WO2022145434A1 - 変性セルロース繊維ケークの製造方法 - Google Patents

変性セルロース繊維ケークの製造方法 Download PDF

Info

Publication number
WO2022145434A1
WO2022145434A1 PCT/JP2021/048681 JP2021048681W WO2022145434A1 WO 2022145434 A1 WO2022145434 A1 WO 2022145434A1 JP 2021048681 W JP2021048681 W JP 2021048681W WO 2022145434 A1 WO2022145434 A1 WO 2022145434A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified cellulose
cellulose fiber
anion
cake
fiber
Prior art date
Application number
PCT/JP2021/048681
Other languages
English (en)
French (fr)
Inventor
亮太 山本
淳之介 齊藤
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN202180085195.2A priority Critical patent/CN116670176A/zh
Priority to EP21915292.3A priority patent/EP4269688A1/en
Priority to US18/027,846 priority patent/US20230357448A1/en
Priority to KR1020237013201A priority patent/KR20230127976A/ko
Publication of WO2022145434A1 publication Critical patent/WO2022145434A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/18De-watering; Elimination of cooking or pulp-treating liquors from the pulp
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/08Fractionation of cellulose, e.g. separation of cellulose crystallites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/02Cellulose; Modified cellulose
    • C09D101/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols

Definitions

  • the present invention relates to a method for producing a modified cellulose fiber cake.
  • the dispersion liquid of cellulose fibers has a high viscosity
  • the dispersion liquid of cellulose fibers is mixed with a paint containing a resin, the viscosity is remarkably thickened and coating becomes difficult. Therefore, a method of reducing the viscosity of the dispersion liquid of the cellulose fiber by shortening the fiber length of the cellulose fiber is known.
  • Patent Document 1 discloses a method for cutting sugar chains of anion-modified cellulose fibers by thermal decomposition with a solvent containing water.
  • the present invention relates to the following [1] to [6].
  • a method for producing a modified cellulose fiber cake which comprises a step (step A) of solid-liquid separating the dispersion containing the modified cellulose fiber under the condition that the centrifugal force of the centrifuge is 50 G or more and 600 G or less.
  • a step of obtaining a short-fiber anion-modified cellulose fiber by subjecting the anion-modified cellulose fiber to a thermal decomposition treatment under a temperature condition of 50 ° C. or higher and 230 ° C. or lower, and a dispersion containing the short-fiber anion-modified cellulose fiber.
  • step A of solid-liquid separation of the liquid under the condition that the centrifugal force of the centrifuge is 50 G or more and 600 G or less is included.
  • a method for producing a stapled anion-modified cellulose fiber cake [3] To the modified cellulose fiber in the cake produced by the production method according to the above [1], or to the shortened anion-modified cellulose fiber in the cake produced by the production method according to the above [2].
  • a method for producing a modified cellulose fiber which comprises a step of introducing a modifying group.
  • a method for producing a resin composition which comprises a step of mixing the modified cellulose fiber produced by the method or the fine cellulose fiber produced by the production method according to the above [4] with a resin.
  • a method for producing a resin composition which comprises a step of mixing.
  • FIG. 1 is a cross-sectional view of a decanter type centrifuge.
  • the present invention is a novel method for producing a resin composition containing a modified cellulose fiber, and a modified cellulose fiber cake, a shortened anionic modified cellulose fiber cake, a modified cellulose fiber, or a fine fiber which can be used particularly.
  • the present invention relates to a new method for producing cellulose fibers.
  • a new more efficient method for producing a resin composition containing a modified cellulose fiber, and particularly a modified cellulose fiber cake, a shortened anionic modified cellulose fiber cake, and a modified cellulose that can be used for the same is possible to provide a new more efficient method for producing fibers or fine cellulose fibers.
  • the method for producing a modified cellulose fiber cake of the present invention includes a step (step A) of solid-liquid separating a dispersion containing the modified cellulose fiber under the condition that the centrifugal force of the centrifuge is 50 G or more and 600 G or less.
  • the modified cellulose fiber can be obtained by using a cellulose fiber as a raw material, introducing a substituent for modification by a known method, preferably an anionic group, and then preferably shortening the fiber length.
  • the cellulosic fiber as a raw material is preferably a natural cellulose fiber from an environmental point of view, and for example, wood pulp such as coniferous pulp and broadleaf pulp; cotton pulp such as cotton linter and cotton lint; straw pulp, bagus pulp and the like. Non-wood pulp; bacterial cellulose and the like.
  • the substituent is preferably an anionic group, and the anionic group is preferably a carboxy group, a sulfonic acid group, or a phosphoric acid group, and more preferably a carboxy group, from the viewpoint of sugar chain cleavage efficiency.
  • the previously carboxymethylated pulp may be mechanically defibrated, beaten and desorbed and used as a modified cellulose fiber at a stage where the average fiber diameter is 500 nm or more.
  • the aqueous dispersion of the pulp is preliminarily increased in concentration (20% by weight or more) by dehydration or the like and then beaten, or the aqueous dispersion is made low in concentration (less than 20% by weight) and then beaten or beaten. It is possible to perform mechanical treatment such as disintegration, or to dehydrate and dry the aqueous dispersion and then mechanically defibrate or beat it, or dry pulverize.
  • One embodiment for producing known anion-modified cellulose fibers is 2,2,6,6, -tetramethyl-1-piperidin-N-oxyl (TEMPO) as a catalyst, as described, for example, in WO2019 / 235557. ) Can be mentioned.
  • TEMPO 2,2,6,6, -tetramethyl-1-piperidin-N-oxyl
  • a natural cellulose fiber is preferably used as the raw material cellulose fiber, and a carboxy group as an anionic group is introduced into the cellulose fiber by TEMPO as a catalyst.
  • the anion-modified cellulose fiber By cutting the sugar chain of the cellulose fiber, the anion-modified cellulose fiber can be shortened.
  • the anion-modified cellulose fiber is subjected to a thermal decomposition treatment under a temperature condition of preferably 50 ° C. or higher, preferably 230 ° C. or lower, thereby shortening the anion modification.
  • Cellulose fibers can be obtained.
  • the temperature conditions are more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher, from the viewpoint of productivity, while being more preferably 220 ° C. or lower, still more preferably 200 ° C. or lower, from the viewpoint of suppressing overdecomposition. Is.
  • the form of the modified cellulose fiber used in the step A thus obtained is a modified cellulose fiber that has been shortened in advance, preferably an anion-modified cellulose fiber that has been shortened in advance.
  • the average fiber length of the pre-shortened modified cellulose fibers thus obtained is preferably 50 ⁇ m or more, more preferably 150 ⁇ m or more, while the modification in the resin composition. From the viewpoint of dispersibility of the cellulose fibers, it is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less.
  • one preferred embodiment of the method for producing a modified cellulose fiber cake of the present invention is A step of obtaining a short-fiber anion-modified cellulose fiber by subjecting the anion-modified cellulose fiber to a thermal decomposition treatment under a temperature condition of 50 ° C. or higher and 230 ° C. or lower, and a dispersion liquid containing the short-fiber anion-modified cellulose fiber.
  • a step (step A) of solid-liquid separation under the condition that the centrifugal force of the centrifuge is 50 G or more and 600 G or less is included. It is a method for producing a stapled anion-modified cellulose fiber cake.
  • the thermal decomposition treatment is carried out in a state where anion-modified cellulose fibers are mixed or dispersed in a medium.
  • Preferred mediums include water, N, N-dimethylformamide (DMF), ethanol, isopropanol (IPA), methyl ethyl ketone (MEK), ethyl acetate, toluene, cyclohexanone and the like, one or more of these. Can be used in combination.
  • a solvent containing water is preferable from the viewpoint of handleability and cost.
  • the ratio of water in the solvent is preferably 50% by mass or more, more preferably 80% by mass or more, still more preferably 95% by mass or more, still more preferably 100% by mass, from the viewpoint of handleability and cost. %.
  • the dispersion liquid of the modified cellulose fiber thus obtained can be used in step A.
  • the modified cellulose fiber provided in the step A is preferably an anion-modified cellulose fiber, more preferably an anion-modified cellulose fiber subjected to TEMPO oxidation treatment, and further preferably an anion-modified short fiber subjected to TEMPO oxidation treatment.
  • Cellulose fiber is preferably an anion-modified cellulose fiber, more preferably an anion-modified cellulose fiber subjected to TEMPO oxidation treatment, and further preferably an anion-modified short fiber subjected to TEMPO oxidation treatment.
  • Examples of the medium used for the dispersion include water, N, N-dimethylformamide (DMF), ethanol, isopropanol (IPA), methyl ethyl ketone (MEK), ethyl acetate, toluene, cyclohexanone and the like, and one of them is preferable. Species or a combination of two or more can be used. Of these, a solvent containing water is preferable from the viewpoint of handleability and cost. In the solvent containing water, the ratio of water in the solvent is preferably 50% by mass or more, more preferably 80% by mass or more, still more preferably 95% by mass or more, still more preferably 100% by mass, from the viewpoint of handleability and cost. %.
  • the content of the modified cellulose fiber in the dispersion is determined as the solid content.
  • the solid content in the dispersion is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, still more preferably 5.0% by mass or more, while the upper limit. Is not particularly limited, but is preferably 80% by mass or less, more preferably 60% by mass or less, and further preferably 40% by mass or less from the viewpoint of handleability.
  • the method described in Examples described later is adopted as a method for measuring the content of the modified cellulose fiber in the dispersion liquid.
  • a centrifuge is used to perform solid-liquid separation of the dispersion containing the modified cellulose fibers.
  • the centrifugal force of the centrifuge is 50 G or more, preferably 80 G or more, and more preferably 200 G or more, from the viewpoint of reducing the water concentration in the resin composition.
  • the centrifugal force is 600 G or less, preferably 550 G or less, and more preferably 400 G or less.
  • the centrifugal force of the centrifuge can be set to a desired degree by adjusting the rotation speed of the rotary cylinder.
  • centrifuge that can be used in step A
  • various known types can be used.
  • a centrifuge operated in a batch type can be used, and a continuous type centrifuge capable of continuous operation can also be used, but a continuous type centrifuge is preferable from the viewpoint of work efficiency.
  • the continuous type include a decanter type, a de-cone type, a multi-stage type, a separation plate type centrifuge and the like.
  • the multi-stage type is preferable, the decone type and decanter type centrifuges are more preferable, and the decanter type centrifuges are further preferable.
  • FIG. 1 is a diagram schematically showing a cross section of a decanter type centrifuge.
  • a dispersion liquid containing a shortened anion-modified cellulose fiber as the modified cellulose fiber it is supplied to the decanter type centrifuge as the supply slurry 1.
  • centrifugal force can be applied to the dispersion liquid by rotating the rotary cylinder 2, and the solid liquid in the dispersion liquid can be separated.
  • the dispersion liquid in which the content of the stapled anion-modified cellulose fibers is increased by rotating the screw 3 at a slightly slower speed than the rotary cylinder is gradually transferred to the cake discharge port and recovered as the cake 4.
  • the dispersion liquid from which most of the fiber components have been removed is recovered as the separation liquid 5.
  • the supply flow rate of the supply slurry 1 can be set to a desired degree by, for example, connecting a supply pump (not shown) to a decanter type centrifuge.
  • a supply pump not shown
  • the supply flow rate of the supply slurry 1 is from the viewpoint of prolonging the residence time of the supply slurry in the apparatus to improve the separability and avoiding the outflow of the cellulose fibers into the separation liquid. It is preferably 500 L / h or less, more preferably 300 L / h or less, and further preferably 100 L / h or less.
  • it is preferably 100 L / h or more, more preferably 300 L / h or more, and further preferably 500 L / h or more. Further, the above-mentioned preferable range can be appropriately changed according to the size of the device.
  • solid-liquid separation means removing the solvent component in the dispersion of the modified cellulose fiber to increase the content of the modified cellulose fiber.
  • the solid content in the cake after solid-liquid separation is preferably high because it can increase the concentration of the modified cellulose fiber or the modified cellulose fiber in the resin composition, and specifically, preferably 5% by mass. As mentioned above, it is more preferably 9% by mass or more, further preferably 15% by mass or more, still more preferably 20% by mass or more.
  • the solid content is preferably 80% by mass or less, more preferably 60% by mass or less, and further preferably 40% by mass or less.
  • the modified cellulose fiber cake produced by the production method of the present invention has a sufficiently reduced water content, it can be blended into the resin as it is.
  • the modification with the modified cellulose fiber cake here can use various substituents, preferably with an anionic group.
  • a treatment for shortening the chain length of the modified cellulose fiber may be performed in advance.
  • carboxylated (oxidized) cellulose can also be used as the chemically modified cellulose.
  • a cationizing agent such as glycidyltrimethylammonium chloride, 3-chloro-2hydroxypropyltrialkylammonium hydrite or its halohydrin type and an alkali metal hydroxide (sodium hydroxide, potassium hydroxide, etc.) as a catalyst are added to the cellulose raw material.
  • Cation-modified cellulose can be obtained by reacting in the presence of water or an alcohol having 1 to 4 carbon atoms.
  • the modified cellulose fiber in the present invention can be produced by a known method.
  • the modified cellulose fiber is a cellulose fiber derivative in which a modifying group is further bonded to the modified cellulose fiber. More specifically, the compound having a desired modifying group (modifying compound) is reacted with the modified cellulose fiber or the stapled anion-modified cellulose fiber in the cake obtained by the above-mentioned production method of the present invention. By introducing a modifying group into such a cellulose fiber, a modified cellulose fiber can be obtained.
  • the modifying compound When the bonding mode between the modified cellulose fiber and the modifying compound is an ionic bond, examples of the modifying compound include primary amines, secondary amines, tertiary amines, quaternary ammonium compounds, and phosphonium compounds. Be done. These compounds include various hydrocarbon groups as modifying groups, for example, hydrocarbon groups such as chain saturated hydrocarbon groups, chain unsaturated hydrocarbon groups, cyclic saturated hydrocarbon groups, and aromatic hydrocarbon groups. , Hydrocarbon sites and the like can be introduced. These groups and sites may be introduced alone or in combination of two or more.
  • an appropriate modifying compound is used depending on whether the anionic group is modified or the hydroxy group is modified.
  • an anionic group for example via an amide bond
  • modifying via an ester bond it is preferable to use alcohols such as butanol, octanol and dodecanol as the modifying compound.
  • modifying via a urethane bond it is preferable to use, for example, an isocyanate compound as the modifying compound.
  • These compounds include various hydrocarbon groups as modifying groups, for example, hydrocarbon groups such as chain saturated hydrocarbon groups, chain unsaturated hydrocarbon groups, cyclic saturated hydrocarbon groups, and aromatic hydrocarbon groups. , Hydrocarbon sites and the like can be introduced. These groups and sites may be introduced alone or in combination of two or more.
  • the modifying compound When modifying a hydroxy group, for example via an ester bond, the modifying compound may be, for example, an acid anhydride (eg, acetic anhydride, propionic anhydride) or an acid halide (eg, caprylic acid chloride, lauric acid). Chloride and stearate chloride) are preferably used.
  • the modifying compounds When modifying via an ether bond, the modifying compounds are preferably, for example, epoxy compounds (eg, alkylene oxides and alkylglycidyl ethers), alkyl halides and derivatives thereof (eg, methyl chloride, ethyl chloride and octadecylloride).
  • an isocyanate compound As the modifying compound, it is preferable to use, for example, an isocyanate compound as the modifying compound.
  • These compounds include various hydrocarbon groups as modifying groups, for example, hydrocarbon groups such as chain saturated hydrocarbon groups, chain unsaturated hydrocarbon groups, cyclic saturated hydrocarbon groups, and aromatic hydrocarbon groups. , Hydrocarbon sites and the like can be introduced. These groups and sites may be introduced alone or in combination of two or more.
  • the modified cellulose fiber cake, the shortened anionic modified cellulose fiber cake, or the modified cellulose fiber obtained by the production method of the present invention is further refined as necessary to obtain nanoscale fine cellulose fibers (nanofibers). ) Can be used. Further miniaturization processing includes a breaker, a beater, a low pressure homogenizer, a high pressure homogenizer, a grinder, a cutter mill, a ball mill, a jet mill, a short shaft extruder, a twin shaft extruder, an ultrasonic stirrer, a household juicer mixer, etc. Examples include the mechanical miniaturization process used.
  • fine cellulose fibers having an average fiber length of preferably 50 nm or more and 300 nm or less and an average fiber diameter of preferably 2 nm or more and 10 nm or less can be obtained.
  • the average fiber length, average fiber diameter, and average aspect ratio of such fine cellulose fibers are determined by atomic force microscope (AFM, Nanoscope III Tapping mode AFM, Digital instrument), and the probe is Point Probe (NCH) manufactured by Nanosensors. Can be measured using).
  • Various cellulose fibers that is, modified cellulose fiber cake, shortened anion modified cellulose fiber cake, modified cellulose fiber, and fine cellulose fiber
  • various resins, solvents, and optional components are used. It can be manufactured by mixing.
  • the modified cellulose fiber (preferably anionic), more preferably the modified cellulose fiber shortened into short fibers may be modified and blended into the resin at the same time.
  • a method for producing a resin composition comprises a step of mixing the modified cellulose fiber cake produced by the above-mentioned production method of the present invention, a shortened anion-modified cellulose fiber cake, a modifying compound and a resin. After that, the micronization treatment may be carried out.
  • the content of the cellulose fiber (converted amount) in the resin composition is preferably 0.1 mass by mass from the viewpoint of suppressing shrinkage during curing and imparting mechanical strength to the cellulose fiber-containing resin obtained by removing the solvent component from the resin composition. % Or more, more preferably 0.5% by mass or more, still more preferably 1% by mass or more, still more preferably 3% by mass or more. On the other hand, from the viewpoint of avoiding a decrease in handleability due to an increase in the viscosity of the resin composition, it is preferably 20% by mass or less, more preferably 15% by mass or less, still more preferably 8% by mass or less.
  • the cellulose fiber (converted amount) refers to the mass obtained by subtracting the mass of the modifying group from the mass of various cellulose fibers (that is, modified cellulose fiber and fine cellulose fiber) to which the modifying group is bonded.
  • the cellulose fiber (converted amount) in the various cellulose fibers to which the modifying group is bonded can be measured by the method described in Examples described later.
  • the resin that can be used in the resin composition is not particularly limited as long as it is a resin conventionally used as a base resin for non-aqueous paints, and various resins can be blended.
  • the resin include alkyd resin, acrylic resin, acrylic urethane resin, melamine resin, urethane resin, epoxy resin, kumaron resin, urea resin, phenol resin, vinyl chloride resin, phenoxy resin, silicone resin, fluororesin, and nylon resin. , Styrene butadiene resin, nitrile butadiene resin, petroleum resin, rosin, dry oil, boiled oil, acetyl cellulose, nitrocellulose, etc. Among them, a resin composition having excellent dispersibility of fine cellulose fibers can be obtained.
  • Acrylic resin, acrylic urethane resin, melamine resin, urethane resin, epoxy resin, urea resin, and phenol resin are preferable, and epoxy resin and phenol resin are more preferable.
  • the content of the resin in the resin composition is preferably 1% by mass or more, more preferably 10% by mass or more, still more preferably 40% by mass or more, from the viewpoint of production efficiency. On the other hand, from the viewpoint of reducing the viscosity, it is preferably 90% by mass or less, more preferably 70% by mass or less, and further preferably 50% by mass or less.
  • the resin composition may further contain a solvent, if necessary.
  • a solvent examples include organic solvents and organic media containing reactive functional groups.
  • organic solvent examples include alcohols such as methanol, ethanol, isopropyl alcohol, 2-butanol, 1-pentanol, octyl alcohol, glycerin, ethylene glycol and propylene glycol; carboxylic acids such as acetic acid; hexane, heptane and octane.
  • Hydrocarbons such as decane and liquid paraffin; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylsulfoxide, N, N-dimethylformamide, dimethylacetamide and acetanilide; acetone, methylethylketone, methylisobutylketone, cyclohexanone and the like.
  • Ketones Hydrocarbons such as methylene chloride and chloroform; Carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl carbonate; Methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl butyrate, sorbitan fatty acid ester, polyoxy Esters such as ethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, glycerin fatty acid ester, polyoxyethylene fatty acid ester; polyethers such as polyethylene glycol and polyoxyethylene alkyl ether; silicone oils such as polydimethylsiloxane; acetonitrile , Propionitrile, ester oil, salad oil, soybean oil, castor oil and the like. These may be used alone or in combination of two or more.
  • Examples of the organic medium containing a reactive functional group include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, n-hexyl acrylate, and methacrylic acid.
  • acrylates such as n-hexyl, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, phenylglycidyl ether acrylate; urethane prepolymers such as hexamethylene diisocyanate urethane prepolymer, phenylglycidyl ether acrylate toluene diisocyanate urethane prepolymer; n-Butyl glycidyl ether, 2-ethylhexyl glycidyl ether, glycidyl stearate ether, styrene oxide, phenyl glycidyl ether, nonylphenyl glycidyl ether, butylphenyl glycidyl ether, 1,6-hexanediol diglycidyl ether, ethylene glycol diglycidyl ether, Glycidyl ethers such
  • the amount of the solvent to be blended is preferably 50 parts by mass or more, more preferably 50 parts by mass or more, with respect to 100 parts by mass of the resin, from the viewpoint of low viscosity and uniform mixing of the resin and the anion-modified cellulose fiber cake. It is 100 parts by mass or more. On the other hand, from the viewpoint of production efficiency, it is preferably 200 parts by mass or less, and more preferably 100 parts by mass or less with respect to 100 parts by mass of the resin.
  • the resin composition may further contain additives commonly used in the paint field.
  • additives include inorganic pigments, organic pigments, dyes, curing agents, plasticizing agents, catalysts, antifungal agents, defoaming agents, leveling agents, pigment dispersants, anti-settling agents, anti-sagging agents, and thickeners. , Matters, light stabilizers, UV absorbers and the like.
  • the present invention further discloses the following methods for producing a cake, a method for producing a modified cellulose fiber, a method for producing a fine cellulose fiber, and a method for producing a resin composition.
  • a method for producing a modified cellulose fiber cake which comprises a step (step A) of solid-liquid separating the dispersion containing the modified cellulose fiber under the condition that the centrifugal force of the centrifuge is 50 G or more and 600 G or less.
  • ⁇ 2> The production method according to ⁇ 1>, wherein the modified cellulose fiber cake has a solid content of 5% by mass or more.
  • the centrifuge is a continuous centrifuge.
  • the continuous centrifuge is a decanter type centrifuge.
  • the supply flow rate of the modified cellulose fiber slurry to the decanter type centrifuge is 100 L / h or more and 500 L / h or less.
  • ⁇ 6> The production method according to any one of ⁇ 1> to ⁇ 5> above, wherein the modification of the modified cellulose fiber is anion modification.
  • the modified cellulose fiber provided in the step A is a modified cellulose fiber that has been shortened in advance.
  • the average fiber length of the modified cellulose fibers that have been shortened in advance is 50 ⁇ m or more and 500 ⁇ m or less.
  • the dispersion liquid in step A is a medium containing water.
  • the step (step A) of solid-liquid separation of the dispersion liquid under the conditions that the centrifugal force of the centrifuge is 50 G or more and 600 G or less is included.
  • a method for producing a stapled anion-modified cellulose fiber cake is included.
  • ⁇ 11> The production method according to ⁇ 10> above, wherein the medium in the thermal decomposition treatment is a medium containing water.
  • the medium in the thermal decomposition treatment is a medium containing water.
  • the dispersion liquid in step A is a medium containing water.
  • a method for producing a modified cellulose fiber which comprises a step of introducing a modifying group into the modified cellulose fiber in a cake produced by the production method according to any one of ⁇ 1> to ⁇ 9>.
  • a method for producing a modified cellulose fiber which comprises a step of introducing a modifying group into the stapled anion-modified cellulose fiber in a cake produced by the production method according to any one of ⁇ 10> to ⁇ 12>. .. ⁇ 15> Fine cellulose having an average fiber length of 50 nm or more and 300 nm or less, which comprises a step of refining the modified cellulose fiber cake produced by the production method according to any one of ⁇ 1> to ⁇ 9>. Fiber manufacturing method.
  • the average fiber length is 50 nm or more and 300 nm or less, which includes a step of micronizing the short-fiber anion-modified cellulose fiber cake produced by the production method according to any one of ⁇ 10> to ⁇ 12>.
  • a method for producing fine cellulose fibers. ⁇ 17> A method for producing fine cellulose fibers having an average fiber length of 50 nm or more and 300 nm or less, which comprises a step of refining the modified cellulose fibers produced by the method according to ⁇ 13> or ⁇ 14>. .. ⁇ 18>
  • a method for producing a resin composition which comprises a step of mixing the modified cellulose fiber cake produced by the production method according to any one of ⁇ 1> to ⁇ 9> with a resin.
  • a method for producing a resin composition which comprises a step of mixing the short-fiber anion-modified cellulose fiber cake produced by the production method according to any one of ⁇ 10> to ⁇ 12> with a resin.
  • a method for producing a resin composition which comprises a step of mixing the modified cellulose fiber produced by the method according to ⁇ 13> or ⁇ 14> with a resin.
  • a method for producing a resin composition which comprises a step of mixing the fine cellulose fiber produced by the production method according to any one of ⁇ 15> to ⁇ 17> with a resin.
  • ⁇ 22> A method for producing a resin composition, which comprises a step of mixing the modified cellulose fiber cake, the modifying compound, and the resin produced by the production method according to any one of ⁇ 1> to ⁇ 9>.
  • Production of a resin composition comprising a step of mixing a stapled anion-modified cellulose fiber cake produced by the production method according to any one of ⁇ 10> to ⁇ 12>, a modifying compound, and a resin.
  • Method. ⁇ 24> The resin composition according to any one of ⁇ 18> to ⁇ 23>, wherein the content of the cellulose fiber (converted amount) in the resin composition is 0.1% by mass or more and 20% by mass or less. Manufacturing method.
  • [Anionic group content of anionic-modified cellulose fibers and stapled anionic-modified cellulose fibers] Take the cellulose fiber to be measured with a dry mass of 0.5 g in a 100 mL beaker, add ion-exchanged water or a mixed solvent of methanol / water 2/1 to make a total of 55 mL, and add 5 mL of 0.01 M sodium chloride aqueous solution to it. To prepare a dispersion. The dispersion is stirred until the cellulose fibers are sufficiently dispersed.
  • Solid content in cakes after various suspensions and solid-liquid separation This is performed using a halogen moisture meter (manufactured by Shimadzu Corporation, trade name: MOC-120H). Specifically, 1 g of the sample is measured at a constant temperature of 150 ° C. every 30 seconds, and the value when the mass loss is 0.1% or less is defined as the solid content.
  • the amount of cellulose fibers (converted amount) in various cellulose fibers to which a modifying group is bonded is the amount of the cellulose fibers excluding the modifying group in the various cellulose fibers to which the modifying group is bonded.
  • the amount of cellulose fibers (converted amount) in various cellulose fibers to which a modifying group is bonded is measured by the following method. (1) When one kind of "modifying compound" is added The amount of cellulose fibers (converted amount) is calculated by the following formula E.
  • Preparation of anion-modified cellulose fibers Preparation Example 1 (Hardwood Oxidized Pulp) First, 100 g of natural cellulose fiber was sufficiently stirred with 9900 g of ion-exchanged water, and then 1.6 g of TEMPO, 10 g of sodium bromide, and 28.4 g of sodium hypochlorite were added to the pulp mass of 100 g in this order. .. Using a pH stat titration with an automatic titrator (manufactured by DKK-TOA CORPORATION, trade name: AUT-701), 0.5 M sodium hydroxide was added dropwise to maintain the pH at 10.5.
  • anion-modified cellulose fibers After the reaction was carried out for 60 minutes (20 ° C.), the dropping was stopped to obtain anion-modified cellulose fibers. Dilute hydrochloric acid was added to the obtained anion-modified cellulose fiber to convert counter ions from sodium ions to protons, and then thoroughly washed with ion-exchanged water and then dehydrated to have a solid content of 30.1% by mass. Anion-modified cellulose fibers were obtained. The average fiber length of this anion-modified cellulose fiber was 1003 ⁇ m, and the carboxy group content was 1.3 mmol / g.
  • Natural Cellulose Fiber Eucalyptus-derived hardwood bleached kraft pulp (manufactured by CENIBRA)
  • TEMPO ALDRICH, Free radical, 98% by mass
  • Sodium hypochlorite manufactured by Wako Pure Chemical Industries, Ltd.
  • Sodium bromide manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 1 The anion-modified cellulose fiber obtained in Preparation Example 1 was charged with an absolute dry mass of 4.15 kg in a reaction vessel equipped with an anchor blade, and ion-exchanged water was added until the mass of the treatment liquid reached 25 kg. The treatment liquid was stirred and reacted at 95 ° C. for 12 hours under normal pressure to obtain an aqueous suspension of stapled anion-modified cellulose fibers. The average fiber length of the stapled anion-modified cellulose fibers was 157 ⁇ m.
  • the obtained aqueous suspension of the shortened anion-modified cellulose fiber is supplied to a decanter type centrifuge, and is continuously operated at a centrifugal force of 300 G and a supply flow rate of 500 L / h to the decanter to perform solid-liquid separation and steady operation.
  • a cake having a solid content of 22.9% by mass was obtained at the stage of being in a state.
  • 12.92 g of acetone and 0.56 g of polyether monoamine were added, and the mixture was stirred at room temperature for 30 minutes.
  • An acetone dispersion of bound modified cellulose fibers (hereinafter referred to as CNF) was obtained.
  • the EOPO group means a group having a structure in which ethylene oxide (EO) and propylene oxide (PO) are polymerized at random or in a block shape.
  • 12.92 g of bisphenol A type liquid epoxy resin was added to the dispersion liquid of CNF and stirred at room temperature for 30 minutes to prepare a paint as a resin composition.
  • the mass ratio of the epoxy resin and acetone in the paint was 1: 1 and the content of CNF in the paint was 6% by mass.
  • Example 1 The details of the raw materials and the like used in Example 1 are as follows. Polyether monoamine: Jeffamine M-2070 (manufactured by HUNTSMAN, EO / PO (molar ratio) 32/10, molecular weight 2000) Bisphenol A type liquid epoxy resin: jER828 (manufactured by Mitsubishi Chemical Corporation, molecular weight 370)
  • Example 2 A cake having a solid content of 17.3% by mass was obtained by the same method as in Example 1 except that solid-liquid separation was carried out under the conditions of a centrifugal force of 100 G and a supply flow rate of 100 L / h to the decanter. 13.22 g of acetone and 0.37 g of the above-mentioned polyether monoamine were added to 3.18 g of the obtained cake to obtain a dispersion liquid of the CNF. 13.22 g of the bisphenol A type liquid epoxy resin was added to the dispersion liquid of CNF, and the mixture was stirred at room temperature for 30 minutes to prepare a paint. The mass ratio of the epoxy resin and acetone in the paint was 1: 1 and the content of CNF in the paint was 4% by mass.
  • Example 3 A cake having a solid content of 23.5% by mass was obtained by the same method as in Example 2 except that solid-liquid separation was carried out under the condition of centrifugal force of 400 G. 12.96 g of acetone and 0.56 g of the above-mentioned polyether monoamine were added to 3.52 g of the obtained cake to obtain a dispersion liquid of the CNF. 12.96 g of the bisphenol A type liquid epoxy resin was added to the dispersion liquid of CNF, and the mixture was stirred at room temperature for 30 minutes to prepare a paint. The mass ratio of the epoxy resin and acetone in the paint was 1: 1 and the content of CNF in the paint was 6% by mass.
  • Example 4 A cake having a solid content of 20.1% by mass was obtained by the same method as in Example 2 except that solid-liquid separation was carried out under the condition of centrifugal force of 500 G. 13.06 g of acetone and 0.46 g of the above-mentioned polyether monoamine were added to 3.42 g of the obtained cake to obtain a dispersion liquid of the CNF. 13.06 g of the bisphenol A type liquid epoxy resin was added to the dispersion liquid of CNF and stirred to prepare a paint. The mass ratio of the epoxy resin and acetone in the paint was 1: 1 and the content of CNF in the paint was 5% by mass.
  • Example 5 The solid content content was 12. 1% by weight cake was obtained. 13.18 g of acetone and 0.27 g of the above-mentioned polyether monoamine were added to 3.37 g of the obtained cake to obtain a dispersion liquid of the CNF. 13.18 g of the bisphenol A type liquid epoxy resin was added to the dispersion liquid of CNF and stirred to prepare a paint. The mass ratio of the epoxy resin and acetone in the paint was 1: 1 and the content of CNF in the paint was 3% by mass.
  • Example 6 The solid content content (% by mass) in the aqueous suspension of the short-fiber anion-modified cellulose fiber was 13.1% by mass in the same manner as in Example 5 except that the solid content content (% by mass) was 2% by mass.
  • Got a cake 13.29 g of acetone and 0.28 g of the above-mentioned polyether monoamine were added to 3.14 g of the obtained cake to obtain a dispersion liquid of the CNF.
  • 13.29 g of the bisphenol A type liquid epoxy resin was added to the dispersion liquid of CNF and stirred to prepare a paint.
  • the mass ratio of the epoxy resin and acetone in the paint was 1: 1 and the content of CNF in the paint was 3% by mass.
  • Comparative Example 1 An aqueous suspension of stapled anion-modified cellulose fibers was obtained in the same manner as in Example 1. Without performing solid-liquid separation of the aqueous suspension, 5.06 g of an aqueous suspension (solid content content: 5.0% by mass) of short-fiber anion-modified cellulose fibers, 12.39 g of acetone, and the polyether. 0.17 g of monoamine was added to obtain a dispersion of the CNF. 12.39 g of the bisphenol A type liquid epoxy resin was added to the dispersion liquid of CNF, and the mixture was stirred at room temperature for 30 minutes to prepare a paint. The mass ratio of the epoxy resin and acetone in the paint was 1: 1 and the content of CNF in the paint was 2% by mass.
  • Comparative Example 2 A solid-liquid separation was attempted by the same method as in Example 2 except that the solid-liquid separation was carried out under the condition of a centrifugal force of 700 G. However, no cake was ejected from the decanter centrifuge.
  • Comparative Example 3 A solid-liquid separation was attempted by the same method as in Example 2 except that the solid-liquid separation was carried out under the condition of a centrifugal force of 3100 G. However, no cake was ejected from the decanter centrifuge.
  • the specifications of the decanter type centrifuge used in the above Examples and Comparative Examples are as follows, and the main configuration of the decanter type centrifuge generally conforms to FIG.
  • Equipment name Decanter type centrifuge Model: PTM006 type (manufactured by Tomoe Engineering Co., Ltd.) Traction motor: 3.7kW, 200V, 13.8A, INV Differential motor: 1.5kW, 200V, 6.0A, INV Maximum centrifugal force: 3100G
  • the specifications of the supply pump for supplying the water suspension to the decanter type centrifuge used in the above Examples and Comparative Examples are as follows.
  • Dischargeability ⁇ When cake was continuously discharged from the cake outlet, it was evaluated as dischargeability ⁇ .
  • Dischargeability ⁇ When cake was intermittently discharged from the cake discharge port, it was evaluated as dischargeability ⁇ .
  • Dischargeability ⁇ When the cake was not discharged from the cake outlet, it was evaluated as dischargeability ⁇ .
  • the uniformity of the paint was evaluated according to the following criteria. Uniformity ⁇ : By visual confirmation, when the resin was uniformly dissolved and the paint was transparent, the uniformity was evaluated as ⁇ . Uniformity ⁇ : By visual confirmation, when the paint was cloudy due to resin precipitates, it was evaluated as uniformity ⁇ .
  • Table 1 shows the main conditions and results of the examples and comparative examples.
  • the values were 2 to 3 times better than those in the comparative examples, and the resin physical properties (elastic modulus, etc.) when the solvent was removed from the paint when blended into the paint to obtain a cured resin product. It is considered that the strength and the suppression of shrinkage during curing) can be increased.
  • the (preferably anionic) modified cellulose fiber obtained by the production method of the present invention preferably the modified cellulose fiber shortened into short fibers, is used as a strengthening agent for imparting mechanical strength to various paints and the like and a shrinkage inhibitor during curing. It can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本発明は、変性セルロース繊維を含有する分散液を、遠心分離機の遠心力が50G以上600G以下の条件で固液分離する工程(工程A)を含む、変性セルロース繊維ケークの製造方法に関する。本発明によれば、変性セルロース繊維を含む樹脂組成物の新たな製造方法、及びこれに用いることのできる変性セルロース繊維ケーク、短繊維化アニオン変性セルロース繊維ケーク、改質セルロース繊維、又は微細セルロース繊維の新たな製造方法を提供することができる。

Description

変性セルロース繊維ケークの製造方法
 本発明は変性セルロース繊維ケークの製造方法に関する。
 従来、有限な資源である石油由来のプラスチック材料が多用されていたが、近年、環境に対する負荷の少ない技術が脚光を浴びるようになり、かかる技術背景の下、天然に多量に存在するバイオマスであるセルロース繊維を用いた材料が注目されている。
 セルロース繊維の分散液は高粘度なので、セルロース繊維の分散液を、樹脂を含有する塗料と混合すると著しく増粘し、塗工が困難となる。そのため、セルロース繊維の繊維長を短くすることにより、セルロース繊維の分散液の粘度を下げる方法が知られている。
 例えば、セルロース繊維を短繊維化する方法として、特許文献1には、アニオン変性セルロース繊維を、水を含む溶媒で熱分解によりその糖鎖を切断する方法が開示されている。
WO2019/235557
 本発明は、下記〔1〕~〔6〕に関する。
〔1〕 変性セルロース繊維を含有する分散液を、遠心分離機の遠心力が50G以上600G以下の条件で固液分離する工程(工程A)を含む、変性セルロース繊維ケークの製造方法。
〔2〕 アニオン変性セルロース繊維を50℃以上230℃以下の温度条件で熱分解処理に供することにより、短繊維化アニオン変性セルロース繊維を得る工程、及び
 前記短繊維化アニオン変性セルロース繊維を含有する分散液を、遠心分離機の遠心力が50G以上600G以下の条件で固液分離する工程(工程A)を含む、
短繊維化アニオン変性セルロース繊維ケークの製造方法。
〔3〕 前記〔1〕に記載の製造方法によって製造されたケーク中の変性セルロース繊維に、又は前記〔2〕に記載の製造方法によって製造されたケーク中の短繊維化アニオン変性セルロース繊維に、修飾基を導入する工程を含む、改質セルロース繊維の製造方法。
〔4〕 前記〔1〕に記載の製造方法によって製造された変性セルロース繊維ケーク、前記〔2〕に記載の製造方法によって製造された短繊維化アニオン変性セルロース繊維ケーク、又は前記〔3〕に記載の方法によって製造された改質セルロース繊維を、微細化処理する工程を含む、平均繊維長が50nm以上300nm以下である微細セルロース繊維の製造方法。
〔5〕 前記〔1〕に記載の製造方法によって製造された変性セルロース繊維ケーク、前記〔2〕に記載の製造方法によって製造された短繊維化アニオン変性セルロース繊維ケーク、前記〔3〕に記載の方法によって製造された改質セルロース繊維、又は前記〔4〕に記載の製造方法によって製造された微細セルロース繊維と、樹脂とを混合する工程を含む、樹脂組成物の製造方法。
〔6〕 前記〔1〕に記載の製造方法によって製造された変性セルロース繊維ケークか又は前記〔2〕に記載の製造方法によって製造された短繊維化アニオン変性セルロース繊維ケーク、修飾用化合物、及び樹脂を混合する工程を含む、樹脂組成物の製造方法。
図1は、デカンタ型遠心分離機の断面図である。
発明の詳細な説明
 水を含む溶媒では、塗料等に用いられる樹脂と均一に混合することはできないので、セルロース繊維の媒体を水から有機溶媒に置換するする必要がある。特に、短繊維化されたセルロース繊維の場合には顕著である。
 溶媒を置換する処理では、通常、複数回の置換処理が実施される。そのため、溶媒の使用量が多くなり、溶媒そのもののコストだけではなく、使用後の溶媒の廃棄コストも発生するため、より効率の良い方法が求められてきた。
 従って、本発明は、変性セルロース繊維を含む樹脂組成物の新たな製造方法、及び、特にこれに用いることのできる変性セルロース繊維ケーク、短繊維化アニオン変性セルロース繊維ケーク、改質セルロース繊維、又は微細セルロース繊維の新たな製造方法に関する。
 本発明によれば、変性セルロース繊維を含む樹脂組成物の、より効率の良い新たな製造方法、及び特にこれに用いることのできる変性セルロース繊維ケーク、短繊維化アニオン変性セルロース繊維ケーク、改質セルロース繊維、又は微細セルロース繊維の、より効率の良い新たな製造方法を提供することができる。
〔変性セルロース繊維ケークの製造方法〕
 本発明の変性セルロース繊維ケークの製造方法は、変性セルロース繊維を含有する分散液を、遠心分離機の遠心力が50G以上600G以下の条件で固液分離する工程(工程A)を含む。
[変性セルロース繊維]
 変性セルロース繊維は、セルロース繊維を原料として、公知の方法により変性するための置換基、好ましくはアニオン性基を導入し、好ましくは次いでその繊維長を短繊維化することによって得ることができる。原料のセルロース繊維としては、環境面から好ましくは天然セルロース繊維であり、例えば、針葉樹系パルプ、広葉樹系パルプ等の木材パルプ;コットンリンター、コットンリントのような綿系パルプ;麦わらパルプ、バガスパルプ等の非木材系パルプ;バクテリアセルロース等が挙げられる。置換基としては、好ましくはアニオン性基であり、アニオン性基としては、糖鎖切断効率の観点から、カルボキシ基、スルホン酸基、リン酸基が好ましく、カルボキシ基がより好ましい。
 また、先にカルボキシメチル化されたパルプを機械的に解繊、叩解、離解し、平均繊維径を500nm以上の段階で変性セルロース繊維として用いてもよい。但し、短繊維化を行う方が、組成物の分散性の観点から好ましい。処理方法としては例えば、予め前記パルプの水分散体を脱水などにより高濃度化(20重量%以上)してから叩解処理する、水分散体を低濃度(20重量%未満)にしてから叩解または離解などの機械的処理を行う、叉、水分散体を脱水、乾燥してから機械的に解繊または叩解処理する、或いは乾式粉砕するなどが可能である。
 公知のアニオン変性セルロース繊維を製造するための一態様としては、例えばWO2019/235557に記載されたような、触媒として2,2,6,6,-テトラメチル-1-ピペリジン-N-オキシル(TEMPO)を使用する方法が挙げられる。かかる製造方法では、原料セルロース繊維として、好ましくは天然セルロース繊維を使用し、触媒としてTEMPOすることによって、アニオン性基としてのカルボキシ基をセルロース繊維に導入する。
[短繊維化]
 セルロース繊維の糖鎖を切断処理することによって、アニオン変性セルロース繊維の短繊維化を行うことができる。
 糖鎖を切断するための方法としては、アニオン変性セルロース繊維を、好ましくは50℃以上、好ましくは230℃以下の温度条件下での熱分解処理に供する工程に供することにより、短繊維化アニオン変性セルロース繊維を得ることができる。温度条件としては、生産性の観点から、より好ましくは70℃以上、更に好ましくは80℃以上であり、一方、過分解を抑制する観点から、より好ましくは220℃以下、更に好ましくは200℃以下である。
 このようにして得られる、工程Aに供される変性セルロース繊維の形態は、予め短繊維化された変性セルロース繊維、好ましくは予め短繊維化されたアニオン変性セルロース繊維である。このようにして得られる、予め短繊維化された変性セルロース繊維の平均繊維長としては、生産性の観点から、好ましくは50μm以上、より好ましくは150μm以上であり、一方、樹脂組成物中の変性セルロース繊維の分散性の観点から、好ましくは500μm以下、より好ましくは300μm以下である。
 従って、本発明の変性セルロース繊維ケークの製造方法の一つの好ましい態様は、
  アニオン変性セルロース繊維を50℃以上230℃以下の温度条件で熱分解処理に供することにより、短繊維化アニオン変性セルロース繊維を得る工程、及び
  前記短繊維化アニオン変性セルロース繊維を含有する分散液を、遠心分離機の遠心力が50G以上600G以下の条件で固液分離する工程(工程A)を含む、
短繊維化アニオン変性セルロース繊維ケークの製造方法である。
 熱分解処理は、媒体にアニオン変性セルロース繊維を混合又は分散させた状態で実施する。好ましく用いられる媒体としては、水、N,N-ジメチルホルムアミド(DMF)、エタノール、イソプロパノール(IPA)、メチルエチルケトン(MEK)、酢酸エチル、トルエン、シクロヘキサノンなどが挙げられ、これらの1種又は2種以上を組み合わせて用いることができる。このうち、取り扱い性及びコストの観点から、水を含む溶媒が好ましい。水を含む溶媒において、溶媒中の水の割合は、取扱い性及びコストの観点から、好ましくは50質量%以上、より好ましくは80質量%以上、更に好ましくは95質量%以上、更に好ましくは100質量%である。
[工程A]
 このようにして得られた変性セルロース繊維の分散液を工程Aで使用することができる。工程Aで供される変性セルロース繊維は、好ましくはアニオン変性セルロース繊維であり、より好ましくはTEMPO酸化処理されたアニオン変性セルロース繊維であり、更に好ましくは、TEMPO酸化処理され短繊維化されたアニオン変性セルロース繊維である。
 分散液に用いられる媒体としては、好ましくは、水、N,N-ジメチルホルムアミド(DMF)、エタノール、イソプロパノール(IPA)、メチルエチルケトン(MEK)、酢酸エチル、トルエン、シクロヘキサノンなどが挙げられ、これらの1種又は2種以上を組み合わせて用いることができる。このうち、取り扱い性及びコストの観点から、水を含む溶媒が好ましい。水を含む溶媒において、溶媒中の水の割合は、取扱い性及びコストの観点から、好ましくは50質量%以上、より好ましくは80質量%以上、更に好ましくは95質量%以上、更に好ましくは100質量%である。
 分散液における変性セルロース繊維の含有量は、固形分含有量として求められる。分散液における固形分含有量としては、生産性の観点から、好ましくは0.1質量%以上、より好ましくは1.0質量%以上、更に好ましくは5.0質量%以上であり、一方、上限は特に限定されないが、ハンドリング性の観点から、好ましくは80質量%以下、より好ましくは60質量%以下、更に好ましくは40質量%以下である。
 分散液における変性セルロース繊維の含有量の測定方法は、後述の実施例に記載された方法を採用する。
 工程Aでは、遠心分離機を用いて、変性セルロース繊維を含有する分散液の固液分離を実施する。
 遠心分離機の遠心力としては、樹脂組成物中の水分濃度の低減の観点から50G以上であり、好ましくは80G以上、より好ましくは200G以上である。一方、セルロース繊維ケークを遠心分離機の外に排出させる観点から、遠心力は600G以下であり、好ましくは550G以下、より好ましくは400G以下である。
 なお、本明細書において、遠心分離機の遠心力は、回転筒の回転数を調整することにより、所望の程度に設定することができる。
 工程Aで用いることができる遠心分離機としては、公知の種々のタイプのものが使用できる。更に、バッチ式で運転する遠心分離機も使用でき、連続運転可能な連続式の遠心分離機も使用できるが、作業効率の観点から、連続式の遠心分離機が好ましい。
 工程Aで用いることができる遠心分離機の具体的例としては、バッチ式のものとしては、サイホン型、バスケット型、分離板型等の遠心分離機が挙げられる。連続式のものとしては、デカンタ型、デ・コーン型、マルチステージ型、分離板型の遠心分離機等が挙げられる。これらの中で、作業効率の観点から、マルチステージ型が好ましく、デ・コーン型及びデカンタ型遠心分離機がより好ましく、デカンタ型遠心分離機が更に好ましい。
 図1は、デカンタ型遠心分離機の断面を模式的に示した図である。
 例えば、変性セルロース繊維として短繊維化アニオン変性セルロース繊維を含有する分散液の場合は、供給スラリー1としてデカンタ型遠心分離機に供給される。デカンタ型遠心分離機では、回転筒2が回転することで分散液に遠心力を与えることができ、分散液中の固液を分離することができる。また、スクリュー3が回転筒よりわずかに遅い速度で回転することで、短繊維化アニオン変性セルロース繊維の含有量が高まった分散液は、徐々にケーク排出口へと移送され、ケーク4として回収される。一方、繊維成分の多くが除去された分散液は分離液5として回収される。
 供給スラリー1の供給流量は、例えば、供給ポンプ(図示せず)をデカンタ型遠心分離機に接続することにより、所望の程度に設定することができる。
 例えば、デカンタ型遠心分離機を使用する場合の供給スラリー1の供給流量は、装置内での供給スラリーの滞留時間を長くして分離性を高め、分離液へのセルロース繊維の流出を避ける観点から、好ましくは500L/h以下、より好ましくは300L/h以下、更に好ましくは100L/h以下である。一方、生産性向上の観点から、好ましくは100L/h以上、より好ましくは300L/h以上、更に好ましくは500L/h以上である。また、上記の好適範囲は、装置サイズに応じて適宜変化させることができる。
 上記のような遠心分離機の使用により、分散液の固液分離が達成され、変性セルロース繊維ケークを製造することができる。
 本明細書において、「固液分離」とは、変性セルロース繊維の分散液中の溶媒成分を除去し、変性セルロース繊維の含有量を高めることを意味する。固液分離後のケークにおける固形分含有量は、樹脂組成物中の変性セルロース繊維や改質セルロース繊維の濃度を高めることができるため、多い方が好ましく、具体的には、好ましくは5質量%以上、より好ましくは9質量%以上、更に好ましくは15質量%以上、更に好ましくは20質量%以上である。一方、ハンドリング性の観点から、該固形分含有量は、好ましくは80質量%以下、より好ましくは60質量%以下、更に好ましくは40質量%以下である。
[変性]
 本発明の製造方法によって製造された変性セルロース繊維ケークは、十分に水分量が低減されているので、樹脂にそのまま配合することが可能である。また、ここでの変性セルロース繊維ケークでの変性は種々の置換基を用いることができる、好ましくはアニオン基による変性である。また、変性セルロース繊維の鎖長を予め短くする処理を行ってもよい。更にまた、短繊維化され、アニオン変性されたセルロース繊維ケークにさらに修飾基を結合させて改質セルロース繊維とすることも可能である。その様に処理した後に、樹脂に配合することも可能であり、さらに、短繊維化アニオン変性セルロース繊維ケークや改質セルロース繊維を更に微細化した後、樹脂に配合することも可能である。
 一方、本発明の製造法において、化学変性セルロースとして、カルボキシル化(酸化)したセルロースを用いることもできる。例えば、セルロース原料にグリシジルトリメチルアンモニウムクロリド、3-クロロ-2ヒドロキシプロピルトリアルキルアンモニウムハイドライトまたはそのハロヒドリン型などのカチオン化剤と触媒である水酸化アルカリ金属(水酸化ナトリウム、水酸化カリウムなど)を、水または炭素数1~4のアルコールの存在下で反応させることによって、カチオン変性されたセルロースを得ることができる。
〔改質セルロース繊維の製造方法〕
 本発明における改質セルロース繊維は公知の方法によって製造することができる。改質セルロース繊維とは、変性セルロース繊維に更に修飾基が結合したセルロース繊維誘導体である。
 より具体的には、所望の修飾基を有する化合物(修飾用化合物)と、上述の本発明の製造方法によって得られたケーク中の変性セルロース繊維又は短繊維化アニオン変性セルロース繊維とを反応させて、かかるセルロース繊維に修飾基を導入することによって、改質セルロース繊維を得ることができる。
 変性セルロース繊維と修飾用化合物との結合様式がイオン結合の場合には、修飾用化合物として、第1級アミン、第2級アミン、第3級アミン、第4級アンモニウム化合物、ホスホニウム化合物等が挙げられる。これらの化合物には、修飾基として各種の炭化水素基、例えば鎖式飽和炭化水素基、鎖式不飽和炭化水素基、環式飽和炭化水素基、及び芳香族炭化水素基等の炭化水素基や、共重合部位等を導入することができる。これらの基や部位は単独で又は2種以上を組み合わせて導入されていてもよい。
 結合様式が共有結合の場合には、アニオン性基を修飾するか、あるいはヒドロキシ基を修飾するかに応じて適切な修飾用化合物が用いられる。アニオン性基を修飾する場合、例えばアミド結合を介して修飾する場合には、修飾用化合物として例えば第1級アミン及び第2級アミンを用いることが好ましい。エステル結合を介して修飾する場合には、修飾用化合物として例えばブタノール、オクタノール及びドデカノール等のアルコールを用いることが好ましい。ウレタン結合を介して修飾する場合には、修飾用化合物として例えばイソシアネート化合物を用いることが好ましい。これらの化合物には、修飾基として各種の炭化水素基、例えば鎖式飽和炭化水素基、鎖式不飽和炭化水素基、環式飽和炭化水素基、及び芳香族炭化水素基等の炭化水素基や、共重合部位等を導入することができる。これらの基や部位は単独で又は2種以上を組み合わせて導入されていてもよい。
 ヒドロキシ基を修飾する場合、例えばエステル結合を介して修飾する場合には、修飾用化合物として例えば酸無水物(例えば、無水酢酸、無水プロピオン酸)や、酸ハライド(例えば、カプリル酸クロライド、ラウリン酸クロライド及びステアリン酸クロライド)を用いることが好ましい。エーテル結合を介して修飾する場合には、修飾用化合物として例えばエポキシ化合物(例えば、酸化アルキレン及びアルキルグリシジルエーテル)、アルキルハライド並びにその誘導体(例えばメチルクロライド、エチルクロライド及びオクタデシルクロライド)が好ましい。ウレタン結合を介して修飾する場合には、修飾用化合物として例えばイソシアネート化合物を用いることが好ましい。これらの化合物には、修飾基として各種の炭化水素基、例えば鎖式飽和炭化水素基、鎖式不飽和炭化水素基、環式飽和炭化水素基、及び芳香族炭化水素基等の炭化水素基や、共重合部位等を導入することができる。これらの基や部位は単独で又は2種以上を組み合わせて導入されていてもよい。
〔微細セルロース繊維の製造方法〕
 本発明の製造方法で得られる、変性セルロース繊維ケーク、短繊維化アニオン変性セルロース繊維ケーク、又は改質セルロース繊維は、必要に応じて更に微細化処理を行い、ナノスケールの微細セルロース繊維(ナノファイバー)として使用することができる。更なる微細化処理としては、離解機、叩解機、低圧ホモジナイザー、高圧ホモジナイザー、グラインダー、カッターミル、ボールミル、ジェットミル、短軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等を用いた機械的な微細化処理などが挙げられる。
 本発明の製造方法で得られる、かかる変性セルロース繊維をナノファイバー化することで、平均繊維長が好ましくは50nm以上300nm以下、平均繊維径が好ましくは2nm以上10nm以下の微細セルロース繊維をえることができる。このような微細セルロース繊維の平均繊維長、平均繊維径、平均アスペクト比は、原子間力顕微鏡(AFM、Nanoscope III Tapping mode AFM、Digital instrument社製、プローブはナノセンサーズ社製Point Probe (NCH)を使用)を用いて測定することができる。
〔樹脂組成物の製造方法〕
 上記の方法によって得られた各種セルロース繊維(即ち、変性セルロース繊維ケーク、短繊維化アニオン変性セルロース繊維ケーク、改質セルロース繊維、及び微細セルロース繊維)と、各種の樹脂、溶剤、さらには任意成分を混合することによって製造することができる。
 作業工程の効率化の観点から、(好ましくはアニオン)変性セルロース繊維、より好ましくは短繊維化された変性セルロース繊維の改質処理と樹脂への配合を同時に行ってもよい。この場合、前述の本発明の製造方法によって製造された変性セルロース繊維ケーク、短繊維化アニオン変性セルロース繊維ケーク、修飾用化合物及び樹脂とを混合する工程を含む、樹脂組成物の製造方法が提供され、その後に微細化処理を実施してもよい。
 樹脂組成物中のセルロース繊維(換算量)の含有量は、樹脂組成物から溶媒成分を除去したセルロース繊維含有樹脂の硬化時の収縮抑制および機械的強度付与の観点から、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上、更に好ましくは3質量%以上である。一方、樹脂組成物の粘度上昇によるハンドリング性の低下を回避する観点から、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは8質量%以下である。
 なお、セルロース繊維(換算量)とは、修飾基が結合した各種セルロース繊維(即ち、改質セルロース繊維及び微細セルロース繊維)の質量から修飾基の質量を引いた質量を指す。修飾基が結合した各種セルロース繊維におけるセルロース繊維(換算量)は、後述する実施例に記載の方法によって測定することができる。
 樹脂組成物において使用できる樹脂としては、非水系塗料用のベース樹脂として従来使用されている樹脂であれば特に制限されず、種々の樹脂を配合することが可能である。
 樹脂の具体例としては、アルキド樹脂、アクリル樹脂、アクリルウレタン樹脂、メラミン樹脂、ウレタン樹脂、エポキシ樹脂、クマロン樹脂、尿素樹脂、フェノール樹脂、塩化ビニル樹脂、フェノキシ樹脂、シリコーン樹脂、フッ素樹脂、ナイロン樹脂、スチレンブタジエン樹脂、ニトリルブタジエン樹脂、石油樹脂、ロジン、乾性油、ボイル油、アセチルセルロース、ニトロセルロース等が挙げられ、中でも、微細セルロース繊維の分散性に優れた樹脂組成物を得られることから、アクリル樹脂、アクリルウレタン樹脂、メラミン樹脂、ウレタン樹脂、エポキシ樹脂、尿素樹脂、フェノール樹脂が好ましく、エポキシ樹脂、フェノール樹脂が更に好ましい。
 樹脂組成物中の樹脂の含有量は、生産効率の観点から、好ましくは1質量%以上、より好ましくは10質量%以上、更に好ましくは40質量%以上である。一方、低粘度化の観点から、好ましくは90質量%以下、より好ましくは70質量%以下、更に好ましくは50質量%以下である。
 樹脂組成物は、必要に応じて、溶剤をさらに含有していてもよい。本発明における溶剤は、有機溶剤や反応性の官能基を含む有機性媒体が挙げられる。
 有機溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、2-ブタノール、1-ペンタノール、オクチルアルコール、グリセリン、エチレングリコール、プロピレングリコール等のアルコール類;酢酸等のカルボン酸類;ヘキサン、ヘプタン、オクタン、デカン、流動パラフィン等の炭化水素類;トルエン、キシレン等の芳香族炭化水素類;ジメチルスルホキシド、N,N-ジメチルホルムアミド、ジメチルアセトアミド、アセトアニリド等のアミド類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;塩化メチレン、クロロホルム等のハロゲン類;エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酪酸メチル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル等のエステル類;ポリエチレングリコール、ポリオキシエチレンアルキルエーテル等のポリエーテル類;ポリジメチルシロキサン等のシリコーンオイル類;アセトニトリル、プロピオニトリル、エステル油、サラダ油、大豆油、ヒマシ油等が挙げられる。これらは単独でもしくは二種以上併せて用いられる。
 また、反応性の官能基を含む有機性媒体としては、例えば、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸n-へキシル、メタクリル酸n-へキシル、アクリル酸2-エチルヘキシル、メタアクリル酸2-エチルヘキシル、フェニルグリシジルエーテルアクリレート等のアクリレート類;ヘキサメチレンジイソシアネートウレタンプレポリマー、フェニルグリシジルエーテルアクリレートトルエンジイソシアネートウレタンプレポリマー等のウレタンプレポリマー類;n-ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、ステアリン酸グリシジルエーテル、スチレンオキサイド、フェニルグリシジルエーテル、ノニルフェニルグリシジルエーテル、ブチルフェニルグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル等のグリシジルエーテル類;クロロスチレン、メトキシスチレン、ブトキシスチレン、ビニル安息香酸等が挙げられる。
 溶剤を使用する場合の溶剤の配合量としては、低粘度化および樹脂とアニオン変性セルロース繊維ケークの均一混合性の観点から、樹脂100質量部に対して、好ましくは50質量部以上、より好ましくは100質量部以上である。一方、生産効率の観点から、樹脂100質量部に対して、好ましくは200質量部以下、より好ましくは100質量部以下である。
 樹脂組成物は、塗料分野で通常使用される添加剤をさらに含有してもよい。このような添加剤としては、無機顔料、有機顔料、染料、硬化剤、可塑剤、触媒、防かび剤、消泡剤、レベリング剤、顔料分散剤、沈降防止剤、たれ防止剤、増粘剤、艶消し剤、光安定剤、紫外線吸収剤等が挙げられる。
 上述した実施形態に関し、本発明は、さらに以下の、ケークの製造方法、改質セルロース繊維の製造方法、微細セルロース繊維の製造方法及び樹脂組成物の製造方法を開示する。
<1> 変性セルロース繊維を含有する分散液を、遠心分離機の遠心力が50G以上600G以下の条件で固液分離する工程(工程A)を含む、変性セルロース繊維ケークの製造方法。
<2> 前記変性セルロース繊維ケークの固形分含有量が5質量%以上である、前記<1>に記載の製造方法。
<3> 遠心分離機が連続式の遠心分離機である、前記<1>または<2>に記載の製造方法。
<4> 連続式の遠心分離機がデカンタ型遠心分離機である、前記<3>に記載の製造方法。
<5> デカンタ型遠心分離機への変性セルロース繊維スラリーの供給流量が100L/h以上、500L/h以下である、前記<4>に記載の製造方法
<6> 変性セルロース繊維の変性がアニオン変性である、前記<1>から<5>のいずれかに記載の製造方法。
<7> 工程Aに供される変性セルロース繊維の形態が、予め短繊維化された変性セルロース繊維である、前記<1>から<6>のいずれかに記載の製造方法。
<8> 予め短繊維化された変性セルロース繊維の平均繊維長が50μm以上、500μm以下である、前記<7>に記載の製造方法。
<9> 工程Aにおける分散液が水を含む媒体である、前記<1>から<8>のいずれかに記載の製造方法。
<10> アニオン変性セルロース繊維を50℃以上、230℃以下の温度条件で熱分解処理に供することにより、短繊維化アニオン変性セルロース繊維を得る工程、及び
 前記短繊維化アニオン変性セルロース繊維を含有する分散液を、遠心分離機の遠心力が50G以上、600G以下の条件で固液分離する工程(工程A)を含む、
短繊維化アニオン変性セルロース繊維ケークの製造方法。
<11> 熱分解処理における媒体が水を含む媒体である、前記<10>に記載の製造方法。
<12> 工程Aにおける分散液が水を含む媒体である、前記<10>または<11>に記載の製造方法。
<13> 前記<1>から<9>のいずれかに記載の製造方法によって製造されたケーク中の変性セルロース繊維に修飾基を導入する工程を含む、改質セルロース繊維の製造方法。
<14> 前記<10>から<12>のいずれかに記載の製造方法によって製造されたケーク中の短繊維化アニオン変性セルロース繊維に修飾基を導入する工程を含む、改質セルロース繊維の製造方法。
<15> 前記<1>から<9>のいずれかに記載の製造方法によって製造された変性セルロース繊維ケークを、微細化処理する工程を含む、平均繊維長が50nm以上、300nm以下である微細セルロース繊維の製造方法。
<16> 前記<10>から<12>のいずれかに記載の製造方法によって製造された短繊維化アニオン変性セルロース繊維ケークを、微細化処理する工程を含む、平均繊維長が50nm、以上300nm以下である微細セルロース繊維の製造方法。
<17> 前記<13>または<14>に記載の方法によって製造された改質セルロース繊維を、微細化処理する工程を含む、平均繊維長が50nm以上、300nm以下である微細セルロース繊維の製造方法。
<18> 前記<1>から<9>のいずれかに記載の製造方法によって製造された変性セルロース繊維ケークと、樹脂とを混合する工程を含む、樹脂組成物の製造方法。
<19> 前記<10>から<12>のいずれかに記載の製造方法によって製造された短繊維化アニオン変性セルロース繊維ケークと、樹脂とを混合する工程を含む、樹脂組成物の製造方法。
<20> 前記<13>または<14>に記載の方法によって製造された改質セルロース繊維と、樹脂とを混合する工程を含む、樹脂組成物の製造方法。
<21> 前記<15>から<17>のいずれかに記載の製造方法によって製造された微細セルロース繊維と、樹脂とを混合する工程を含む、樹脂組成物の製造方法。
<22> 前記<1>から<9>のいずれかに記載の製造方法によって製造された変性セルロース繊維ケーク、修飾用化合物、及び樹脂を混合する工程を含む、樹脂組成物の製造方法。
<23> 前記<10>から<12>のいずれかに記載の製造方法によって製造された短繊維化アニオン変性セルロース繊維ケーク、修飾用化合物、及び樹脂を混合する工程を含む、樹脂組成物の製造方法。
<24> 樹脂組成物中のセルロース繊維(換算量)の含有量が、0.1質量%以上、20質量%以下である、前記<18>から<23>のいずれかに記載の樹脂組成物の製造方法。
<25> 樹脂が、アクリル樹脂、アクリルウレタン樹脂、メラミン樹脂、ウレタン樹脂、エポキシ樹脂、尿素樹脂、フェノール樹脂の何れか1種または2種以上から選ばれる、前記<18>から<24>のいずれかに記載の樹脂組成物の製造方法。
<26> 樹脂組成物が、更に溶剤を含有する、前記<18>から<25>のいずれかに記載の樹脂組成物の製造方法。
 以下、実施例を示して本発明を具体的に説明する。なお、この実施例は、単なる本発明の例示であり、何ら限定を意味するものではない。例中の部は、特記しない限り質量部である。なお、「常圧」とは101.3kPaを、「常温」とは25℃を示す。
〔各種セルロース繊維の平均繊維長〕
 測定対象のセルロース繊維にイオン交換水を加えて、その含有量が0.01質量%の分散液を調製する。該分散液を湿式分散タイプ画像解析粒度分布計(ジャスコインターナショナル社製、商品名:IF-3200)を用いて、フロントレンズ:2倍、テレセントリックズームレンズ:0.75倍、画像分解能:1.113μm/ピクセル、シリンジ内径:6515μm、スペーサー厚み:1000μm、画像認識モード:ゴースト、閾値:6、分析サンプル量:300mL、サンプリング:3%の条件で測定する。セルロース繊維を10000本以上測定し、それらの平均ISO繊維長を平均繊維長として算出する。
〔アニオン変性セルロース繊維、短繊維化アニオン変性セルロース繊維のアニオン性基含有量〕
 乾燥質量0.5gの、測定対象のセルロース繊維を100mLビーカーにとり、イオン交換水又はメタノール/水=2/1の混合溶媒を加えて全体で55mLとし、そこに0.01M塩化ナトリウム水溶液5mLを加えて分散液を調製する。セルロース繊維が十分に分散するまで該分散液を攪拌する。この分散液に0.1M塩酸を加えてpHを2.5~3に調整し、自動滴定装置(東亜ディーケーケー社製、商品名:AUT-701)を用い、0.05M水酸化ナトリウム水溶液を待ち時間60秒の条件で該分散液に滴下し、1分ごとの電導度及びpHの値を測定する。pH11程度になるまで測定を続け、電導度曲線を得る。この電導度曲線から、水酸化ナトリウム滴定量を求め、次式により、測定対象のセルロース繊維のアニオン性基含有量を算出する。
  アニオン性基含有量(mmol/g)=水酸化ナトリウム滴定量×水酸化ナトリウム水溶液濃度(0.05M)/測定対象のセルロース繊維の質量(0.5g)
〔各種懸濁液や固液分離後のケーク中の固形分含有量〕
 ハロゲン水分計(島津製作所社製、商品名:MOC-120H)を用いて行う。具体的には、サンプル1gに対して150℃恒温で30秒ごとの測定を行い、質量減少が0.1%以下となった時の値を固形分含有量とする。
〔修飾基が結合した各種セルロース繊維におけるセルロース繊維量(換算量)〕
 修飾基が結合した各種セルロース繊維におけるセルロース繊維量(換算量)とは、修飾基が結合した各種セルロース繊維中の、修飾基を除いたセルロース繊維量である。
 修飾基が結合した各種セルロース繊維におけるセルロース繊維量(換算量)は、以下の方法によって測定する。
(1)添加される「修飾用化合物」が1種類の場合
 セルロース繊維量(換算量)を下記式Eによって算出する。
<式E>
セルロース繊維量(換算量)(g)=修飾基が結合した各種セルロース繊維の質量(g)/〔1+修飾用化合物(g/mol)×修飾基の結合量(mmol/g)×0.001〕
(2)添加される「修飾用化合物」が2種類以上の場合
 各化合物のモル比率(即ち、添加される化合物の合計モル量を1とした時のモル比率)を考慮して、セルロース繊維量(換算量)を算出する。
〔アニオン変性セルロース繊維の調製〕
調製例1(広葉樹の酸化パルプ)
 まず、天然セルロース繊維100gを9900gのイオン交換水で十分に攪拌した後、該パルプ質量100gに対し、TEMPO 1.6g、臭化ナトリウム10g、次亜塩素酸ナトリウム28.4gをこの順で添加した。自動滴定装置(東亜ディーケーケー社製、商品名:AUT-701)でpHスタット滴定を用い、0.5M水酸化ナトリウムを滴下してpHを10.5に保持した。反応を60分(20℃)行った後、滴下を停止し、アニオン変性セルロース繊維を得た。得られたアニオン変性セルロース繊維に希塩酸を添加しカウンターイオンをナトリウムイオンからプロトンへと変換した後、イオン交換水で十分に洗浄し、次いで脱水処理を行い、固形分含有量30.1質量%のアニオン変性セルロース繊維を得た。このアニオン変性セルロース繊維の平均繊維長は1003μm、カルボキシ基含有量は1.3mmol/gであった。
 調製例1で用いた原料等の詳細は次のとおりである。
天然セルロース繊維:ユーカリ由来の広葉樹漂白クラフトパルプ(CENIBRA社製)
TEMPO:ALDRICH社製、Free radical、98質量%
次亜塩素酸ナトリウム:和光純薬工業社製
臭化ナトリウム:和光純薬工業社製
実施例1
 アンカー翼を備えた反応槽に、調製例1で得られたアニオン変性セルロース繊維を絶乾質量で4.15kg仕込み、処理液の質量が25kgとなるまで、イオン交換水を添加した。処理液を常圧下、95℃で12時間撹拌して反応させることで、短繊維化アニオン変性セルロース繊維の水懸濁液を得た。この短繊維化アニオン変性セルロース繊維の平均繊維長は157μmであった。
 得られた短繊維化アニオン変性セルロース繊維の水懸濁液をデカンタ型遠心分離機に供給し、遠心力300G、デカンタへの供給流量500L/hで連続運転することにより、固液分離し、定常状態になった段階で固形分含有量22.9質量%のケークを得た。
 得られたケーク3.60gに、アセトン12.92g、ポリエーテルモノアミン0.56gを加え、常温で30分間撹拌し、短繊維化アニオン変性セルロース繊維のカルボキシ基に、イオン結合を介してEOPO基が結合した改質セルロース繊維(以下、CNFと称する。)のアセトン分散液を得た。なお、EOPO基とは、エチレンオキサイド(EO)とプロピレンオキサイド(PO)がランダム又はブロック状に重合した構造を有する基を意味する。
 該CNFの分散液にビスフェノールA型液状エポキシ樹脂を12.92g加え、常温で30分間撹拌し、樹脂組成物である塗料とした。塗料におけるエポキシ樹脂とアセトンとの質量比は1:1であり、塗料中のCNFの含有量は6質量%であった。
 実施例1で用いた原料等の詳細は次のとおりである。
ポリエーテルモノアミン:Jeffamine M-2070(HUNTSMAN社製、EO/PO(モル比)32/10、分子量2000)
ビスフェノールA型液状エポキシ樹脂:jER828(三菱ケミカル株式会社製、分子量370)
実施例2
 遠心力100G、デカンタへの供給流量100L/hの条件で固液分離を実施したこと以外は実施例1と同様の方法で、固形分含有量17.3質量%のケークを得た。
 得られたケーク3.18gに、アセトン13.22g、前記ポリエーテルモノアミン0.37gを加え、該CNFの分散液を得た。
 該CNFの分散液に前記ビスフェノールA型液状エポキシ樹脂を13.22g加え、常温で30分間撹拌し、塗料とした。塗料におけるエポキシ樹脂とアセトンとの質量比は1:1であり、塗料中のCNFの含有量は4質量%であった。
実施例3
 遠心力400Gの条件で固液分離を実施したこと以外は実施例2と同様の方法で、固形分含有量23.5質量%のケークを得た。
 得られたケーク3.52gに、アセトン12.96g、前記ポリエーテルモノアミン0.56gを加え、該CNFの分散液を得た。
 該CNFの分散液に前記ビスフェノールA型液状エポキシ樹脂を12.96g加え、常温で30分間撹拌し、塗料とした。塗料におけるエポキシ樹脂とアセトンとの質量比は1:1であり、塗料中のCNFの含有量は6質量%であった。
実施例4
 遠心力500Gの条件で固液分離を実施したこと以外は実施例2と同様の方法で、固形分含有量20.1質量%のケークを得た。
 得られたケーク3.42gに、アセトン13.06g、前記ポリエーテルモノアミン0.46gを加え、該CNFの分散液を得た。
 該CNFの分散液に前記ビスフェノールA型液状エポキシ樹脂を13.06g加え、撹拌し、塗料とした。塗料におけるエポキシ樹脂とアセトンとの質量比は1:1であり、塗料中のCNFの含有量は5質量%であった。
実施例5
 平均鎖長を変えた短繊維化アニオン変性セルロース繊維とその水懸濁液の供給量を変更して固液分離を実施したこと以外は実施例1と同様の方法で、固形分含有量12.1質量%のケークを得た。
 得られたケーク3.37gに、アセトン13.18g、前記ポリエーテルモノアミン0.27gを加え、該CNFの分散液を得た。
 該CNFの分散液に前記ビスフェノールA型液状エポキシ樹脂を13.18g加え、撹拌し、塗料とした。塗料におけるエポキシ樹脂とアセトンとの質量比は1:1であり、塗料中のCNFの含有量は3質量%であった。
実施例6
 短繊維化アニオン変性セルロース繊維の水懸濁液中の固形分含有量(質量%)を2質量%で実施したこと以外は実施例5と同様の方法で、固形分含有量13.1質量%のケークを得た。
 得られたケーク3.14gに、アセトン13.29g、前記ポリエーテルモノアミン0.28gを加え、該CNFの分散液を得た。
 該CNFの分散液に前記ビスフェノールA型液状エポキシ樹脂を13.29g加え、撹拌し、塗料とした。塗料におけるエポキシ樹脂とアセトンとの質量比は1:1であり、塗料中のCNFの含有量は3質量%であった。
比較例1
 実施例1と同様の方法で、短繊維化アニオン変性セルロース繊維の水懸濁液を得た。
 前記水懸濁液の固液分離を行うことなく、短繊維化アニオン変性セルロース繊維の水懸濁液(固形分含有量5.0質量%)5.06gに、アセトン12.39g、前記ポリエーテルモノアミン0.17gを加え、該CNFの分散液を得た。
 該CNFの分散液に前記ビスフェノールA型液状エポキシ樹脂を12.39g加え、常温で30分間撹拌し、塗料とした。塗料におけるエポキシ樹脂とアセトンとの質量比は1:1であり、塗料中のCNFの含有量は2質量%であった。
比較例2
 遠心力700Gの条件で固液分離を実施したこと以外は実施例2と同様の方法で、固液分離を試みた。しかしながら、デカンタ型遠心分離機からケークは排出されなかった。
比較例3
 遠心力3100Gの条件で固液分離を実施したこと以外は実施例2と同様の方法で、固液分離を試みた。しかしながら、デカンタ型遠心分離機からケークは排出されなかった。
 上記実施例及び比較例で使用したデカンタ型遠心分離機の仕様は以下のとおりであり、デカンタ型遠心分離機の主要な構成は概ね図1に合致するものであった。
機器名称:デカンタ型遠心分離機
型式:PTM006型(巴工業株式会社製)
主電動機:3.7kW,200V,13.8A,INV
差動電動機:1.5kW,200V,6.0A,INV
最大遠心力:3100G
 上記実施例及び比較例で使用した、デカンタ型遠心分離機に水懸濁液を供給するための供給ポンプの仕様は以下の通りである。
機器名称:ヘイシンモーノポンプ
型式:NHL15PUN型(兵神装備株式会社製)
電動機:0.2kW,200V,1.5A,INV
最大供給流量:800L/h
 デカンタ型遠心分離機からのケークの排出性は次の基準で評価した。
排出性◎:ケーク排出口から連続的にケークが排出された場合、排出性◎と評価した。
排出性○:ケーク排出口から間欠的にケークが排出された場合、排出性〇と評価した。
排出性×:ケーク排出口からケークが排出されなかった場合、排出性×と評価した。
 塗料の均一性は次の基準で評価した。
均一性○:目視による確認にて、樹脂が均一溶解し、塗料が透明である場合、均一性○と評価した。
均一性×:目視による確認にて、樹脂の析出物で塗料が白濁している場合、均一性×と評価した。
 実施例及び比較例の主な条件と結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、実施例1~6はデカンタ型遠心分離機からケークが排出され、得られたケークも十分に濃縮できており、樹脂に対してCNFを高濃度に配合する処方においても、塗料の均一性は良好であった。一方、比較例1は、固液分離していないため、塗料中のCNF濃度が2質量%でも、塗料に均一性がなかった。比較例2と3では、遠心力が高くなることで、ケークがデカンタ型遠心分離機から排出されず、そもそも塗料を作製することができなかった。
 また、塗料中CNFの上限濃度は、エポキシ樹脂中に均一に配合できる濃度を示し、高い程優れていることを示す。比較例に比して実施例では2から3倍の優れた値を示し、塗料へ配合する場合により塗料から溶媒を除去して、樹脂硬化物とした際の樹脂物性(弾性率等の機械的強度、硬化時の収縮抑制)を高めることができると考えられる。
 本発明の製造方法によって得られた(好ましくはアニオン)変性セルロース繊維、好ましくは短繊維化された変性セルロース繊維は、各種塗料等に機械的強度を付与する強化剤および硬化時の収縮抑制剤として利用することができる。
1  供給スラリー
2  回転筒
3  スクリュー
4  回収ケーク
5  回収分離液

Claims (12)

  1.  変性セルロース繊維を含有する分散液を、遠心分離機の遠心力が50G以上600G以下の条件で固液分離する工程(工程A)を含む、変性セルロース繊維ケークの製造方法。
  2.  前記変性セルロース繊維ケークの固形分含有量が5質量%以上である、請求項1に記載の製造方法。
  3.  遠心分離機が連続式の遠心分離機である、請求項1又は2に記載の製造方法。
  4.  連続式の遠心分離機がデカンタ型遠心分離機である、請求項3に記載の製造方法。
  5.  変性セルロース繊維の変性がアニオン変性である、請求項1~4のいずれか1項に記載の製造方法。
  6.  工程Aに供される変性セルロース繊維の形態が、予め短繊維化された変性セルロース繊維である、請求項1~5のいずれか1項に記載の製造方法。
  7.  前記予め短繊維化された変性セルロース繊維の平均繊維長が50μm以上500μm以下である、請求項6に記載の製造方法。
  8.  アニオン変性セルロース繊維を50℃以上230℃以下の温度条件で熱分解処理に供することにより、短繊維化アニオン変性セルロース繊維を得る工程、及び
     前記短繊維化アニオン変性セルロース繊維を含有する分散液を、遠心分離機の遠心力が50G以上600G以下の条件で固液分離する工程(工程A)を含む、
    短繊維化アニオン変性セルロース繊維ケークの製造方法。
  9.  請求項1~7のいずれか1項に記載の製造方法によって製造されたケーク中の変性セルロース繊維に、又は請求項8に記載の製造方法によって製造されたケーク中の短繊維化アニオン変性セルロース繊維に、修飾基を導入する工程を含む、改質セルロース繊維の製造方法。
  10.  請求項1~7のいずれか1項に記載の製造方法によって製造された変性セルロース繊維ケーク、請求項8に記載の製造方法によって製造された短繊維化アニオン変性セルロース繊維ケーク、又は請求項9に記載の方法によって製造された改質セルロース繊維を、微細化処理する工程を含む、平均繊維長が50nm以上300nm以下である微細セルロース繊維の製造方法。
  11.  請求項1~7のいずれか1項に記載の製造方法によって製造された変性セルロース繊維ケーク、請求項8に記載の製造方法によって製造された短繊維化アニオン変性セルロース繊維ケーク、請求項9に記載の方法によって製造された改質セルロース繊維、又は請求項10に記載の製造方法によって製造された微細セルロース繊維と、樹脂とを混合する工程を含む、樹脂組成物の製造方法。
  12.  請求項1~7のいずれか1項に記載の製造方法によって製造された変性セルロース繊維ケークか又は請求項8に記載の製造方法によって製造された短繊維化アニオン変性セルロース繊維ケーク、修飾用化合物、及び樹脂を混合する工程を含む、樹脂組成物の製造方法。
PCT/JP2021/048681 2020-12-28 2021-12-27 変性セルロース繊維ケークの製造方法 WO2022145434A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180085195.2A CN116670176A (zh) 2020-12-28 2021-12-27 变性纤维素纤维滤饼的制造方法
EP21915292.3A EP4269688A1 (en) 2020-12-28 2021-12-27 Modified cellulose fiber cake manufacturing method
US18/027,846 US20230357448A1 (en) 2020-12-28 2021-12-27 Method for producing denatured cellulose fiber cake
KR1020237013201A KR20230127976A (ko) 2020-12-28 2021-12-27 변성 셀룰로오스 섬유 케이크의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020219393 2020-12-28
JP2020-219393 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145434A1 true WO2022145434A1 (ja) 2022-07-07

Family

ID=82260707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048681 WO2022145434A1 (ja) 2020-12-28 2021-12-27 変性セルロース繊維ケークの製造方法

Country Status (6)

Country Link
US (1) US20230357448A1 (ja)
EP (1) EP4269688A1 (ja)
JP (1) JP2022104604A (ja)
KR (1) KR20230127976A (ja)
CN (1) CN116670176A (ja)
WO (1) WO2022145434A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11500482A (ja) * 1995-02-21 1999-01-12 シェルカット ゲゼルシャフト ミット ベシュレンクテル ハフツング セルロース粒子、その製造方法およびその使用
US8980054B2 (en) * 2012-12-26 2015-03-17 Kimberly-Clark Worldwide, Inc. Soft tissue having reduced hydrogen bonding
JP2017131868A (ja) * 2016-01-29 2017-08-03 日本製紙株式会社 固液分離装置のケーキ脱落装置
JP2018044096A (ja) * 2016-09-16 2018-03-22 第一工業製薬株式会社 熱硬化性樹脂組成物
JP2018135421A (ja) * 2017-02-21 2018-08-30 日本製紙株式会社 セルロースナノファイバーの製造方法
WO2019235557A1 (ja) 2018-06-08 2019-12-12 花王株式会社 短繊維化アニオン変性セルロース繊維の製造方法
US20200255548A1 (en) * 2017-08-31 2020-08-13 Kimberly-Clark Worldwide, Inc. Nanofibrillated Cellulose Fibers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2551789A1 (de) * 1975-11-18 1977-06-02 Flottweg Werk Bruckmayer Vollmantel-schneckenzentrifuge mit differenzdrehzahlvariabler kupplung zwischen mantelteil und schneckenteil
AU712311B2 (en) * 1995-11-07 1999-11-04 Cytec Technology Corp. Concentration of solids in the bayer process
JP2019119867A (ja) * 2017-12-27 2019-07-22 花王株式会社 微細セルロース繊維複合体分散液
KR102621948B1 (ko) * 2017-12-27 2024-01-05 카오카부시키가이샤 미세화 소수 변성 셀룰로오스 섬유의 제조 방법
JP2019119880A (ja) * 2017-12-27 2019-07-22 花王株式会社 分散液

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11500482A (ja) * 1995-02-21 1999-01-12 シェルカット ゲゼルシャフト ミット ベシュレンクテル ハフツング セルロース粒子、その製造方法およびその使用
US8980054B2 (en) * 2012-12-26 2015-03-17 Kimberly-Clark Worldwide, Inc. Soft tissue having reduced hydrogen bonding
JP2017131868A (ja) * 2016-01-29 2017-08-03 日本製紙株式会社 固液分離装置のケーキ脱落装置
JP2018044096A (ja) * 2016-09-16 2018-03-22 第一工業製薬株式会社 熱硬化性樹脂組成物
JP2018135421A (ja) * 2017-02-21 2018-08-30 日本製紙株式会社 セルロースナノファイバーの製造方法
US20200255548A1 (en) * 2017-08-31 2020-08-13 Kimberly-Clark Worldwide, Inc. Nanofibrillated Cellulose Fibers
WO2019235557A1 (ja) 2018-06-08 2019-12-12 花王株式会社 短繊維化アニオン変性セルロース繊維の製造方法

Also Published As

Publication number Publication date
CN116670176A (zh) 2023-08-29
KR20230127976A (ko) 2023-09-01
JP2022104604A (ja) 2022-07-08
US20230357448A1 (en) 2023-11-09
EP4269688A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP6462051B2 (ja) 化学修飾セルロース繊維およびその製造方法
US9725583B2 (en) Method for preparing cellulose nanofiber capable of being stably dispersed
JP5540176B2 (ja) ミクロフィブリル化植物繊維及びその製造方法、並びにそれを用いた成形材料、及び樹脂成形材料の製造方法
CN102112509B (zh) 含有不饱和聚酯树脂和微纤化植物纤维的成型材料
US10562984B2 (en) Crude oil recovery additive
EP3390456B1 (en) Method for producing parenchymal cell cellulose
WO2019073810A1 (ja) 化学修飾セルロース繊維の製造方法
WO2021125362A1 (ja) リグニンと多糖類の製造方法
JP2017082202A (ja) 親水性樹脂組成物
US9803128B2 (en) Additive for drilling mud
JP2019031696A (ja) 化学修飾セルロース繊維およびその製造方法
JP2021152123A (ja) セルロース組成物及びセルロース組成物の製造方法
EP3564321A1 (en) Resin composition
JP7290759B2 (ja) セルロース分散液組成物及びセルロース樹脂複合材
JP2019119880A (ja) 分散液
KR20180028707A (ko) 폐신문지로부터 나노셀룰로오스의 제조방법
WO2022145434A1 (ja) 変性セルロース繊維ケークの製造方法
JP6759542B2 (ja) セルロース微小繊維分散液、セルロース微小繊維分散液の製造方法及び繊維複合樹脂
JP6160457B2 (ja) ロジン変性セルロース、ロジン変性セルロースミクロフィブリル及びこれらの製造方法
US20120205059A1 (en) Pretreatment method of cellulosic biomass via flowability control and reactive extrusion process
RU2708307C1 (ru) Способ получения нановолокон бактериальной целлюлозы
CN115161806B (zh) 一种基于直接循环与萃取回收双策略循环TEMPO的CNFs生产工艺
CN108004833A (zh) 一种纤维增韧造纸纸浆及其制备方法
JP7395847B2 (ja) 接着剤組成物及びその製造方法
FI123643B (fi) Menetelmä selluloosaesteripohjaisen pigmenttituotteen valmistamiseksi, pigmenttituote ja sen käyttö

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180085195.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021915292

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021915292

Country of ref document: EP

Effective date: 20230728