WO2022142936A1 - Plant-derived glufosinate-ammonium-resistant glutamine synthase mutant, nucleic acid molecule, and applications - Google Patents

Plant-derived glufosinate-ammonium-resistant glutamine synthase mutant, nucleic acid molecule, and applications Download PDF

Info

Publication number
WO2022142936A1
WO2022142936A1 PCT/CN2021/133918 CN2021133918W WO2022142936A1 WO 2022142936 A1 WO2022142936 A1 WO 2022142936A1 CN 2021133918 W CN2021133918 W CN 2021133918W WO 2022142936 A1 WO2022142936 A1 WO 2022142936A1
Authority
WO
WIPO (PCT)
Prior art keywords
glufosinate
plant
glutamine synthase
wild
mutant
Prior art date
Application number
PCT/CN2021/133918
Other languages
French (fr)
Chinese (zh)
Inventor
邓龙群
陈容
张震
候青江
胥南飞
Original Assignee
四川天豫兴禾生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川天豫兴禾生物科技有限公司 filed Critical 四川天豫兴禾生物科技有限公司
Publication of WO2022142936A1 publication Critical patent/WO2022142936A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • C12N15/8277Phosphinotricin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/01Acid-ammonia (or amine)ligases (amide synthases)(6.3.1)
    • C12Y603/01002Glutamate-ammonia ligase (6.3.1.2)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present disclosure relates to the technical field of genetic engineering, in particular, to a plant-derived glutamine synthase mutant with glufosinate-ammonium resistance, a nucleic acid molecule and applications.
  • Glutamine synthetase is a key enzyme in plant nitrogen metabolism. It catalyzes the condensation of glutamate (Gln) and NH3 to form glutamine (Glu) in the glutamate synthetase cycle, and is involved in plant nitrogen-containing Metabolism of compounds.
  • the isoenzymes of higher plant GS (which belong to GSII) can be divided into two types: one is located in the cytoplasm called cytoplasmic GS (GS1) with a molecular weight of 38-40kDa; the other is located in the cytoplasm.
  • the chloroplast (or plastid) is called plastid-type GS (GS2), with a molecular weight of 44-45kDa.
  • Glufosinate (glufosinate, glufosinate ammoni ⁇ M, trade name Basta) is a glutamine synthase (GS1) inhibitor developed by Aventis (now Bayer), its active ingredient is phosphinothricin (referred to as PPT), chemical name It is (RS)-2-amino-4-(hydroxymethyl phosphinyl) ammonium butyrate.
  • PPT glutamine synthase
  • PPT phosphinothricin
  • RS phosphinothricin
  • the product was launched in 1986, and sales have increased year by year.
  • the target enzyme of glufosinate-ammonium is GS. Under normal circumstances, GS can form ⁇ -glutamyl phosphate from ATP and glutamate.
  • PPT is first combined with ATP, and the phosphorylated PPT occupies the eight reaction centers of GS molecule, which changes the spatial configuration of GS and inhibits the activity of GS. PPT inhibits all known forms of GS.
  • glufosinate-ammonium inhibition of GS can lead to disorder of nitrogen metabolism in plants, excessive accumulation of ammonium, disintegration of chloroplasts, inhibition of photosynthesis, and ultimately plant death.
  • the main method of cultivating glufosinate-resistant varieties is to use genetic engineering methods to introduce the glufosinate-resistant gene from bacteria into crops, so as to cultivate new varieties of transgenic glufosinate-resistant crops.
  • the most widely used glufosinate-resistant genes in agriculture are the bar gene from the strain Streptomyces hygroscopicus and the pat gene from the strain S. viridochromogenes. Bar gene and pat gene share 80% homology, and both can encode glufosinate acetylase, which can inactivate glufosinate acetylation.
  • Glufosinate-resistant varieties have great use value, among which resistant rape and corn have been commercialized in large areas.
  • GM due to the anti-GM wave, the acceptance of GM crops in the world is still low. Even in the Americas, where the GM crops are planted with the largest area, GM is mainly limited to a few crops such as corn, soybean, and cotton. In particular, the bar gene and pat gene are derived from microorganisms, rather than from the crops themselves, which are more likely to cause consumer resistance.
  • the glufosinate acetylase encoded by Bar and pat genes can acetylate and inactivate glufosinate, but it is difficult for the enzyme to completely inactivate glufosinate before the glufosinate is exposed to GS, because many GS are distributed in the Therefore, when glufosinate-ammonium is applied to bar gene and pat gene crops, it will interfere with the nitrogen metabolism of plants to varying degrees, and at the same time affect the normal growth and development of plants. Overexpression of wild-type GS in plants can reduce the sensitivity of transgenic plants to glufosinate, but the degree of tolerance is insufficient for commercial application.
  • the present disclosure provides a glutamine synthase mutant with glufosinate resistance, which is shown in the following (1) or (2):
  • (1) it is obtained by mutating the n-th position of a plant-derived wild-type glutamine synthetase; the position of the n-th position is determined by comparing the wild-type glutamine synthase with the reference sequence. Right, the nth position of the wild-type glutamine synthetase corresponds to the 68th position of the reference sequence, wherein the amino acid sequence of the reference sequence is as shown in SEQ ID NO.1;
  • the research of the present disclosure found that the wild-type glutamine synthetase derived from plants was compared with the reference sequence, and the amino acid position corresponding to the 68th position of the reference sequence, that is, the n-th position, was mutated to mutate to D, E, G, H, N, P, Q, V or deletion, the obtained glutamine synthase mutant has glufosinate resistance, while maintaining its own biological enzyme catalytic activity.
  • Plants or recombinant bacteria transformed with the plant glutamine synthase mutant provided by the present disclosure can grow and develop normally in the presence of glufosinate-ammonium, and the plant glutamine synthase mutant is not only used for transgenic crop cultivation, but also It can be used to cultivate glufosinate-resistant non-transgenic plants or transgenic plants such as rice, tobacco, soybean, corn, wheat, rapeseed, cotton and sorghum, etc., and has broad application prospects.
  • the above reference sequence is a wild-type glutamine synthase derived from rice.
  • the sequence alignment method can use the Blast website (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to perform Protein Blast alignment; other sequence alignment methods or tools well known in the art can also be used to obtain the same result.
  • position n of wild-type glutamine synthase may also be position 68 on its own sequence (eg, corn, wheat, soybean, canola, etc.), but may not be position 68,
  • the position of the nth position is determined according to the aforementioned sequence alignment. As long as it is aligned with the reference sequence, the position corresponding to the 68th position of the reference sequence is the nth position described in the present disclosure, that is, the mutation site.
  • the plants include, but are not limited to, wheat, rice, barley, oats, corn, sorghum, millet, buckwheat, millet, mung bean, broad bean, pea, lentil, sweet potato, potato , cotton, soybean, rapeseed, sesame, peanut, sunflower, radish, carrot, turnip, beet, cabbage, mustard, kale, cauliflower, kale, cucumber, zucchini, pumpkin, winter melon, bitter gourd, loofah, vegetable melon, watermelon, melon , tomato, eggplant, pepper, kidney bean, cowpea, edamame, leek, green onion, onion, leek, spinach, celery, amaranth, lettuce, chrysanthemum, daylily, grape, strawberry, beet, sugar cane, tobacco, alfalfa, grass, lawn Any of grass, tea and tapioca.
  • any plant-derived wild-type glutamine synthase mutant obtained by mutating the above-mentioned 68th position has glufosinate resistance. Therefore, the glutamine synthetase mutant obtained by the above-mentioned mutation of any plant-derived wild-type glutamine synthase belongs to the protection scope of the present disclosure.
  • the glutamine synthetase mutant obtained by further mutation has at least 85% (for example, 85%, 86%, 87%, 88%, 89% of the glutamine synthetase mutant shown in (1)) , 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%, etc.) or more identity, and its functions include enzymatic activity and glufosinate resistance Compared with the glutamine synthase mutant shown in (1), it is equivalent to or slightly decreased, or slightly increased or greatly increased, etc. Therefore, such glutamine synthase should also fall within the scope of the present disclosure.
  • the nth position is mutated to D, E, G, H, N, P, Q, V or deleted, and it is mutated to other
  • the amino acid also makes glutamine synthase resistant to glufosinate.
  • X A, C, D, E, F, G, H, I, K, L, M, N , P, Q, R, T, V, W, Y or delete;
  • X A, C, D, E, F, G, H, I, K, L, M, N, P, Q, T, V, W, Y or deletion.
  • mutating the nth position to D, E, G, H, N, P, Q, V and other amino acids other than deletions will also make Glutamine synthase is glufosinate-resistant.
  • the rice wild-type glutamine synthase is SEQ ID NO.1:
  • the maize wild-type glutamine synthetase is SEQ ID NO.2:
  • the soybean wild-type glutamine synthetase is SEQ ID NO.3:
  • the wheat wild-type glutamine synthetase is SEQ ID NO.4:
  • the rape wild-type glutamine synthase is SEQ ID NO.5:
  • the alignment method of the above similarity (Similarity) and identity (Identity) is: input the amino acid sequence of a species into the Blast website (https://blast.ncbi.nlm.nih.gov/Blast.cgi) for Protein Blast Align, find the similarity (Similarity) and identity (Identity) of this species and other species that need to be aligned from the alignment results.
  • the present disclosure provides an isolated nucleic acid molecule encoding the glufosinate-resistant glutamine synthase mutant of any of the above.
  • nucleic acid sequences encoding the above-mentioned glutamine synthase mutants can easily obtain nucleic acid sequences encoding the above-mentioned glutamine synthase mutants according to the degeneracy of codons.
  • the nucleic acid sequence encoding the above-mentioned glutamine synthase mutant can be obtained by making corresponding nucleotide mutations in the nucleic acid sequence encoding wild-type glutamine synthase. This is easily accomplished by those skilled in the art.
  • the encoding nucleic acid sequence of rice wild-type glutamine synthase is SEQ ID NO.6:
  • the corresponding nucleotide mutation is performed at the codon corresponding to the 68th position of the encoded amino acid sequence to obtain the rice glutamine synthase mutant encoding the above.
  • the coding nucleic acid sequence of corn wild-type glutamine synthetase is SEQ ID NO.7:
  • the coding nucleic acid sequence of soybean wild-type glutamine synthetase is SEQ ID NO.8:
  • the coding nucleic acid sequence of wheat wild-type glutamine synthetase is SEQ ID NO.9:
  • the coding nucleic acid sequence of rape wild-type glutamine synthetase is SEQ ID NO.10:
  • the present disclosure provides a vector containing the nucleic acid molecule as described above.
  • the present disclosure provides a recombinant bacteria or a recombinant cell containing the above-mentioned nucleic acid molecule or the above-mentioned vector.
  • the present disclosure provides the glufosinate-resistant glutamine synthetase mutant as described in any one of the above, the nucleic acid molecule as described above, the vector as described above, or the recombinant bacteria or recombinant cells as described above when cultivating Application of glufosinate-ammonium-resistant plant varieties.
  • it comprises: transforming a plant of interest with a vector containing a gene encoding the glutamine synthase mutant.
  • it includes: modifying the endogenous glutamine synthase gene of the target plant to encode the glutamine synthase mutant.
  • it includes mutagenizing and screening plant cells, tissues, individuals or populations to encode the glutamine synthase mutant.
  • the present disclosure provides glutamine synthetase mutants
  • gene editing technology such as zinc finger endonucleases (ZFN, zinc-finger nucleases) in the art technology, transcription activator-like effector nucleases (TALEN, transcription activator-like effector nucleases) technology or CRISPR/Cas9), mutagenesis breeding technology (such as chemical, radiation mutagenesis, etc.), etc.
  • ZFN zinc finger endonucleases
  • TALEN transcription activator-like effector nucleases
  • CRISPR/Cas9 CRISPR/Cas9
  • mutagenesis breeding technology such as chemical, radiation mutagenesis, etc.
  • the plants of interest include but are not limited to wheat, rice, barley, oats, corn, sorghum, millet, buckwheat, millet, mung bean, broad bean, pea, lentil, sweet potato, Potato, cotton, soybean, canola, sesame, peanut, sunflower, radish, carrot, turnip, beet, cabbage, mustard, kale, cauliflower, kale, cucumber, zucchini, pumpkin, winter squash, bitter gourd, loofah, vegetable melon, watermelon, Melon, tomato, eggplant, pepper, kidney bean, cowpea, edamame, leek, green onion, onion, leek, spinach, celery, amaranth, lettuce, chrysanthemum, daylily, grape, strawberry, beet, sugar cane, tobacco, alfalfa, pasture, Any of lawn grass, tea and cassava.
  • Figure 1 provides rice GS1 mutants OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, Results of partial alignment of amino acid sequences of OsY and OsX and wild-type rice GS1 OsGS1_WT.
  • Fig. 2 The partial ratio of amino acid sequences of soybean GS1 mutants GmD, GmE, GmG, GmH, GmI, GmK, GmM, GmN, GmP, GmQ, GmV, GmY and GmX and wild-type soybean GS1 GmGS1_WT provided in Example 2 of the present disclosure to the results.
  • Figure 3 provides the maize GS1 mutants ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL, ZmM, ZmN, ZmP, ZmQ, ZmR, ZmT, ZmV, ZmW, Results of partial alignment of amino acid sequences of ZmY and ZmX with wild-type maize GS1 ZmGS1_WT.
  • Figure 4 shows the partial alignment results of the amino acid sequences of wheat GS1 mutants TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX and wild-type wheat GS1 TaGS1_WT provided in Example 2 of the present disclosure.
  • Brassica napus GS1 mutants BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM, BnN, BnP, BnQ, BnT, BnV, BnW, BnY and Partial alignment of amino acid sequences of BnX and wild-type rape GS1 BnGS1_WT.
  • FIG. 6 is a schematic structural diagram of the pADV7 vector provided in Experimental Example 1 of the present disclosure.
  • FIG. 7 is provided in Experimental Example 1 of the present disclosure.
  • Figure 8 provides the transformation example 2 of the present disclosure provided the soybean GS1 mutants GmD, GmE, GmG, GmH, GmI, GmK, GmM, GmN, GmP, GmQ, GmV, GmY and GmX and wild-type soybean GS1 Growth results of GmGS1_WT Escherichia coli on media containing different concentrations of glufosinate.
  • Fig. 9 is the maize GS1 mutant ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL, ZmM, ZmN, ZmP, ZmQ, ZmR, Growth results of E. coli ZmT, ZmV, ZmW, ZmY and ZmX and wild-type maize GS1 ZmGS1_WT on media containing different concentrations of glufosinate.
  • Figure 10 is provided in Experimental Example 4 of the present disclosure for the transformation of wheat GS1 mutants TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX and wild-type wheat GS1 TaGS1_WT provided in Example 4 in E. coli containing different concentrations Growth results on glufosinate-ammonium medium.
  • Fig. 11 The Brassica napus GS1 mutants BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM, BnN, BnP, BnQ, BnT, Growth results of BnV, BnW, BnY and BnX and wild-type canola GS1 BnGS1_WT E. coli on media containing different concentrations of glufosinate.
  • FIG. 12 Rice GS1 mutant OsP, soybean GS1 mutant GmQ, corn GS1 mutant ZmV, wheat GS1 mutant TaG, rape GS1 mutant BnE, wild-type rice GS1 OsGS1_WT, wild-type soybean GS1 provided in Experimental Example 6 of the present disclosure Enzyme kinetic parameters and glufosinate resistance parameters IC50 of GmGS1_WT, wild-type maize GS1 ZmGS1_WT, wild-type wheat GS1 TaGS1_WT and wild-type rape GS1 BnGS1_WT.
  • Figure 13 is the amino acid sequence alignment results of different plant wild-type glutamine synthases; in the figure: TaGS1_WT: wheat wild-type glutamine synthase; OsGS1_WT: rice wild-type glutamine synthase; ZmGS1_WT: maize wild-type type glutamine synthase; GmGS1_WT: soybean wild-type glutamine synthase; BnGS1_WT: rape wild-type glutamine synthase.
  • Some embodiments of the present disclosure provide a plant-derived glufosinate-resistant glutamine synthase mutant, a nucleic acid molecule, and uses.
  • the glutamine synthase mutant provided by the present disclosure is originally derived from plants, and has glufosinate resistance after mutation. Plants transformed with the glutamine synthase mutant not only have glufosinate resistance, but also can grow normally. and development.
  • the rice (Oryza sativa) glutamine synthase (GS1) mutant provided in this example is composed of the wild-type rice glutamine synthase itself (named OsGS1_WT, the amino acid sequence is shown in SEQ ID NO.
  • the amino acid residue S at the 68th position of the nucleotide sequence of SEQ ID NO.6) is mutated to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y or deletion
  • the obtained rice GS1 mutants were named OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, OsY and OsX.
  • each rice GS1 mutant is at the position encoding the 68th amino acid, the codons used for the corresponding amino acid are shown in the following table, and the nucleotides in the remaining positions are the same as the corresponding wild-type coding sequence.
  • the rice GS1 mutants OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, OsY and OsX provided in this example and coding Their nucleic acid molecules can be obtained by chemical synthesis.
  • the soybean (Glycine max) GS1 mutant provided in this example is derived from the wild-type soybean GS1 itself ((named GmGS1_WT, the amino acid sequence is shown in SEQ ID NO.3, and the encoding nucleotide sequence is SEQ ID NO.8)
  • the 68th position of (corresponding to the 68th position of the reference sequence SEQ ID NO.
  • soybean GS1 mutants GmD, GmE, GmG, GmH, GmI, GmK, GmM, GmN, GmP, GmQ, GmV, GmY, GmX and wild-type soybean GS1 is shown in Figure 2, in the figure: the arrow The indicated positions are mutation sites.
  • soybean GS1 mutants GmD, GmE, GmG, GmH, GmI, GmK, GmM, GmN, GmP, GmQ, GmV, GmY and GmX correspond to SEQ ID NO.3.
  • each soybean GS1 mutant is at the position encoding the 68th amino acid, the codons used for the corresponding amino acid are shown in the following table, and the nucleotides in the remaining positions are the same as the corresponding wild-type coding sequence.
  • soybean GS1 mutants GmD, GmE, GmG, GmH, GmI, GmK, GmM, GmN, GmP, GmQ, GmV, GmY and GmX provided in this example and the nucleic acid molecules encoding them can be obtained by chemical synthesis.
  • the maize (Zea mays) GS1 mutant provided in this example is composed of wild-type maize GS1 itself (named ZmGS1_WT, the amino acid sequence is shown in SEQ ID NO.2, and the coding nucleotide sequence is SEQ ID NO.7).
  • Position 68 (corresponding to position 68 of the reference sequence (SEQ ID NO. 1)) was mutated from amino acid residue S to A, C, D, E, F, G, H, I, K, L, M, N , P, Q, R, T, V, W, Y or delete.
  • the resulting maize GS1 mutants were named ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL, ZmM, ZmN, ZmP, ZmQ, ZmR, ZmT, ZmV, ZmW, ZmY and ZmX, respectively.
  • Amino acids of maize GS1 mutants ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL, ZmM, ZmN, ZmP, ZmQ, ZmR, ZmT, ZmV, ZmW, ZmY, ZmX and wild-type maize GS1
  • the sequence alignment is shown in Figure 3, in the figure: the position indicated by the arrow is the mutation site.
  • each maize GS1 mutant is at the position encoding the 68th amino acid, and the codons used for the corresponding amino acid are shown in the following table, and the nucleotides in the remaining positions are the same as the corresponding wild-type coding sequence.
  • Their nucleic acid molecules can be obtained by chemical synthesis.
  • the wheat (Triticum aestivum) GS1 mutant provided in this example is derived from wild-type wheat GS1 itself (named TaGS1_WT, the amino acid sequence is shown in SEQ ID NO.4, and the coding nucleotide sequence is SEQ ID NO.9).
  • Position 68 results from mutation of amino acid residue S to D, E, G, H, N, P, Q, V or deletion.
  • the obtained wheat GS1 mutants were named TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX, respectively.
  • each wheat GS1 mutant is at the position encoding the 68th amino acid, the codons used for the corresponding amino acid are shown in the following table, and the nucleotides in the remaining positions are the same as the corresponding wild-type coding sequence.
  • the wheat GS1 mutants TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX provided in this example and the nucleic acid molecules encoding them can be obtained by chemical synthesis.
  • the Brassica napus GS1 mutant provided in this example is derived from the wild-type Brassica napus GS1 itself (named BnGS1_WT, the amino acid sequence is shown in SEQ ID NO.5, and the coding nucleotide sequence is SEQ ID NO.10).
  • Position 68 (corresponding to position 68 of the reference sequence (SEQ ID NO. 1)) was mutated from amino acid residue S to A, C, D, E, F, G, H, I, K, L, M, N , P, Q, T, V, W, Y or delete.
  • the resulting rapeseed GS1 mutants were named BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM, BnN, BnP, BnQ, BnT, BnV, BnW, BnY and BnX, respectively.
  • Amino acid sequence ratio of rapeseed GS1 mutants BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM, BnN, BnP, BnQ, BnT, BnV, BnW, BnY, BnX and wild-type rapeseed GS1 As shown in Figure 5, in the figure: the position indicated by the arrow is the mutation site.
  • each rapeseed GS1 mutant is at the position encoding the 68th amino acid, the codons used for the corresponding amino acid are shown in the following table, and the nucleotides in the remaining positions are the same as the corresponding wild-type coding sequence.
  • Brassica napus GS1 mutants BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM, BnN, BnP, BnQ, BnT, BnV, BnW, BnY and BnX and their encoding Nucleic acid molecules can be obtained by chemical synthesis.
  • the method of chemical synthesis was used to synthesize the rice GS1 mutants OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ,
  • the coding genes of OsR, OsT, OsV, OsW, OsY and OsX were introduced with restriction enzyme sites (Pac1 and Sbf1) at both ends.
  • the GS1 mutants containing OsA (S68A, the amino acid S at position 68 of rice GS1 was mutated to A), OsC (S68C), OsD (S68D), OsE (S68E), and OsF were detected.
  • transform coding wild-type rice GS1 (OsGS1_WT) and rice GS1 mutants OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, OsY and OsX coding genes of the deficient strains can grow normally, indicating that OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL , OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, OsY and OsX encoded GS1 all have normal GS1 enzymatic activity;
  • E. coli transformed with wild-type rice GS1 could not grow on medium containing 10 mM glufosinate-ammonium (KP10), but transformed rice mutants OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL , OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, OsY and OsX E.
  • KP10 mM glufosinate-ammonium
  • E. coli transformed with wild-type soybean GS1 could not grow substantially, but soybean mutants GmD, GmE, GmG, GmH, GmI, GmK, GmM, GmN, GmP were transformed , GmQ, GmV, GmY and GmX E.
  • KP2 glufosinate-ammonium
  • ZmGS1_WT transform coding wild-type maize GS1
  • maize GS1 mutants ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL, ZmM
  • the defective strains of ZmN, ZmP, ZmQ, ZmR, ZmT, ZmV, ZmW, ZmY and ZmX can grow normally, indicating that ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL , ZmM, ZmN, ZmP, ZmQ, ZmR, ZmT, ZmV, ZmW, ZmY and ZmX encoded GS1 all have normal GS1 enzymatic activity;
  • E. coli transformed with wild-type maize GS1 were essentially incapable of growing, but maize mutants ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK were transformed , ZmL, ZmM, ZmN, ZmP, ZmQ, ZmR, ZmT, ZmV, ZmW, ZmY and ZmX E.
  • Transformation of genes encoding wild-type wheat GS1 (TaGS1_WT) and wheat GS1 mutants TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX on medium containing 0 mM glufosinate-ammonium (KP0) All strains can grow normally, indicating that GS1 encoded by TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX all have normal GS1 enzyme activity;
  • E. coli transformed with wild-type wheat GS1 were essentially unable to grow on medium containing 1 mM glufosinate-ammonium (KP1), but transformed wheat mutants TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX
  • the growth of Escherichia coli was significantly better than that of the negative control, indicating that the single mutants containing TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX had significantly better glufosinate resistance than the wild type; E. coli transformed with wheat GS1 mutant TaN still grew significantly on the medium with phosphine concentration (10 mM, KP10).
  • E. coli transformed with wild-type rape GS1 could not grow substantially, but the rape mutants BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK were transformed , BnL, BnM, BnN, BnP, BnQ, BnT, BnV, BnW, BnY and BnX E.
  • coli growth was significantly better than the negative control, indicating that BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, The single mutants of BnL, BnM, BnN, BnP, BnQ, BnT, BnV, BnW, BnY, and BnX were significantly more resistant to glufosinate-ammonium than wild-type; in medium with higher glufosinate concentration (20mM, KP20) E.
  • the nucleic acid sequence encoding the above mutant was cloned into the prokaryotic expression vector pET32a, and the clone was verified by sequencing.
  • the mutant enzyme protein was purified by 6His and standard methods, the concentration was determined with the Bradford method protein concentration assay kit, and the protein was stored in protein stock solution.
  • Instruments and reagents microplate reader (Deutsche Bronze: HBS-1096A), glufosinate-ammonium, substrate L-sodium glutamate (CAS: 6106-04-3).
  • the components of the glutamine synthase enzyme activity assay reaction solution were: 100 mM Tris-HCl (pH7.5), 5 mM ATP, 10 mM sodium L-glutamate, 30 mM hydroxylamine, 20 mM MgCl 2 . After mixing 100 ⁇ l of the reaction solution, it was preheated at 35°C for 5 minutes, and then 1 ⁇ l of mutant protein solution (protein concentration of 200ug/ml) was added to start the reaction. After 60 minutes of reaction at 35°C, 110 ⁇ l of reaction stop solution (55g/L FeCl 3 ⁇ 6H 2 was added) O, 20g/L trichloroacetic acid, 2.1% concentrated hydrochloric acid) to terminate the reaction and let stand for 10min. Centrifuge at 5000Xg for 10min, take 200 ⁇ l and measure the light absorption value at 500nm.
  • the Km values of the GS1 mutants were slightly higher, indicating that the GS mutants reduced the sensitivity to glufosinate-ammonium inhibitors while slightly reducing the sensitivity to glufosinate-ammonium inhibitors. normal substrate sensitivity.
  • the V max of the GS1 mutants was higher than that of the wild-type control, indicating that the enzymatic catalytic ability of these mutants was improved.
  • the wild-type control was sensitive to glufosinate-ammonium with IC50s of 7.93 ⁇ M, 13.55 ⁇ M, 8.92 ⁇ M, 7.22 ⁇ M and 1.5 ⁇ M, respectively.
  • the IC50s of the mutants were significantly higher than those of the wild-type control.
  • the IC50 was much higher than the wild-type control, indicating that the mutant was less sensitive to glufosinate.
  • the IC 50 of OsP, GmQ, ZmV, TaG and BnE are 63.05 times, 32.34 times, 36.69 times and 23.83 times that of the corresponding wild type GS1 IC 50 , respectively. and 15.83 times, these values also indicate that the enzyme activity of the mutant is much higher than that of the wild-type control.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided are a plant-derived glufosinate-ammonium-resistant glutamine synthase mutant, a nucleic acid molecule, and applications. Compared with wild-type glutamine synthases, the mutant has a mutation at position 68, which turns to D, E, G, H, N, P, Q, V or deletion after the mutation, and such mutation gives a glutamine synthase glufosinate-ammonium resistance. The glutamine synthase mutant can be used for breeding new plant varieties having glufosinate-ammonium resistance.

Description

植物来源的具有草铵膦抗性的谷氨酰胺合成酶突变体、核酸分子以及应用Plant-derived glufosinate-resistant glutamine synthase mutants, nucleic acid molecules, and applications
相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS
本公开要求于2020年12月31日提交中国专利局的申请号为CN 202011626161.3,名称为“植物来源的具有草铵膦抗性的谷氨酰胺合成酶突变体、核酸分子以及应用”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。This disclosure requires a Chinese patent with the application number CN 202011626161.3 and the title of "Plant-derived Glufosinate-resistant Glutamine Synthetase Mutants, Nucleic Acid Molecules and Applications" filed with the China Patent Office on December 31, 2020 Priority of the application, the entire contents of which are incorporated by reference in this disclosure.
技术领域technical field
本公开涉及基因工程技术领域,具体而言,涉及一种植物来源的具有草铵膦抗性的谷氨酰胺合成酶突变体、核酸分子以及应用。The present disclosure relates to the technical field of genetic engineering, in particular, to a plant-derived glutamine synthase mutant with glufosinate-ammonium resistance, a nucleic acid molecule and applications.
背景技术Background technique
谷氨酰胺合成酶(Glutamine synthetase,GS)是植物氮代谢的关键酶,它在谷氨酸合成酶循环中催化谷氨酸(Gln)与NH3缩合形成谷氨酰胺(Glu),参与植物含氮化合物的新陈代谢。根据分布及亚细胞定位,可将高等植物GS(属GSII类)同工酶分为两种:一种位于细胞质内称为胞质型GS(GS1),分子量为38-40kDa;另一种位于叶绿体(或质体)内称为质体型GS(GS2),分子量为44-45kDa。Glutamine synthetase (GS) is a key enzyme in plant nitrogen metabolism. It catalyzes the condensation of glutamate (Gln) and NH3 to form glutamine (Glu) in the glutamate synthetase cycle, and is involved in plant nitrogen-containing Metabolism of compounds. According to the distribution and subcellular localization, the isoenzymes of higher plant GS (which belong to GSII) can be divided into two types: one is located in the cytoplasm called cytoplasmic GS (GS1) with a molecular weight of 38-40kDa; the other is located in the cytoplasm. The chloroplast (or plastid) is called plastid-type GS (GS2), with a molecular weight of 44-45kDa.
草铵膦(glufosinate,glufosinate ammoniμM,商品名称Basta)是由安万特公司(现为拜耳公司)开发的谷氨酰胺合成酶(GS1)抑制剂,其有效成分为phosphinothricin(简称PPT),化学名称为(RS)-2-氨基-4-(羟基甲基氧膦基)丁酸铵。该产品于1986年上市,销售额逐年上升。草铵膦的靶标酶是GS,在正常情况下,GS可以由ATP及glutamate形成λ-glutamyl phosphate。但在PPT处理后,PPT先与ATP结合,磷酸化的PPT占据GS分子的8个反应中心,使GS的空间构型发生变化,从而GS的活性受到抑制。PPT能抑制GS所有已知的形式。Glufosinate (glufosinate, glufosinate ammoniμM, trade name Basta) is a glutamine synthase (GS1) inhibitor developed by Aventis (now Bayer), its active ingredient is phosphinothricin (referred to as PPT), chemical name It is (RS)-2-amino-4-(hydroxymethyl phosphinyl) ammonium butyrate. The product was launched in 1986, and sales have increased year by year. The target enzyme of glufosinate-ammonium is GS. Under normal circumstances, GS can form λ-glutamyl phosphate from ATP and glutamate. However, after PPT treatment, PPT is first combined with ATP, and the phosphorylated PPT occupies the eight reaction centers of GS molecule, which changes the spatial configuration of GS and inhibits the activity of GS. PPT inhibits all known forms of GS.
草铵膦抑制GS的结果,可以导致植物体内氮代谢紊乱,铵的过量积累,叶绿体解体,从而光合作用受抑制,最终导致植物死亡。The result of glufosinate-ammonium inhibition of GS can lead to disorder of nitrogen metabolism in plants, excessive accumulation of ammonium, disintegration of chloroplasts, inhibition of photosynthesis, and ultimately plant death.
目前培育抗草铵膦品种的主要方法是应用基因工程手段将来自细菌的抗草铵膦基因导入农作物中,从而培育出转基因抗草铵膦作物新品种。目前农业上应用最广的抗草铵膦基因是来源于菌株Streptomyces hygroscopicus的bar基因和菌株S.viridochromogenes的pat基因。Bar基因和pat基因具有80%的同源性,都可以编码草铵膦乙酰化酶,而该酶可以使草铵膦乙酰化而失活。抗草铵膦品种具有极大的使用价值,其中抗性油菜、玉米等已大面积商业化种植。At present, the main method of cultivating glufosinate-resistant varieties is to use genetic engineering methods to introduce the glufosinate-resistant gene from bacteria into crops, so as to cultivate new varieties of transgenic glufosinate-resistant crops. At present, the most widely used glufosinate-resistant genes in agriculture are the bar gene from the strain Streptomyces hygroscopicus and the pat gene from the strain S. viridochromogenes. Bar gene and pat gene share 80% homology, and both can encode glufosinate acetylase, which can inactivate glufosinate acetylation. Glufosinate-resistant varieties have great use value, among which resistant rape and corn have been commercialized in large areas.
但是由于反转基因浪潮,转基因作物在全世界的接受程度仍然较低,即使在转基因作物种植面积最大的美洲,转基因也主要局限于玉米、大豆、棉花等几个作物。特别是bar基因和pat基因来源于微生物,而不是来源于农作物本身,更容易造成消费者的抵触心理。However, due to the anti-GM wave, the acceptance of GM crops in the world is still low. Even in the Americas, where the GM crops are planted with the largest area, GM is mainly limited to a few crops such as corn, soybean, and cotton. In particular, the bar gene and pat gene are derived from microorganisms, rather than from the crops themselves, which are more likely to cause consumer resistance.
Bar基因和pat基因编码的草铵膦乙酰化酶可以使草铵膦乙酰化而失活,但是在草铵膦接触GS之前,该酶很难使草铵膦完全失活,因为很多GS分布在细胞膜上,因此草铵膦在转bar基因和pat基因农作物上应用时,会不同程度的干扰植物的氮代谢,同时影响植物正常的生长和发育。在植物中过量表达野生型GS可以降低转基因植物对草铵膦的敏感程度,但其耐性程度不足以商业化应用。The glufosinate acetylase encoded by Bar and pat genes can acetylate and inactivate glufosinate, but it is difficult for the enzyme to completely inactivate glufosinate before the glufosinate is exposed to GS, because many GS are distributed in the Therefore, when glufosinate-ammonium is applied to bar gene and pat gene crops, it will interfere with the nitrogen metabolism of plants to varying degrees, and at the same time affect the normal growth and development of plants. Overexpression of wild-type GS in plants can reduce the sensitivity of transgenic plants to glufosinate, but the degree of tolerance is insufficient for commercial application.
鉴于此,特提出本公开。In view of this, the present disclosure is hereby made.
发明内容SUMMARY OF THE INVENTION
本公开提供一种具有草铵膦抗性的谷氨酰胺合成酶突变体,其如下(1)或(2)所示:The present disclosure provides a glutamine synthase mutant with glufosinate resistance, which is shown in the following (1) or (2):
(1):其由来源于植物的野生型谷氨酰胺合成酶的第n位发生突变得到;所述第n位的位置通过如下方式确定:所述野生型谷氨酰胺合成酶与参考序列比对,所述野生型谷氨酰胺合成酶的所述第n位对应于所述参考序列的第68位,其中,所述参考序列的氨基酸序列如SEQ ID NO.1所示;(1): it is obtained by mutating the n-th position of a plant-derived wild-type glutamine synthetase; the position of the n-th position is determined by comparing the wild-type glutamine synthase with the reference sequence. Right, the nth position of the wild-type glutamine synthetase corresponds to the 68th position of the reference sequence, wherein the amino acid sequence of the reference sequence is as shown in SEQ ID NO.1;
所述谷氨酰胺合成酶突变体的所述第n位的氨基酸为X,X=D、E、G、H、N、P、Q、V或删除。The amino acid at position n of the glutamine synthase mutant is X, where X=D, E, G, H, N, P, Q, V or deletion.
(2):其与(1)所示的谷氨酰胺合成酶突变体至少具有85%以上的同一性、且与(1)所示的谷氨酰胺合成酶突变体在所述第n位的氨基酸相同、以及具有草铵膦抗性。(2): It is at least 85% identical to the glutamine synthetase mutant shown in (1), and is at the n-th position with the glutamine synthase mutant shown in (1). Same amino acid and glufosinate resistance.
本公开的研究发现,将植物来源的野生型谷氨酰胺合成酶与参考序列进行比对,将其序列上对应于参考序列第68位的氨基酸位点即第n位进行突变,突变为D、E、G、H、N、P、Q、V或删除,所得到的谷氨酰胺合成酶突变体具有草铵膦抗性,同时保持自身的生物酶催化活性。转化本公开提供的植物谷氨酰胺合成酶突变体的植株或重组菌均能够在草铵膦存在的条件下正常生长和发育,该 植物谷氨酰胺合成酶突变体不仅用于转基因作物培育,也可应用于培育抗草铵膦非转基因植物或转基因植物例如水稻、烟草、大豆、玉米、小麦、油菜、棉花和高粱等,具有广阔的应用前景。The research of the present disclosure found that the wild-type glutamine synthetase derived from plants was compared with the reference sequence, and the amino acid position corresponding to the 68th position of the reference sequence, that is, the n-th position, was mutated to mutate to D, E, G, H, N, P, Q, V or deletion, the obtained glutamine synthase mutant has glufosinate resistance, while maintaining its own biological enzyme catalytic activity. Plants or recombinant bacteria transformed with the plant glutamine synthase mutant provided by the present disclosure can grow and develop normally in the presence of glufosinate-ammonium, and the plant glutamine synthase mutant is not only used for transgenic crop cultivation, but also It can be used to cultivate glufosinate-resistant non-transgenic plants or transgenic plants such as rice, tobacco, soybean, corn, wheat, rapeseed, cotton and sorghum, etc., and has broad application prospects.
上述参考序列为水稻来源的野生型谷氨酰胺合成酶。The above reference sequence is a wild-type glutamine synthase derived from rice.
序列比对方法可使用Blast网站(https://blast.ncbi.nlm.nih.gov/Blast.cgi)进行Protein Blast比对;采用本领域熟知的其他序列比对方法或工具也可以得到相同的结果。The sequence alignment method can use the Blast website (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to perform Protein Blast alignment; other sequence alignment methods or tools well known in the art can also be used to obtain the same result.
据信,不受理论的约束,野生型谷氨酰胺合成酶的第n位在其自身序列上可能也是第68位(例如玉米、小麦、大豆、油菜等),但也可能不是第68位,第n位的位置根据前述序列比对后确定,只要其通过与参考序列比对后,对应于参考序列第68位的位点即为本公开所述的第n位,也就是突变位点。It is believed, without being bound by theory, that position n of wild-type glutamine synthase may also be position 68 on its own sequence (eg, corn, wheat, soybean, canola, etc.), but may not be position 68, The position of the nth position is determined according to the aforementioned sequence alignment. As long as it is aligned with the reference sequence, the position corresponding to the 68th position of the reference sequence is the nth position described in the present disclosure, that is, the mutation site.
可选的,在本公开的一些实施方式中,所述植物包括但不限于小麦、水稻、大麦、燕麦、玉米、高粱、谷子、荞麦、黍稷、绿豆、蚕豆、豌豆、扁豆、甘薯、马铃薯、棉花、大豆、油菜、芝麻、花生、向日葵、萝卜、胡萝卜、芜菁、甜菜、白菜、芥菜、甘蓝、花椰菜、芥蓝、黄瓜、西葫芦、南瓜、冬瓜、苦瓜、丝瓜、菜瓜、西瓜、甜瓜、番茄、茄子、辣椒、菜豆、豇豆、毛豆、韭菜、大葱、洋葱、韭葱、菠菜、芹菜、苋菜、莴苣、茼蒿、黄花菜、葡萄、草莓、甜菜、甘蔗、烟草、苜蓿、牧草、草坪草、茶和木薯中的任意一种。Optionally, in some embodiments of the present disclosure, the plants include, but are not limited to, wheat, rice, barley, oats, corn, sorghum, millet, buckwheat, millet, mung bean, broad bean, pea, lentil, sweet potato, potato , cotton, soybean, rapeseed, sesame, peanut, sunflower, radish, carrot, turnip, beet, cabbage, mustard, kale, cauliflower, kale, cucumber, zucchini, pumpkin, winter melon, bitter gourd, loofah, vegetable melon, watermelon, melon , tomato, eggplant, pepper, kidney bean, cowpea, edamame, leek, green onion, onion, leek, spinach, celery, amaranth, lettuce, chrysanthemum, daylily, grape, strawberry, beet, sugar cane, tobacco, alfalfa, grass, lawn Any of grass, tea and tapioca.
据信,不受理论的约束,所有植物的野生型谷氨酰胺合成酶都具有同源性,在植物体内具有基本相同的功能和结构域。因此,任意植物来源的野生型谷氨酰胺合成酶在第68位作上述突变后所得到的谷氨酰胺合成酶突变体都具有草铵膦抗性。因此,由任意植物来源的野生型谷氨酰胺合成酶作上述突变后得到的谷氨酰胺合成酶突变体均属于本公开的保护范围。It is believed, without being bound by theory, that all plant wild-type glutamine synthetases are homologous and have substantially the same functions and domains in plants. Therefore, any plant-derived wild-type glutamine synthase mutant obtained by mutating the above-mentioned 68th position has glufosinate resistance. Therefore, the glutamine synthetase mutant obtained by the above-mentioned mutation of any plant-derived wild-type glutamine synthase belongs to the protection scope of the present disclosure.
此外,本领域技术人员知晓并容易实现,在(1)所示的谷氨酰胺合成酶突变体的非保守区域进行简单的氨基酸替换或删除或增加等操作并维持第n位为上述突变后的氨基酸,并使进一步突变得到的谷氨酰胺合成酶突变体与(1)所示的谷氨酰胺合成酶突变体具有至少具有85%(例如85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%等)以上的同一性,且其功能包括酶催化活性和草铵膦抗性与(1)所示的谷氨酰胺合成酶突变体相当或略有下降或略有提高或大幅提高等。因此,此类谷氨酰胺合成酶也应属于本公开的保护范围。In addition, those skilled in the art know and can easily realize that, in the non-conserved region of the glutamine synthetase mutant shown in (1), simple amino acid substitution or deletion or addition is performed, and the nth position is maintained after the above-mentioned mutation. amino acid, and the glutamine synthetase mutant obtained by further mutation has at least 85% (for example, 85%, 86%, 87%, 88%, 89% of the glutamine synthetase mutant shown in (1)) , 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%, etc.) or more identity, and its functions include enzymatic activity and glufosinate resistance Compared with the glutamine synthase mutant shown in (1), it is equivalent to or slightly decreased, or slightly increased or greatly increased, etc. Therefore, such glutamine synthase should also fall within the scope of the present disclosure.
需要说明的是,X=删除,是指野生型谷氨酰胺合成酶第n位氨基酸被删除,即缺失突变。It should be noted that X=deletion means that the amino acid at position n of the wild-type glutamine synthetase is deleted, that is, deletion mutation.
在一些实施方式中,针对不同的植物来源的谷氨酰胺合成酶,将其第n位突变为D、E、G、H、N、P、Q、V或删除之外,将其突变为其他的氨基酸也会使得谷氨酰胺合成酶具有草铵膦抗性。In some embodiments, for different plant-derived glutamine synthetases, the nth position is mutated to D, E, G, H, N, P, Q, V or deleted, and it is mutated to other The amino acid also makes glutamine synthase resistant to glufosinate.
例如,可选的,在本公开的一些实施方式中,当所述植物为水稻或玉米时,X=A、C、D、E、F、G、H、I、K、L、M、N、P、Q、R、T、V、W、Y或删除;For example, optionally, in some embodiments of the present disclosure, when the plant is rice or corn, X=A, C, D, E, F, G, H, I, K, L, M, N , P, Q, R, T, V, W, Y or delete;
当所述植物为大豆时,X=D、E、G、H、I、K、M、N、P、Q、V、Y或删除;When the plant is soybean, X=D, E, G, H, I, K, M, N, P, Q, V, Y or deletion;
当所述植物为小麦时,X=D、E、G、H、N、P、Q、V或删除;When the plant is wheat, X=D, E, G, H, N, P, Q, V or deletion;
当所述植物为油菜时,X=A、C、D、E、F、G、H、I、K、L、M、N、P、Q、T、V、W、Y或删除。When the plant is rape, X=A, C, D, E, F, G, H, I, K, L, M, N, P, Q, T, V, W, Y or deletion.
在一些实施方式中,针对不同的植物来源的谷氨酰胺合成酶,将其第n位突变为D、E、G、H、N、P、Q、V和删除之外其他的氨基酸也会使得谷氨酰胺合成酶具有草铵膦抗性。In some embodiments, for different plant-derived glutamine synthetases, mutating the nth position to D, E, G, H, N, P, Q, V and other amino acids other than deletions will also make Glutamine synthase is glufosinate-resistant.
可选的,在本公开的一些实施方式中,当所述植物为水稻时,水稻野生型谷氨酰胺合成酶为SEQ ID NO.1:Optionally, in some embodiments of the present disclosure, when the plant is rice, the rice wild-type glutamine synthase is SEQ ID NO.1:
Figure PCTCN2021133918-appb-000001
Figure PCTCN2021133918-appb-000001
可选的,在本公开的一些实施方式中,当所述植物为玉米时,玉米野生型谷氨酰胺合成酶为SEQ ID NO.2:Optionally, in some embodiments of the present disclosure, when the plant is maize, the maize wild-type glutamine synthetase is SEQ ID NO.2:
Figure PCTCN2021133918-appb-000002
Figure PCTCN2021133918-appb-000002
可选的,在本公开的一些实施方式中,当所述植物为大豆时,大豆野生型谷氨酰胺合成酶为SEQ ID NO.3:Optionally, in some embodiments of the present disclosure, when the plant is soybean, the soybean wild-type glutamine synthetase is SEQ ID NO.3:
Figure PCTCN2021133918-appb-000003
Figure PCTCN2021133918-appb-000003
可选的,在本公开的一些实施方式中,当所述植物为小麦时,小麦野生型谷氨酰胺合成酶为SEQ ID NO.4:Optionally, in some embodiments of the present disclosure, when the plant is wheat, the wheat wild-type glutamine synthetase is SEQ ID NO.4:
Figure PCTCN2021133918-appb-000004
Figure PCTCN2021133918-appb-000004
可选的,在本公开的一些实施方式中,当所述植物为油菜时,油菜野生型谷氨酰胺合成酶为SEQ ID NO.5:Optionally, in some embodiments of the present disclosure, when the plant is rape, the rape wild-type glutamine synthase is SEQ ID NO.5:
Figure PCTCN2021133918-appb-000005
Figure PCTCN2021133918-appb-000005
部分植物来源的野生型谷氨酰胺合成酶相互间的相似性(Similarity)和同一性(Identity)如下表所示,其序列比对的部分结果见图13,箭头所示为第68位氨基酸。The similarity and identity of some plant-derived wild-type glutamine synthetases are shown in the following table, and the partial results of the sequence alignment are shown in Figure 13, and the arrow indicates the 68th amino acid.
Figure PCTCN2021133918-appb-000006
Figure PCTCN2021133918-appb-000006
Figure PCTCN2021133918-appb-000007
Figure PCTCN2021133918-appb-000007
上述相似性(Similarity)和同一性(Identity)的比对方法为:将一个物种的氨基酸序列输入到Blast网站(https://blast.ncbi.nlm.nih.gov/Blast.cgi)进行Protein Blast比对,从比对结果中查找此物种和其他需要比对的物种的相似性(Similarity)和同一性(Identity)。The alignment method of the above similarity (Similarity) and identity (Identity) is: input the amino acid sequence of a species into the Blast website (https://blast.ncbi.nlm.nih.gov/Blast.cgi) for Protein Blast Align, find the similarity (Similarity) and identity (Identity) of this species and other species that need to be aligned from the alignment results.
本公开提供一种分离的核酸分子,其编码如上任一项所述的具有草铵膦抗性的谷氨酰胺合成酶突变体。The present disclosure provides an isolated nucleic acid molecule encoding the glufosinate-resistant glutamine synthase mutant of any of the above.
在本公开提供了上述氨基酸序列的情况下,本领域技术人员根据密码子的简并性容易获得编码上述谷氨酰胺合成酶突变体的核酸序列。例如,可以在编码野生型谷氨酰胺合成酶的核酸序列上作对应的核苷酸突变得到编码上述谷氨酰胺合成酶突变体的核酸序列。这对本领域技术人员来说是容易实现的。In the case where the present disclosure provides the above-mentioned amino acid sequences, those skilled in the art can easily obtain nucleic acid sequences encoding the above-mentioned glutamine synthase mutants according to the degeneracy of codons. For example, the nucleic acid sequence encoding the above-mentioned glutamine synthase mutant can be obtained by making corresponding nucleotide mutations in the nucleic acid sequence encoding wild-type glutamine synthase. This is easily accomplished by those skilled in the art.
例如,水稻野生型谷氨酰胺合成酶的编码核酸序列为SEQ ID NO.6:For example, the encoding nucleic acid sequence of rice wild-type glutamine synthase is SEQ ID NO.6:
Figure PCTCN2021133918-appb-000008
Figure PCTCN2021133918-appb-000008
据此,在序列基础上,在对应于其编码氨基酸序列第68位的密码子进行对应的核苷酸突变,即可得到编码如上所述的水稻谷氨酰胺合成酶突变体。Accordingly, on the basis of the sequence, the corresponding nucleotide mutation is performed at the codon corresponding to the 68th position of the encoded amino acid sequence to obtain the rice glutamine synthase mutant encoding the above.
玉米野生型谷氨酰胺合成酶的编码核酸序列为SEQ ID NO.7:The coding nucleic acid sequence of corn wild-type glutamine synthetase is SEQ ID NO.7:
Figure PCTCN2021133918-appb-000009
Figure PCTCN2021133918-appb-000009
大豆野生型谷氨酰胺合成酶的编码核酸序列为SEQ ID NO.8:The coding nucleic acid sequence of soybean wild-type glutamine synthetase is SEQ ID NO.8:
Figure PCTCN2021133918-appb-000010
Figure PCTCN2021133918-appb-000010
小麦野生型谷氨酰胺合成酶的编码核酸序列为SEQ ID NO.9:The coding nucleic acid sequence of wheat wild-type glutamine synthetase is SEQ ID NO.9:
Figure PCTCN2021133918-appb-000011
Figure PCTCN2021133918-appb-000011
Figure PCTCN2021133918-appb-000012
Figure PCTCN2021133918-appb-000012
油菜野生型谷氨酰胺合成酶的编码核酸序列为SEQ ID NO.10:The coding nucleic acid sequence of rape wild-type glutamine synthetase is SEQ ID NO.10:
Figure PCTCN2021133918-appb-000013
Figure PCTCN2021133918-appb-000013
本公开提供一种载体,其含有如上所述的核酸分子。The present disclosure provides a vector containing the nucleic acid molecule as described above.
本公开提供一种重组菌或重组细胞,其含有如上所述的核酸分子或如上所述的载体。The present disclosure provides a recombinant bacteria or a recombinant cell containing the above-mentioned nucleic acid molecule or the above-mentioned vector.
本公开提供如上任一项所述的具有草铵膦抗性的谷氨酰胺合成酶突变体、如上所述的核酸分子、如上所述的载体或如上所述的重组菌或重组细胞在培育具有草铵膦抗性的植物品种中的应用。The present disclosure provides the glufosinate-resistant glutamine synthetase mutant as described in any one of the above, the nucleic acid molecule as described above, the vector as described above, or the recombinant bacteria or recombinant cells as described above when cultivating Application of glufosinate-ammonium-resistant plant varieties.
可选的,在本公开的一些实施方式中,其包括:将载体转化目的植物,所述载体含有编码所述谷氨酰胺合成酶突变体的编码基因。Optionally, in some embodiments of the present disclosure, it comprises: transforming a plant of interest with a vector containing a gene encoding the glutamine synthase mutant.
可选的,在本公开的一些实施方式中,其包括:修饰目的植物的内源谷氨酰胺合成酶基因,使其编码所述谷氨酰胺合成酶突变体。Optionally, in some embodiments of the present disclosure, it includes: modifying the endogenous glutamine synthase gene of the target plant to encode the glutamine synthase mutant.
可选的,在本公开的一些实施方式中,其包括:对植物细胞、组织、个体或群体进行诱变和筛选,使其编码所述谷氨酰胺合成酶突变体。Optionally, in some embodiments of the present disclosure, it includes mutagenizing and screening plant cells, tissues, individuals or populations to encode the glutamine synthase mutant.
在本公开提供了谷氨酰胺合成酶突变体的基础上,本领域技术人员容易想到通过本领域常规的转基因技术、基因编辑技术(如通过锌指核酸内切酶(ZFN,zinc-finger nucleases)技术、类转录激活因子效应物核酸酶(TALEN,transcription activator-like effector nucleases)技术或CRISPR/Cas9)、诱变育种技术(如化学、辐射诱变等)等对目标植物进行改造,使其具有编码如上所述谷氨酰胺合成酶突变体的基因,进而获得草铵膦抗性并能够正常生长和发育,进行得到具有草铵膦抗性的植物新品种。因此,无论采用何种技术,只要其利用了本公开提供的谷氨酰胺合成酶突变体赋予植物草铵膦抗性,则属于本公开的保护范围。On the basis that the present disclosure provides glutamine synthetase mutants, those skilled in the art can easily imagine that through conventional transgenic technology, gene editing technology (such as zinc finger endonucleases (ZFN, zinc-finger nucleases) in the art technology, transcription activator-like effector nucleases (TALEN, transcription activator-like effector nucleases) technology or CRISPR/Cas9), mutagenesis breeding technology (such as chemical, radiation mutagenesis, etc.), etc. The gene encoding the glutamine synthase mutant as described above is then used to obtain glufosinate-ammonium resistance and to be able to grow and develop normally, so as to obtain a new plant variety with glufosinate-ammonium resistance. Therefore, no matter what technology is adopted, as long as it utilizes the glutamine synthase mutant provided by the present disclosure to impart glufosinate resistance to plants, it falls within the protection scope of the present disclosure.
可选的,在本公开的一些实施方式中,所述目的植物包括但不限于小麦、水稻、大麦、燕麦、玉米、高粱、谷子、荞麦、黍稷、绿豆、蚕豆、豌豆、扁豆、甘薯、马铃薯、棉花、大豆、油菜、芝麻、花生、向日葵、萝卜、胡萝卜、芜菁、甜菜、白菜、芥菜、甘蓝、花椰菜、芥蓝、黄瓜、西葫芦、南瓜、冬瓜、苦瓜、丝瓜、菜瓜、西瓜、甜瓜、番茄、茄子、辣椒、菜豆、豇豆、毛豆、韭菜、大葱、洋葱、韭葱、菠菜、芹菜、苋菜、莴苣、茼蒿、黄花菜、葡萄、草莓、甜菜、甘蔗、烟草、苜蓿、牧草、草坪草、茶和木薯中的任意一种。Optionally, in some embodiments of the present disclosure, the plants of interest include but are not limited to wheat, rice, barley, oats, corn, sorghum, millet, buckwheat, millet, mung bean, broad bean, pea, lentil, sweet potato, Potato, cotton, soybean, canola, sesame, peanut, sunflower, radish, carrot, turnip, beet, cabbage, mustard, kale, cauliflower, kale, cucumber, zucchini, pumpkin, winter squash, bitter gourd, loofah, vegetable melon, watermelon, Melon, tomato, eggplant, pepper, kidney bean, cowpea, edamame, leek, green onion, onion, leek, spinach, celery, amaranth, lettuce, chrysanthemum, daylily, grape, strawberry, beet, sugar cane, tobacco, alfalfa, pasture, Any of lawn grass, tea and cassava.
附图说明Description of drawings
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present disclosure more clearly, the following briefly introduces the accompanying drawings that need to be used in the embodiments. It should be understood that the following drawings only show some embodiments of the present disclosure, and therefore do not It should be regarded as a limitation of the scope, and for those of ordinary skill in the art, other related drawings can also be obtained according to these drawings without any creative effort.
图1为本公开实施例1提供的水稻GS1突变体OsA、OsC、OsD、OsE、OsF、OsG、OsH、OsI、OsK、OsL、OsM、OsN、OsP、OsQ、OsR、OsT、OsV、OsW、OsY和OsX和野生型水稻GS1 OsGS1_WT的氨基酸序列部分比对结果。Figure 1 provides rice GS1 mutants OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, Results of partial alignment of amino acid sequences of OsY and OsX and wild-type rice GS1 OsGS1_WT.
图2为本公开实施例2提供的大豆GS1突变体GmD、GmE、GmG、GmH、GmI、GmK、GmM、GmN、GmP、GmQ、GmV、GmY和GmX和野生型大豆GS1 GmGS1_WT的氨基酸序列部分比对 结果。Fig. 2 The partial ratio of amino acid sequences of soybean GS1 mutants GmD, GmE, GmG, GmH, GmI, GmK, GmM, GmN, GmP, GmQ, GmV, GmY and GmX and wild-type soybean GS1 GmGS1_WT provided in Example 2 of the present disclosure to the results.
图3为本公开实施例2提供的玉米GS1突变体ZmA、ZmC、ZmD、ZmE、ZmF、ZmG、ZmH、ZmI、ZmK、ZmL、ZmM、ZmN、ZmP、ZmQ、ZmR、ZmT、ZmV、ZmW、ZmY和ZmX和野生型玉米GS1 ZmGS1_WT的氨基酸序列部分比对结果。Figure 3 provides the maize GS1 mutants ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL, ZmM, ZmN, ZmP, ZmQ, ZmR, ZmT, ZmV, ZmW, Results of partial alignment of amino acid sequences of ZmY and ZmX with wild-type maize GS1 ZmGS1_WT.
图4为本公开实施例2提供的小麦GS1突变体TaD、TaE、TaG、TaH、TaN、TaP、TaQ、TaV和TaX和野生型小麦GS1 TaGS1_WT的氨基酸序列部分比对结果。Figure 4 shows the partial alignment results of the amino acid sequences of wheat GS1 mutants TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX and wild-type wheat GS1 TaGS1_WT provided in Example 2 of the present disclosure.
图5为本公开实施例2提供的油菜GS1突变体BnA、BnC、BnD、BnE、BnF、BnG、BnH、BnI、BnK、BnL、BnM、BnN、BnP、BnQ、BnT、BnV、BnW、BnY和BnX和野生型油菜GS1 BnGS1_WT的氨基酸序列部分比对结果。Fig. 5 Brassica napus GS1 mutants BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM, BnN, BnP, BnQ, BnT, BnV, BnW, BnY and Partial alignment of amino acid sequences of BnX and wild-type rape GS1 BnGS1_WT.
图6为本公开实验例1提供的pADV7载体的结构示意图。FIG. 6 is a schematic structural diagram of the pADV7 vector provided in Experimental Example 1 of the present disclosure.
图7为本公开实验例1提供的转化实施例1提供的水稻GS1突变体OsA、OsC、OsD、OsE、OsF、OsG、OsH、OsI、OsK、OsL、OsM、OsN、OsP、OsQ、OsR、OsT、OsV、OsW、OsY和OsX和野生型水稻GS1 OsGS1_WT的大肠杆菌在含不同浓度草铵膦的培养基上的生长结果。FIG. 7 is provided in Experimental Example 1 of the present disclosure. The rice GS1 mutants OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ, OsR, Growth results of E. coli OsT, OsV, OsW, OsY and OsX and wild-type rice GS1 OsGS1_WT on media containing different concentrations of glufosinate.
图8为本公开实验例2提供的转化实施例2提供的大豆GS1突变体GmD、GmE、GmG、GmH、GmI、GmK、GmM、GmN、GmP、GmQ、GmV、GmY和GmX和野生型大豆GS1 GmGS1_WT的大肠杆菌在含不同浓度草铵膦的培养基上的生长结果。Figure 8 provides the transformation example 2 of the present disclosure provided the soybean GS1 mutants GmD, GmE, GmG, GmH, GmI, GmK, GmM, GmN, GmP, GmQ, GmV, GmY and GmX and wild-type soybean GS1 Growth results of GmGS1_WT Escherichia coli on media containing different concentrations of glufosinate.
图9为本公开实验例3提供的转化实施例3提供的玉米GS1突变体ZmA、ZmC、ZmD、ZmE、ZmF、ZmG、ZmH、ZmI、ZmK、ZmL、ZmM、ZmN、ZmP、ZmQ、ZmR、ZmT、ZmV、ZmW、ZmY和ZmX和野生型玉米GS1 ZmGS1_WT的大肠杆菌在含不同浓度草铵膦的培养基上的生长结果。Fig. 9 is the maize GS1 mutant ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL, ZmM, ZmN, ZmP, ZmQ, ZmR, Growth results of E. coli ZmT, ZmV, ZmW, ZmY and ZmX and wild-type maize GS1 ZmGS1_WT on media containing different concentrations of glufosinate.
图10为本公开实验例4提供的转化实施例4提供的小麦GS1突变体TaD、TaE、TaG、TaH、TaN、TaP、TaQ、TaV和TaX和野生型小麦GS1 TaGS1_WT的大肠杆菌在含不同浓度草铵膦的培养基上的生长结果。Figure 10 is provided in Experimental Example 4 of the present disclosure for the transformation of wheat GS1 mutants TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX and wild-type wheat GS1 TaGS1_WT provided in Example 4 in E. coli containing different concentrations Growth results on glufosinate-ammonium medium.
图11为本公开实验例5提供的转化实施例5提供的油菜GS1突变体BnA、BnC、BnD、BnE、BnF、BnG、BnH、BnI、BnK、BnL、BnM、BnN、BnP、BnQ、BnT、BnV、BnW、BnY和BnX和野生型油菜GS1 BnGS1_WT的大肠杆菌在含不同浓度草铵膦的培养基上的生长结果。Fig. 11 The Brassica napus GS1 mutants BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM, BnN, BnP, BnQ, BnT, Growth results of BnV, BnW, BnY and BnX and wild-type canola GS1 BnGS1_WT E. coli on media containing different concentrations of glufosinate.
图12为本公开实验例6提供的水稻GS1突变体OsP、大豆GS1突变体GmQ、玉米GS1突变体ZmV、小麦GS1突变体TaG、油菜GS1突变体BnE、野生型水稻GS1 OsGS1_WT、野生型大豆GS1 GmGS1_WT、野生型玉米GS1 ZmGS1_WT、野生型小麦GS1 TaGS1_WT和野生型油菜GS1 BnGS1_WT的酶动力学参数和草铵膦抗性参数IC50。Figure 12 Rice GS1 mutant OsP, soybean GS1 mutant GmQ, corn GS1 mutant ZmV, wheat GS1 mutant TaG, rape GS1 mutant BnE, wild-type rice GS1 OsGS1_WT, wild-type soybean GS1 provided in Experimental Example 6 of the present disclosure Enzyme kinetic parameters and glufosinate resistance parameters IC50 of GmGS1_WT, wild-type maize GS1 ZmGS1_WT, wild-type wheat GS1 TaGS1_WT and wild-type rape GS1 BnGS1_WT.
图13为不同植物野生型谷氨酰胺合成酶的氨基酸序列比对结果;图中:TaGS1_WT:小麦野生型谷氨酰胺合成酶体;OsGS1_WT:水稻野生型谷氨酰胺合成酶体;ZmGS1_WT:玉米野生型谷氨酰胺合成酶体;GmGS1_WT:大豆野生型谷氨酰胺合成酶体;BnGS1_WT:油菜野生型谷氨酰胺合成酶体。Figure 13 is the amino acid sequence alignment results of different plant wild-type glutamine synthases; in the figure: TaGS1_WT: wheat wild-type glutamine synthase; OsGS1_WT: rice wild-type glutamine synthase; ZmGS1_WT: maize wild-type type glutamine synthase; GmGS1_WT: soybean wild-type glutamine synthase; BnGS1_WT: rape wild-type glutamine synthase.
具体实施方式Detailed ways
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述。实施例中未注明条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。In order to make the objectives, technical solutions and advantages of the embodiments of the present disclosure more clear, the technical solutions in the embodiments of the present disclosure will be described clearly and completely below. If the conditions are not specified in the examples, it is carried out in accordance with the conventional conditions or the conditions suggested by the manufacturer. The reagents or instruments used without the manufacturer's indication are conventional products that can be purchased from the market.
本公开的一些实施方式提供一种植物来源的具有草铵膦抗性的谷氨酰胺合成酶突变体、核酸分子以及应用。本公开提供的谷氨酰胺合成酶突变体原始来源于植物,通过突变后具有了草铵膦抗性,转化该谷氨酰胺合成酶突变体的植物不仅具有草铵膦抗性,也能够正常生长和发育。Some embodiments of the present disclosure provide a plant-derived glufosinate-resistant glutamine synthase mutant, a nucleic acid molecule, and uses. The glutamine synthase mutant provided by the present disclosure is originally derived from plants, and has glufosinate resistance after mutation. Plants transformed with the glutamine synthase mutant not only have glufosinate resistance, but also can grow normally. and development.
以下结合实施例对本公开的特征和性能作进一步的详细描述。The features and properties of the present disclosure will be further described in detail below with reference to the embodiments.
实施例1Example 1
本实施例提供的水稻(Oryza sativa)谷氨酰胺合成酶(GS1)突变体,其由野生型水稻谷氨酰胺合成酶自身(命名为OsGS1_WT,氨基酸序列如SEQ ID NO.1所示,编码核苷酸序列为SEQ ID NO.6)的第68位氨基酸残基S突变为A、C、D、E、F、G、H、I、K、L、M、N、P、Q、R、T、V、W、Y或删除得到,得到的水稻GS1突变体分别命名为OsA、OsC、OsD、OsE、OsF、OsG、OsH、OsI、OsK、OsL、OsM、OsN、OsP、OsQ、OsR、OsT、OsV、OsW、OsY和OsX。The rice (Oryza sativa) glutamine synthase (GS1) mutant provided in this example is composed of the wild-type rice glutamine synthase itself (named OsGS1_WT, the amino acid sequence is shown in SEQ ID NO. The amino acid residue S at the 68th position of the nucleotide sequence of SEQ ID NO.6) is mutated to A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y or deletion, the obtained rice GS1 mutants were named OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, OsY and OsX.
水稻GS1突变体OsA、OsC、OsD、OsE、OsF、OsG、OsH、OsI、OsK、OsL、OsM、OsN、 OsP、OsQ、OsR、OsT、OsV、OsW、OsY、OsX和野生型水稻GS1的氨基酸序列比对如图1所示,图中:箭头所指示的位置为突变位点。Amino acids of rice GS1 mutants OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, OsY, OsX and wild-type rice GS1 The sequence alignment is shown in Figure 1, in the figure: the position indicated by the arrow is the mutation site.
本实施例中,各水稻GS1突变体的编码序列在编码第68位氨基酸的位置上,对应氨基酸所用的密码子如下表所示,其余位置的核苷酸同相应的野生型编码序列。In this example, the coding sequence of each rice GS1 mutant is at the position encoding the 68th amino acid, the codons used for the corresponding amino acid are shown in the following table, and the nucleotides in the remaining positions are the same as the corresponding wild-type coding sequence.
氨基酸amino acid AA CC DD EE FF
密码子a GCCGCC TGCTGC GATGAT GAGGAG TTCTTC
氨基酸amino acid GG HH II KK LL
密码子a GGTGGT CACCAC ATCATC AAGAAG CTCCTC
氨基酸amino acid MM NN PP QQ RR
密码子a ATGATG AACAAC CCCCCC CAGCAG CGCCGC
氨基酸amino acid TT VV WW YY 删除delete
密码子a ACCACC GTCGTC TGGTGG TACTAC none
本实施例提供的水稻GS1突变体OsA、OsC、OsD、OsE、OsF、OsG、OsH、OsI、OsK、OsL、OsM、OsN、OsP、OsQ、OsR、OsT、OsV、OsW、OsY和OsX和编码它们的核酸分子均可以通过化学合成的方法获得。The rice GS1 mutants OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, OsY and OsX provided in this example and coding Their nucleic acid molecules can be obtained by chemical synthesis.
实施例2Example 2
本实施例提供的大豆(Glycine max)GS1突变体,其由野生型大豆GS1自身((命名为GmGS1_WT,氨基酸序列如SEQ ID NO.3所示,编码核苷酸序列为SEQ ID NO.8)的第68位(对应于参考序列(SEQ ID NO.1)的第68位)由氨基酸残基S突变为D、E、G、H、I、K、M、N、P、Q、V、Y或删除得到。得到的水稻大豆GS1突变体分别命名为GmD、GmE、GmG、GmH、GmI、GmK、GmM、GmN、GmP、GmQ、GmV、GmY和GmX。The soybean (Glycine max) GS1 mutant provided in this example is derived from the wild-type soybean GS1 itself ((named GmGS1_WT, the amino acid sequence is shown in SEQ ID NO.3, and the encoding nucleotide sequence is SEQ ID NO.8) The 68th position of (corresponding to the 68th position of the reference sequence (SEQ ID NO. 1)) is mutated from the amino acid residue S to D, E, G, H, I, K, M, N, P, Q, V, Y or deletion.The obtained rice soybean GS1 mutants were named GmD, GmE, GmG, GmH, GmI, GmK, GmM, GmN, GmP, GmQ, GmV, GmY and GmX, respectively.
大豆GS1突变体GmD、GmE、GmG、GmH、GmI、GmK、GmM、GmN、GmP、GmQ、GmV、GmY、GmX和野生型大豆GS1的氨基酸序列比对如图2所示,图中:箭头所指示的位置为突变位点。The amino acid sequence alignment of soybean GS1 mutants GmD, GmE, GmG, GmH, GmI, GmK, GmM, GmN, GmP, GmQ, GmV, GmY, GmX and wild-type soybean GS1 is shown in Figure 2, in the figure: the arrow The indicated positions are mutation sites.
本实施例提供的大豆GS1突变体GmD、GmE、GmG、GmH、GmI、GmK、GmM、GmN、GmP、GmQ、GmV、GmY和GmX的编码序列对应于SEQ ID NO.3。The coding sequences of soybean GS1 mutants GmD, GmE, GmG, GmH, GmI, GmK, GmM, GmN, GmP, GmQ, GmV, GmY and GmX provided in this example correspond to SEQ ID NO.3.
本实施例中,各大豆GS1突变体的编码序列在编码第68位氨基酸的位置上,对应氨基酸所用的密码子如下表所示,其余位置的核苷酸同相应的野生型编码序列。In this example, the coding sequence of each soybean GS1 mutant is at the position encoding the 68th amino acid, the codons used for the corresponding amino acid are shown in the following table, and the nucleotides in the remaining positions are the same as the corresponding wild-type coding sequence.
Figure PCTCN2021133918-appb-000014
Figure PCTCN2021133918-appb-000014
本实施例提供的大豆GS1突变体GmD、GmE、GmG、GmH、GmI、GmK、GmM、GmN、GmP、GmQ、GmV、GmY和GmX和编码它们的核酸分子均可以通过化学合成的方法获得。The soybean GS1 mutants GmD, GmE, GmG, GmH, GmI, GmK, GmM, GmN, GmP, GmQ, GmV, GmY and GmX provided in this example and the nucleic acid molecules encoding them can be obtained by chemical synthesis.
实施例3Example 3
本实施例提供的玉米(Zea mays)GS1突变体,其由野生型玉米GS1自身(命名为ZmGS1_WT,氨基酸序列如SEQ ID NO.2所示,编码核苷酸序列为SEQ ID NO.7)的第68位(对应于参考序列(SEQ ID NO.1)的第68位)由氨基酸残基S突变为A、C、D、E、F、G、H、I、K、L、M、N、P、Q、R、T、V、W、Y或删除得到。得到的玉米GS1突变体分别命名为ZmA、ZmC、ZmD、ZmE、ZmF、ZmG、ZmH、ZmI、ZmK、ZmL、ZmM、ZmN、ZmP、ZmQ、ZmR、ZmT、ZmV、ZmW、ZmY和ZmX。The maize (Zea mays) GS1 mutant provided in this example is composed of wild-type maize GS1 itself (named ZmGS1_WT, the amino acid sequence is shown in SEQ ID NO.2, and the coding nucleotide sequence is SEQ ID NO.7). Position 68 (corresponding to position 68 of the reference sequence (SEQ ID NO. 1)) was mutated from amino acid residue S to A, C, D, E, F, G, H, I, K, L, M, N , P, Q, R, T, V, W, Y or delete. The resulting maize GS1 mutants were named ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL, ZmM, ZmN, ZmP, ZmQ, ZmR, ZmT, ZmV, ZmW, ZmY and ZmX, respectively.
玉米GS1突变体ZmA、ZmC、ZmD、ZmE、ZmF、ZmG、ZmH、ZmI、ZmK、ZmL、ZmM、ZmN、ZmP、ZmQ、ZmR、ZmT、ZmV、ZmW、ZmY、ZmX和野生型玉米GS1的氨基酸序列比对如图3所示,图中:箭头所指示的位置为突变位点。Amino acids of maize GS1 mutants ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL, ZmM, ZmN, ZmP, ZmQ, ZmR, ZmT, ZmV, ZmW, ZmY, ZmX and wild-type maize GS1 The sequence alignment is shown in Figure 3, in the figure: the position indicated by the arrow is the mutation site.
本实施例中,各玉米GS1突变体的编码序列在编码第68位氨基酸的位置上,对应氨基酸所用 的密码子如下表所示,其余位置的核苷酸同相应的野生型编码序列。In this example, the coding sequence of each maize GS1 mutant is at the position encoding the 68th amino acid, and the codons used for the corresponding amino acid are shown in the following table, and the nucleotides in the remaining positions are the same as the corresponding wild-type coding sequence.
氨基酸amino acid AA CC DD EE FF
密码子a GCCGCC TGCTGC GATGAT GAGGAG TTCTTC
氨基酸amino acid GG HH II KK LL
密码子a GGTGGT CACCAC ATCATC AAAAAA CTCCTC
氨基酸amino acid MM NN PP QQ RR
密码子a ATGATG AACAAC CCACCA CAACAA AGGAGG
氨基酸amino acid TT VV WW YY 删除delete
密码子a ACCACC GTCGTC TGGTGG TACTAC none
本实施例提供的玉米GS1突变体ZmA、ZmC、ZmD、ZmE、ZmF、ZmG、ZmH、ZmI、ZmK、ZmL、ZmM、ZmN、ZmP、ZmQ、ZmR、ZmT、ZmV、ZmW、ZmY和ZmX和编码它们的核酸分子均可以通过化学合成的方法获得。The maize GS1 mutants ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL, ZmM, ZmN, ZmP, ZmQ, ZmR, ZmT, ZmV, ZmW, ZmY and ZmX and coding Their nucleic acid molecules can be obtained by chemical synthesis.
实施例4Example 4
本实施例提供的小麦(Triticum aestivum)GS1突变体,其由野生型小麦GS1自身(命名为TaGS1_WT,氨基酸序列如SEQ ID NO.4所示,编码核苷酸序列为SEQ ID NO.9)的第68位(对应于参考序列(SEQ ID NO.1)的第68位)由氨基酸残基S突变为D、E、G、H、N、P、Q、V或删除得到。得到的小麦GS1突变体分别命名为TaD、TaE、TaG、TaH、TaN、TaP、TaQ、TaV和TaX。The wheat (Triticum aestivum) GS1 mutant provided in this example is derived from wild-type wheat GS1 itself (named TaGS1_WT, the amino acid sequence is shown in SEQ ID NO.4, and the coding nucleotide sequence is SEQ ID NO.9). Position 68 (corresponding to position 68 of the reference sequence (SEQ ID NO. 1)) results from mutation of amino acid residue S to D, E, G, H, N, P, Q, V or deletion. The obtained wheat GS1 mutants were named TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX, respectively.
小麦GS1突变体TaD、TaE、TaG、TaH、TaN、TaP、TaQ、TaV、TaX和野生型小麦GS1的氨基酸序列比对如图4所示,图中:箭头所指示的位置为突变位点。The amino acid sequence alignment of wheat GS1 mutants TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV, TaX and wild-type wheat GS1 is shown in Figure 4. In the figure, the position indicated by the arrow is the mutation site.
本实施例中,各小麦GS1突变体的编码序列在编码第68位氨基酸的位置上,对应氨基酸所用的密码子如下表所示,其余位置的核苷酸同相应的野生型编码序列。In this example, the coding sequence of each wheat GS1 mutant is at the position encoding the 68th amino acid, the codons used for the corresponding amino acid are shown in the following table, and the nucleotides in the remaining positions are the same as the corresponding wild-type coding sequence.
Figure PCTCN2021133918-appb-000015
Figure PCTCN2021133918-appb-000015
本实施例提供的小麦GS1突变体TaD、TaE、TaG、TaH、TaN、TaP、TaQ、TaV和TaX和编码它们的核酸分子均可以通过化学合成的方法获得。The wheat GS1 mutants TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX provided in this example and the nucleic acid molecules encoding them can be obtained by chemical synthesis.
实施例5Example 5
本实施例提供的油菜(Brassica napus)GS1突变体,其由野生型油菜GS1自身(命名为BnGS1_WT,氨基酸序列如SEQ ID NO.5所示,编码核苷酸序列为SEQ ID NO.10)的第68位(对应于参考序列(SEQ ID NO.1)的第68位)由氨基酸残基S突变为A、C、D、E、F、G、H、I、K、L、M、N、P、Q、T、V、W、Y或删除得到。得到的油菜GS1突变体分别命名为BnA、BnC、BnD、BnE、BnF、BnG、BnH、BnI、BnK、BnL、BnM、BnN、BnP、BnQ、BnT、BnV、BnW、BnY和BnX。The Brassica napus GS1 mutant provided in this example is derived from the wild-type Brassica napus GS1 itself (named BnGS1_WT, the amino acid sequence is shown in SEQ ID NO.5, and the coding nucleotide sequence is SEQ ID NO.10). Position 68 (corresponding to position 68 of the reference sequence (SEQ ID NO. 1)) was mutated from amino acid residue S to A, C, D, E, F, G, H, I, K, L, M, N , P, Q, T, V, W, Y or delete. The resulting rapeseed GS1 mutants were named BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM, BnN, BnP, BnQ, BnT, BnV, BnW, BnY and BnX, respectively.
油菜GS1突变体BnA、BnC、BnD、BnE、BnF、BnG、BnH、BnI、BnK、BnL、BnM、BnN、BnP、BnQ、BnT、BnV、BnW、BnY、BnX和野生型油菜GS1的氨基酸序列比对如图5所示,图中:箭头所指示的位置为突变位点。Amino acid sequence ratio of rapeseed GS1 mutants BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM, BnN, BnP, BnQ, BnT, BnV, BnW, BnY, BnX and wild-type rapeseed GS1 As shown in Figure 5, in the figure: the position indicated by the arrow is the mutation site.
本实施例中,各油菜GS1突变体的编码序列在编码第68位氨基酸的位置上,对应氨基酸所用的密码子如下表所示,其余位置的核苷酸同相应的野生型编码序列。In this example, the coding sequence of each rapeseed GS1 mutant is at the position encoding the 68th amino acid, the codons used for the corresponding amino acid are shown in the following table, and the nucleotides in the remaining positions are the same as the corresponding wild-type coding sequence.
Figure PCTCN2021133918-appb-000016
Figure PCTCN2021133918-appb-000016
本实施例提供的油菜GS1突变体BnA、BnC、BnD、BnE、BnF、BnG、BnH、BnI、BnK、BnL、BnM、BnN、BnP、BnQ、BnT、BnV、BnW、BnY和BnX和编码它们的核酸分子均可以通过化学合成的方法获得。Brassica napus GS1 mutants BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM, BnN, BnP, BnQ, BnT, BnV, BnW, BnY and BnX and their encoding Nucleic acid molecules can be obtained by chemical synthesis.
实验例1Experimental example 1
检测实施例1提供的水稻GS1突变体OsA、OsC、OsD、OsE、OsF、OsG、OsH、OsI、OsK、OsL、OsM、OsN、OsP、OsQ、OsR、OsT、OsV、OsW、OsY和OsX的草铵膦抗性,方法如下:Detection of rice GS1 mutants OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, OsY and OsX provided in Example 1 Glufosinate-ammonium resistance, as follows:
根据实施例1提供的核酸分子的序列,采用化学合成的方法合成编码水稻GS1突变体OsA、OsC、OsD、OsE、OsF、OsG、OsH、OsI、OsK、OsL、OsM、OsN、OsP、OsQ、OsR、OsT、OsV、OsW、OsY和OsX的编码基因,两端引入酶切位点(Pac1和Sbf1),酶切后,在连接酶的作用下连接至经相同酶切处理后的表达载体(例如pADV7载体,其结构如图6所示)上,然后分别转化谷氨酰胺合成酶缺陷型大肠杆菌,经验证后,挑取阳性克隆,接种至含不同浓度草铵膦的M9培养基上生长,观察缺陷型大肠杆菌生长情况。以野生型水稻GS1突变体作为负对照,检测含有GS1突变体OsA(S68A,水稻GS1的第68位的氨基酸S突变为A)、OsC(S68C)、OsD(S68D)、OsE(S68E)、OsF(S68F)、OsG(S68G)、OsH(S68H)、OsI(S68I)、OsK(S68K)、OsL(S68L)、OsM(S68M)、OsN(S68N)、OsP(S68P)、OsQ(S68Q)、OsR(S68R)、OsT(S68T)、OsV(S68V)、OsW(S68W)、OsY(S68Y)和OsX(S68Δ)的草铵膦抗性。结果如图7所示。According to the sequence of the nucleic acid molecule provided in Example 1, the method of chemical synthesis was used to synthesize the rice GS1 mutants OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ, The coding genes of OsR, OsT, OsV, OsW, OsY and OsX were introduced with restriction enzyme sites (Pac1 and Sbf1) at both ends. After restriction enzyme digestion, they were connected to the expression vector treated with the same restriction enzyme under the action of ligase ( For example, the pADV7 vector, whose structure is shown in Figure 6), was then transformed into glutamine synthase-deficient E. coli. After verification, positive clones were picked and inoculated on M9 medium containing different concentrations of glufosinate for growth. , to observe the growth of defective E. coli. Using the wild-type rice GS1 mutant as a negative control, the GS1 mutants containing OsA (S68A, the amino acid S at position 68 of rice GS1 was mutated to A), OsC (S68C), OsD (S68D), OsE (S68E), and OsF were detected. (S68F), OsG(S68G), OsH(S68H), OsI(S68I), OsK(S68K), OsL(S68L), OsM(S68M), OsN(S68N), OsP(S68P), OsQ(S68Q), OsR (S68R), OsT (S68T), OsV (S68V), OsW (S68W), OsY (S68Y) and OsX (S68Δ) glufosinate resistance. The results are shown in Figure 7.
在含0mM草铵膦(KP0)的培养基上,转化编码野生型水稻GS1(OsGS1_WT)及水稻GS1突变体OsA、OsC、OsD、OsE、OsF、OsG、OsH、OsI、OsK、OsL、OsM、OsN、OsP、OsQ、OsR、OsT、OsV、OsW、OsY和OsX的编码基因的缺陷型菌株均能正常生长,表明由OsA、OsC、OsD、OsE、OsF、OsG、OsH、OsI、OsK、OsL、OsM、OsN、OsP、OsQ、OsR、OsT、OsV、OsW、OsY和OsX编码的GS1都具有正常GS1酶活力;On the medium containing 0 mM glufosinate-ammonium (KP0), transform coding wild-type rice GS1 (OsGS1_WT) and rice GS1 mutants OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, OsY and OsX coding genes of the deficient strains can grow normally, indicating that OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL , OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, OsY and OsX encoded GS1 all have normal GS1 enzymatic activity;
在含10mM草铵膦(KP10)的培养基上,转化野生型水稻GS1的大肠杆菌不能生长,但转化了水稻突变体OsA、OsC、OsD、OsE、OsF、OsG、OsH、OsI、OsK、OsL、OsM、OsN、OsP、OsQ、OsR、OsT、OsV、OsW、OsY和OsX的大肠杆菌生长明显优于负对照,说明含OsA、OsC、OsD、OsE、OsF、OsG、OsH、OsI、OsK、OsL、OsM、OsN、OsP、OsQ、OsR、OsT、OsV、OsW、OsY和OsX的单突变体抗草铵膦的能力明显优于野生型;在更好草铵膦浓度(20mM,KP20)的培养基上,转化水稻GS1突变体OsA、OsD、OsE、OsF、OsG、OsH、OsI、OsK、OsL、OsM、OsN、OsP、OsQ、OsR、OsV、OsW、OsY和OsX的大肠杆菌都还有明显生长。E. coli transformed with wild-type rice GS1 could not grow on medium containing 10 mM glufosinate-ammonium (KP10), but transformed rice mutants OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL , OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, OsY and OsX E. coli growth was significantly better than the negative control, indicating that OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, The ability of single mutants of OsL, OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, OsY and OsX to resist glufosinate was significantly better than wild type; at better glufosinate concentration (20mM, KP20) On the medium, E. coli transformed with rice GS1 mutants OsA, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ, OsR, OsV, OsW, OsY and OsX also had Significant growth.
这些结果说明OsA、OsC、OsD、OsE、OsF、OsG、OsH、OsI、OsK、OsL、OsM、OsN、OsP、OsQ、OsR、OsT、OsV、OsW、OsY和OsX的单突变体都具有抗草铵膦的能力。These results indicate that the single mutants of OsA, OsC, OsD, OsE, OsF, OsG, OsH, OsI, OsK, OsL, OsM, OsN, OsP, OsQ, OsR, OsT, OsV, OsW, OsY and OsX are resistant to weeds The ability of ammonium phosphine.
实验例2Experimental example 2
参考实验例1的检测方法,验证实施例2提供的大豆GS1突变体GmD(S68D,大豆GS1的第68位的氨基酸S突变为D)、GmE(S68E)、GmG(S68G)、GmH(S68H)、GmI(S68I)、GmK(S68K)、GmK(S68M)、GmN(S68N)、GmP(S68P)、GmQ(S68Q)、GmV(S68V)、GmK(S68Y)和GmX(S68Δ)的草铵膦抗性。结果如图8所示。Referring to the detection method of Experimental Example 1, it was verified that the soybean GS1 mutants GmD (S68D, the amino acid S at position 68 of soybean GS1 was mutated to D), GmE (S68E), GmG (S68G), GmH (S68H) provided in Example 2 , GmI(S68I), GmK(S68K), GmK(S68M), GmN(S68N), GmP(S68P), GmQ(S68Q), GmV(S68V), GmK(S68Y) and GmX(S68Δ) glufosinate resistance sex. The results are shown in Figure 8.
根据图8的结果可看出:According to the results in Figure 8, it can be seen that:
在含0mM草铵膦(KP0)的培养基上,转化编码野生型大豆GS1(GmGS1_WT)及大豆GS1突变体GmD、GmE、GmG、GmH、GmI、GmK、GmN、GmP、GmQ、GmV和GmX的编码基因的缺陷型菌株均能正常生长,表明由GmD、GmE、GmG、GmH、GmI、GmK、GmN、GmP、GmQ、GmV和GmX编码的GS1都具有正常GS1酶活力;Transformation of wild-type soybean GS1 (GmGS1_WT) and soybean GS1 mutants GmD, GmE, GmG, GmH, GmI, GmK, GmN, GmP, GmQ, GmV and GmX on medium containing 0 mM glufosinate-ammonium (KP0) The deficient strains encoding the genes could grow normally, indicating that GS1 encoded by GmD, GmE, GmG, GmH, GmI, GmK, GmN, GmP, GmQ, GmV and GmX all had normal GS1 enzyme activity;
在含2mM草铵膦(KP2)的培养基上,转化野生型大豆GS1的大肠杆菌基本上不能生长,但转化了大豆突变体GmD、GmE、GmG、GmH、GmI、GmK、GmM、GmN、GmP、GmQ、GmV、GmY和GmX的大肠杆菌生长明显优于负对照,说明含GmD、GmE、GmG、GmH、GmI、GmK、GmM、GmN、GmP、GmQ、GmV、GmY和GmX的单突变体抗草铵膦的能力明显优于野生型;在更高草铵膦浓度(20mM,KP20)的培养基上,转化大豆GS1突变体GmG和GmQ的大肠杆菌都还有明显生长。On medium containing 2 mM glufosinate-ammonium (KP2), E. coli transformed with wild-type soybean GS1 could not grow substantially, but soybean mutants GmD, GmE, GmG, GmH, GmI, GmK, GmM, GmN, GmP were transformed , GmQ, GmV, GmY and GmX E. coli growth was significantly better than the negative control, indicating that the single mutant antibody containing GmD, GmE, GmG, GmH, GmI, GmK, GmM, GmN, GmP, GmQ, GmV, GmY and GmX The ability of glufosinate-ammonium was significantly better than that of the wild type; E. coli transformed with soybean GS1 mutants GmG and GmQ still grew significantly on the medium with higher glufosinate concentration (20mM, KP20).
这些结果说明GmD、GmE、GmG、GmH、GmI、GmK、GmN、GmP、GmQ、GmV和GmX的单突变体都具有抗草铵膦的能力,且大豆GS1突变体GmG和GmQ的抗草铵膦能力更强。These results indicate that the single mutants of GmD, GmE, GmG, GmH, GmI, GmK, GmN, GmP, GmQ, GmV and GmX all have the ability to resist glufosinate, and the soybean GS1 mutants GmG and GmQ are resistant to glufosinate more capable.
实验例3Experimental example 3
参考实验例1的检测方法,验证实施例3提供的玉米GS1突变体ZmA(S68A,玉米GS1的第 68位的氨基酸S突变为A)、ZmC(S68C)、ZmD(S68D)、ZmE(S68E)、ZmE(S68F)、ZmG(S68G)、ZmH(S68H)、ZmI(S68I)、ZmK(S68K)、ZmL(S68L)、ZmM(S68M)、ZmN(S68N)、ZmP(S68P)、ZmQ(S68Q)、ZmR(S68R)、ZmT(S68T)、ZmV(S68V)、ZmW(S68W)、ZmY(S68Y)和ZmX(S68Δ)的草铵膦抗性。结果如图9所示。With reference to the detection method of Experimental Example 1, it was verified that the maize GS1 mutants ZmA (S68A, the amino acid S at position 68 of maize GS1 was mutated to A), ZmC (S68C), ZmD (S68D), ZmE (S68E) provided in Example 3 , ZmE(S68F), ZmG(S68G), ZmH(S68H), ZmI(S68I), ZmK(S68K), ZmL(S68L), ZmM(S68M), ZmN(S68N), ZmP(S68P), ZmQ(S68Q) , ZmR (S68R), ZmT (S68T), ZmV (S68V), ZmW (S68W), ZmY (S68Y) and ZmX (S68Δ) glufosinate resistance. The results are shown in Figure 9.
根据图9的结果可看出:According to the results in Figure 9, it can be seen that:
在含0mM草铵膦(KP0)的培养基上,转化编码野生型玉米GS1(ZmGS1_WT)及玉米GS1突变体ZmA、ZmC、ZmD、ZmE、ZmF、ZmG、ZmH、ZmI、ZmK、ZmL、ZmM、ZmN、ZmP、ZmQ、ZmR、ZmT、ZmV、ZmW、ZmY和ZmX的编码基因的缺陷型菌株均能正常生长,表明由ZmA、ZmC、ZmD、ZmE、ZmF、ZmG、ZmH、ZmI、ZmK、ZmL、ZmM、ZmN、ZmP、ZmQ、ZmR、ZmT、ZmV、ZmW、ZmY和ZmX编码的GS1都具有正常GS1酶活力;On medium containing 0 mM glufosinate-ammonium (KP0), transform coding wild-type maize GS1 (ZmGS1_WT) and maize GS1 mutants ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL, ZmM, The defective strains of ZmN, ZmP, ZmQ, ZmR, ZmT, ZmV, ZmW, ZmY and ZmX can grow normally, indicating that ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL , ZmM, ZmN, ZmP, ZmQ, ZmR, ZmT, ZmV, ZmW, ZmY and ZmX encoded GS1 all have normal GS1 enzymatic activity;
在含2mM草铵膦(KP2)的培养基上,转化野生型玉米GS1的大肠杆菌基本上不能生长,但转化了玉米突变体ZmA、ZmC、ZmD、ZmE、ZmF、ZmG、ZmH、ZmI、ZmK、ZmL、ZmM、ZmN、ZmP、ZmQ、ZmR、ZmT、ZmV、ZmW、ZmY和ZmX的大肠杆菌生长明显优于负对照,说明含ZmA、ZmC、ZmD、ZmE、ZmF、ZmG、ZmH、ZmI、ZmK、ZmL、ZmM、ZmN、ZmP、ZmQ、ZmR、ZmT、ZmV、ZmW、ZmY和ZmX的单突变体抗草铵膦的能力明显优于野生型;在更高草铵膦浓度(20mM,KP20)的培养基上,转化玉米GS1突变体ZmD、ZmE、ZmF、ZmG、ZmH、ZmI、ZmK、ZmL、ZmM、ZmN、ZmP、ZmQ、ZmV、ZmW、ZmY和ZmX的大肠杆菌都还有明显生长。On medium containing 2 mM glufosinate-ammonium (KP2), E. coli transformed with wild-type maize GS1 were essentially incapable of growing, but maize mutants ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK were transformed , ZmL, ZmM, ZmN, ZmP, ZmQ, ZmR, ZmT, ZmV, ZmW, ZmY and ZmX E. coli growth was significantly better than the negative control, indicating that ZmA, ZmC, ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, The single mutants of ZmK, ZmL, ZmM, ZmN, ZmP, ZmQ, ZmR, ZmT, ZmV, ZmW, ZmY and ZmX were significantly more resistant to glufosinate-ammonium than wild-type; at higher glufosinate concentrations (20mM, KP20 ), the E. coli transformed with the maize GS1 mutants ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL, ZmM, ZmN, ZmP, ZmQ, ZmV, ZmW, ZmY and ZmX also grew significantly .
这些结果说明ZmD、ZmE、ZmF、ZmG、ZmH、ZmI、ZmK、ZmL、ZmM、ZmN、ZmP、ZmQ、ZmV、ZmW、ZmY和ZmX的单突变体都具有抗草铵膦的能力。These results indicate that the single mutants of ZmD, ZmE, ZmF, ZmG, ZmH, ZmI, ZmK, ZmL, ZmM, ZmN, ZmP, ZmQ, ZmV, ZmW, ZmY and ZmX all have glufosinate resistance.
实验例4Experimental example 4
参考实验例1的检测方法,验证实施例4提供的小麦GS1突变体TaD(S68D,玉米GS1的第68位的氨基酸S突变为D)、TaE(S68E)、TaG(S68G)、TaH(S68H)、TaN(S68N)、TaP(S68P)、TaQ(S68Q)、TaV(S68V)和TaX(S68Δ)的草铵膦抗性。结果如图10所示。With reference to the detection method of Experimental Example 1, it was verified that the wheat GS1 mutants TaD (S68D, the amino acid S at position 68 of maize GS1 was mutated to D), TaE (S68E), TaG (S68G), TaH (S68H) provided in Example 4 , TaN (S68N), TaP (S68P), TaQ (S68Q), TaV (S68V) and TaX (S68Δ) glufosinate resistance. The results are shown in Figure 10.
根据图10的结果可看出:According to the results in Figure 10, it can be seen that:
在含0mM草铵膦(KP0)的培养基上,转化编码野生型小麦GS1(TaGS1_WT)及小麦GS1突变体TaD、TaE、TaG、TaH、TaN、TaP、TaQ、TaV和TaX的编码基因的缺陷型菌株均能正常生长,表明由TaD、TaE、TaG、TaH、TaN、TaP、TaQ、TaV和TaX编码的GS1都具有正常GS1酶活力;Transformation of genes encoding wild-type wheat GS1 (TaGS1_WT) and wheat GS1 mutants TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX on medium containing 0 mM glufosinate-ammonium (KP0) All strains can grow normally, indicating that GS1 encoded by TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX all have normal GS1 enzyme activity;
在含1mM草铵膦(KP1)的培养基上,转化野生型小麦GS1的大肠杆菌基本上不能生长,但转化了小麦突变体TaD、TaE、TaG、TaH、TaN、TaP、TaQ、TaV和TaX的大肠杆菌生长明显优于负对照,说明含TaD、TaE、TaG、TaH、TaN、TaP、TaQ、TaV和TaX的单突变体抗草铵膦的能力明显优于野生型;在更高草铵膦浓度(10mM,KP10)的培养基上,转化小麦GS1突变体TaN的大肠杆菌都还有明显生长。E. coli transformed with wild-type wheat GS1 were essentially unable to grow on medium containing 1 mM glufosinate-ammonium (KP1), but transformed wheat mutants TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX The growth of Escherichia coli was significantly better than that of the negative control, indicating that the single mutants containing TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX had significantly better glufosinate resistance than the wild type; E. coli transformed with wheat GS1 mutant TaN still grew significantly on the medium with phosphine concentration (10 mM, KP10).
这些结果说明TaD、TaE、TaG、TaH、TaN、TaP、TaQ、TaV和TaX的单突变体都具有抗草铵膦的能力,且小麦GS1突变体TaN的抗草铵膦能力更强。These results indicated that the single mutants of TaD, TaE, TaG, TaH, TaN, TaP, TaQ, TaV and TaX all had glufosinate resistance, and the wheat GS1 mutant TaN had stronger glufosinate resistance.
实验例5Experimental example 5
参考实验例1的检测方法,验证实施例5提供的油菜GS1突变体BnA(S68A,玉米GS1的第68位的氨基酸S突变为A)、BnC(S68C)、BnD(S68D)、BnE(S68E)、BnF(S68F)、BnG(S68G)、BnH(S68H)、BnI(S68I)、BnK(S68K)、BnL(S68L)、BnM(S68M)、BnN(S68N)、BnP(S68P)、BnQ(S68Q)、BnT(S68T)、BnV(S68V)、BnW(S68W)、BnY(S68E)和BnX(S68Δ)的草铵膦抗性。结果如图11所示。With reference to the detection method of Experimental Example 1, it is verified that the rapeseed GS1 mutants BnA (S68A, the amino acid S at position 68 of corn GS1 is mutated to A), BnC (S68C), BnD (S68D), BnE (S68E) provided in Example 5 , BnF(S68F), BnG(S68G), BnH(S68H), BnI(S68I), BnK(S68K), BnL(S68L), BnM(S68M), BnN(S68N), BnP(S68P), BnQ(S68Q) , BnT (S68T), BnV (S68V), BnW (S68W), BnY (S68E) and BnX (S68Δ) glufosinate resistance. The results are shown in Figure 11.
根据图11的结果可看出:According to the results in Figure 11, it can be seen that:
在含0mM草铵膦(KP0)的培养基上,转化编码野生型油菜GS1(BnGS1_WT)及油菜GS1突变体BnA、BnC、BnD、BnE、BnF、BnG、BnH、BnI、BnK、BnL、BnM、BnN、BnP、BnQ、BnT、BnV、BnW、BnY和BnX的编码基因的缺陷型菌株均能正常生长,表明由BnA、BnC、BnD、BnE、BnF、BnG、BnH、BnI、BnK、BnL、BnM、BnN、BnP、BnQ、BnT、BnV、BnW、BnY和BnX编码的GS1都具有正常GS1酶活力;On medium containing 0 mM glufosinate-ammonium (KP0), transformation encoding wild-type rapeseed GS1 (BnGS1_WT) and rapeseed GS1 mutants BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM, BnN, BnP, BnQ, BnT, BnV, BnW, BnY and BnX coding genes of defective strains can grow normally, indicating that BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM , BnN, BnP, BnQ, BnT, BnV, BnW, BnY and BnX encoded GS1 all have normal GS1 enzymatic activity;
在含2mM草铵膦(KP2)的培养基上,转化野生型油菜GS1的大肠杆菌基本上不能生长,但转化了油菜突变体BnA、BnC、BnD、BnE、BnF、BnG、BnH、BnI、BnK、BnL、BnM、BnN、BnP、BnQ、BnT、BnV、BnW、BnY和BnX的大肠杆菌生长明显优于负对照,说明含BnA、BnC、BnD、BnE、BnF、BnG、BnH、BnI、BnK、BnL、BnM、BnN、BnP、BnQ、BnT、BnV、BnW、BnY和BnX的单突变体抗草铵膦的能力明显优于野生型;在更高草铵膦浓度(20mM,KP20)的培养基上,转化油菜GS1突变体BnD、BnE、BnF、BnG、BnH、BnI、BnK、BnL、BnM、BnN、BnP、BnQ、 BnV、BnW和BnY的大肠杆菌都还有明显生长。On medium containing 2 mM glufosinate-ammonium (KP2), E. coli transformed with wild-type rape GS1 could not grow substantially, but the rape mutants BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK were transformed , BnL, BnM, BnN, BnP, BnQ, BnT, BnV, BnW, BnY and BnX E. coli growth was significantly better than the negative control, indicating that BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, The single mutants of BnL, BnM, BnN, BnP, BnQ, BnT, BnV, BnW, BnY, and BnX were significantly more resistant to glufosinate-ammonium than wild-type; in medium with higher glufosinate concentration (20mM, KP20) E. coli transformed with the rapeseed GS1 mutants BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM, BnN, BnP, BnQ, BnV, BnW and BnY also showed significant growth.
这些结果说明BnA、BnC、BnD、BnE、BnF、BnG、BnH、BnI、BnK、BnL、BnM、BnN、BnP、BnQ、BnT、BnV、BnW、BnY和BnX的单突变体都具有抗草铵膦的能力,且油菜GS1突变体BnD、BnE、BnF、BnG、BnH、BnI、BnK、BnL、BnM、BnN、BnP、BnQ、BnV、BnW和BnY的抗草铵膦能力更强。These results indicate that single mutants of BnA, BnC, BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM, BnN, BnP, BnQ, BnT, BnV, BnW, BnY and BnX are all glufosinate-resistant GS1 mutants BnD, BnE, BnF, BnG, BnH, BnI, BnK, BnL, BnM, BnN, BnP, BnQ, BnV, BnW and BnY had stronger glufosinate resistance.
实验例6Experimental example 6
检测实施例1提供的OsP、实施例2提供的GmQ、实施例3提供的ZmV、实施例4提供的TaG和实施例5提供的BnE突变体的酶动力学参数和在有草铵膦时的酶动力学参数,以野生型水稻GS1 OsGS1_WT、野生型大豆GS1 GmGS1_WT、野生型玉米GS1 ZmGS1_WT、野生型小麦GS1 TaGS1_WT和野生型油菜GS1 BnGS1_WT为对照,方法如下:Detect the enzyme kinetic parameters of OsP provided in Example 1, GmQ provided in Example 2, ZmV provided in Example 3, TaG provided in Example 4 and BnE mutant provided in Example 5 and the enzyme kinetic parameters in the presence of glufosinate-ammonium. Enzyme kinetic parameters were compared with wild-type rice GS1 OsGS1_WT, wild-type soybean GS1 GmGS1_WT, wild-type maize GS1 ZmGS1_WT, wild-type wheat GS1 TaGS1_WT and wild-type rape GS1 BnGS1_WT as controls, the methods are as follows:
载体构建:Vector construction:
将编码上述突变体的核酸序列克隆到原核表达载体pET32a中,测序验证克隆。The nucleic acid sequence encoding the above mutant was cloned into the prokaryotic expression vector pET32a, and the clone was verified by sequencing.
6His蛋白纯化:6His protein purification:
通过6His和用标准方法纯化突变体酶蛋白,用Bradford法蛋白浓度测定试剂盒测定浓度,蛋白保存在蛋白贮存液中。The mutant enzyme protein was purified by 6His and standard methods, the concentration was determined with the Bradford method protein concentration assay kit, and the protein was stored in protein stock solution.
酶活测定:Enzyme activity assay:
1.仪器和试剂:酶标仪(德铁:HBS-1096A),草铵膦,底物L-谷氨酸钠(CAS:6106-04-3)。1. Instruments and reagents: microplate reader (Deutsche Bronze: HBS-1096A), glufosinate-ammonium, substrate L-sodium glutamate (CAS: 6106-04-3).
2.操作步骤:2. Operation steps:
谷氨酰胺合成酶酶活测定反应液组分为:100mM Tris-HCl(pH7.5),5mM ATP,10mM L-谷氨酸钠,30mM hydroxylamine,20mM MgCl 2。100μl反应液混匀后35℃预热5min后,加入1μl突变体蛋白液(蛋白浓度为200ug/ml)开始反应,35℃反应60min后,加入110μl反应终止液(55g/L FeCl 3·6H 2O,20g/L三氯乙酸,2.1%浓盐酸)终止反应,静置10min。5000Xg离心10min,取200μl在500nm处测定光吸收值。 The components of the glutamine synthase enzyme activity assay reaction solution were: 100 mM Tris-HCl (pH7.5), 5 mM ATP, 10 mM sodium L-glutamate, 30 mM hydroxylamine, 20 mM MgCl 2 . After mixing 100 μl of the reaction solution, it was preheated at 35°C for 5 minutes, and then 1 μl of mutant protein solution (protein concentration of 200ug/ml) was added to start the reaction. After 60 minutes of reaction at 35°C, 110 μl of reaction stop solution (55g/L FeCl 3 · 6H 2 was added) O, 20g/L trichloroacetic acid, 2.1% concentrated hydrochloric acid) to terminate the reaction and let stand for 10min. Centrifuge at 5000Xg for 10min, take 200μl and measure the light absorption value at 500nm.
结果如图12所示。The results are shown in Figure 12.
根据图12的结果可以看出:According to the results in Figure 12, it can be seen that:
相对于野生型对照OsGS_WT、GmGS1_WT、ZmGS1_WT、TaGS1_WT和BnGS1_WT,GS1突变体的Km值都较之略偏高,说明GS突变体在降低对草铵膦抑制剂的敏感度的同时,略为降低了对正常底物的敏感度。GS1突变体的V max均高于野生型对照,说明这些突变体的酶催化能力有所提高。野生型对照对草铵膦很敏感,IC 50分别为7.93μM、13.55μM、8.92μM、7.22μM和1.5μM,突变体的IC 50均明显高于野生型对照,OsP、GmQ、ZmV和TaG的IC 50远远高于野生型对照,表明突变体对草铵膦更不敏感。从突变体IC 50和野生型IC 50的倍数关系上也可以看出,OsP、GmQ、ZmV、TaG和BnE的IC 50分别是对应野生型GS1IC 50的63.05倍、32.34倍、36.69倍、23.83倍和15.83倍,这些数值也说明突变体的酶活性远远高于野生型对照。这些数据从酶动力学上说明了突变体的抗草铵膦机制。 Compared with the wild-type controls OsGS_WT, GmGS1_WT, ZmGS1_WT, TaGS1_WT and BnGS1_WT, the Km values of the GS1 mutants were slightly higher, indicating that the GS mutants reduced the sensitivity to glufosinate-ammonium inhibitors while slightly reducing the sensitivity to glufosinate-ammonium inhibitors. normal substrate sensitivity. The V max of the GS1 mutants was higher than that of the wild-type control, indicating that the enzymatic catalytic ability of these mutants was improved. The wild-type control was sensitive to glufosinate-ammonium with IC50s of 7.93 μM, 13.55 μM, 8.92 μM, 7.22 μM and 1.5 μM, respectively. The IC50s of the mutants were significantly higher than those of the wild-type control. The IC50 was much higher than the wild-type control, indicating that the mutant was less sensitive to glufosinate. It can also be seen from the fold relationship between the mutant IC 50 and the wild-type IC 50 that the IC 50 of OsP, GmQ, ZmV, TaG and BnE are 63.05 times, 32.34 times, 36.69 times and 23.83 times that of the corresponding wild type GS1 IC 50 , respectively. and 15.83 times, these values also indicate that the enzyme activity of the mutant is much higher than that of the wild-type control. These data illustrate the mechanism of glufosinate resistance of the mutants enzymatically.
以上所述仅为本公开的可选的实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。The above descriptions are only optional embodiments of the present disclosure, and are not intended to limit the present disclosure. For those skilled in the art, the present disclosure may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present disclosure shall be included within the protection scope of the present disclosure.

Claims (10)

  1. 一种具有草铵膦抗性的谷氨酰胺合成酶突变体,其特征在于,其如下(1)或(2)所示:A glutamine synthase mutant with glufosinate resistance, characterized in that it is shown in the following (1) or (2):
    (1):其由来源于植物的野生型谷氨酰胺合成酶的第n位发生突变得到;所述第n位的位置通过如下方式确定:所述野生型谷氨酰胺合成酶与参考序列比对,所述野生型谷氨酰胺合成酶的所述第n位对应于所述参考序列的第68位,其中,所述参考序列的氨基酸序列如SEQ ID NO.1所示;(1): it is obtained by mutating the n-th position of a plant-derived wild-type glutamine synthetase; the position of the n-th position is determined by comparing the wild-type glutamine synthase with the reference sequence. Right, the nth position of the wild-type glutamine synthetase corresponds to the 68th position of the reference sequence, wherein the amino acid sequence of the reference sequence is as shown in SEQ ID NO.1;
    所述谷氨酰胺合成酶突变体的所述第n位的氨基酸为X,X=D、E、G、H、N、P、Q、V或删除;The amino acid at the nth position of the glutamine synthase mutant is X, X=D, E, G, H, N, P, Q, V or deletion;
    (2):其与(1)所示的谷氨酰胺合成酶突变体至少具有85%以上的同一性、且与(1)所示的谷氨酰胺合成酶突变体在第n位的氨基酸相同、以及具有草铵膦抗性。(2): It is at least 85% identical to the glutamine synthetase mutant shown in (1) and has the same amino acid at the n-th position as the glutamine synthase mutant shown in (1). , and glufosinate-ammonium resistance.
  2. 根据权利要求1所述的具有草铵膦抗性的谷氨酰胺合成酶突变体,其特征在于,所述植物选自小麦、水稻、大麦、燕麦、玉米、高粱、谷子、荞麦、黍稷、绿豆、蚕豆、豌豆、扁豆、甘薯、马铃薯、棉花、大豆、油菜、芝麻、花生、向日葵、萝卜、胡萝卜、芜菁、甜菜、白菜、芥菜、甘蓝、花椰菜、芥蓝、黄瓜、西葫芦、南瓜、冬瓜、苦瓜、丝瓜、菜瓜、西瓜、甜瓜、番茄、茄子、辣椒、菜豆、豇豆、毛豆、韭菜、大葱、洋葱、韭葱、菠菜、芹菜、苋菜、莴苣、茼蒿、黄花菜、葡萄、草莓、甜菜、甘蔗、烟草、苜蓿、牧草、草坪草、茶和木薯中的任意一种。The glufosinate-resistant glutamine synthase mutant of claim 1, wherein the plant is selected from the group consisting of wheat, rice, barley, oat, corn, sorghum, millet, buckwheat, millet, Green beans, broad beans, peas, lentils, sweet potatoes, potatoes, cotton, soybeans, canola, sesame, peanuts, sunflowers, radishes, carrots, turnips, beets, cabbage, mustard greens, kale, cauliflower, kale, cucumber, zucchini, pumpkin, Winter gourd, bitter gourd, loofah, vegetable gourd, watermelon, melon, tomato, eggplant, pepper, kidney bean, cowpea, edamame, leek, green onion, onion, leek, spinach, celery, amaranth, lettuce, chrysanthemum, day lily, grape, strawberry, Any of sugar beet, sugar cane, tobacco, alfalfa, pasture, lawn grass, tea and cassava.
  3. 根据权利要求1或2所述的具有草铵膦抗性的谷氨酰胺合成酶突变体,其特征在于,当所述植物为水稻或玉米时,X=A、C、D、E、F、G、H、I、K、L、M、N、P、Q、R、T、V、W、Y或删除;The glutamine synthase mutant with glufosinate-ammonium resistance according to claim 1 or 2, wherein when the plant is rice or corn, X=A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, Y or delete;
    当所述植物为大豆时,X=D、E、G、H、I、K、M、N、P、Q、V、Y或删除;When the plant is soybean, X=D, E, G, H, I, K, M, N, P, Q, V, Y or deletion;
    当所述植物为小麦时,X=D、E、G、H、N、P、Q、V或删除;When the plant is wheat, X=D, E, G, H, N, P, Q, V or deletion;
    当所述植物为油菜时,X=A、C、D、E、F、G、H、I、K、L、M、N、P、Q、T、V、W、Y或删除。When the plant is rape, X=A, C, D, E, F, G, H, I, K, L, M, N, P, Q, T, V, W, Y or deletion.
  4. 一种分离的核酸分子,其特征在于,其编码权利要求1-3任一项所述的具有草铵膦抗性的谷氨酰胺合成酶突变体。An isolated nucleic acid molecule, characterized in that it encodes the glufosinate-resistant glutamine synthase mutant of any one of claims 1-3.
  5. 一种载体,其特征在于,其含有权利要求4所述的核酸分子。A vector, characterized in that it contains the nucleic acid molecule of claim 4 .
  6. 一种重组菌或重组细胞,其特征在于,其含有权利要求4所述的核酸分子或权利要求5所述的载体。A recombinant bacteria or recombinant cell, characterized in that it contains the nucleic acid molecule of claim 4 or the vector of claim 5.
  7. 权利要求1-3任一项所述的具有草铵膦抗性的谷氨酰胺合成酶突变体、权利要求4所述的核酸分子、权利要求5所述的载体或权利要求6所述的重组菌或重组细胞在培育具有草铵膦抗性的植物品种中的应用。The glufosinate-resistant glutamine synthetase mutant of any one of claims 1-3, the nucleic acid molecule of claim 4, the vector of claim 5, or the recombination of claim 6 The application of bacteria or recombinant cells in the cultivation of plant varieties with glufosinate-ammonium resistance.
  8. 根据权利要求7所述的应用,其特征在于,其包括:将载体转化目的植物,所述载体含有编码所述谷氨酰胺合成酶突变体的编码基因。The use according to claim 7, characterized in that it comprises: transforming a target plant with a vector, wherein the vector contains an encoding gene encoding the glutamine synthase mutant.
  9. 根据权利要求7所述的应用,其特征在于,其包括:修饰目的植物的内源谷氨酰胺合成酶基因,使其编码所述谷氨酰胺合成酶突变体。The application according to claim 7, characterized in that it comprises: modifying the endogenous glutamine synthase gene of the target plant to encode the glutamine synthase mutant.
  10. 根据权利要求8或9所述的应用,其特征在于,其包括:对植物细胞、组织、个体或群体进行诱变和筛选,使其编码所述谷氨酰胺合成酶突变体;The application according to claim 8 or 9, characterized in that it comprises: mutagenizing and screening plant cells, tissues, individuals or populations to encode the glutamine synthase mutant;
    优选的,所述目的植物选自小麦、水稻、大麦、燕麦、玉米、高粱、谷子、荞麦、黍稷、绿豆、蚕豆、豌豆、扁豆、甘薯、马铃薯、棉花、大豆、油菜、芝麻、花生、向日葵、萝卜、胡萝卜、芜菁、甜菜、白菜、芥菜、甘蓝、花椰菜、芥蓝、黄瓜、西葫芦、南瓜、冬瓜、苦瓜、丝瓜、菜瓜、西瓜、甜瓜、番茄、茄子、辣椒、菜豆、豇豆、毛豆、韭菜、大葱、洋葱、韭葱、菠菜、芹菜、苋菜、莴苣、茼蒿、黄花菜、葡萄、草莓、甜菜、甘蔗、烟草、苜蓿、牧草、草坪草、茶和木薯中的任意一种。Preferably, the target plant is selected from wheat, rice, barley, oats, corn, sorghum, millet, buckwheat, millet, mung bean, broad bean, pea, lentil, sweet potato, potato, cotton, soybean, rape, sesame, peanut, Sunflower, radish, carrot, turnip, beet, cabbage, mustard greens, kale, cauliflower, kale, cucumber, zucchini, pumpkin, winter melon, bitter gourd, loofah, vegetable melon, watermelon, melon, tomato, eggplant, pepper, kidney bean, cowpea, Any of edamame, leeks, green onions, onions, leeks, spinach, celery, amaranth, lettuce, chrysanthemum, daylily, grapes, strawberries, beets, sugarcane, tobacco, alfalfa, pasture, lawn grass, tea, and cassava.
PCT/CN2021/133918 2020-12-31 2021-11-29 Plant-derived glufosinate-ammonium-resistant glutamine synthase mutant, nucleic acid molecule, and applications WO2022142936A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011626161.3A CN112574967B (en) 2020-12-31 2020-12-31 Glutamine synthetase mutant with glufosinate resistance of plant origin, nucleic acid molecule and application
CN202011626161.3 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142936A1 true WO2022142936A1 (en) 2022-07-07

Family

ID=75144437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133918 WO2022142936A1 (en) 2020-12-31 2021-11-29 Plant-derived glufosinate-ammonium-resistant glutamine synthase mutant, nucleic acid molecule, and applications

Country Status (2)

Country Link
CN (1) CN112574967B (en)
WO (1) WO2022142936A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116970577A (en) * 2023-09-20 2023-10-31 中国科学院遗传与发育生物学研究所 Glutamine synthetase mutant and application thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112574967B (en) * 2020-12-31 2023-08-01 四川天豫兴禾生物科技有限公司 Glutamine synthetase mutant with glufosinate resistance of plant origin, nucleic acid molecule and application
CN116555203A (en) * 2021-03-31 2023-08-08 四川天豫兴禾生物科技有限公司 HIR mutant with trione herbicide resistance and application thereof in plant breeding
CN113604443B (en) * 2021-09-15 2024-04-26 四川天豫兴禾生物科技有限公司 Glutamine synthetase mutant and application thereof in cultivation of glufosinate-resistant plant variety
CN113736757B (en) * 2021-09-15 2023-12-15 四川天豫兴禾生物科技有限公司 Glutamine synthetase mutant with glufosinate resistance, nucleic acid molecule and application
CN113957060B (en) * 2021-10-26 2024-04-23 四川天豫兴禾生物科技有限公司 Glutamine synthetase mutant and application thereof
CN114058600B (en) * 2021-11-16 2023-12-08 四川天豫兴禾生物科技有限公司 Glutamine synthetase mutant with glufosinate resistance and application thereof
CN114774375B (en) * 2022-04-25 2024-04-19 四川天豫兴禾生物科技有限公司 Method for obtaining protein with glufosinate resistance and glutamine synthetase mutant
CN114807064B (en) * 2022-06-06 2024-04-19 四川天豫兴禾生物科技有限公司 Method for obtaining protein with glufosinate resistance and mutant thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090018016A1 (en) * 2006-06-08 2009-01-15 Athenix Corporation Bacterial glutamine synthetases and methods of use
CN103757033A (en) * 2013-12-25 2014-04-30 上海市农业科学院 Rice glutamine synthetase mutant gene capable of improving resistance of plant glufosinate, and preparation method and applications thereof
CN110229794A (en) * 2019-07-01 2019-09-13 四川天豫兴禾生物科技有限公司 Glutamine synthelase mutant and its application and breeding method with glufosinate resistance
CN111635892A (en) * 2020-06-29 2020-09-08 合肥戬谷生物科技有限公司 Glutamine synthetase mutant with glufosinate-ammonium resistance and application thereof
CN112574967A (en) * 2020-12-31 2021-03-30 四川天豫兴禾生物科技有限公司 Glutamine synthetase mutant with glufosinate-ammonium resistance from plant, nucleic acid molecule and application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU576402B2 (en) * 1984-10-01 1988-08-25 General Hospital Corporation, The Plant cells resistant to herbicidal glutamine synthetase inhibitors
US4975374A (en) * 1986-03-18 1990-12-04 The General Hospital Corporation Expression of wild type and mutant glutamine synthetase in foreign hosts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090018016A1 (en) * 2006-06-08 2009-01-15 Athenix Corporation Bacterial glutamine synthetases and methods of use
CN103757033A (en) * 2013-12-25 2014-04-30 上海市农业科学院 Rice glutamine synthetase mutant gene capable of improving resistance of plant glufosinate, and preparation method and applications thereof
CN110229794A (en) * 2019-07-01 2019-09-13 四川天豫兴禾生物科技有限公司 Glutamine synthelase mutant and its application and breeding method with glufosinate resistance
CN111635892A (en) * 2020-06-29 2020-09-08 合肥戬谷生物科技有限公司 Glutamine synthetase mutant with glufosinate-ammonium resistance and application thereof
CN112574967A (en) * 2020-12-31 2021-03-30 四川天豫兴禾生物科技有限公司 Glutamine synthetase mutant with glufosinate-ammonium resistance from plant, nucleic acid molecule and application

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CUI QINGMIAO: "Research progress of glufosinate-ammonium in the environment", LIGHT INDUSTRY SCIENCE AND TECHNOLOGY, vol. 34, no. 9, 1 September 2018 (2018-09-01), pages 30 - 32, XP055947648, ISSN: 2095-3518 *
PORNPROM TOSAPON, PRODMATEE NATHINEE, CHATCHAWANKANPHANICH ORAWAN: "Glutamine synthetase mutation conferring target-site-based resistance to glufosinate in soybean cell selections : Glutamine synthetase mutation confers resistance to glufosinate in soybean", PEST MANAGEMENT SCIENCE, PUBLISHED FOR SCI BY WILEY, vol. 65, no. 2, 1 February 2009 (2009-02-01), pages 216 - 222, XP055947653, ISSN: 1526-498X, DOI: 10.1002/ps.1671 *
YONG-SHENG TIAN, XU JING, ZHAO WEI, XING XIAO-JUAN, FU XIAO-YAN, PENG RI-HE, YAO QUAN-HONG: "Identification of a phosphinothricin-resistant mutant of rice glutamine synthetase using DNA shuffling", SCIENTIFIC REPORTS, vol. 5, no. 1, 23 October 2015 (2015-10-23), pages 1 - 11, XP055771665, DOI: 10.1038/srep15495 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116970577A (en) * 2023-09-20 2023-10-31 中国科学院遗传与发育生物学研究所 Glutamine synthetase mutant and application thereof
CN116970577B (en) * 2023-09-20 2023-12-29 中国科学院遗传与发育生物学研究所 Glutamine synthetase mutant and application thereof

Also Published As

Publication number Publication date
CN112574967B (en) 2023-08-01
CN112574967A (en) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2022142936A1 (en) Plant-derived glufosinate-ammonium-resistant glutamine synthase mutant, nucleic acid molecule, and applications
WO2023040564A1 (en) Glutamine synthetase mutant and application thereof in breeding of glufosinate-ammonium-resistant plant varieties
WO2021000870A1 (en) Glutamine synthetase mutant having glufosinate ammonium resistance and application thereof and cultivation method therefor
EP2465340B1 (en) EPSPS mutants
Mengistu et al. psbA mutation (valine219 to isoleucine) in Poa annua resistant to metribuzin and diuron
WO2023040565A1 (en) Glutamine synthetase mutant having glufosinate-ammonium resistance, nucleic acid molecule and use
JP3538998B2 (en) Long-chain prenyl diphosphate synthase
MX2007013870A (en) Plants containing a heterologous flavohemoglobin gene and methods of use thereof.
He et al. Simultaneous editing of three homoeologues of TaCIPK14 confers broad‐spectrum resistance to stripe rust in wheat
EP2496071B1 (en) Plants with improved nitrogen utilization and stress tolerance
CN114107234B (en) Glutamine synthetase mutant with glufosinate resistance, recombinant gene, recombinant vector and application thereof
WO2023207669A1 (en) Method for acquiring protein with glufosinate resistance and glutamine synthetase mutant
US11591580B2 (en) K85 mutation-containing plant EPSPS mutant, and encoding gene and application thereof
WO2023071438A1 (en) Glutamine synthetase mutant and application
WO2023087812A1 (en) Glutamine synthetase mutant having glufosinate-ammonium resistance and application thereof
CN114807064B (en) Method for obtaining protein with glufosinate resistance and mutant thereof
CN114457091A (en) Gene TaXip influencing wheat grain quality and application thereof
CN117363633A (en) Nucleic acid molecule, vector, recombinant bacterium, GS mutant and application thereof
CN116769739A (en) G294 mutation-containing plant glutamine synthetase mutant and encoding gene and application thereof
CN116875568A (en) G61 mutation-containing plant glutamine synthetase mutant and encoding gene and application thereof
US9650616B2 (en) Methods for increasing grain yield
CN116970577B (en) Glutamine synthetase mutant and application thereof
US20230127011A1 (en) Methods and compositions for herbicide tolerance in plants
CN109554357A (en) One kind containing A138X1And L195X2The plant EPSPS mutant and its encoding gene of mutation and application
Assessment FOOD DERIVED FROM GLYPHOSATE-TOLERANT SUGAR BEET LINE H7-1

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913677

Country of ref document: EP

Kind code of ref document: A1