WO2022143007A1 - 一种耐热性聚酯树脂及其制备方法 - Google Patents

一种耐热性聚酯树脂及其制备方法 Download PDF

Info

Publication number
WO2022143007A1
WO2022143007A1 PCT/CN2021/135340 CN2021135340W WO2022143007A1 WO 2022143007 A1 WO2022143007 A1 WO 2022143007A1 CN 2021135340 W CN2021135340 W CN 2021135340W WO 2022143007 A1 WO2022143007 A1 WO 2022143007A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
heat
segment
pyridinedicarboxylic acid
resistant polyester
Prior art date
Application number
PCT/CN2021/135340
Other languages
English (en)
French (fr)
Inventor
王山水
王丽丽
王小雨
尹立新
魏存宏
吴帆
Original Assignee
江苏恒力化纤股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏恒力化纤股份有限公司 filed Critical 江苏恒力化纤股份有限公司
Publication of WO2022143007A1 publication Critical patent/WO2022143007A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6854Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6858Polycarboxylic acids and polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/918Polycarboxylic acids and polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/06Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Definitions

  • the invention belongs to the technical field of polyester resins, and relates to a heat-resistant polyester resin and a preparation method thereof.
  • the unsaturated polyester molecule is a long-chain molecule before curing, and its relative molecular mass is generally 1000-3000.
  • This long-chain molecule can be cross-linked with unsaturated monomers to form a huge network with complex structure. molecular.
  • This network molecule has a continuous network structure with a roughly uniform shape and an uneven continuous network structure. Between the continuous network with a higher density, there are chain molecules with a lower density connected to each other and a discontinuous network structure. Larger continuous webs are dispersed among the unbonded components.
  • the unsaturated polyester After curing, the unsaturated polyester mainly forms macromolecules of the second network structure.
  • Unsaturated polyester is the most common resin used in reinforced plastics. In the field of reinforced plastics, the amount of thermosetting resin accounts for about 75%, and the amount of thermoplastic resin is increasing. There are many varieties of thermosetting resins, among which the amount of unsaturated polyester resin far exceeds that of other resins, because unsaturated polyester has particularly favorable processing conditions and is cheap.
  • the present invention provides a heat resistance of polyester resin and a preparation method thereof.
  • a heat-resistant polyester resin is obtained by cross-linking an unsaturated polyester resin prepolymer
  • the polyester segment of the unsaturated polyester resin prepolymer includes propylene glycol segment, ethylene glycol segment, isophthalic acid segment, phthalic anhydride segment, maleic anhydride segment and 2 ,5-pyridinedicarboxylic acid segment;
  • the molar ratio of propylene glycol segment, ethylene glycol segment, isophthalic acid segment, phthalic anhydride segment, maleic anhydride segment and 2,5-pyridinedicarboxylic acid segment is 7.0 ⁇ 7.5:0.4 ⁇ 0.6:1.0 ⁇ 1.2:0.9 ⁇ 1.2:4.5 ⁇ 5.5:0.10 ⁇ 0.15;
  • the 2,5-pyridinedicarboxylic acid segments of different polyester segments are coordinated by Fe 2+ , and the 2,5-pyridinedicarboxylic acid segments participate in the coordination with two O atoms on carbonyl and N on pyridine atom;
  • the thermal deformation temperature under load of the heat-resistant polyester resin is 240-250°C (the test standard is GB/T1634.1).
  • the coordination structure formed by Fe 2+ coordination between the 2,5-pyridinedicarboxylic acid segments of different polyester segments is:
  • the present invention also provides a method for preparing the above-mentioned heat-resistant polyester resin.
  • a kind of preparation method of heat-resistant polyester resin as above, concrete steps are as follows:
  • the heat-resistant polyester resin is obtained by heat treatment and cooling.
  • Ferrous chloride and 2,5-pyridinedicarboxylic acid are in a dissociated state under high temperature melting state. During the cooling process of the melt, coordination will be formed between ferrous chloride and 2,5-pyridinedicarboxylic acid. When the coordination is further improved.
  • step (1) propylene glycol, ethylene acetal, isophthalic acid, phthalic anhydride, maleic anhydride and 2,5-
  • the molar ratio of pyridinedicarboxylic acid is 7.0 ⁇ 7.5:0.4 ⁇ 0.6:1.0 ⁇ 1.2:0.9 ⁇ 1.2:4.5 ⁇ 5.5:0.10 ⁇ 0.15
  • the addition amount of ferrous chloride is 30 ⁇ 50mol of 2,5-pyridinedicarboxylic acid %
  • the addition amount of the esterification catalyst stannous oxalate is 0.3-0.4 wt% of the isophthalic acid.
  • the vacuum degree of vacuum polycondensation in step (1) is less than or equal to 100Pa.
  • the crosslinking agent is triallyl cyanurate
  • the initiator is tert-butyl peroxybenzoate
  • the flame retardant is oxidative Antimony
  • the reinforcing material is an alkali-free glass fiber with a diameter of 15 ⁇ m and a length of 10 ⁇ m.
  • step (2) the temperature of the barrel of the parallel twin-screw extruder is 80 to 95° C., and the temperature of the barrel of the single-screw granulator is 85 to 100° C. °C.
  • the temperature of the heat treatment in step (3) is 50-70° C. and the time is 50-80 minutes.
  • the mechanism of the present invention is as follows:
  • the coordination molecule Fe(II) gradually combines with the ligand 2,5-pyridinedicarboxylic acid in the polyester to form a relatively stable coordination within a certain period of time.
  • the formation of Fe(II) and pyridine ligands is a five-membered ring pyridine ligand around a core of Fe(II), and the formation of metal-ligand coordination interactions enhances the intermolecular interactions.
  • the invention improves the heat resistance of the polyester resin by coordinating ferrous chloride with 2,5-pyridinedicarboxylic acid, the heat-resistant thermal deformation temperature of the heat-resistant polyester resin is 240-250°C, and the flammability is UL. -94-V-0.
  • a preparation method of heat-resistant polyester resin, the concrete steps are as follows:
  • the molar ratio of formic acid, phthalic anhydride, maleic anhydride and 2,5-pyridinedicarboxylic acid is 7.0:0.4:1.0:0.9:4.5:0.10, and the amount of ferrous chloride added is 2,5-pyridine 36 mol% of dicarboxylic acid, the addition amount of stannous oxalate as an esterification catalyst is 0.3 wt% of isophthalic acid;
  • the polyester segment of the unsaturated resin prepolymer includes propylene glycol segment, ethylene glycol segment, meta- Phthalic acid segment, phthalic anhydride segment, maleic anhydride segment and 2,5-pyridinedicarboxylic acid segment; Fe 2+ is coordinated, and the 2,5-pyridinedicarboxylic acid segment participates in the coordination with
  • the heat-resistant polyester resin is obtained by heat treatment and natural cooling; the heat treatment temperature is 65° C. and the time is 65 minutes.
  • the thermal deformation temperature under load of the prepared heat-resistant polyester resin is 240° C. (GB/T1634.1 test standard), and the flammability is UL-94-V-0.
  • a preparation method of heat-resistant polyester resin, the concrete steps are as follows:
  • the polyester segment of the unsaturated polyester resin prepolymer includes a propylene glycol segment, an ethylene glycol chain segment, isophthalic acid segment, phthalic anhydride segment, maleic anhydride segment and 2,5-pyridinedicarboxylic acid segment; 2,5-pyridinedicarboxylic acid segment of different polyester segments There are two O atoms on the carbonyl group and N
  • the discharge material is sent to a single-screw granulator for granulation to obtain regular granular plastics;
  • the barrel temperature of the parallel twin-screw extruder is 83°C, and the barrel temperature of the single-screw granulator is 89°C;
  • the heat-resistant polyester resin is obtained by heat treatment and natural cooling; the heat treatment temperature is 55° C. and the time is 70 minutes.
  • the thermal deformation temperature under load of the prepared heat-resistant polyester resin is 242° C. (GB/T1634.1 test standard), and the flammability is UL-94-V-0.
  • a preparation method of heat-resistant polyester resin, the concrete steps are as follows:
  • the polyester segment of the unsaturated polyester resin prepolymer includes a propylene glycol segment, an ethylene glycol chain segment, isophthalic acid segment, phthalic anhydride segment, maleic anhydride segment and 2,5-pyridinedicarboxylic acid segment; 2,5-pyridinedicarboxylic acid segment of different polyester segments There are two O atoms on the carbon
  • the heat-resistant polyester resin is obtained by heat treatment and natural cooling; the heat treatment temperature is 60° C. and the time is 75 minutes.
  • the thermal deformation temperature under load of the prepared heat-resistant polyester resin is 248° C. (GB/T1634.1 test standard), and the flammability is UL-94-V-0.
  • a preparation method of heat-resistant polyester resin, the concrete steps are as follows:
  • the acid value was measured, and after the acid value reached 26 mgKOH/g, vacuum polycondensation was started, and the vacuum degree was 18 Pa to obtain the unsaturated polyester resin prepolymer in the molten state;
  • the molar ratio of formic acid, phthalic anhydride, maleic anhydride and 2,5-pyridinedicarboxylic acid is 7.3:0.5:1.1:1:4.7:0.13, and the amount of ferrous chloride added is 2,5-pyridine 39mol% of dicarboxylic acid, the addition amount of stannous oxalate as an esterification catalyst is 0.4wt% of isophthalic acid;
  • the polyester segment of the unsaturated polyester resin prepolymer includes a propylene glycol segment, an ethylene glycol segment , isophthalic acid segment, phthalic anhydride segment, maleic anhydride segment and 2,5-pyridinedicarboxylic acid segment; 2,5-pyridinedicarboxylic acid segment of different polyester segments There are two O atoms on
  • the discharge material is sent to a single-screw granulator for granulation to obtain regular granular plastics;
  • the barrel temperature of the parallel twin-screw extruder is 89°C, and the barrel temperature of the single-screw granulator is 85°C;
  • the heat-resistant polyester resin is obtained by heat treatment and natural cooling; the heat treatment temperature is 50° C. and the time is 80 minutes.
  • the thermal deformation temperature under load of the prepared heat-resistant polyester resin is 246° C. (GB/T1634.1 test standard), and the flammability is UL-94-V-0.
  • a preparation method of heat-resistant polyester resin, the concrete steps are as follows:
  • the polyester segment of the unsaturated polyester resin prepolymer includes a propylene glycol segment, an ethylene glycol segment , isophthalic acid segment, phthalic anhydride segment, maleic anhydride segment and 2,5-pyridinedicarboxylic acid segment; 2,5-pyridinedicarboxylic acid segment of different polyester segments There are two O atoms on the carbonyl group and N atoms on the
  • the discharge material is sent to a single-screw granulator for granulation to obtain regular granular plastics;
  • the barrel temperature of the parallel twin-screw extruder is 92°C, and the barrel temperature of the single-screw granulator is 94°C;
  • the heat-resistant polyester resin is obtained by heat treatment and natural cooling; the heat treatment temperature is 66° C. and the time is 60 minutes.
  • the thermal deformation temperature under load of the prepared heat-resistant polyester resin is 246° C. (GB/T1634.1 test standard), and the flammability is UL-94-V-0.
  • a preparation method of heat-resistant polyester resin, the concrete steps are as follows:
  • the polyester segment of the unsaturated polyester resin prepolymer includes a propylene glycol segment, an ethylene glycol chain segment, isophthalic acid segment, phthalic anhydride segment, maleic anhydride segment and 2,5-pyridinedicarboxylic acid segment; 2,5-pyridinedicarboxylic acid segment of different polyester segments There are two O atoms on the carbon
  • the discharge material is sent to a single-screw granulator for granulation to obtain regular granular plastics;
  • the barrel temperature of the parallel twin-screw extruder is 94°C, and the barrel temperature of the single-screw granulator is 96°C;
  • the heat-resistant polyester resin is obtained by heat treatment and natural cooling; the heat treatment temperature is 68° C. and the time is 55 minutes.
  • the thermal deformation temperature under load of the prepared heat-resistant polyester resin is 249° C. (GB/T1634.1 test standard), and the flammability is UL-94-V-0.
  • a preparation method of heat-resistant polyester resin, the concrete steps are as follows:
  • the molar ratio of dicarboxylic acid, phthalic anhydride, maleic anhydride and 2,5-pyridinedicarboxylic acid is 7.5:0.6:1.2:1.2:5.5:0.15, and the amount of ferrous chloride added is 2,5- 50 mol% of picolinic acid, the addition amount of stannous oxalate as an esterification catalyst is 0.4 wt% of isophthalic acid;
  • the polyester segment of the unsaturated polyester resin prepolymer includes a propylene glycol segment, an ethylene glycol chain segment, isophthalic acid segment, phthalic anhydride segment, maleic anhydride segment and 2,5-pyridinedicarboxylic acid segment; 2,5-pyridinedicarboxylic acid segment of different polyester segments There are two O atoms on the
  • the discharge material is sent to a single-screw granulator for granulation to obtain regular granular plastics;
  • the barrel temperature of the parallel twin-screw extruder is 95°C, and the barrel temperature of the single-screw granulator is 100°C;
  • the heat-resistant polyester resin is obtained by heat treatment and natural cooling; the heat treatment temperature is 70° C. and the time is 50 minutes.
  • the thermal deformation temperature under load of the prepared heat-resistant polyester resin is 250° C. (GB/T1634.1 test standard), and the flammability is UL-94-V-0.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本发明涉及一种耐热性聚酯树脂及其制备方法,耐热性聚酯树脂包括丙二醇链段、一缩乙二醇链段、间苯二甲酸链段、邻苯二甲酸酐链段、顺丁烯二酸酐链段和2,5-吡啶二甲酸链段;不同聚酯链段的2,5-吡啶二甲酸链段之间经Fe 2+配位,且2,5-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子;耐热性聚酯树脂的负荷热变形温度240℃,燃烧性为UL-94-V-0;方法:首先将丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐、2,5-吡啶二甲酸、酯化催化剂草酸亚锡和氯化亚铁混合均匀后先后进行反应得到不饱和聚酯树脂预聚体,然后将不饱和聚酯树脂预聚体与交联剂、引发剂、阻燃剂和增强材料混合挤出得到规则颗粒状塑料,最后经过热处理制得耐热性聚酯树脂。

Description

一种耐热性聚酯树脂及其制备方法 技术领域
本发明属于聚酯树脂技术领域,涉及一种耐热性聚酯树脂及其制备方法。
背景技术
不饱和聚酯分子在固化前是长链形的分子,其相对分子质量一般为1000-3000,这种长链形分子可以与不饱和的单体交联而形成具有复杂结构的庞大的网状分子。这种网状分子有种形态大致均匀的连续网状结构不均匀的连续网状结构,在密度较大的连续网之间有密度较低的链型分子互相联结不连续的网状结构,密度较大的连续网分散于未键合的组分中间。不饱和聚酷固化后主要形成第二种网状结构的大分子。
不饱和聚酷是增强塑料中使用最普遍的树脂。在增强塑料领域中,热固性树脂用量约占75%,热塑性树脂用量正在增加。热固性树脂的品种有很多种,其中不饱和聚酯树脂用量远远超过其他各种树脂,因为不饱和聚酯具有特别有利的加工工艺条件,而且价格便宜。
随着社会经济的发展,许多应用场合给高分子材料提出了耐高温,高强度的特殊要求,比如汽车大灯聚光罩,发热电子器件的灌封料等。高温工业聚合物及工程塑料。此类材料主要用于航天、军工、电子-电气、机械等行业,具有良好的耐热性和抗高温、氧化性,在高温下经长期老化后,仍能保持优异的物理力学性能及电气性能
因此,如何进一步提高聚酯树脂的耐热性具有十分重要的意义。
发明内容
为了解决现有技术中聚酯树脂的耐热性的问题,本发明提供一种聚酯树脂的耐热性及其制备方法。
为达到上述目的,本发明采用的方案如下:
一种耐热性聚酯树脂,耐热性聚酯树脂由不饱和聚酯树脂预聚体经交联得到;
不饱和聚酯树脂预聚体的聚酯链段包括丙二醇链段、一缩乙二醇链段、间苯二甲酸链段、邻苯二甲酸酐链段、顺丁烯二酸酐链段和2,5-吡啶二甲酸链段;
丙二醇链段、一缩乙二醇链段、间苯二甲酸链段、邻苯二甲酸酐链段、顺丁烯二酸酐链段和2,5-吡啶二甲酸链段的摩尔比为 7.0~7.5:0.4~0.6:1.0~1.2:0.9~1.2:4.5~5.5:0.10~0.15;
不同聚酯链段的2,5-吡啶二甲酸链段之间经Fe 2+配位,2,5-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子;
耐热性聚酯树脂的负荷热变形温度240~250℃(测试标准为GB/T1634.1)。
作为优选的技术方案:
如上所述的一种耐热性聚酯树脂,不同聚酯链段的2,5-吡啶二甲酸链段之间经Fe 2+配位形成的配位结构为:
Figure PCTCN2021135340-appb-000001
如上所述的一种耐热性聚酯树脂,燃烧性为UL-94-V-0。
本发明还提供制备如上所述的一种耐热性聚酯树脂的方法,首先将丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐、2,5-吡啶二甲酸、酯化催化剂草酸亚锡和氯化亚铁混合均匀后先后进行酯化反应和缩聚反应得到不饱和聚酯树脂预聚体,然后将不饱和聚酯树脂预聚体与交联剂、引发剂、阻燃剂和增强材料混合后经螺杆挤出注塑得到规则颗粒状塑料,最后经过热处理制得耐热性聚酯树脂。
作为优选的技术方案:
如上所述的一种耐热性聚酯树脂的制备方法,具体步骤如下:
(1)采用熔融两步法合成聚酯聚合物,将丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐、2,5-吡啶二甲酸、酯化催化剂草酸亚锡和氯化亚铁加入反应釜,向反应釜中通入氮气,逐步升温并搅拌,在140℃开始酯化反应,待开始出水,热升温至200℃保温反应1.5~3.5h后测酸值,酸值达到20~30mgKOH/g后,开始抽真空缩聚,得到熔融状态下的不饱和聚酯树脂预聚体;
(2)按重量份数计,将不饱和聚酯树脂预聚体25~30份、交联剂3.3~3.6份、引发剂0.3~0.5份、阻燃剂10~12份和增强材料18份投入干粉混合机中,混合均匀后,经平行双螺杆挤出机炼塑,挤出料送入单螺杆造粒机进行造粒,制得规则颗粒状塑料;
(3)经热处理和冷却得到耐热性聚酯树脂。
氯化亚铁与2,5-吡啶二甲酸在高温融融状态下处于一种解离状态,熔体冷却的过程 中氯化亚铁与2,5-吡啶二甲酸之间会形成配位,热处理时配位得到进一步完善。
如上所述的一种耐热性聚酯树脂的制备方法,步骤(1)中丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐和2,5-吡啶二甲酸的摩尔比为7.0~7.5:0.4~0.6:1.0~1.2:0.9~1.2:4.5~5.5:0.10~0.15,氯化亚铁的加入量为2,5-吡啶二甲酸的30~50mol%,酯化催化剂草酸亚锡的加入量为间苯二甲酸的0.3~0.4wt%。
如上所述的一种耐热性聚酯树脂的制备方法,步骤(1)中抽真空缩聚的真空度≤100Pa。
如上所述的一种耐热性聚酯树脂的制备方法,步骤(2)中交联剂为三聚氰酸三烯丙酯,引发剂为过氧化苯甲酸叔丁酯,阻燃剂为氧化锑,增强材料为直径为15μm、长度为l0μm的无碱玻璃纤维。
如上所述的一种耐热性聚酯树脂的制备方法,步骤(2)中平行双螺杆挤出机的料筒温度为80~95℃,单螺杆造粒机的料筒温度为85~100℃。
如上所述的一种耐热性聚酯树脂的制备方法,步骤(3)中热处理的温度为50~70℃,时间50~80min。
本发明的机理如下:
本发明的Fe(Ⅱ)分散到不饱和聚酯内部时,在一定的时间内配位分子Fe(Ⅱ)逐渐与聚酯中的配体2,5-吡啶二甲酸结合形成较为稳定的配位物结构单元,Fe(Ⅱ)与吡啶配体之间形成以Fe(Ⅱ)的一个核心周围含有一个五元环吡啶配体,金属-配体配位相互作用的形成增强了分子间相互作用,并形成物理交联点,是对聚酯树脂化学交联点的补充,同时对聚酯树脂的强度有增强作用,减少了化学交联点过多对强度的影响,进一步提高了聚酯树脂的耐热性。
有益效果:
本发明通过将氯化亚铁与2,5-吡啶二甲酸进行配位,提高了聚酯树脂的耐热性,耐热性聚酯树脂的负荷热变形温度240~250℃,燃烧性为UL-94-V-0。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求 书所限定的范围。
实施例1
一种耐热性聚酯树脂的制备方法,具体步骤如下:
(1)采用熔融两步法合成聚酯聚合物,将丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐、2,5-吡啶二甲酸、酯化催化剂草酸亚锡和氯化亚铁加入反应釜,向反应釜中通入氮气,逐步升温并搅拌,在140℃开始酯化反应,待开始出水,以1℃/min热升温至200℃保温反应2h后测酸值,酸值达到22mgKOH/g后,开始抽真空缩聚,真空度为100Pa,得到熔融状态下的不饱和聚酯树脂预聚体;其中丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐和2,5-吡啶二甲酸的摩尔比为7.0:0.4:1.0:0.9:4.5:0.10,氯化亚铁的加入量为2,5-吡啶二甲酸的36mol%,酯化催化剂草酸亚锡的加入量为间苯二甲酸的0.3wt%;不饱和树脂预聚体的聚酯链段包括丙二醇链段、一缩乙二醇链段、间苯二甲酸链段、邻苯二甲酸酐链段、顺丁烯二酸酐链段和2,5-吡啶二甲酸链段;不同聚酯链段的2,5-吡啶二甲酸链段之间经Fe 2+配位,且2,5-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子,配位形成的配位结构为:
Figure PCTCN2021135340-appb-000002
(2)按重量份数计,将不饱和聚酯树脂预聚体27份、交联剂(三聚氰酸三烯丙酯)3.5份、引发剂(过氧化苯甲酸叔丁酯)0.4份、阻燃剂(氧化锑)11份和增强材料(直径为15μm、长度为l0μm的无碱玻璃纤维)18份投入干粉混合机中,混合均匀后,经平行双螺杆挤出机炼塑,挤出料送入单螺杆造粒机进行造粒,制得规则颗粒状塑料;平行双螺杆挤出机的料筒温度为80℃,单螺杆造粒机的料筒温度为93℃;
(3)经热处理和自然冷却得到耐热性聚酯树脂;热处理的温度为65℃,时间65min。
制得的耐热性聚酯树脂的负荷热变形温度为240℃(GB/T1634.1测试标准),燃烧性为UL-94-V-0。
实施例2
一种耐热性聚酯树脂的制备方法,具体步骤如下:
(1)采用熔融两步法合成聚酯聚合物,将丙二醇、一缩乙二醇、间苯二甲酸、邻 苯二甲酸酐、顺丁烯二酸酐、2,5-吡啶二甲酸、酯化催化剂草酸亚锡和氯化亚铁加入反应釜,向反应釜中通入氮气,逐步升温并搅拌,在140℃开始酯化反应,待开始出水,以1℃/min热升温至200℃保温反应1.5h后测酸值,酸值达到20mgKOH/g后,开始抽真空缩聚,真空度为30Pa,得到熔融状态下的不饱和聚酯树脂预聚体;其中丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐和2,5-吡啶二甲酸的摩尔比为7.1:0.4:1:0.9:4.5:0.11,氯化亚铁的加入量为2,5-吡啶二甲酸的33mol%,酯化催化剂草酸亚锡的加入量为间苯二甲酸的0.3wt%;不饱和聚酯树脂预聚体的聚酯链段包括丙二醇链段、一缩乙二醇链段、间苯二甲酸链段、邻苯二甲酸酐链段、顺丁烯二酸酐链段和2,5-吡啶二甲酸链段;不同聚酯链段的2,5-吡啶二甲酸链段之间经Fe 2+配位,且2,5-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子,配位形成的配位结构为:
Figure PCTCN2021135340-appb-000003
(2)按重量份数计,将不饱和聚酯树脂预聚体26份、交联剂(三聚氰酸三烯丙酯)3.4份、引发剂(过氧化苯甲酸叔丁酯)0.3份、阻燃剂(氧化锑)10份和增强材料(直径为15μm、长度为l0μm的无碱玻璃纤维)18份投入干粉混合机中,混合均匀后,经平行双螺杆挤出机炼塑,挤出料送入单螺杆造粒机进行造粒,制得规则颗粒状塑料;平行双螺杆挤出机的料筒温度为83℃,单螺杆造粒机的料筒温度为89℃;
(3)经热处理和自然冷却得到耐热性聚酯树脂;热处理的温度为55℃,时间70min。
制得的耐热性聚酯树脂的负荷热变形温度为242℃(GB/T1634.1测试标准),燃烧性为UL-94-V-0。
实施例3
一种耐热性聚酯树脂的制备方法,具体步骤如下:
(1)采用熔融两步法合成聚酯聚合物,将丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐、2,5-吡啶二甲酸、酯化催化剂草酸亚锡和氯化亚铁加入反应釜,向反应釜中通入氮气,逐步升温并搅拌,在140℃开始酯化反应,待开始出水,以1℃/min热升温至200℃保温反应2.5h后测酸值,酸值达到25mgKOH/g后,开始抽真空缩聚,真空度为15Pa,得到熔融状态下的不饱和聚酯树脂预聚体;其中丙二醇、一 缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐和2,5-吡啶二甲酸的摩尔比为7.2:0.4:1:1:4.6:0.13,氯化亚铁的加入量为2,5-吡啶二甲酸的30mol%,酯化催化剂草酸亚锡的加入量为间苯二甲酸的0.4wt%;不饱和聚酯树脂预聚体的聚酯链段包括丙二醇链段、一缩乙二醇链段、间苯二甲酸链段、邻苯二甲酸酐链段、顺丁烯二酸酐链段和2,5-吡啶二甲酸链段;不同聚酯链段的2,5-吡啶二甲酸链段之间经Fe 2+配位,且2,5-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子,配位形成的配位结构为:
Figure PCTCN2021135340-appb-000004
(2)按重量份数计,将不饱和聚酯树脂预聚体25份、交联剂(三聚氰酸三烯丙酯)3.5份、引发剂(过氧化苯甲酸叔丁酯)0.4份、阻燃剂(氧化锑)11份和增强材料(直径为15μm、长度为l0μm的无碱玻璃纤维)18份投入干粉混合机中,混合均匀后,经平行双螺杆挤出机炼塑,挤出料送入单螺杆造粒机进行造粒,制得规则颗粒状塑料;平行双螺杆挤出机的料筒温度为86℃,单螺杆造粒机的料筒温度为92℃;
(3)经热处理和自然冷却得到耐热性聚酯树脂;热处理的温度为60℃,时间75min。
制得的耐热性聚酯树脂的负荷热变形温度为248℃(GB/T1634.1测试标准),燃烧性为UL-94-V-0。
实施例4
一种耐热性聚酯树脂的制备方法,具体步骤如下:
(1)采用熔融两步法合成聚酯聚合物,将丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐、2,5-吡啶二甲酸、酯化催化剂草酸亚锡和氯化亚铁加入反应釜,向反应釜中通入氮气,逐步升温并搅拌,在140℃开始酯化反应,待开始出水,以1℃/min热升温至200℃保温反应3h后测酸值,酸值达到26mgKOH/g后,开始抽真空缩聚,真空度为18Pa,得到熔融状态下的不饱和聚酯树脂预聚体;其中丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐和2,5-吡啶二甲酸的摩尔比为7.3:0.5:1.1:1:4.7:0.13,氯化亚铁的加入量为2,5-吡啶二甲酸的39mol%,酯化催化剂草酸亚锡的加入量为间苯二甲酸的0.4wt%;不饱和聚酯树脂预聚体的聚酯链段包括丙二醇链段、一缩乙二醇链段、间苯二甲酸链段、邻苯二甲酸酐链段、顺丁烯二酸酐链段和 2,5-吡啶二甲酸链段;不同聚酯链段的2,5-吡啶二甲酸链段之间经Fe 2+配位,且2,5-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子,配位形成的配位结构为:
Figure PCTCN2021135340-appb-000005
(2)按重量份数计,将不饱和聚酯树脂预聚体28份、交联剂(三聚氰酸三烯丙酯)3.3份、引发剂(过氧化苯甲酸叔丁酯)0.3份、阻燃剂(氧化锑)10份和增强材料(直径为15μm、长度为l0μm的无碱玻璃纤维)18份投入干粉混合机中,混合均匀后,经平行双螺杆挤出机炼塑,挤出料送入单螺杆造粒机进行造粒,制得规则颗粒状塑料;平行双螺杆挤出机的料筒温度为89℃,单螺杆造粒机的料筒温度为85℃;
(3)经热处理和自然冷却得到耐热性聚酯树脂;热处理的温度为50℃,时间80min。
制得的耐热性聚酯树脂的负荷热变形温度为246℃(GB/T1634.1测试标准),燃烧性为UL-94-V-0。
实施例5
一种耐热性聚酯树脂的制备方法,具体步骤如下:
(1)采用熔融两步法合成聚酯聚合物,将丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐、2,5-吡啶二甲酸、酯化催化剂草酸亚锡和氯化亚铁加入反应釜,向反应釜中通入氮气,逐步升温并搅拌,在140℃开始酯化反应,待开始出水,以1℃/min热升温至200℃保温反应3h后测酸值,酸值达到27mgKOH/g后,开始抽真空缩聚,真空度为25Pa,得到熔融状态下的不饱和聚酯树脂预聚体;其中丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐和2,5-吡啶二甲酸的摩尔比为7.4:0.5:1.1:1.1:5:0.14,氯化亚铁的加入量为2,5-吡啶二甲酸的42mol%,酯化催化剂草酸亚锡的加入量为间苯二甲酸的0.3wt%;不饱和聚酯树脂预聚体的聚酯链段包括丙二醇链段、一缩乙二醇链段、间苯二甲酸链段、邻苯二甲酸酐链段、顺丁烯二酸酐链段和2,5-吡啶二甲酸链段;不同聚酯链段的2,5-吡啶二甲酸链段之间经Fe 2+配位,且2,5-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子,配位形成的配位结构为:
Figure PCTCN2021135340-appb-000006
(2)按重量份数计,将不饱和聚酯树脂预聚体29份、交联剂(三聚氰酸三烯丙酯)3.6份、引发剂(过氧化苯甲酸叔丁酯)0.5份、阻燃剂(氧化锑)12份和增强材料(直径为15μm、长度为l0μm的无碱玻璃纤维)18份投入干粉混合机中,混合均匀后,经平行双螺杆挤出机炼塑,挤出料送入单螺杆造粒机进行造粒,制得规则颗粒状塑料;平行双螺杆挤出机的料筒温度为92℃,单螺杆造粒机的料筒温度为94℃;
(3)经热处理和自然冷却得到耐热性聚酯树脂;热处理的温度为66℃,时间60min。
制得的耐热性聚酯树脂的负荷热变形温度为246℃(GB/T1634.1测试标准),燃烧性为UL-94-V-0。
实施例6
一种耐热性聚酯树脂的制备方法,具体步骤如下:
(1)采用熔融两步法合成聚酯聚合物,将丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐、2,5-吡啶二甲酸、酯化催化剂草酸亚锡和氯化亚铁加入反应釜,向反应釜中通入氮气,逐步升温并搅拌,在140℃开始酯化反应,待开始出水,以1℃/min热升温至200℃保温反应3.5h后测酸值,酸值达到28mgKOH/g后,开始抽真空缩聚,真空度为19Pa,得到熔融状态下的不饱和聚酯树脂预聚体;其中丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐和2,5-吡啶二甲酸的摩尔比为7.5:0.6:1.2:1.2:5.2:0.15,氯化亚铁的加入量为2,5-吡啶二甲酸的48mol%,酯化催化剂草酸亚锡的加入量为间苯二甲酸的0.4wt%;不饱和聚酯树脂预聚体的聚酯链段包括丙二醇链段、一缩乙二醇链段、间苯二甲酸链段、邻苯二甲酸酐链段、顺丁烯二酸酐链段和2,5-吡啶二甲酸链段;不同聚酯链段的2,5-吡啶二甲酸链段之间经Fe 2+配位,且2,5-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子,配位形成的配位结构为:
Figure PCTCN2021135340-appb-000007
(2)按重量份数计,将不饱和聚酯树脂预聚体30份、交联剂(三聚氰酸三烯丙酯)3.6份、引发剂(过氧化苯甲酸叔丁酯)0.5份、阻燃剂(氧化锑)12份和增强材料(直径为15μm、长度为l0μm的无碱玻璃纤维)18份投入干粉混合机中,混合均匀后,经平行双螺杆挤出机炼塑,挤出料送入单螺杆造粒机进行造粒,制得规则颗粒状塑料;平行双螺杆挤出机的料筒温度为94℃,单螺杆造粒机的料筒温度为96℃;
(3)经热处理和自然冷却得到耐热性聚酯树脂;热处理的温度为68℃,时间55min。
制得的耐热性聚酯树脂的负荷热变形温度为249℃(GB/T1634.1测试标准),燃烧性为UL-94-V-0。
实施例7
一种耐热性聚酯树脂的制备方法,具体步骤如下:
(1)采用熔融两步法合成聚酯聚合物,将丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐、2,5-吡啶二甲酸、酯化催化剂草酸亚锡和氯化亚铁加入反应釜,向反应釜中通入氮气,逐步升温并搅拌,在140℃开始酯化反应,待开始出水,以1℃/min热升温至200℃保温反应3.5h后测酸值,酸值达到30mgKOH/g后,开始抽真空缩聚,真空度为17Pa,得到熔融状态下的不饱和聚酯树脂预聚体;其中丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐和2,5-吡啶二甲酸的摩尔比为7.5:0.6:1.2:1.2:5.5:0.15,氯化亚铁的加入量为2,5-吡啶二甲酸的50mol%,酯化催化剂草酸亚锡的加入量为间苯二甲酸的0.4wt%;不饱和聚酯树脂预聚体的聚酯链段包括丙二醇链段、一缩乙二醇链段、间苯二甲酸链段、邻苯二甲酸酐链段、顺丁烯二酸酐链段和2,5-吡啶二甲酸链段;不同聚酯链段的2,5-吡啶二甲酸链段之间经Fe 2+配位,且2,5-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子,配位形成的配位结构为:
Figure PCTCN2021135340-appb-000008
(2)按重量份数计,将不饱和聚酯树脂预聚体30份、交联剂(三聚氰酸三烯丙酯)3.6份、引发剂(过氧化苯甲酸叔丁酯)0.5份、阻燃剂(氧化锑)12份和增强材料(直径为15μm、长度为l0μm的无碱玻璃纤维)18份投入干粉混合机中,混合均匀后,经平行双螺杆挤出机炼塑,挤出料送入单螺杆造粒机进行造粒,制得规则颗粒状塑料;平 行双螺杆挤出机的料筒温度为95℃,单螺杆造粒机的料筒温度为100℃;
(3)经热处理和自然冷却得到耐热性聚酯树脂;热处理的温度为70℃,时间50min。
制得的耐热性聚酯树脂的负荷热变形温度为250℃(GB/T1634.1测试标准),燃烧性为UL-94-V-0。

Claims (10)

  1. 一种耐热性聚酯树脂,其特征在于:耐热性聚酯树脂由不饱和聚酯树脂预聚体经交联得到;
    不饱和聚酯树脂预聚体的聚酯链段包括丙二醇链段、一缩乙二醇链段、间苯二甲酸链段、邻苯二甲酸酐链段、顺丁烯二酸酐链段和2,5-吡啶二甲酸链段;
    丙二醇链段、一缩乙二醇链段、间苯二甲酸链段、邻苯二甲酸酐链段、顺丁烯二酸酐链段和2,5-吡啶二甲酸链段的摩尔比为7.0~7.5:0.4~0.6:1.0~1.2:0.9~1.2:4.5~5.5:0.10~0.15;
    不同聚酯链段的2,5-吡啶二甲酸链段之间经Fe 2+配位,2,5-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子;
    耐热性聚酯树脂的负荷热变形温度240~250℃。
  2. 根据权利要求1所述的一种耐热性聚酯树脂,其特征在于,不同聚酯链段的2,5-吡啶二甲酸链段之间经Fe 2+配位形成的配位结构为:
    Figure PCTCN2021135340-appb-100001
  3. 根据权利要求1所述的一种耐热性聚酯树脂,其特征在于,耐热性聚酯树脂的燃烧性为UL-94-V-0。
  4. 制备如权利要求1~3任一项所述的一种耐热性聚酯树脂的方法,其特征在于:首先将丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐、2,5-吡啶二甲酸、酯化催化剂草酸亚锡和氯化亚铁混合均匀后先后进行酯化反应和缩聚反应得到不饱和聚酯树脂预聚体,然后将不饱和聚酯树脂预聚体与交联剂、引发剂、阻燃剂和增强材料混合后经螺杆挤出注塑得到规则颗粒状塑料,最后经过热处理制得耐热性聚酯树脂。
  5. 根据权利要求4所述的方法,其特征在于,具体步骤如下:
    (1)采用熔融两步法合成聚酯聚合物,将丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐、2,5-吡啶二甲酸、酯化催化剂草酸亚锡和氯化亚铁加入反应釜,向反应釜中通入氮气,逐步升温并搅拌,在140℃开始酯化反应,待开始出水,热升温至200℃保温反应1.5~3.5h后测酸值,酸值达到20~30mgKOH/g后,开始抽真空缩聚,得到熔融状态下的不饱和聚酯树脂预聚体;
    (2)按重量份数计,将不饱和聚酯树脂预聚体25~30份、交联剂3.3~3.6份、引发剂0.3~0.5份、阻燃剂10~12份和增强材料18份投入干粉混合机中,混合均匀后,经平行双螺杆挤出机炼塑,挤出料送入单螺杆造粒机进行造粒,制得规则颗粒状塑料;
    (3)经热处理和冷却得到耐热性聚酯树脂。
  6. 根据权利要求4所述的方法,其特征在于,步骤(1)中丙二醇、一缩乙二醇、间苯二甲酸、邻苯二甲酸酐、顺丁烯二酸酐和2,5-吡啶二甲酸的摩尔比为7.0~7.5:0.4~0.6:1.0~1.2:0.9~1.2:4.5~5.5:0.10~0.15,氯化亚铁的加入量为2,5-吡啶二甲酸的30~50mol%,酯化催化剂草酸亚锡的加入量为间苯二甲酸的0.3~0.4wt%。
  7. 根据权利要求5所述的方法,其特征在于,步骤(1)中抽真空缩聚的真空度≤100Pa。
  8. 根据权利要求5所述的方法,其特征在于,步骤(2)中交联剂为三聚氰酸三烯丙酯,引发剂为过氧化苯甲酸叔丁酯,阻燃剂为氧化锑,增强材料为直径为15μm、长度为l0μm的无碱玻璃纤维。
  9. 根据权利要求5所述的方法,其特征在于,步骤(2)中平行双螺杆挤出机的料筒温度为80~95℃,单螺杆造粒机的料筒温度为85~100℃。
  10. 根据权利要求5所述的方法,其特征在于,步骤(3)中热处理的温度为50~70℃,时间50~80min。
PCT/CN2021/135340 2020-12-29 2021-12-03 一种耐热性聚酯树脂及其制备方法 WO2022143007A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011607863.7 2020-12-29
CN202011607863.7A CN112745493B (zh) 2020-12-29 2020-12-29 一种耐热性聚酯树脂及其制备方法

Publications (1)

Publication Number Publication Date
WO2022143007A1 true WO2022143007A1 (zh) 2022-07-07

Family

ID=75649473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135340 WO2022143007A1 (zh) 2020-12-29 2021-12-03 一种耐热性聚酯树脂及其制备方法

Country Status (2)

Country Link
CN (1) CN112745493B (zh)
WO (1) WO2022143007A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160968A (zh) * 2022-07-25 2022-10-11 广州市嘉雁粘合剂有限公司 一种床垫及沙发用反应型聚氨酯热熔胶及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745493B (zh) * 2020-12-29 2022-08-19 江苏恒力化纤股份有限公司 一种耐热性聚酯树脂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219319A (ja) * 1983-05-30 1984-12-10 Japan Atom Energy Res Inst 不飽和ポリエステル樹脂組成物を含有するプロテクトフィルム又はプロテクトフィルム用粘着剤
JPS6460689A (en) * 1987-08-31 1989-03-07 Hiroyoshi Shirai Polymeric liquid crystal material
CN105764958A (zh) * 2013-12-12 2016-07-13 阿克苏诺贝尔化学品国际有限公司 固化自由基可固化树脂的方法
CN107082875A (zh) * 2017-06-06 2017-08-22 无锡阿科力科技股份有限公司 耐热型不饱和聚酯树脂及其制备方法
CN108341965A (zh) * 2017-01-25 2018-07-31 翁秋梅 一种交联动态聚合物及其应用
CN112745493A (zh) * 2020-12-29 2021-05-04 江苏恒力化纤股份有限公司 一种耐热性聚酯树脂及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013083630A1 (en) * 2011-12-06 2013-06-13 Dsm Ip Assets B.V. Resin composition
CN111253557B (zh) * 2020-03-19 2022-04-15 北华航天工业学院 一种耐热型不饱和聚酯树脂的制备方法
CN111234259A (zh) * 2020-04-24 2020-06-05 昭通学院 一种高效制备亚铁基金属有机框架材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219319A (ja) * 1983-05-30 1984-12-10 Japan Atom Energy Res Inst 不飽和ポリエステル樹脂組成物を含有するプロテクトフィルム又はプロテクトフィルム用粘着剤
JPS6460689A (en) * 1987-08-31 1989-03-07 Hiroyoshi Shirai Polymeric liquid crystal material
CN105764958A (zh) * 2013-12-12 2016-07-13 阿克苏诺贝尔化学品国际有限公司 固化自由基可固化树脂的方法
CN108341965A (zh) * 2017-01-25 2018-07-31 翁秋梅 一种交联动态聚合物及其应用
CN107082875A (zh) * 2017-06-06 2017-08-22 无锡阿科力科技股份有限公司 耐热型不饱和聚酯树脂及其制备方法
CN112745493A (zh) * 2020-12-29 2021-05-04 江苏恒力化纤股份有限公司 一种耐热性聚酯树脂及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160968A (zh) * 2022-07-25 2022-10-11 广州市嘉雁粘合剂有限公司 一种床垫及沙发用反应型聚氨酯热熔胶及其制备方法

Also Published As

Publication number Publication date
CN112745493B (zh) 2022-08-19
CN112745493A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2022143007A1 (zh) 一种耐热性聚酯树脂及其制备方法
US4016140A (en) Amide-imide copolymer moldings and method of preparation
CN111511968B (zh) 纺丝性得到改善的全芳香族液晶聚酯纤维的制造方法
JPH0149383B2 (zh)
KR930703375A (ko) 고분자량 폴리에스테르 수지의 제조방법
CN104031252A (zh) 一种快结晶、阻燃pet共聚物的连续聚合制备方法
JP3024030B2 (ja) 加水分解安定性の優れたポリブチレンテレフタレート重合体の製造方法
CN110128641B (zh) 五元环静电耗散共聚酯及其制备方法和应用
US5877262A (en) Polyester resin and process for the production thereof
CN115073735B (zh) 一种超支化半芳烃聚酯酰亚胺聚合物及其制备方法
CN1253962A (zh) 一种聚(酯-酰胺-醚)多嵌段共聚物及其制法和用途
CN114605633A (zh) 一种本体阻燃尼龙及其制备方法和应用
JPH024608B2 (zh)
CN113651955A (zh) 一种具有较好加工性能的半芳香族聚酰胺树脂及其制备方法和应用
JPH0228216A (ja) 改質ポリアミド(イミド)の製造方法
KR101988184B1 (ko) 방사성이 향상된 전방향족 액정 폴리에스터 섬유
KR101049259B1 (ko) 고점도 폴리에스테르 수지의 제조 방법
CN116375987A (zh) 芳香族液晶聚酯树脂的制造方法及其复合物的制造方法
CN116496744A (zh) 一种熔体粘度低、固化快的聚酯热熔胶及制备方法
CN117447816A (zh) 一种液晶聚合物组合物及其制备方法
CN114805758A (zh) 一种聚醚酮酮及其制备方法和应用
CN117843880A (zh) 一种可熔融加工的高粘接力聚酯材料及其制备方法
JP2004143211A (ja) ポリブチレンテレフタレート樹脂組成物及びそれを用いたコネクター
CN116675854A (zh) 一种可连续挤出再加工的热固性塑料、制备方法以及热固性塑料的再加工方法
CN117887050A (zh) 一种液晶聚合物的制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913748

Country of ref document: EP

Kind code of ref document: A1