terms of efficiency, an AMB board or BDC board is most suitable.
- the upper ceramic substrate 100 may include an upper ceramic substrate 101 and metal layers 110, 120, and 130 provided on one side and the other surface of the upper ceramic substrate 101.
- the lower ceramic substrate 200 is located on the lower side of the upper ceramic substrate 100 and may be composed of a lower ceramic substrate 201 and metal layers 210, 220, and 230 provided on one side and the other side of the lower ceramic substrate 201. there is.
- the metal layers 110, 120, and 130 of the upper ceramic substrate 100 can be formed by brazing a metal foil to one side and the other side of the upper ceramic substrate 101 and then etching or machining the metal foil into a designed shape.
- the upper ceramic substrate 101 may be made of alumina (Al 2 O 3 ), AlN, SiN, or Si 3 N 4 .
- the thickness of the upper ceramic substrate 101 is 0.3 mm to 0.4 mm.
- the thickness of the upper ceramic substrate 101 may be 0.32 mm or 0.38 mm.
- the first metal layer 110 and the second metal layer 120 are provided on one surface of the upper ceramic substrate 101 and may be arranged to be spaced apart from each other.
- the first metal layer 110 and the second metal layer 120 may be provided in a circuit pattern shape. Additionally, the area of the first metal layer 110 may be formed to be larger than the area of the second metal layer 120.
- the third metal layer 130 may be provided on the other surface of the upper ceramic substrate 101.
- the first metal layer 110 and the third metal layer 130 may be made of Cu, Cu alloy (CuMo, etc.), or Al.
- the second metal layer 120 may be made of one of Ag, Au, Pt, Cu, Ag alloy, and Carbon Black, as an example.
- the third metal layer 130 of the upper ceramic substrate 100 may be bonded to the flow path portion 300 through a bonding layer (not shown).
- the bonding layer may be disposed between the third metal layer 130 of the upper ceramic substrate 100 and the upper surface of the flow path portion 300.
- the thickness of the bonding layer may be thin enough not to affect the height of the power module.
- the thickness of the bonding layer may be 0.3 ⁇ m to 3.0 ⁇ m.
- the bonding layer may be a brazing bonding layer or a sintered Ag bonding layer made of a material containing at least one of Ag, Cu, AgCu, and AgCuTi.
- the brazing bonding layer may be formed by any one of plating, paste application, and foil attachment. Brazing joining can be performed for 1 to 2 hours at a temperature of 900°C or higher.
- the Ag sintered bonding layer may be formed by applying Ag sintering paste, or may be formed by transferring the Ag sintering paste using a film on which Ag sintering paste is printed.
- Ag sintering bonding may be performed at a temperature of 200°C to 250°C for 15 to 30 minutes, and at this time, a pressure of 10 MPa to 15 MPa may be applied.
- Ag, AgCu, and AgCuTi have high thermal conductivity, which increases bonding strength and at the same time facilitates heat transfer between the upper ceramic substrate 100 and the flow path portion 300, thereby increasing heat dissipation efficiency.
- the third metal layer 130 of the upper ceramic substrate 100 may be in the form of a flat plate and may be formed over the entire other surface of the upper ceramic substrate 101 to facilitate heat exchange with the flow path portion 300. You can. One side of the third metal layer 130 of the upper ceramic substrate 100 may face the first metal layer 110, and the other side may face the second metal layer 120.
- the lower ceramic substrate 200 may be provided with metal layers 210, 220, and 230 on one side and the other side of the lower ceramic substrate 201.
- the metal layers 210, 220, and 230 of the lower ceramic substrate 200 can be formed by brazing a metal foil to one side and the other side of the lower ceramic substrate 201 and then etching or machining the metal foil into a designed shape.
- the lower ceramic substrate 201 may be made of alumina (Al 2 O 3 ), AlN, SiN, or Si 3 N 4 .
- the thickness of the lower ceramic substrate 201 is 0.3 mm to 0.4 mm.
- the thickness of the lower ceramic substrate 201 may be 0.32 mm or 0.38 mm.
- the first metal layer 210 and the second metal layer 220 are provided on one surface of the lower ceramic substrate 201 and may be arranged to be spaced apart from each other.
- the first metal layer 210 and the second metal layer 220 may be provided in a circuit pattern shape. Additionally, the area of the first metal layer 210 may be formed to be larger than the area of the second metal layer 220.
- the third metal layer 230 of the lower ceramic substrate 200 may be provided on the other surface of the lower ceramic substrate 201.
- the first metal layer 210 and the third metal layer 230 may be made of Cu, Cu alloy (CuMo, etc.), or Al.
- the second metal layer 220 may be made of one of Ag, Au, Pt, Cu, Ag alloy, and Carbon Black, as an example.
- the third metal layer 230 of the lower ceramic substrate 200 may be bonded to the flow path portion 300 through a bonding layer (not shown).
- the bonding layer may be disposed between the lower surface of the flow path portion 300 and the third metal layer 230 of the lower ceramic substrate 200.
- the thickness of the bonding layer may be thin enough not to affect the height of the power module.
- the thickness of the bonding layer may be 0.3 ⁇ m to 3.0 ⁇ m.
- the bonding layer may be a brazing bonding layer or a sintered Ag bonding layer made of a material containing at least one of Ag, Cu, AgCu, and AgCuTi.
- the brazing bonding layer may be formed by any one of plating, paste application, and foil attachment. Brazing joining can be performed for 1 to 2 hours at a temperature of 900°C or higher.
- the Ag sintered bonding layer may be formed by applying Ag sintering paste, or may be formed by transferring the Ag sintering paste using a film on which Ag sintering paste is printed.
- Ag sintering bonding may be performed at a temperature of 200°C to 250°C for 15 to 30 minutes, and at this time, a pressure of 10 MPa to 15 MPa may be applied.
- Ag, AgCu, and AgCuTi have high thermal conductivity, which increases bonding strength and at the same time facilitates heat transfer between the lower ceramic substrate 200 and the flow path portion 300 to increase heat dissipation efficiency.
- the third metal layer 230 of the lower ceramic substrate 200 may be in the same flat shape as the third metal layer 130 of the upper ceramic substrate 100 shown in FIG. 3, and may have a flow path portion. It may be formed over the entire other surface of the lower ceramic base 201 to facilitate heat exchange with 300.
- the third metal layer 230 of the lower ceramic substrate 200 may have one side facing the first metal layer 210 and the other side facing the second metal layer 220.
- the upper ceramic substrate 100 and the lower ceramic substrate 200 may be arranged such that the third metal layers 130 and 230 respectively face each other with the flow path portion 300 interposed therebetween. Additionally, referring to FIGS. 1, 2, and 4, the upper ceramic substrate 100 and the lower ceramic substrate 200 may be disposed in a position where the first metal layers 110 and 210 face each other vertically.
- the first metal layers 110 and 210 may be configured to mount the power semiconductor chip c1.
- the first metal layers 110 and 210 are SiC and GaN-based power semiconductor chips (c1) that can respond to requirements such as high breakdown voltage, high current, high temperature operation, use in a high frequency environment, high-speed switching, minimized power loss, and small chip size. ) can be implemented.
- the first metal layers 110 and 210 include Si chips, MOSFET (Metal Oxide Semiconductor Field Effect Transistor), IGBT (Insulated Gate Bipolar Transistor), JFET (Junction Field Effect Transistor), HEMT (High Electric Mobility Transistor), Various devices such as diodes can be mounted. These first metal layers 110 and 210 may have a plurality of electrodes arranged in a predetermined pattern.
- the second metal layers 120 and 220 may be configured to mount the drive IC chip c2.
- the second metal layers 120 and 220 may be equipped with SOI (Silicon On Insulator)-based driving, electrical, and electronic control elements.
- the first metal layer 110 and 210 is a portion where the power semiconductor chip c1 is mounted and a large current flows, and the second metal layer 120 and 220 are the drive IC chips. (c2) is a part configured to be mounted and through which a small current flows. Accordingly, the thickness of the first metal layers 110 and 210 may be thicker than the thickness of the second metal layers 120 and 220.
- the first metal layers 110 and 210 may have a thickness of about 0.3 mm
- the second metal layers 120 and 220 may have a thickness of about 20 ⁇ m, but the thickness is not limited thereto.
- each of the upper ceramic substrate 100 and the lower ceramic substrate 200 is a ceramic substrate with a dual electrode structure on which two chips, a power semiconductor chip (c1) and a drive IC chip (c2), are mounted. You can.
- a ceramic substrate with such a double electrode structure has the advantage of being able to reduce the size and weight compared to the case where the drive IC module and the power module are provided separately.
- the power module 1 has a flow path portion 300 provided with a plurality of flow channels 310 through which liquid refrigerant passes, disposed between the upper ceramic substrate 100 and the lower ceramic substrate 200. Because of its structured structure, heat dissipation efficiency can be maximized. That is, conventionally, a heat sink for dissipating heat from the upper ceramic substrate 100 and a heat sink for dissipating heat from the lower ceramic substrate 200 had to be separately provided, but the power module 1 according to the embodiment of the present invention has one flow path. Since the upper ceramic substrate 100 and the lower ceramic substrate 200 can be cooled at the same time through the unit 300, there is no need to place a separate heat sink on each substrate, making it possible to miniaturize and lightweight, and reduce costs.
- the power module 1 operates on the upper ceramic substrate 100 and the lower ceramic substrate 200 through the liquid refrigerant passing through the plurality of flow channels 310 provided in the flow path portion 300.
- the heat of the power semiconductor chip and drive IC chip mounted on the device can be quickly cooled.
- the flow path portion 300 may be formed of a metal material.
- the flow path portion 300 may be formed of aluminum or copper that can quickly transfer heat.
- heat dissipation performance can be further improved.
- the thickness of the flow path portion 300 may vary depending on the design of the flow channel 310, but is preferably formed to be 2 mm or more.
- FIG. 6 is a plan view of a cross-section of the flow path portion taken along line A-A' in FIG. 4, and FIG. 7 is a view showing a modified example of the flow path portion.
- each of the plurality of flow channels 310 penetrates the interior of the flow path portion 300 and extends in the longitudinal direction from one end surface 320 to the other end surface 330 of the flow path portion 300. You can.
- a plurality of flow channels 310 may be arranged on the same line and spaced apart by a predetermined distance. Each of the plurality of flow channels 310 may be formed to penetrate the upper surface of the lower ceramic substrate 200 in a horizontal direction. Additionally, each of the plurality of flow channels 310 may have a constant cross-sectional shape perpendicular to the direction in which the liquid refrigerant flows. According to the structure of the flow channel 310, the shape of the flow channel 310 is constant depending on the direction in which the liquid refrigerant flows, so the flow channel 310 becomes narrow in a specific section, causing the flow channel 310 to become blocked. You can lower the probability.
- each of the plurality of flow channels 310 is circular and the flow channels are extended in a straight line.
- the shape, number, and arrangement spacing of the flow channels 310 are not limited to this.
- the cross-section of the flow channel 310 may be formed in a square or polygonal shape, and the number of flow channels 310 may be variously formed, such as 3 or 10.
- the spacing between the plurality of flow channels 310 may be designed differently depending on the number of flow channels.
- the shape of the flow path portion 300 may be implemented through machining, mold processing, die casting processing, etc.
- FIG. 7 shows a modified example of the flow path portion 300', where each of the plurality of flow channels 310' provided in the flow path portion 300' includes a first part 311' of a concave shape and a second part of the convex shape.
- the two parts 312' may be arranged alternately to have a zigzag shape. That is, each of the plurality of flow channels 310' may be bent in a zigzag shape and extend in the longitudinal direction from one end surface 320' of the flow channel portion 300 to the other end surface 330'. As such, when the flow channel 310' is bent and extended in a zigzag shape, the liquid refrigerant flows at a different speed than the flow channel 310 extended in a straight line in FIG. 6.
- the shape of the flow channel 310' extending in the longitudinal direction of the flow path portion 300' is changed, the flow rate of the liquid refrigerant changes, so the shape of the flow channel can be designed so that the refrigerant can flow at a desired flow rate. there is.
- Figure 8 is a conceptual diagram schematically showing a configuration in which a connection part is mounted on a power module according to an embodiment of the present invention, and a circulation drive unit is connected to the connection part.
- each of the plurality of flow channels 310 may have connection portions 10 installed at both ends for the inflow and outflow of liquid refrigerant.
- the connection portion 10 may be installed on both end surfaces 320 and 330 in the longitudinal direction of the flow path portion 300.
- the connection portion 10 may be provided with an inlet 11 communicating with one end in the longitudinal direction of the flow channel 310 and an outlet 12 communicating with the other end in the longitudinal direction of the flow channel.
- the flow path portion 300 may be installed so that the rest of the flow path portion 300 is sealed except for the portion through which the liquid refrigerant flows in and out. That is, the liquid refrigerant only flows in and out through the flow path portion 300 and does not flow into the upper ceramic substrate 100 and the lower ceramic substrate 200.
- the circulation drive unit 20 is connected to the inlet 11 and the outlet 12, and can circulate liquid refrigerant using the driving force of a pump (not shown).
- the inlet 11 may be connected to the circulation driver 20 through the first circulation line L1
- the outlet 12 may be connected to the circulation driver 20 through the second circulation line L2. That is, the circulation drive unit 20 continuously supplies liquid refrigerant along a circulation path including the first circulation line (L1), the inlet 11, the flow channel 310, the outlet 12, and the second circulation line (L2). It can be circulated.
- the liquid refrigerant may be deionized water, but is not limited thereto, and liquid nitrogen, alcohol, or other solvents may be used as needed.
- the liquid refrigerant supplied from the circulation drive unit 20 flows into the inlet 11 through the first circulation line (L1) and flows through the inlet 11.
- the liquid refrigerant flowing into the channel 310 moves along the plurality of flow channels 310 and is discharged through the outlet 12, and can then move back to the circulation drive unit 20 through the second circulation line (L2).
- the liquid refrigerant may pass through a heat exchanger (not shown) while circulating along the circulation path. At this time, the heat exchanger can lower the temperature of the liquid refrigerant whose temperature increases as it passes through the flow channel 310.
- the liquid refrigerant cooled in the heat exchanger may be supplied back to the first circulation line (L1) by the circulation drive unit 20 and may flow into the plurality of flow channels 310 through the inlet 11.
- the liquid refrigerant can cool the heat transferred from the upper ceramic substrate 100 and the lower ceramic substrate 200 while passing through the plurality of flow channels 310 and can be discharged through the outlet 12.
- the plurality of flow channels 310 are a water-cooled direct cooling structure in which the liquid refrigerant supplied from the circulation drive unit 20 continuously circulates and releases heat to the outside. Due to this cooling structure, heat generated by the power semiconductor chip, drive IC chip, etc. mounted on the upper ceramic substrate 100 and the lower ceramic substrate 200 can be effectively dissipated, and the upper ceramic substrate 100 and the lower ceramic substrate ( 200) The performance of the power module can be improved by suppressing the temperature rise.
- the power module 1 uses one flow path portion 300 to simultaneously heat the upper ceramic substrate 100 and the lower ceramic substrate 200 bonded to the upper and lower surfaces of the flow path portion 300. It can dissipate heat. Therefore, there is no need to provide separate heat sinks for dissipating heat from the upper ceramic substrate 100 and the lower ceramic substrate 200, and rapid cooling is possible through a single flow path portion 300, thereby reducing costs. However, it has the advantage of being miniaturized.
- Figure 9 is a flowchart showing a power module manufacturing method according to an embodiment of the present invention.
- the power module manufacturing method includes preparing an upper ceramic substrate 100 (S10), preparing a lower ceramic substrate 200 (S20), Step (S30) of preparing a flow path portion 300 provided with a plurality of flow channels 310 through which liquid refrigerant passes, bonding the upper ceramic substrate 100 to the upper surface of the flow path portion 300, and forming the flow path portion ( It may include bonding the lower ceramic substrate 200 to the lower surface of 300 (S40).
- each step may be performed sequentially, may be performed in a different order, or may be performed substantially simultaneously.
- the upper ceramic substrate 100 includes an upper ceramic substrate 101 and an upper ceramic substrate to increase the heat dissipation efficiency of heat generated from the power semiconductor chip and the drive IC chip.
- Metal layers 110, 120, and 130 may be provided on one side and the other side of (101).
- the metal layers 110, 120, and 130 of the upper ceramic substrate 100 can be formed by brazing a metal foil to one side and the other side of the upper ceramic substrate 101 and then etching or machining the metal foil into a designed shape.
- the first metal layer 110 and the second metal layer 120 are provided on one surface of the upper ceramic substrate 101 and may be arranged to be spaced apart from each other.
- the first metal layer 110 and the second metal layer 120 may be provided in a circuit pattern shape.
- the third metal layer 130 may be provided on the other surface of the upper ceramic substrate 101.
- the third metal layer 130 may be formed over the entire other surface of the upper ceramic substrate 101 to facilitate heat exchange with the flow path portion 300.
- the lower ceramic substrate 200 includes a lower ceramic substrate 201 and a lower ceramic substrate to increase the heat dissipation efficiency of heat generated from the power semiconductor chip and the drive IC chip.
- Metal layers 210, 220, and 230 may be provided on one side and the other side of (201).
- the metal layers 210, 220, and 230 of the lower ceramic substrate 200 can be formed by brazing a metal foil to one side and the other side of the lower ceramic substrate 201 and then etching or machining the metal foil into a designed shape.
- the first metal layer 210 and the second metal layer 220 are provided on one side of the lower ceramic substrate 201 and may be arranged to be spaced apart from each other.
- the first metal layer 210 and the second metal layer 220 may be provided in a circuit pattern shape.
- the third metal layer 230 may be provided on the other surface of the lower ceramic substrate 201.
- the third metal layer 230 may be formed over the entire other surface of the lower ceramic substrate 201 to facilitate heat exchange with the flow path portion 300.
- the flow path portion 300 may be formed of aluminum or copper that can quickly transfer heat.
- the flow path portion 300 may be provided with a plurality of flow channels 310 through which liquid refrigerant passes.
- Each of the plurality of flow channels 310 may extend longitudinally through the interior of the flow path portion 300 from one end surface 320 to the other end surface 330 of the flow path portion 300.
- the shape, number, and arrangement spacing of the plurality of flow channels 310 are not limited to the embodiment of the present invention, and may be formed in various ways depending on the flow rate of the liquid refrigerant, cooling efficiency, etc.
- the shape of the flow path portion 300 may be implemented through machining, mold processing, die casting processing, etc.
- the step (S40) of bonding the upper ceramic substrate 100 to the upper surface of the flow path portion 300 and bonding the lower ceramic substrate 200 to the lower surface of the flow path portion 300 involves bonding the upper ceramic substrate 100 and the flow path portion.
- the upper ceramic substrate 100, the flow path portion 300, and the lower ceramic substrate are formed through a bonding layer (not shown) disposed between the upper surface of the channel portion 300 and the lower ceramic substrate 200. (200) can be joined.
- the bonding layer may be a brazing bonding layer or a sintered Ag bonding layer made of a material containing at least one of Ag, Cu, AgCu, and AgCuTi.
- the brazing bonding layer can be formed by any one of plating, paste application, and foil attachment. Brazing joining can be performed for 1 to 2 hours at a temperature of 900°C or higher.
- the bonding layer is a Ag sintered bonding layer
- the Ag sintered bonding layer can be formed by applying Ag sintering paste, or by transferring the Ag sintering paste using a film printed with Ag sintering paste.
- Ag sintering bonding can be performed at a temperature of 200°C to 250°C for 15 to 30 minutes, and at this time, a pressure of 10 MPa to 15 MPa may be applied.
- Ag, AgCu, and AgCuTi have high thermal conductivity, which increases bonding strength and at the same time facilitates heat transfer and increases heat dissipation efficiency.
- the power module according to an embodiment of the present invention is one in which the upper and lower ceramic substrates 100 and 200 are integrated on the upper and lower surfaces of the flow path portion 300, and the power semiconductor is mounted on the upper and lower ceramic substrates 100 and 200. Because it has a structure that can directly cool the heat generated from the chip and drive IC chip, it can achieve weight reduction and miniaturization while improving heat dissipation performance.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Geometry (AREA)
- Battery Mounting, Suspending (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
본 발명은 파워모듈 및 그 제조방법에 관한 것으로, 본 발명의 파워모듈은 상부 세라믹기판과 하부 세라믹기판, 상부 세라믹기판 및 하부 세라믹기판 사이에 위치하고, 액체형 냉매가 통과하는 다수의 유로 채널이 구비된 유로부를 포함하고, 유로부는 금속 재료로 형성될 수 있다. 본 발명은 상하부 세라믹기판 사이에 유로부를 배치하여 효과적인 방열이 가능하고, 소형화 및 경량화가 가능하다.
Description
본 발명은 파워모듈 및 그 제조방법에 관한 것으로, 더욱 상세하게는 상하부 세라믹기판 사이에 유로부를 배치하여 효과적인 방열이 가능하도록 구성된 파워모듈 및 그 제조방법(POWER MODULE AND MANUFACTURING METHOD THEREOF)에 관한 것이다.
일반적으로 전기차는 고전압 배터리에서 제공되는 직류 전압을, 모터를 구동하기 위한 교류 3상 전압으로 변환시키는 인버터가 필요하다.
이러한 인버터는 구동용 배터리의 높은 전압을 모터에 적합한 상태로 조절하여 공급하기 위한 파워모듈이 조립된다. 파워모듈은 전력의 변환을 위한 반도체 칩을 포함하는데, 이러한 반도체 칩은 고전압 고전류 동작으로 인해 고온의 열이 발생한다. 이러한 열이 지속되면 반도체 칩이 열화되고, 파워모듈의 성능이 저하되는 문제가 있다.
이를 해결하기 위해 세라믹 또는 금속 기판의 적어도 일면에 히트 싱크를 구비하여, 히트 싱크의 방열 기능을 통해 열에 의한 반도체 칩의 열화 현상을 방지하고 있다. 히트 싱크는 방열을 위해 금속재로 제조되는데, 이러한 금속의 히트 싱크의 경우에도 방열에 한계가 있어 한계 이상의 열이 발생할 경우 냉각 효율이 급격히 떨어져 고장의 원인이 되고 있다. 아울러, 반도체 칩이 실장되는 기판의 경우에도 열로 인한 휨 등이 발생하여 접합 특성이 저하되는 문제점이 있다.
이상의 배경기술에 기재된 사항은 발명의 배경에 대한 이해를 돕기 위한 것으로서, 공개된 종래 기술이 아닌 사항을 포함할 수 있다.
본 발명은 상술한 문제점을 해결하고자 안출된 것으로서, 본 발명은 상부 세라믹기판과 하부 세라믹기판 사이에 수냉식 직접 냉각 구조가 적용된 유로부를 배치하여 방열 효과를 극대화하고, 소형화 및 경량화가 가능하도록 한 파워모듈 및 그 제조방법을 제공하는 데 그 목적이 있다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 실시예에 따른 파워모듈은, 상부 세라믹기판과 하부 세라믹기판, 상부 세라믹기판 및 하부 세라믹기판 사이에 위치하고, 액체형 냉매가 통과하는 다수의 유로 채널이 구비된 유로부를 포함하고, 유로부는 금속 재료로 형성될 수 있다.
다수의 유로 채널 각각은 유로부의 내부를 관통하여 유로부의 일단부면부터 타단부면까지 길이 방향으로 연장될 수 있다.
다수의 유로 채널 각각은 하부 세라믹기판의 상면과 수평한 방향으로 관통되어 형성될 수 있다.
다수의 유로 채널은 동일한 선상에 소정의 간격만큼 이격되어 배치될 수 있다.
다수의 유로 채널 각각은 지그재그 형태로 굴곡되어 연장될 수 있다.
다수의 유로 채널 각각은 액체형 냉매가 흐르는 방향에 대하여 수직한 단면의 형상이 일정하게 형성될 수 있다.
상부 세라믹기판은 상부 세라믹기재의 일면 및 타면에 금속층이 구비되고, 하부 세라믹기판은 하부 세라믹기재의 일면 및 타면에 금속층이 구비될 수 있다.
상부 세라믹기판은, 상부 세라믹기재의 일면에 구비되고, 서로 이격되게 배치되며, 회로 패턴 형상으로 구비된 제1 금속층 및 제2 금속층, 상부 세라믹기재의 타면 전체에 걸쳐 형성된 제3 금속층을 포함할 수 있다.
하부 세라믹기판은, 하부 세라믹기재의 일면에 구비되고, 서로 이격되게 배치되며, 회로 패턴 형상으로 구비된 제1 금속층 및 제2 금속층, 하부 세라믹기재의 타면 전체에 걸쳐 형성된 제3 금속층을 포함할 수 있다.
상부 세라믹기판 및 하부 세라믹기판은, 각각의 제3 금속층이 유로부를 사이에 두고 서로 마주하도록 배치될 수 있다.
상부 세라믹기판 및 하부 세라믹기판은, 각각의 제1 금속층이 상하로 서로 마주보는 위치에 배치될 수 있다.
상부 세라믹기판 및 하부 세라믹기판 각각에서, 제1 금속층은 전력 반도체 칩이 실장되도록 구성되고, 제2 금속층은 드라이브 IC 칩이 실장되도록 구성될 수 있다.
상부 세라믹기판 및 하부 세라믹기판 각각에서, 제1 금속층의 두께는 제2 금속층의 두께보다 두껍게 형성될 수 있다.
본 발명의 실시예에 따른 파워모듈 제조방법은, 상부 세라믹기판을 준비하는 단계, 하부 세라믹기판을 준비하는 단계, 액체형 냉매가 통과하는 다수의 유로 채널이 구비된 유로부를 준비하는 단계, 유로부의 상면에 상부 세라믹기판을 접합하고, 유로부의 하면에 하부 세라믹기판을 접합하는 단계를 포함하고, 유로부를 준비하는 단계에서, 유로부는 금속 재료로 형성될 수 있다.
유로부를 준비하는 단계에서, 다수의 유로 채널 각각은 유로부의 내부를 관통하여 유로부의 일단부면부터 타단부면까지 길이 방향으로 연장될 수 있다.
상부 세라믹기판을 준비하는 단계에서, 상부 세라믹기판은, 상부 세라믹기재의 일면에 구비되고, 서로 이격되게 배치되며, 회로 패턴 형상으로 구비된 제1 금속층 및 제2 금속층, 상부 세라믹기재의 타면 전체에 걸쳐 형성된 제3 금속층을 포함할 수 있다.
하부 세라믹기판을 준비하는 단계에서, 하부 세라믹기판은, 하부 세라믹기재의 일면에 구비되고, 서로 이격되게 배치되며, 회로 패턴 형상으로 구비된 제1 금속층 및 제2 금속층, 하부 세라믹기재의 타면 전체에 걸쳐 형성된 제3 금속층을 포함할 수 있다.
유로부의 상면에 상부 세라믹기판을 접합하고, 유로부의 하면에 하부 세라믹기판을 접합하는 단계는, 상부 세라믹기판과 유로부의 상면 사이, 유로부의 하면과 하부 세라믹기판 사이에 배치된 접합층을 매개로 상부 세라믹기판, 유로부 및 하부 세라믹기판을 접합하고, 접합층은 Ag, Cu, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 형성되거나, Ag 소결 페이스트로 형성될 수 있다.
본 발명은 액체형 냉매가 통과하는 다수의 유로 채널이 구비된 유로부가 상부 세라믹기판 및 하부 세라믹기판 사이에 배치된 구조이므로, 유로부를 통해 상부 세라믹기판 및 하부 세라믹기판을 동시에 냉각시킬 수 있어 기판 각각에 별도의 히트싱크를 배치할 필요가 없고, 이로 인해 소형화 및 경량화가 가능하며, 비용을 절감할 수 있다.
또한, 본 발명은 유로부에 구비된 다수의 유로 채널을 통과하는 액체형 냉매를 통해 상부 세라믹기판 및 하부 세라믹기판에 실장된 전력 반도체 칩과 드라이브 IC 칩의 열을 빠르게 냉각시킬 수 있다.
또한, 본 발명은 유로부가 열전도율이 높은 알루미늄 또는 구리로 형성되기 때문에 방열 성능을 보다 더 높일 수 있다.
또한, 본 발명은 액체형 냉매가 연속해서 순환하면서 외부로 열을 방출하는 수냉식 직접 냉각 구조이므로 열을 효과적으로 방출할 수 있고, 상부 세라믹기판 및 하부 세라믹기판의 온도 상승을 억제하여 파워모듈의 성능을 높일 수 있다.
도 1은 본 발명의 실시예에 따른 파워모듈을 도시한 사시도이다.
도 2는 도 1에 도시된 파워모듈을 반대 방향에서 바라본 사시도이다.
도 3은 도 2의 분해 사시도이다.
도 4는 본 발명의 실시예에 따른 파워모듈을 도시한 정면도이다.
도 5는 본 발명의 실시예에 따른 파워모듈에 전력 반도체 칩 및 드라이브 IC 칩이 실장된 상태를 개략적으로 도시한 측면도이다.
도 6은 도 4의 A-A'선에 따른 유로부의 단면 일부를 평면에서 바라본 도면이다.
도 7은 유로부의 변형예를 도시한 도면이다.
도 8은 본 발명의 실시예에 따른 파워모듈에 연결부가 장착되고, 연결부에 순환 구동부가 연결된 구성을 개략적으로 도시한 개념도이다.
도 9는 본 발명의 실시예에 따른 파워모듈 제조방법을 도시한 흐름도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이고, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 또한, 본 명세서에서 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다.
실시예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "위(on)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "위(on)"와 "아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여(indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 위 또는 아래에 대한 기준은 도면을 기준으로 하는 것을 원칙으로 한다.
도면은 본 발명의 사상을 이해할 수 있도록 하기 위한 것일 뿐, 도면에 의해서 본 발명의 범위가 제한되는 것으로 해석되지 않아야 한다. 또한 도면에서 상대적인 두께, 길이나 상대적인 크기는 설명의 편의 및 명확성을 위해 과장될 수 있다.
도 1은 본 발명의 실시예에 따른 파워모듈을 도시한 사시도이고, 도 2는 도 1에 도시된 파워모듈을 반대 방향에서 바라본 사시도이며, 도 3은 도 2의 분해 사시도이고, 도 4는 본 발명의 실시예에 따른 파워모듈을 도시한 정면도이며, 도 5는 본 발명의 실시예에 따른 파워모듈에 전력 반도체 칩 및 드라이브 IC 칩이 실장된 상태를 개략적으로 도시한 측면도이다.
도 1 내지 도 4에 도시된 바에 의하면, 본 발명의 실시예에 따른 파워모듈(1)은 상부 세라믹기판(100), 하부 세라믹기판(200) 및 유로부(300)를 포함하여 구성될 수 있다.
상부 세라믹기판(100) 및 하부 세라믹기판(200)은 AMB(Active Metal Brazing) 기판, DBC(Direct Bonding Coppe) 기판, TPC(Tick Printing Copper) 기판, DBA 기판 중 어느 하나일 수 있으며, 내구성 및 방열 효율면에서는 AMB 기판 또는 BDC 기판이 가장 적합하다.
일 예로, 상부 세라믹기판(100)은 상부 세라믹기재(101)와, 상부 세라믹기재(101)의 일면 및 타면에 구비된 금속층(110,120,130)을 포함하여 구성될 수 있다. 하부 세라믹기판(200)은 상부 세라믹기판(100)의 하측에 위치한 것으로, 하부 세라믹기재(201)와, 하부 세라믹기재(201)의 일면 및 타면에 구비된 금속층(210,220,230)을 포함하여 구성될 수 있다.
상부 세라믹기판(100)의 금속층(110,120,130)은 상부 세라믹기재(101)의 일면 및 타면에 금속박을 브레이징 접합한 다음 설계된 형태로 금속박을 에칭 가공 또는 기계 가공하여 형성할 수 있다. 상부 세라믹기재(101)는 알루미나(Al2O3), AlN, SiN, Si3N4 중 어느 하나인 것을 일 예로 할 수 있다. 상부 세라믹기재(101)의 두께는 0.3mm~0.4mm이다. 일례로, 상부 세라믹기재(101)의 두께는 0.32mm 또는 0.38mm일 수 있다. 상부 세라믹기판(100)에서, 제1 금속층(110) 및 제2 금속층(120)은 상부 세라믹기재(101)의 일면에 구비되고, 서로 이격되게 배치될 수 있다. 제1 금속층(110) 및 제2 금속층(120)은 회로 패턴 형상으로 구비될 수 있다. 또한, 제1 금속층(110)의 면적은 제2 금속층(120)의 면적보다 더 크게 형성될 수 있다. 상부 세라믹기판(100)에서 제3 금속층(130)은 상부 세라믹기재(101)의 타면에 구비될 수 있다. 제1 금속층(110) 및 제3 금속층(130)은 Cu, Cu 합금(CuMo 등), Al 중 하나로 이루어지는 것을 일 예로 할 수 있다. 또한, 제2 금속층(120)은 Ag, Au, Pt, Cu, Ag 합금, Carbon Black 중 하나로 이루어지는 것을 일 예로 할 수 있다.
상부 세라믹기판(100)의 제3 금속층(130)은 유로부(300)에 접합층(미도시)을 매개로 접합될 수 있다. 접합층은 상부 세라믹기판(100)의 제3 금속층(130)과 유로부(300)의 상면 사이에 배치될 수 있다. 접합층의 두께는 파워모듈의 높이에 영향을 미치지 않을 만큼 얇게 형성될 수 있으며, 일 예로 접합층의 두께는 0.3㎛ 내지 3.0㎛일 수 있다.
접합층은 Ag, Cu, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어진 브레이징 접합층 또는 Ag 소결 접합층일 수 있다. 접합층이 브레이징 접합층일 경우, 브레이징 접합층은 도금, 페이스트 도포, 포일(foil) 부착 중 어느 하나의 방법에 의해 형성될 수 있다. 브레이징 접합은 900℃ 이상의 온도에서 1시간~2시간 동안 수행될 수 있다. 접합층이 Ag 소결 접합층일 경우, Ag 소결 접합층은 Ag 소결 페이스트가 도포되어 형성되거나, Ag 소결 페이스트가 인쇄된 필름을 이용하여 Ag 소결 페이스트를 전사하는 방법 등으로 형성될 수 있다. Ag 소결 접합은 200℃ 내지 250℃의 온도에서 15분~30분 동안 수행될 수 있고, 이때 10MPa 내지 15MPa의 압력이 가해질 수 있다. Ag, AgCu 및 AgCuTi는 열전도도가 높아 접합력을 높이는 역할과 동시에 상부 세라믹기판(100)과 유로부(300) 간의 열 전달을 용이하게 하여 방열 효율을 높일 수 있다.
도 3에 도시된 바와 같이 상부 세라믹기판(100)의 제3 금속층(130)은 평판 형태일 수 있고, 유로부(300)와의 열교환이 용이하도록 상부 세라믹기재(101)의 타면 전체에 걸쳐 형성될 수 있다. 이러한 상부 세라믹기판(100)의 제3 금속층(130)은 일측 영역이 제1 금속층(110)과 마주하고, 타측 영역이 제2 금속층(120)과 마주할 수 있다.
하부 세라믹기판(200)은 하부 세라믹기재(201)의 일면 및 타면에 금속층(210,220,230)이 구비될 수 있다. 하부 세라믹기판(200)의 금속층(210,220,230)은 하부 세라믹기재(201)의 일면 및 타면에 금속박을 브레이징 접합한 다음 설계된 형태로 금속박을 에칭 가공 또는 기계 가공하여 형성할 수 있다. 하부 세라믹기재(201)는 알루미나(Al2O3), AlN, SiN, Si3N4 중 어느 하나인 것을 일 예로 할 수 있다. 하부 세라믹기재(201)의 두께는 0.3mm~0.4mm이다. 일례로, 하부 세라믹기재(201)의 두께는 0.32mm 또는 0.38mm일 수 있다. 하부 세라믹기판(200)에서, 제1 금속층(210) 및 제2 금속층(220)은 하부 세라믹기재(201)의 일면에 구비되고, 서로 이격되게 배치될 수 있다. 제1 금속층(210) 및 제2 금속층(220)은 회로 패턴 형상으로 구비될 수 있다. 또한, 제1 금속층(210)의 면적은 제2 금속층(220)의 면적보다 더 크게 형성될 수 있다. 하부 세라믹기판(200)의 제3 금속층(230)은 하부 세라믹기재(201)의 타면에 구비될 수 있다. 제1 금속층(210) 및 제3 금속층(230)은 Cu, Cu 합금(CuMo 등), Al 중 하나로 이루어지는 것을 일 예로 할 수 있다. 또한, 제2 금속층(220)은 Ag, Au, Pt, Cu, Ag 합금, Carbon Black 중 하나로 이루어지는 것을 일 예로 할 수 있다.
하부 세라믹기판(200)의 제3 금속층(230)은 유로부(300)에 접합층(미도시)을 매개로 접합될 수 있다. 접합층은 유로부(300)의 하면과 하부 세라믹기판(200)의 제3 금속층(230) 사이에 배치될 수 있다. 접합층의 두께는 파워모듈의 높이에 영향을 미치지 않을 만큼 얇게 형성될 수 있으며, 일 예로 접합층의 두께는 0.3㎛ 내지 3.0㎛일 수 있다.
접합층은 Ag, Cu, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어진 브레이징 접합층 또는 Ag 소결 접합층일 수 있다. 접합층이 브레이징 접합층일 경우, 브레이징 접합층은 도금, 페이스트 도포, 포일(foil) 부착 중 어느 하나의 방법에 의해 형성될 수 있다. 브레이징 접합은 900℃ 이상의 온도에서 1시간~2시간 동안 수행될 수 있다. 접합층이 Ag 소결 접합층일 경우, Ag 소결 접합층은 Ag 소결 페이스트가 도포되어 형성되거나, Ag 소결 페이스트가 인쇄된 필름을 이용하여 Ag 소결 페이스트를 전사하는 방법 등으로 형성될 수 있다. Ag 소결 접합은 200℃ 내지 250℃의 온도에서 15분~30분 동안 수행될 수 있고, 이때 10MPa 내지 15MPa의 압력이 가해질 수 있다. Ag, AgCu 및 AgCuTi는 열전도도가 높아 접합력을 높이는 역할과 동시에 하부 세라믹기판(200)과 유로부(300) 간의 열 전달을 용이하게 하여 방열 효율을 높일 수 있다.
비록 자세히 도시되지는 않았으나, 하부 세라믹기판(200)의 제3 금속층(230)은 도 3에 도시된 상부 세라믹기판(100)의 제3 금속층(130)과 동일하게 평판 형태일 수 있고, 유로부(300)와의 열교환이 용이하도록 하부 세라믹기재(201)의 타면 전체에 걸쳐 형성될 수 있다. 이러한 하부 세라믹기판(200)의 제3 금속층(230)은 일측 영역이 제1 금속층(210)과 마주하고, 타측 영역이 제2 금속층(220)과 마주할 수 있다.
도 4에 도시된 바와 같이, 상부 세라믹기판(100) 및 하부 세라믹기판(200)은 각각의 제3 금속층(130,230)이 유로부(300)를 사이에 두고 서로 마주하도록 배치될 수 있다. 또한, 도 1, 도 2 및 도 4를 참조하면, 상부 세라믹기판(100) 및 하부 세라믹기판(200)은 각각의 제1 금속층(110,210)이 상하로 서로 마주보는 위치에 배치될 수 있다.
도 5를 참조하면, 상부 세라믹기판(100) 및 하부 세라믹기판(200) 각각에서, 제1 금속층(110,210)은 전력 반도체 칩(c1)이 실장되도록 구성될 수 있다. 예컨대, 제1 금속층(110,210)은 고내압, 고전류, 고온 작동, 고주파수 환경에서의 사용과 고속 스위칭, 전력 손실 최소화, 소형 칩 사이즈 등의 요구에 대응할 수 있는 SiC와 GaN 기반의 전력 반도체 칩(c1)이 실장될 수 있다. 제1 금속층(110,210)은 SiC 칩과 GaN 칩 이외에도 Si 칩, MOSFET(Metal Oxide Semiconductor Field Effect Transistor), IGBT(Insulated Gate Bipolar Transistor), JFET(Junction Field Effect Transistor), HEMT(High Electric Mobility Transistor), 다이오드(Diode) 등의 다양한 소자가 실장될 수 있다. 이러한 제1 금속층(110,210)은 복수의 전극이 소정의 패턴으로 배치될 수 있다.
또한, 상부 세라믹기판(100) 및 하부 세라믹기판(200) 각각에서, 제2 금속층(120,220)은 드라이브 IC 칩(c2)이 실장되도록 구성될 수 있다. 일례로, 제2 금속층(120,220)은 SOI(Silicon On Insulator) 기반의 구동, 전기, 전자 제어용 소자가 실장될 수 있다.
상부 세라믹기판(100) 및 하부 세라믹기판(200) 각각에서, 제1 금속층(110,210)은 전력 반도체 칩(c1)이 실장되도록 구성되어 대전류가 흐르는 부분이고, 제2 금속층(120,220)은 드라이브 IC 칩(c2)이 실장되도록 구성되어 소전류가 흐르는 부분이다. 따라서, 제1 금속층(110,210)의 두께는 제2 금속층(120,220)의 두께보다 두껍게 형성될 수 있다. 일 예로, 제1 금속층(110,210)의 두께는 약 0.3mm이고, 제2 금속층(120,220)의 두께는 약 20㎛일 수 있으나, 이에 한정되지는 않는다.
이와 같이, 상부 세라믹기판(100) 및 하부 세라믹기판(200) 각각은, 전력 반도체 칩(c1)과 드라이브 IC 칩(c2)이라는 2가지의 칩이 실장되는 이중(dual) 전극 구조의 세라믹 기판일 수 있다. 이러한 이중 전극 구조의 세라믹 기판은 드라이브 IC 모듈과 파워모듈 각각을 별도로 구비하는 경우와 대비하여 사이즈를 작게 할 수 있고, 경량화가 가능하다는 장점이 있다.
본 발명의 실시예에 따른 파워모듈(1)은 액체형 냉매가 통과하는 다수의 유로 채널(310)이 구비된 유로부(300)가 상부 세라믹기판(100) 및 하부 세라믹기판(200) 사이에 배치된 구조이므로, 방열 효율을 극대화할 수 있다. 즉, 종래에는 상부 세라믹기판(100)을 방열시키는 히트싱크와 하부 세라믹기판(200)을 방열시키는 히트싱크를 각각 별도로 구비해야 했으나, 본 발명의 실시예에 따른 파워모듈(1)은 하나의 유로부(300)를 통해 상부 세라믹기판(100) 및 하부 세라믹기판(200)을 동시에 냉각시킬 수 있기 때문에 기판 각각에 별도의 히트싱크를 배치할 필요가 없어 소형화 및 경량화가 가능하고, 비용을 절감할 수 있다. 또한, 본 발명의 실시예에 따른 파워모듈(1)은 유로부(300)에 구비된 다수의 유로 채널(310)을 통과하는 액체형 냉매를 통해 상부 세라믹기판(100) 및 하부 세라믹기판(200)에 실장된 전력 반도체 칩과 드라이브 IC 칩의 열을 빠르게 냉각시킬 수 있다.
유로부(300)는 금속 재료로 형성될 수 있다. 예를 들어, 유로부(300)는 열을 빠르게 전달할 수 있는 알루미늄 또는 구리로 형성될 수 있다. 유로부(300)가 알루미늄 또는 구리로 형성될 경우, 방열 성능을 보다 더 높일 수 있다. 유로부(300)의 두께는 유로 채널(310)의 설계에 따라 달라질 수 있으나 2mm 이상으로 형성되는 것이 바람직하다.
도 6은 도 4의 A-A'선에 따른 유로부의 단면을 평면 상에서 바라본 도면이고, 도 7은 유로부의 변형예를 나타낸 도면이다.
도 6을 참조하면, 다수의 유로 채널(310) 각각은 유로부(300)의 내부를 관통하여 유로부(300)의 일단부면(320)으로부터 타단부면(330)까지 길이 방향으로 연장된 형태일 수 있다.
다수의 유로 채널(310)은 동일한 선상에 소정의 간격만큼 이격되어 배치될 수 있다. 다수의 유로 채널(310) 각각은 하부 세라믹기판(200)의 상면과 수평한 방향으로 관통되어 형성될 수 있다. 또한, 다수의 유로 채널(310) 각각은 액체형 냉매가 흐르는 방향에 대하여 수직한 단면의 형상이 일정하게 형성될 수 있다. 이러한 유로 채널(310)의 구조에 의하면, 액체형 냉매가 흐르는 방향에 따라 유로 채널(310)의 형상이 일정하기 때문에 특정 구간에서 유로 채널(310)이 좁아져 유로 채널(310)이 막히는 현상의 발생 확률을 낮출 수 있다.
본 실시예에서는 다수의 유로 채널(310) 각각의 단면이 원형이고, 유로 채널이 일직선 형태로 연장된 예를 도시하고 있으나, 유로 채널(310)의 형상, 개수, 배치 간격은 이에 한정되지는 않는다. 예를 들어, 유로 채널(310)의 단면은 사각형, 다각형 등으로 형성될 수 있고, 유로 채널(310)의 개수는 3개, 10개 등으로 다양하게 형성될 수 있다. 또한, 다수의 유로 채널(310) 간의 간격은 유로 채널의 개수에 따라 상이하게 설계될 수 있다. 유로부(300)의 형상은 기계 가공, 금형 가공, 다이캐스팅 가공 등에 의해 구현될 수 있다.
도 7은 유로부(300')의 변형예를 나타낸 것으로, 유로부(300')에 구비된 다수의 유로 채널(310') 각각은 오목한 형상의 제1 부분(311')과 볼록한 형상의 제2 부분(312')이 번갈아 배치되어 지그재그 형상을 갖도록 이루어질 수 있다. 즉, 다수의 유로 채널(310') 각각은 지그재그 형태로 굴곡되어 유로부(300)의 일단부면(320')으로부터 타단부면(330')까지 길이 방향으로 연장된 형태일 수 있다. 이와 같이, 유로 채널(310')이 지그재그 형태로 굴곡되어 연장될 경우, 도 6의 일직선 형태로 연장된 유로 채널(310)과는 다른 속도로 액체형 냉매가 흐르게 된다. 이와 같이, 유로 채널(310')이 유로부(300')의 길이 방향으로 연장된 형태가 변경되면 액체형 냉매의 유속이 달라지므로, 원하는 유속으로 냉매가 흐를 수 있도록 유로 채널의 형태가 설계될 수 있다.
도 8은 본 발명의 실시예에 따른 파워모듈에 연결부가 장착되고, 연결부에 순환 구동부가 연결된 구성을 개략적으로 도시한 개념도이다.
도 8을 참조하면, 다수의 유로 채널(310) 각각은 양단에 액체형 냉매의 유입 및 유출을 위한 연결부(10)가 설치될 수 있다. 비록 자세히 도시되지는 않았으나, 연결부(10)는 유로부(300)의 길이 방향의 양단부면(320,330)에 설치될 수 있다. 연결부(10)는 유로 채널(310)의 길이 방향에서의 일단과 연통하는 유입구(11)와, 유로 채널의 길이 방향에서의 타단과 연통하는 유출구(12)가 구비될 수 있다.
비록 자세히 도시되지는 않았으나, 유로부(300)는 액체형 냉매가 유입 및 유출되는 부분을 제외한 나머지 부분이 밀봉되도록 설치될 수 있다. 즉, 액체형 냉매는 유로부(300)를 통해 유입 및 유출될 뿐이며, 상부 세라믹기판(100) 및 하부 세라믹기판(200)으로는 유입되지 않는다.
순환 구동부(20)는 유입구(11) 및 유출구(12)와 연결되고, 펌프(미도시)의 구동력을 이용하여 액체형 냉매를 순환시킬 수 있다. 여기서, 유입구(11)는 제1 순환라인(L1)을 통해 순환 구동부(20)와 연결될 수 있고, 유출구(12)는 제2 순환라인(L2)을 통해 순환 구동부(20)와 연결될 수 있다. 즉, 순환 구동부(20)는 제1 순환라인(L1), 유입구(11), 유로 채널(310), 유출구(12) 및 제2 순환라인(L2)을 포함한 순환 경로를 따라 액체형 냉매를 연속해서 순환시킬 수 있다. 여기서, 액체형 냉매는 탈이온수(Deionized Water)일 수 있으나, 이에 한정되지 않으며, 필요에 따라 액체질소, 알코올, 기타 용매를 사용할 수도 있다.
도 8의 화살표로 표시된 액체형 냉매의 순환 경로를 참조하면, 순환 구동부(20)로부터 공급되는 액체형 냉매는 제1 순환라인(L1)을 통해 유입구(11)로 유입되고, 유입구(11)를 통해 유로 채널(310)로 유입된 액체형 냉매는 다수의 유로 채널(310)을 따라 이동하여 유출구(12)를 통해 배출되며, 이후에 제2 순환라인(L2)을 통해 다시 순환 구동부(20)로 이동할 수 있다. 비록 도시되지는 않았으나, 액체형 냉매는 순환 경로를 따라 순환하는 도중에 열교환기(미도시)를 통과할 수 있다. 이때, 열교환기는 유로 채널(310)을 통과하면서 온도가 올라간 액체형 냉매의 온도를 낮출 수 있다. 열교환기에서 냉각된 액체형 냉매는 순환 구동부(20)에 의해 다시 제1 순환라인(L1)으로 공급될 수 있고, 유입구(11)를 통해 다수의 유로 채널(310) 내에 유입될 수 있다. 액체형 냉매는 다수의 유로 채널(310)을 통과하는 동안 상부 세라믹기판(100) 및 하부 세라믹기판(200)으로부터 전달된 열을 냉각시킬 수 있고, 유출구(12)를 통해 배출될 수 있다.
이와 같이, 다수의 유로 채널(310)은 순환 구동부(20)로부터 공급된 액체형 냉매가 연속해서 순환하면서 외부로 열을 방출하는 수냉식 직접 냉각 구조이다. 이러한 냉각 구조로 인해 상부 세라믹기판(100) 및 하부 세라믹기판(200)에 실장된 전력 반도체 칩, 드라이브 IC 칩 등에 의해 발생한 열이 효과적으로 방출될 수 있고, 상부 세라믹기판(100) 및 하부 세라믹기판(200)의 온도 상승을 억제하여 파워모듈의 성능을 높일 수 있다.
본 발명의 실시예에 따른 파워모듈(1)은 하나의 유로부(300)를 이용하여 유로부(300)의 상하면에 접합된 상부 세라믹기판(100) 및 하부 세라믹기판(200)의 열을 동시에 방열시킬 수 있다. 따라서, 상부 세라믹기판(100) 및 하부 세라믹기판(200)을 방열시키기 위한 히트싱크가 각각 별도로 구비될 필요가 없고, 하나의 유로부(300)를 통해 신속한 냉각이 가능하기 때문에 비용 절감이 가능할 뿐만 아니라 소형화가 가능하다는 장점이 있다.
도 9는 본 발명의 실시예에 따른 파워모듈 제조방법을 도시한 흐름도이다.
본 발명의 실시예에 따른 파워모듈 제조방법은 도 9에 도시된 바와 같이, 상부 세라믹기판(100)을 준비하는 단계(S10)와, 하부 세라믹기판(200)을 준비하는 단계(S20)와, 액체형 냉매가 통과하는 다수의 유로 채널(310)이 구비된 유로부(300)를 준비하는 단계(S30)와, 유로부(300)의 상면에 상부 세라믹기판(100)을 접합하고, 유로부(300)의 하면에 하부 세라믹기판(200)을 접합하는 단계(S40)를 포함할 수 있다. 여기서, 각각의 단계는 순차적으로 수행하거나, 서로 순서를 바꾸어 수행할 수 있고, 실질적으로 동시에 수행할 수도 있다.
상부 세라믹기판(100)을 준비하는 단계(S10)에서, 상부 세라믹기판(100)은 전력 반도체 칩, 드라이브 IC 칩으로부터 발생하는 열의 방열 효율을 높일 수 있도록 상부 세라믹기재(101)와, 상부 세라믹기재(101)의 일면 및 타면에 금속층(110,120,130)이 구비될 수 있다. 상부 세라믹기판(100)의 금속층(110,120,130)은 상부 세라믹기재(101)의 일면 및 타면에 금속박을 브레이징 접합한 다음 설계된 형태로 금속박을 에칭 가공 또는 기계 가공하여 형성할 수 있다. 상부 세라믹기판(100)에서, 제1 금속층(110) 및 제2 금속층(120)은 상부 세라믹기재(101)의 일면에 구비되고, 서로 이격되게 배치될 수 있다. 제1 금속층(110) 및 제2 금속층(120)은 회로 패턴 형상으로 구비될 수 있다. 제3 금속층(130)은 상부 세라믹기재(101)의 타면에 구비될 수 있다. 여기서, 제3 금속층(130)은 유로부(300)와의 열교환이 용이하도록 상부 세라믹기재(101)의 타면 전체에 걸쳐 형성될 수 있다.
하부 세라믹기판(200)을 준비하는 단계(S20)에서, 하부 세라믹기판(200)은 전력 반도체 칩, 드라이브 IC 칩으로부터 발생하는 열의 방열 효율을 높일 수 있도록 하부 세라믹기재(201)와, 하부 세라믹기재(201)의 일면 및 타면에 금속층(210,220,230)이 구비될 수 있다. 하부 세라믹기판(200)의 금속층(210,220,230)은 하부 세라믹기재(201)의 일면 및 타면에 금속박을 브레이징 접합한 다음 설계된 형태로 금속박을 에칭 가공 또는 기계 가공하여 형성할 수 있다. 하부 세라믹기판(200)에서, 제1 금속층(210) 및 제2 금속층(220)은 하부 세라믹기재(201)의 일면에 구비되고, 서로 이격되게 배치될 수 있다. 제1 금속층(210) 및 제2 금속층(220)은 회로 패턴 형상으로 구비될 수 있다. 제3 금속층(230)은 하부 세라믹기재(201)의 타면에 구비될 수 있다. 여기서, 제3 금속층(230)은 유로부(300)와의 열교환이 용이하도록 하부 세라믹기재(201)의 타면 전체에 걸쳐 형성될 수 있다.
유로부(300)를 준비하는 단계(S30)에서, 유로부(300)는 열을 빠르게 전달할 수 있는 알루미늄 또는 구리로 형성될 수 있다. 유로부(300)가 알루미늄 또는 구리로 형성될 경우, 방열 성능을 보다 더 높일 수 있다. 유로부(300)는 액체형 냉매가 통과하는 다수의 유로 채널(310)이 구비될 수 있다. 다수의 유로 채널(310) 각각은 유로부(300)의 내부를 관통하여 유로부(300)의 일단부면(320)으로부터 타단부면(330)까지 길이 방향으로 연장된 형태일 수 있다. 다수의 유로 채널(310)의 형상, 개수, 배치 간격은 본 발명의 실시예에 한정되지 않으며, 액체형 냉매의 유속, 냉각 효율 등에 따라 다양하게 형성될 수 있다. 유로부(300)의 형상은 기계 가공, 금형 가공, 다이캐스팅 가공 등에 의해 구현될 수 있다.
유로부(300)의 상면에 상부 세라믹기판(100)을 접합하고, 유로부(300)의 하면에 하부 세라믹기판(200)을 접합하는 단계(S40)는, 상부 세라믹기판(100)과 유로부(300)의 상면 사이, 유로부(300)의 하면과 하부 세라믹기판(200) 사이에 배치된 접합층(미도시)을 매개로 상부 세라믹기판(100), 유로부(300) 및 하부 세라믹기판(200)을 접합할 수 있다. 접합층은 Ag, Cu, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어진 브레이징 접합층 또는 Ag 소결 접합층일 수 있다. 접합층이 브레이징 접합층일 경우, 브레이징 접합층은 도금, 페이스트 도포, 포일(foil) 부착 중 어느 하나의 방법에 의해 형성할 수 있다. 브레이징 접합은 900℃ 이상의 온도에서 1시간~2시간 동안 수행할 수 있다. 접합층이 Ag 소결 접합층일 경우, Ag 소결 접합층은 Ag 소결 페이스트를 도포하여 형성하거나, Ag 소결 페이스트가 인쇄된 필름을 이용하여 Ag 소결 페이스트를 전사하는 방법 등으로 형성할 수 있다. Ag 소결 접합은 200℃ 내지 250℃의 온도에서 15분~30분 동안 수행할 수 있고, 이때 10MPa 내지 15MPa의 압력이 가해질 수 있다. Ag, AgCu 및 AgCuTi는 열전도도가 높아 접합력을 높이는 역할과 동시에 열 전달을 용이하게 하여 방열 효율을 높일 수 있다.
이와 같이, 본 발명의 실시예에 따른 파워모듈은 유로부(300)의 상하면에 상부 세라믹기판(100)과 하부 세라믹기판(200)이 일체화된 것으로, 상하부 세라믹기판(100,200)에 실장된 전력 반도체 칩, 드라이브 IC 칩으로부터 발생한 열을 직접 냉각할 수 있는 구조이기 때문에 경량화 및 소형화를 구현하면서도 방열 성능을 높일 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (18)
- 상부 세라믹기판과 하부 세라믹기판; 및상기 상부 세라믹기판 및 상기 하부 세라믹기판 사이에 위치하고, 액체형 냉매가 통과하는 다수의 유로 채널이 구비된 유로부를 포함하고,상기 유로부는 금속 재료로 형성된 파워모듈.
- 제1항에 있어서,상기 다수의 유로 채널 각각은 상기 유로부의 내부를 관통하여 상기 유로부의 일단부면부터 타단부면까지 길이 방향으로 연장된 파워모듈.
- 제1항에 있어서,상기 다수의 유로 채널 각각은 상기 하부 세라믹기판의 상면과 수평한 방향으로 관통되어 형성된 파워모듈.
- 제1항에 있어서,상기 다수의 유로 채널은 동일한 선상에 소정의 간격만큼 이격되어 배치된 파워모듈.
- 제2항에 있어서,상기 다수의 유로 채널 각각은 지그재그 형태로 굴곡되어 연장된 파워모듈.
- 제1항에 있어서,상기 다수의 유로 채널 각각은 상기 액체형 냉매가 흐르는 방향에 대하여 수직한 단면의 형상이 일정하게 형성된 파워모듈.
- 제1항에 있어서,상기 상부 세라믹기판은 상부 세라믹기재의 일면 및 타면에 금속층이 구비되고,상기 하부 세라믹기판은 하부 세라믹기재의 일면 및 타면에 금속층이 구비된 파워모듈.
- 제7항에 있어서,상기 상부 세라믹기판은,상기 상부 세라믹기재의 일면에 구비되고, 서로 이격되게 배치되며, 회로 패턴 형상으로 구비된 제1 금속층 및 제2 금속층; 및상기 상부 세라믹기재의 타면 전체에 걸쳐 형성된 제3 금속층을 포함하는 파워모듈.
- 제8항에 있어서,상기 하부 세라믹기판은,상기 하부 세라믹기재의 일면에 구비되고, 서로 이격되게 배치되며, 회로 패턴 형상으로 구비된 제1 금속층 및 제2 금속층; 및상기 하부 세라믹기재의 타면 전체에 걸쳐 형성된 제3 금속층을 포함하는 파워모듈.
- 제9항에 있어서,상기 상부 세라믹기판 및 상기 하부 세라믹기판은,각각의 제3 금속층이 상기 유로부를 사이에 두고 서로 마주하도록 배치된 파워모듈.
- 제9항에 있어서,상기 상부 세라믹기판 및 상기 하부 세라믹기판은,각각의 제1 금속층이 상하로 서로 마주보는 위치에 배치된 파워모듈.
- 제9항에 있어서,상기 상부 세라믹기판 및 상기 하부 세라믹기판 각각에서,상기 제1 금속층은 전력 반도체 칩이 실장되도록 구성되고,상기 제2 금속층은 드라이브 IC 칩이 실장되도록 구성된 파워모듈.
- 제9항에 있어서,상기 상부 세라믹기판 및 상기 하부 세라믹기판 각각에서,상기 제1 금속층의 두께는 상기 제2 금속층의 두께보다 두꺼운 파워모듈.
- 상부 세라믹기판을 준비하는 단계;하부 세라믹기판을 준비하는 단계;액체형 냉매가 통과하는 다수의 유로 채널이 구비된 유로부를 준비하는 단계; 및상기 유로부의 상면에 상기 상부 세라믹기판을 접합하고, 상기 유로부의 하면에 상기 하부 세라믹기판을 접합하는 단계를 포함하고,상기 유로부를 준비하는 단계에서,상기 유로부는 금속 재료로 형성된 파워모듈 제조방법.
- 제14항에 있어서,상기 유로부를 준비하는 단계에서,상기 다수의 유로 채널 각각은 상기 유로부의 내부를 관통하여 상기 유로부의 일단부면부터 타단부면까지 길이 방향으로 연장된 파워모듈 제조방법.
- 제14항에 있어서,상기 상부 세라믹기판을 준비하는 단계에서,상기 상부 세라믹기판은,상부 세라믹기재의 일면에 구비되고, 서로 이격되게 배치되며, 회로 패턴 형상으로 구비된 제1 금속층 및 제2 금속층; 및상기 상부 세라믹기재의 타면 전체에 걸쳐 형성된 제3 금속층을 포함하는 파워모듈 제조방법.
- 제14항에 있어서,상기 하부 세라믹기판을 준비하는 단계에서,상기 하부 세라믹기판은,하부 세라믹기재의 일면에 구비되고, 서로 이격되게 배치되며, 회로 패턴 형상으로 구비된 제1 금속층 및 제2 금속층; 및상기 하부 세라믹기재의 타면 전체에 걸쳐 형성된 제3 금속층을 포함하는 파워모듈 제조방법.
- 제14항에 있어서,상기 유로부의 상면에 상기 상부 세라믹기판을 접합하고, 상기 유로부의 하면에 상기 하부 세라믹기판을 접합하는 단계는,상기 상부 세라믹기판과 상기 유로부의 상면 사이, 상기 유로부의 하면과 상기 하부 세라믹기판 사이에 배치된 접합층을 매개로 상기 상부 세라믹기판, 상기 유로부 및 상기 하부 세라믹기판을 접합하고,상기 접합층은 Ag, Cu, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 형성되거나, Ag 소결 페이스트로 형성된 파워모듈 제조방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220081633A KR20240003855A (ko) | 2022-07-04 | 2022-07-04 | 파워모듈 및 그 제조방법 |
KR10-2022-0081633 | 2022-07-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024010240A1 true WO2024010240A1 (ko) | 2024-01-11 |
Family
ID=89453685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/008234 WO2024010240A1 (ko) | 2022-07-04 | 2023-06-15 | 파워모듈 및 그 제조방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20240003855A (ko) |
WO (1) | WO2024010240A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008027935A (ja) * | 2006-07-18 | 2008-02-07 | Hitachi Ltd | パワー半導体装置 |
KR20130029267A (ko) * | 2011-09-14 | 2013-03-22 | 삼성전기주식회사 | 전력 모듈 패키지 및 그 제조방법 |
KR20130059147A (ko) * | 2011-11-28 | 2013-06-05 | 삼성전기주식회사 | 전력 모듈 패키지 |
KR101692490B1 (ko) * | 2015-08-11 | 2017-01-04 | 주식회사 세미파워렉스 | 액체냉각구조를 갖는 전력반도체 모듈 |
KR20210073328A (ko) * | 2019-12-10 | 2021-06-18 | 현대모비스 주식회사 | 양면 냉각 파워 모듈 및 이의 제조방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102041645B1 (ko) | 2014-01-28 | 2019-11-07 | 삼성전기주식회사 | 전력반도체 모듈 |
-
2022
- 2022-07-04 KR KR1020220081633A patent/KR20240003855A/ko not_active Application Discontinuation
-
2023
- 2023-06-15 WO PCT/KR2023/008234 patent/WO2024010240A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008027935A (ja) * | 2006-07-18 | 2008-02-07 | Hitachi Ltd | パワー半導体装置 |
KR20130029267A (ko) * | 2011-09-14 | 2013-03-22 | 삼성전기주식회사 | 전력 모듈 패키지 및 그 제조방법 |
KR20130059147A (ko) * | 2011-11-28 | 2013-06-05 | 삼성전기주식회사 | 전력 모듈 패키지 |
KR101692490B1 (ko) * | 2015-08-11 | 2017-01-04 | 주식회사 세미파워렉스 | 액체냉각구조를 갖는 전력반도체 모듈 |
KR20210073328A (ko) * | 2019-12-10 | 2021-06-18 | 현대모비스 주식회사 | 양면 냉각 파워 모듈 및 이의 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20240003855A (ko) | 2024-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2034521B1 (en) | Fluid cooled semiconductor power module having double-sided cooling | |
WO2019182216A1 (ko) | 양면냉각형 파워 모듈 및 그의 제조 방법 | |
US7274105B2 (en) | Thermal conductive electronics substrate and assembly | |
WO2021112590A2 (ko) | 전력반도체 모듈 | |
US6989592B2 (en) | Integrated power module with reduced thermal impedance | |
US11362014B2 (en) | Power module | |
CN219642815U (zh) | 一种功率模块 | |
WO2023282598A1 (ko) | 세라믹 기판 및 그 제조방법 | |
WO2023149650A1 (ko) | 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치 | |
WO2024010240A1 (ko) | 파워모듈 및 그 제조방법 | |
CN213692016U (zh) | 功率半导体装置 | |
JP2002164485A (ja) | 半導体モジュール | |
WO2022250358A1 (ko) | 인버터 파워모듈 | |
WO2024101737A1 (ko) | 파워모듈용 세라믹 기판 및 그 제조방법 | |
WO2023163423A1 (ko) | 세라믹 기판 유닛 및 그 제조방법 | |
WO2023149774A1 (ko) | 세라믹 기판 유닛 및 그 제조방법 | |
WO2023211106A1 (ko) | 세라믹 기판 제조방법 | |
WO2023055127A1 (ko) | 파워모듈용 세라믹 기판, 그 제조방법 및 이를 구비한 파워모듈 | |
WO2024049182A1 (ko) | 세라믹 기판 유닛 및 그 제조방법 | |
WO2023163439A1 (ko) | 세라믹 기판 유닛 및 그 제조방법 | |
WO2022220488A1 (ko) | 파워모듈 및 그 제조방법 | |
WO2023008851A1 (ko) | 히트싱크 일체형 세라믹 기판 및 그 제조방법 | |
EP3696851A1 (en) | Semiconductor arrangement and method for producing the same | |
WO2023033425A1 (ko) | 파워모듈용 세라믹 기판, 그 제조방법 및 이를 구비한 파워모듈 | |
WO2023163438A1 (ko) | 세라믹 기판 유닛 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23835708 Country of ref document: EP Kind code of ref document: A1 |