WO2022142777A1 - 具有冷冻储物组件的冰箱 - Google Patents

具有冷冻储物组件的冰箱 Download PDF

Info

Publication number
WO2022142777A1
WO2022142777A1 PCT/CN2021/130607 CN2021130607W WO2022142777A1 WO 2022142777 A1 WO2022142777 A1 WO 2022142777A1 CN 2021130607 W CN2021130607 W CN 2021130607W WO 2022142777 A1 WO2022142777 A1 WO 2022142777A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
refrigerator
storage
storage box
magnetic
Prior art date
Application number
PCT/CN2021/130607
Other languages
English (en)
French (fr)
Inventor
李孟成
费斌
刘浩泉
赵斌堂
王霁昀
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Priority to EP21913520.9A priority Critical patent/EP4253885A4/en
Priority to US18/270,458 priority patent/US20240060703A1/en
Priority to JP2023539847A priority patent/JP2024501686A/ja
Publication of WO2022142777A1 publication Critical patent/WO2022142777A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/363Freezing; Subsequent thawing; Cooling the materials not being transported through or in the apparatus with or without shaping, e.g. in form of powder, granules, or flakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/005Charging, supporting, and discharging the articles to be cooled using containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/061Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/122Sensors measuring the inside temperature of freezer compartments

Definitions

  • the present invention relates to a refrigerating and freezing storage device, in particular to a refrigerator with a freezing storage assembly.
  • An object of the present invention is to provide a freezing control method and a refrigerator for a refrigerator that can effectively improve the quality of frozen storage.
  • a further object of the present invention is to reduce the energy consumption of the refrigerator.
  • the present invention provides a refrigerator with a freezing storage assembly, comprising:
  • the box body is provided with a storage compartment for realizing the function of freezing storage
  • the freezing storage assembly is arranged in the storage compartment, and includes: a magnetic frame, which is made of magnetic material; a storage box, which is arranged in the space enclosed by the magnetic frame and defines a freezing storage space; and
  • Multiple sets of electromagnetic coils are respectively arranged on the inner surface of the magnetic frame, and are used to form a magnetic field with a magnetic pole direction at a set angle in the refrigerated storage space.
  • the magnetic field passes through the magnetic frame to complete the closed loop of the magnetic lines of force.
  • the magnetic frame is a square cylinder with a through opening in the front and rear directions
  • the multiple groups of electromagnetic coils include: a longitudinal magnetic field coil group for forming a magnetic field with a magnetic pole direction parallel to the longitudinal direction of the magnetic frame; a transverse magnetic field coil group for forming a magnetic field. a magnetic field with a pole direction parallel to the transverse direction of the magnetic frame; and
  • the refrigerator also includes: a first power supply switch for controlling the power supply of the longitudinal magnetic field coil group on and off; and a second power supply switch for controlling the power supply for the transverse magnetic field coil group on and off.
  • bosses are respectively formed on the top wall, bottom wall, and inner sides of the left and right side walls of the magnetic frame,
  • the longitudinal magnetic field coil set includes: a first coil sleeved on the boss inside the top wall of the magnetic frame, a second coil sleeved on the boss inside the bottom wall of the magnetic frame, the first coil and the second coil are connected in series or connected in parallel; and
  • the transverse magnetic field coil set includes: a third coil, sleeved on the boss on the inner side of the left side wall of the magnetic frame, a fourth coil, sleeved on the boss on the inner side of the right side wall of the magnetic frame, the third coil and the fourth coil.
  • the coils are connected in series or in parallel.
  • the storage box includes: an outer cylinder, which is arranged in the space enclosed by the magnetic frame and has a forward opening; and a drawer, which is detachably arranged in the outer cylinder.
  • an air inlet and an air return port are opened on the rear wall of the outer cylinder, and the air inlet is used to connect the air supply air duct of the refrigerator or the evaporator of the refrigerator, so as to introduce the cooling air into the storage box; the air return port is used to connect the refrigerator.
  • the return air duct of the refrigerator may be communicated with the evaporator of the refrigerator, so as to send the heat-exchanged airflow back to the return air duct of the refrigerator or the evaporator.
  • the above-mentioned refrigerator with a refrigerated storage assembly further includes: an opening and closing detector, configured to detect the opening and closing state of the storage box; the temperature of the storage box; the refrigeration controller is configured to start the refrigeration of the storage box when the magnitude of the change in the internal temperature before the storage box is opened and after the storage box is closed is greater than the first set threshold; and the first power switch and the second power supply switch The power supply switch is further configured to be alternately closed according to a set period when the refrigeration controller starts to cool the storage box, so that the longitudinal magnetic field coil group and the transverse magnetic field coil group alternately generate magnetic fields.
  • one of the first power supply switch and the second power supply switch is turned off. open, the other is closed periodically or continuously closed, so that one of the longitudinal magnetic field coil group and the transverse magnetic field coil group generates a magnetic field.
  • the first power supply switch and the second power switch are all turned off, and the third set threshold is less than the second set threshold;
  • the refrigeration controller stops refrigerating the storage box, and the fourth set threshold is less than the third set threshold.
  • the refrigeration controller is further configured to perform conventional refrigeration control on the storage box according to the preset refrigeration startup condition and refrigeration shutdown condition of the storage box, so as to maintain the refrigerated storage of the storage box.
  • the first power supply switch and the second power supply switch are further configured to enable the longitudinal magnetic field coil group and/or the transverse magnetic field coil group according to a preset opening and closing strategy during the normal refrigeration control of the storage box by the refrigeration controller. generate a magnetic field.
  • the above-mentioned refrigerator with a refrigerated storage assembly further includes: a plurality of coil temperature sensors, respectively used to detect the temperature of the longitudinal magnetic field coil group and the temperature of the transverse magnetic field coil group; and the longitudinal magnetic field coil group and the transverse magnetic field coil group alternately.
  • the first power supply switch and the second power supply switch are further configured to disconnect the power supply of the magnetic field coil with abnormal temperature.
  • a magnetic frame is arranged on the outer side of the storage box, and a plurality of sets of electromagnetic coils that can form a magnetic field with a magnetic pole direction at a set angle are arranged on the inner surface of the magnetic frame.
  • the magnetic field is guided, so that the electromagnetic coil can form a uniform and strong magnetic field in the refrigerated storage space to meet the requirements of improving the quality of the refrigerated storage.
  • the magnetic frame also provides an assembly structure for the electromagnetic coil, which reduces the occupied space and improves the practicability.
  • the internal temperature changes before and after the storage box is opened and closed are obtained, and the change in the internal temperature of the storage box is determined.
  • the first set threshold that is, when the ingredients need to be frozen
  • the electromagnetic coil generates alternating magnetic fields, which make the food freeze in the magnetic field environment, inhibit the growth of ice crystal nuclei, make the ice crystal growth rate higher than the migration rate of water molecules, and produce smaller ice crystals, thereby reducing damage to cells and avoiding juice loss.
  • multiple sets of magnetic field coils are used to generate magnetic fields alternately, so that the directions of the magnetic fields are alternated during the freezing process, which further improves the freezing quality.
  • the refrigerator with the refrigerated storage assembly of the present invention improves the opening and closing conditions of the electromagnetic field, and the magnetic field is applied during the period when the ice crystals are mainly formed, which improves the use efficiency of the magnetic field, and reduces the effect of the magnetic field on the storage box on the one hand.
  • the influence of other external components, on the other hand, also reduces the energy consumption of the refrigerator.
  • FIG. 1 is a schematic perspective view of a refrigerator having a freezer storage assembly according to one embodiment of the present invention
  • FIG. 2 is a schematic diagram of a freezer storage assembly of a refrigerator having a freezer storage assembly according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the cooperation between a magnetic frame and a storage box in a refrigerator with a freezer storage assembly according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a magnetic frame in a refrigerator with a freezer storage assembly according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an electromagnetic coil in a refrigerator with a freezer storage assembly according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a magnetic field formed in a freezer storage assembly of a refrigerator with a freezer storage assembly according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of another magnetic field formed in a freezer storage assembly of a refrigerator with a freezer storage assembly according to an embodiment of the present invention.
  • FIG. 8 is a block diagram of a control system of a refrigerator having a freezer storage assembly according to one embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a freezing control method of a refrigerator having a freezing storage assembly according to an embodiment of the present invention.
  • the refrigerator 10 of this embodiment may generally include a box body 120, a door body 110, and a refrigeration system (not shown in the figure).
  • the box body 120 may define at least one storage compartment whose front side is open, usually a plurality of storage compartments, such as a refrigerated storage compartment, a freezing storage compartment, a temperature-changing storage compartment, and the like.
  • the number and function of specific storage compartments can be configured according to pre-requirements.
  • the refrigerator 10 should at least have a refrigerated storage compartment or a temperature-variable storage compartment whose temperature can reach the freezing range (that is, it can be used to realize a refrigerated storage environment), that is, the box body 120 is provided with a refrigerated storage compartment for realizing refrigerated storage.
  • the temperature range for frozen storage can generally be set from -14°C to -22°C.
  • the refrigerator 10 in this embodiment may be an air-cooled refrigerator, and an air duct system is arranged in the box body 120 , and a fan is used to send the refrigerating air that has been exchanged by the heat exchanger to the storage compartment through the air supply port, and then returns to the storage compartment through the air return port. air duct. achieve refrigeration. Since the box body 120 , the door body 110 and the refrigeration system of this type of refrigerator are all known to those skilled in the art and are easy to implement, in order not to obscure and obscure the invention point of the present application, the box body 120 , the door body 110 will be discussed in the following text. . The refrigeration system itself will not be described in detail.
  • a refrigerated storage assembly 200 is disposed inside the refrigerated storage compartment.
  • the refrigerated storage assembly 200 forms an independently closed refrigerated storage space, which can improve the storage quality of the refrigerated storage space by means of a magnetic field.
  • a magnetic field Under the action of a certain strength of the magnetic field, in the freezing process, the free path of water molecules can be restricted, which is manifested as the breaking of hydrogen bonds in the water molecules. Because the growth of crystal nucleus is inhibited, the growth rate of ice crystals is higher than the migration rate of water molecules, and the resulting ice crystals are small, so the damage to cells is also small, the loss rate of juice is reduced, and the nutrition and taste of ingredients are better preserved.
  • the magnetic field can shorten the freezing time, which helps to suppress the number of microorganisms and bacteria.
  • the refrigerator 10 of this embodiment further improves the magnetic field in a targeted manner, and further improves the quality of frozen storage by optimizing the direction of the magnetic field and the start-stop time.
  • FIG. 2 is a schematic diagram of the freezer storage assembly 200 in the refrigerator 10 with the freezer storage assembly 200 according to an embodiment of the present invention
  • FIG. 3 is a magnetic frame in the refrigerator 10 with the freezer storage assembly 200 according to an embodiment of the present invention 210 and the storage box 240 cooperate schematic diagram
  • FIG. 4 is a schematic diagram of the magnetic frame 210 in the refrigerator 10 with the freezer storage assembly 200 according to an embodiment of the present invention
  • FIG. 5 is a freezer storage device according to an embodiment of the present invention.
  • a schematic diagram of the electromagnetic coil 230 in the refrigerator 10 of the assembly 200 .
  • the refrigerated storage assembly 200 is arranged in the storage compartment, and includes: a magnetic frame 210 , a plurality of sets of electromagnetic coils 230 , a storage box 240 , and the like.
  • the magnetic frame 210 is made of magnetic material, and bosses 220 are respectively formed on the inner wall thereof.
  • the magnetic material can be a soft magnetic material or a hard magnetic material, for example, a soft magnetic material can be used.
  • the soft magnetic material is characterized by low coercivity and high magnetic permeability.
  • the magnetic frame 210 can be used to gather the magnetic field and reduce the release of the magnetic field to the outside. , reducing interference to other components outside the refrigerated storage assembly 200 (eg, magnetizing other components, etc.).
  • Multiple sets of electromagnetic coils 230 are respectively disposed on the inner surface of the magnetic frame 210, and are used to form a magnetic field with a magnetic pole direction at a set angle in the freezer storage space, and the magnetic field passes through the magnetic frame 210 to complete a closed loop of magnetic lines of force.
  • the magnetic field formed by the multiple sets of electromagnetic coils 230 with the magnetic pole direction at a set angle has better freezing storage effect, and can ensure that the entire freezing storage space is within the magnetic field range without dead ends, making the crystallization process of the storage more uniform.
  • the electromagnetic coils 230 may be in two groups.
  • the magnetic pole directions of the magnetic fields formed by the two sets of electromagnetic coils 230 may be orthogonally arranged.
  • the plurality of sets of electromagnetic coils 230 may include: longitudinal magnetic field coil sets 231 , 232 and transverse magnetic field coil sets 233 , 234 .
  • the longitudinal magnetic field coil groups 231 and 232 are used to form a magnetic field with the magnetic pole direction parallel to the longitudinal direction of the magnetic frame 210 ;
  • the magnetic field arrangement structure of the longitudinal magnetic field coil groups 231, 232 and the transverse magnetic field coil groups 233, 234 can meet various control requirements of magnetic field assisted refrigeration, and the magnetic field type is more flexible.
  • the longitudinal magnetic field coil groups 231, 232 and the transverse magnetic field coil groups 233, 234 have independent power supply switches to control the start and stop, that is, the first power supply switch 281 is used to control the power supply of the longitudinal magnetic field coil groups 231, 232, and its closing can make the longitudinal magnetic field coil group 231 and 232 generate a magnetic field; the second power switch 282 is used to control the power on and off of the transverse magnetic field coil sets 233 and 234 , and the closure of the second power supply switch 282 can make the transverse magnetic field coil sets 233 and 234 generate a magnetic field.
  • the magnetic frame 210 may be a square cylindrical body with a through opening in the front-rear direction, that is, a frame body with a curved cross-section.
  • the front and rear ends of the square cylinder body respectively have through openings for arranging various types of storage boxes 240 .
  • Bosses 220 are respectively formed on the top wall, bottom wall, and inner sides of the left and right side walls of the magnetic frame 210 .
  • the above-mentioned bosses 220 are respectively used for socketing the electromagnetic coils 230 .
  • the longitudinal magnetic field coil sets 231 and 232 may include: a first coil 231 and a second coil 232 .
  • the first coil 231 is sleeved on the boss 220 inside the top wall of the magnetic frame 210 .
  • the second coil 232 is sleeved on the boss 220 inside the bottom wall of the magnetic frame 210 .
  • the first coil 231 and the second coil 232 are connected in series or in parallel, and are controlled by the first power switch 281 to open and close.
  • the transverse magnetic field coil sets 233 and 234 may include: a third coil 233 and a fourth coil 234 .
  • the third coil 233 is sleeved on the boss 220 on the inner side of the left side wall of the magnetic frame 210 .
  • the fourth coil 234 is sleeved on the boss 220 on the inner side of the right side wall of the magnetic frame 210 .
  • the third coil 233 and the fourth coil 234 are connected in series or in parallel, and are controlled by the second power switch 282 to open and close.
  • the above-mentioned magnetic field coils can be made to work individually or in combination to form various required magnetic fields.
  • the cross-section of the boss 220 may be square, circular or oval. When a square cross-section is used, the boss 220 is more convenient for structural matching with the box body 120 .
  • the shape of the inner circumference of each of the coils 231 , 232 , 233 , and 234 is adapted to the outer circumference of the corresponding boss 220 , and is correspondingly set in a square, a circle, or an ellipse.
  • the first coil 231 and the second coil 232 are in a mirror image configuration; the third coil 233 and the fourth coil 234 are in a mirror image configuration.
  • Each of the electromagnetic coils 231 , 232 , 233 and 234 can be formed into a flat box shape and wound in the circumferential direction, so that the magnetic field pole direction of the magnetic field generated by the electromagnetic coil 230 after being energized is perpendicular to the boss 220 .
  • the height of the boss 220 can be adapted to the thickness of the electromagnetic coil 230 , so that the inner wall of the ring-shaped frame body where the electromagnetic coil 230 is located is substantially flush, so that the storage box 240 is arranged.
  • the electromagnetic coil 230 may be a flat elliptical ring or a circular ring.
  • FIG. 6 and 7 are respectively schematic diagrams of a magnetic field formed in a freezer storage assembly of a refrigerator with a freezer storage assembly according to an embodiment of the present invention, wherein the magnetic field in FIG. 231.
  • the direction of the magnetic poles of the magnetic field formed by the second coil 232 is also set so that the magnetic field lines face the same direction (up or down), the magnetic field in FIG.
  • the direction of the magnetic poles of the magnetic field is also set so that the magnetic field lines are oriented in the same direction (left or right).
  • the first power supply switch 281 and the second power supply switch 282 can respectively change the direction of the magnetic pole by changing the direction of the current flowing into the coil.
  • the magnetic field lines of the magnetic field pass through the inner space of the magnetic frame 210 to complete a closed loop through the magnetic frame 210 , so that the distribution of the magnetic field is uniform or the magnetization effect on the external components of the storage box 240 is reduced.
  • the magnetic frame 210 is used to guide the magnetic field generated by the electromagnetic coil 230, so as to avoid uneven magnetic field and affect other components outside the storage box 240, so that the electromagnetic coil 230 can form a uniform and strong enough in the refrigerated storage space to meet the requirements of improving the freezing performance. Magnetic field required for storage mass. Further, the magnetic frame 210 also provides an assembly structure for the electromagnetic coil 230, which reduces the occupied space and improves the practicability.
  • the storage box 240 can form an independently sealed frozen storage space, so as to provide a better frozen storage environment for specific ingredients.
  • the storage box 240 is disposed in the space enclosed by the magnetic frame 210 .
  • the storage box 240 may include: an outer cylinder 241 and a drawer 242 .
  • the outer cylinder 241 is disposed in the magnetic frame 210 and has a forward opening.
  • the drawer 242 is provided in the outer cylinder 241 in a drawable manner.
  • the front panel of the drawer 242 may form a sealing structure with the outer cylinder 241 .
  • the rear wall of the outer cylinder 241 is provided with an air inlet 243 and an air return port 244 , and the air inlet 243 is used to connect to the air duct air outlet of the refrigerator 10 or to the evaporator of the refrigerator 10 .
  • the air return port 244 is used to connect to the air duct return port of the refrigerator 10 or to the evaporator of the refrigerator 10 (for example, to the bottom of the evaporator) area) to return the heat-exchanged airflow to the return air duct or the evaporator of the refrigerator 10 .
  • the air inlet 243 and the air return port 244 may be provided with dampers (not shown in the figure). Controlled opening of the damper during cooling supply.
  • the air inlet 243 and the air return port 244 can be configured according to the air duct of the air-cooled refrigerator, and the position and structure of the evaporator.
  • the refrigerator 10 of this embodiment combines the magnetic field control of the electromagnetic coil 230 with the refrigeration control to ensure that the food is frozen in the magnetic field environment and achieve the effect of keeping fresh and freezing.
  • 8 is a block diagram of a control system of a refrigerator 10 with a frozen storage assembly 200 according to an embodiment of the present invention, the refrigerator 10 is further provided with a storage temperature sensor 250 , a coil temperature sensor 260 , an opening/closing detector 270 , and a refrigeration controller 300 .
  • the storage temperature sensor 250 is disposed in the outer cylinder 241 of the storage box 240 and used to detect the temperature in the drawer 242 .
  • the coil temperature sensor 260 is disposed adjacent to the position of the electromagnetic coil 230 and is used to detect the temperature at the electromagnetic coil 230 . In some embodiments, the coil temperature sensor 260 may be disposed at the electromagnetic coil 230 at the bottom of the drawer 242 .
  • the opening and closing detector 270 is configured to detect the opening and closing state of the drawer 242 .
  • the electromagnetic coil 230 When the electromagnetic coil 230 generates a magnetic field, it will generate heat to a certain extent. Therefore, in order to prevent the heat of the electromagnetic coil 230 from affecting cooling, the electromagnetic coil 230 is further configured to power off when the temperature detected by the coil temperature sensor 260 exceeds a preset protection temperature, thereby realizing overheat protection.
  • the opening/closing detector 270 is configured to detect the opening/closing state of the drawer 242 . After the drawer 242 is pulled open and then closed, with the help of the storage temperature sensor 250, it can be detected whether new ingredients are put in, or whether the original ingredients need to be re-frozen. Then, the electromagnetic coil 230 is cooperated with the refrigeration system, so that the magnetic field-assisted freezing can be realized, and the effect of freezing and fresh-keeping of the ingredients can be improved.
  • the refrigeration controller 300 includes a memory 310 and a processor 320 .
  • a control program 311 is stored in the memory 310 , and when the control program 311 is executed by the processor 320 , is used to control the electromagnetic coil 230 and the refrigeration system, thereby realizing a corresponding refrigeration control method.
  • Various sensors provide detection means for magnetic field control, so as to meet the control requirements of the control method.
  • the refrigeration controller 300 may be configured to activate the refrigeration of the storage box 240 when the magnitude of the change in the internal temperature before the storage box 240 is opened and after the storage box 240 is closed is greater than the first set threshold.
  • the internal temperature change of the storage box 240 reflects the state of the stored food. If the internal temperature changes greatly, it means that new food is put into the storage box 240, or whether the temperature of the food has risen and needs to be re-frozen; If the change in internal temperature is small, the food may still be frozen. If the magnitude of the change in the internal temperature is greater than the first set threshold, the refrigeration controller 300 starts to freeze and cool the storage box 240 .
  • the first set threshold can be set to 2-8 degrees Celsius, which can be flexibly set according to the freezing set temperature.
  • the first power supply switch 281 and the second power supply switch 282 are alternately closed according to a set period when the refrigeration controller 300 starts to cool the storage box 240, so that the longitudinal magnetic field coil groups 231, 232 and the transverse magnetic field coil groups 233, 234 generate magnetic fields alternately. That is, when the storage box 240 is refrigerated, the direction of the magnetic field inside the storage box 240 periodically alternates longitudinally and laterally. Compared with the reverse magnetic field with a fixed direction, this method of alternately assisted fresh-keeping and freezing by magnetic fields has been verified in practice.
  • the above-mentioned starting conditions can also avoid the increase in heat generation and energy consumption caused by the long-term formation of the magnetic field, and on the other hand, it can also avoid the magnetization effect on other components outside the storage box 240 .
  • the longitudinal magnetic field coil sets 231, 232 and the transverse magnetic field coil sets 233, 234 generate magnetic fields alternately, if the internal temperature of the storage box 240 is cooled to less than the second set threshold, one of the first power supply switch 281 and the second power supply switch 282 Open, the other is closed periodically or continuously, so that one of the longitudinal magnetic field coil sets 231, 232 and the transverse magnetic field coil sets 233, 234 generates a magnetic field. As the freezing process continues, the magnetic field required to assist freezing can be reduced, which can further reduce energy consumption.
  • the first power switch 281 when the internal temperature of the storage box 240 cools down to reach the second set threshold, the first power switch 281 is turned off, and the second power switch 282 is kept on, so that the longitudinal magnetic field coil sets 231 and 232 stop generating magnetic field, while the transverse magnetic field coil sets 233, 234 continue to operate.
  • the second set threshold may be set to -10 to 12 degrees Celsius, within this temperature range, most of the stored items have been frozen.
  • the third set threshold is less than the second set threshold, which can be set to -12 to -18 degrees Celsius, which is the temperature at which the storage is basically frozen;
  • the refrigeration controller 300 stops cooling the storage box 240, and the fourth set threshold is less than the third set threshold, which can be adjusted according to the storage
  • the freezer shutdown temperature setting set by the box 240 can generally be lower than the set freezer shutdown temperature. That is, after the magnetic field coil completes its work, the freezing and cooling are delayed for a period of time and turned off. Since the cooling is performed after the storage box 240 is opened this time, setting the fourth threshold to a lower value can achieve supercooling to a certain extent and improve the quality of frozen storage.
  • the electromagnetic coil 230 When the electromagnetic coil 230 generates a magnetic field, it will generate heat to a certain extent. Therefore, in order to prevent the heat of the electromagnetic coil 230 from affecting cooling, that is, after the electromagnetic coil 230 is overheated, overheating protection can be achieved by powering off.
  • the plurality of coil temperature sensors 260 are respectively used to detect the temperature of the longitudinal magnetic field coil groups 231 and 232 and the temperature of the transverse magnetic field coil groups 233 and 234 , and corresponding temperature sensors may be provided on different sides of the magnetic frame 210 .
  • the first power supply switch 281 and the second power supply switch 282 also Configured to de-energize the magnetic field coil whose temperature is abnormal. For example, if the temperature of the first coil 231 is abnormal, the first power supply switch 281 is turned off, and if the temperature of the third coil 233 is abnormal, the second power switch 282 is turned off.
  • One solution for judging abnormal temperature is: if the temperature of any one of the first coil 231, the second coil 232, the third coil 233, and the fourth coil 234 exceeds the set protection temperature (for example, -2 to 0 degrees), it is considered that the corresponding temperature The coil temperature is abnormal.
  • the set protection temperature for example, -2 to 0 degrees
  • Another solution for judging the abnormal temperature is: if the temperature difference between the temperature of any one of the first coil 231, the second coil 232, the third coil 233, and the fourth coil 234 and the internal temperature of the storage box 240 is greater than the set protection temperature difference ( For example, set 2-4 degrees), the corresponding coil temperature is abnormal. Since the electromagnetic coil 230 itself is also located in the refrigerated storage compartment, the temperature difference between the temperature of the electromagnetic coil 230 and the internal temperature of the storage box 240 can better reflect the heating condition of the electromagnetic coil 230, thereby preventing the electromagnetic coil 230 from affecting normal cooling.
  • the set protection temperature difference For example, set 2-4 degrees
  • the refrigeration controller 300 After the refrigeration controller 300 stops refrigerating the storage box 240 , it may be further configured to: perform conventional refrigeration control on the storage box 240 according to the preset refrigeration start-up conditions and refrigeration shutdown conditions of the storage box 240 , so as to maintain the storage box 240 and the first power supply switch 281 and the second power supply switch 282 are further configured to enable the longitudinal magnetic field coil groups 231, 232 according to a preset opening and closing strategy during the normal freezing control of the storage box 240 by the refrigeration controller 300. and/or transverse magnetic field coil sets 233, 234 generate magnetic fields.
  • the normal freezing control of the storage box 240 is restored, that is, the freezing control of the storage box 240 is performed according to the preset cooling start condition and cooling shutdown condition of the storage box 240 .
  • the cooling start condition and the cooling off condition can also be set according to the set temperature of the storage box 240 , and the cooling starts when the temperature is higher than the cooling start temperature, and the cooling is stopped when the temperature is lower than the cooling off temperature.
  • a magnetic field may also be used to assist refrigeration, so as to avoid the deterioration of the storage quality when some ice crystals are regenerated.
  • the opening and closing strategies of the first power supply switch 281 and the second power supply switch 282 may be: starting and stopping the magnetic field while cooling the storage box 240, that is, the magnetic field and cooling are turned on and off at the same time.
  • Another alternative solution is to activate the magnetic field when starting the cooling of the storage box 240, and turn off the magnetic field before stopping the cooling of the storage box 240, that is, the magnetic field is only activated at the beginning of cooling. After the actual test, the storage quality of the magnetic field only started at the beginning of the cooling stage did not decrease significantly compared with the storage quality of the magnetic field and the cooling started and stopped at the same time.
  • the opening and closing strategies of the first power supply switch 281 and the second power supply switch 282 may be: freeze the storage box 240 according to the preset refrigeration start condition and refrigeration close condition of the storage box 240 During the control process, the magnetic field is activated according to the set period, that is, the magnetic field is activated periodically.
  • the longitudinal magnetic field coil sets 231, 232 and the transverse magnetic field coil sets 233, 234 when the storage box 240 is normally frozen and controlled to activate the magnetic field, the longitudinal magnetic field coil sets 231, 232 and the transverse magnetic field coil sets 233, 234 generate magnetic fields alternately, for example, the longitudinal magnetic field coil sets 231, 232 are activated for the first time, and the transverse magnetic field is activated for the second time
  • the coil groups 233, 234, the longitudinal magnetic field coil groups 231, 232 are activated for the third time, the transverse magnetic field coil groups 233, 234 are activated for the fourth time, and so on.
  • the direction of the magnetic pole after each energization of the coil can be configured to be opposite to the direction of the magnetic pole after the last energization, for example, the magnetic pole direction of the longitudinal magnetic field coil groups 231, 232 is from top to bottom for the first time, and the direction of the magnetic poles is from bottom to top when it is restarted; for example, the transverse magnetic field coil groups 233, 234
  • the magnetic pole direction is from left to right for the first time, and from right to left to top when it is started again.
  • the step of turning on cooling the storage box 240 may include: opening an air inlet, and turning on a cooling airflow to the air inlet 243 .
  • FIG. 9 is a schematic diagram of a freezing control method of a refrigerator having a freezing storage assembly according to an embodiment of the present invention.
  • the process of this embodiment is a specific application example of the freezing control method for a refrigerator, in which the execution order of some steps can be adjusted.
  • the process can include:
  • Step S902 detecting the opening and closing state of the storage box 240;
  • Step S904 it is determined that the storage box 240 is closed after being opened, that is, it is determined whether an opening and closing event occurs in the storage box 240;
  • Step S906 acquire the internal temperature changes before and after the storage box 240 is opened, and determine whether the magnitude of the internal temperature change is greater than the first set threshold, that is, determine whether the storage box 240 is filled with new food, or whether food is placed in the storage box 240.
  • the first set threshold can be set to 2 to 8 degrees Celsius. If the change in the internal temperature is small, the food may not need to be re-frozen, and the refrigeration of the frozen storage can be routinely controlled, that is, Refrigeration control is performed according to the set startup temperature threshold and shutdown temperature threshold.
  • Step S908 turn on the refrigeration, and supply air to the storage box 240 , while the first power supply switch 281 and the second power supply switch 282 are alternately closed according to the set period, so that the longitudinal magnetic field coil sets 231 , 232 and the transverse magnetic field coil sets 233 , 234 generate magnetic fields alternately.
  • Step S910 continuously detect the internal temperature of the storage box 240 and the temperature at each electromagnetic coil 231, 232, 233, 234;
  • step S912 it is determined whether any one of the electromagnetic coils 231, 232, 233, and 234 has abnormal temperature, that is, it is determined whether the heating of the coil will affect normal cooling.
  • One solution for judging abnormal temperature is: if the temperature of any one of the first coil 231, the second coil 232, the third coil 233, and the fourth coil 234 exceeds the set protection temperature (for example, -2 to 0 degrees), it is considered that the corresponding temperature The temperature of the coil is abnormal; or if the temperature difference between the temperature of any one of the first coil 231, the second coil 232, the third coil 233, and the fourth coil 234 and the internal temperature of the storage box 240 is greater than the set protection temperature difference (for example, set 2- 4 degrees), the corresponding coil temperature is abnormal. If the temperature is abnormal, the first power supply switch 281 and the second power supply switch 282 disconnect the power supply of the magnetic field coil whose temperature is abnormal.
  • Step S914 judging whether the internal temperature of the storage box 240 is lower than the second set threshold (for example, it can be set to -10-12 degrees Celsius), that is, judging whether the basic freezing stage is completed;
  • the second set threshold for example, it can be set to -10-12 degrees Celsius
  • Step S916 one of the first power supply switch 281 and the second power supply switch 282 is opened, and the other is closed periodically or continuously, so that one of the longitudinal magnetic field coil groups 231, 232 and the transverse magnetic field coil groups 233, 234 generates a magnetic field;
  • Step S920 it is judged that the internal temperature of the storage box 240 is lower than the third set threshold value, and the third set threshold value is less than the second set threshold value, which can be set to -12 to -18 degrees Celsius, that is, the storage items are basically frozen. temperature.
  • step S922 the first power supply switch 281 and the second power supply switch 282 are all turned off, and the generation of the magnetic field is stopped.
  • Step S924 judging whether the internal temperature of the storage box 240 is lower than the fourth preset threshold value, the fourth preset threshold value is less than the third preset threshold value, which can be set according to the freezer shutdown temperature set by the storage box 240, which can generally be lower. at the set freezer shutdown temperature.
  • Step S926 stop refrigerating the storage box 240, and perform conventional freezing control on the storage box 240 according to the preset refrigeration start-up conditions and refrigeration-off conditions of the storage box 240, so as to maintain the refrigerated storage environment of the storage box 240; and the first The power supply switch 281 and the second power supply switch 282 are further configured to generate the longitudinal magnetic field coil sets 231 , 232 and/or the transverse magnetic field coil sets 233 , 234 according to a preset opening and closing strategy during the normal freezing control of the storage box 240 by the refrigeration controller 300 magnetic field.
  • the refrigerator 10 with the freezing storage assembly of the present embodiment makes the food frozen in the magnetic field environment, and the direction and start and stop of the magnetic field are controlled in a targeted manner to preferentially inhibit the growth of ice crystal nuclei and reduce damage to cells. , to avoid the loss of juice, to ensure a better taste of the ingredients, to improve the quality of frozen storage, and to meet the user's storage quality requirements for precious ingredients.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种具有冷冻储物组件的冰箱,其包括箱体,其内设置有实现冷冻储物功能的储物间室;冷冻储物组件,布置于储物间室内,并且包括:磁性框,由磁性材料制成;储物盒,设置于磁性框围成的空间内,并限定出冷冻储物空间;以及多组电磁线圈,分别设置于磁性框的内表面,用于在冷冻储物空间内形成磁极方向呈设定角度的磁场,磁场经过磁性框完成磁力线闭环。本发明的方案,电磁线圈可以在冷冻储物空间形成均匀且强度足以满足提高冷冻储物质量的要求的磁场,提高了冷冻储物质量。

Description

具有冷冻储物组件的冰箱 技术领域
本发明涉及冷藏冷冻储物装置,特别是涉及一种具有冷冻储物组件的冰箱。
背景技术
用户对储藏物的保鲜效果也越来越重视,现有技术中的保鲜储藏大多将重点聚焦于冷藏保鲜,对冷冻保鲜有所忽视。但是对于肉类、鱼、虾这类需冷冻的食材,在冷冻后往往会出现汁液流失导致口感变差、颜色变暗的问题,特别是某些需冷冻的高档食材,冷冻后的品质大为降低,这也影响了用户的使用体验。
为了提高冷冻储物的质量,现有技术中出现了较多的改进方案,例如通过速冻提高食物的冷冻速度或者食品进入过冷却状态,这种方案需要提高冰箱的制冷能力,还会导致冰箱耗能增加。因此实现更加高效地提高冷冻储物质量成为冰箱研发者亟待解决的技术难题。
理论研究发现磁场对冷冻过程中冰晶的形成有较大的影响。冰箱领域也积极探索将磁场引入冷冻保鲜中,然而在冰箱中实际应用时,磁场辅助冷冻的效果并不能令人满意。
发明内容
本发明的一个目的是要提供一种有效提高冷冻储物质量的冰箱的冷冻控制方法与冰箱。
本发明一个进一步的目的是要使得降低冰箱的能耗。
特别地,本发明提供了一种具有冷冻储物组件的冰箱,包括:
箱体,其内设置有实现冷冻储物功能的储物间室;
冷冻储物组件,布置于储物间室内,并且包括:磁性框,由磁性材料制成;储物盒,设置于磁性框围成的空间内,并限定出冷冻储物空间;以及
多组电磁线圈,分别设置于磁性框的内表面,用于在冷冻储物空间内形成磁极方向呈设定角度的磁场,磁场经过磁性框完成磁力线闭环。
可选地,磁性框为前后方向具有贯通开口的方形筒体,多组电磁线圈包括:纵向磁场线圈组,用于形成磁极方向平行于磁性框纵向方向的磁场;横 向磁场线圈组,用于形成磁极方向平行于磁性框横向方向的磁场;并且
冰箱还包括:第一供电开关,用于控制纵向磁场线圈组的电源通断;第二供电开关,用于控制横向磁场线圈组的电源通断。
可选地,磁性框的顶壁、底壁、以及左右侧壁的内侧分别形成有凸台,
纵向磁场线圈组包括:第一线圈,套设于磁性框的顶壁内侧的凸台上,第二线圈,套设于磁性框的底壁内侧的凸台上,第一线圈和第二线圈串联或者并联连接;并且
横向磁场线圈组包括:第三线圈,套设于磁性框的左侧壁内侧的凸台上,第四线圈,套设于磁性框的右侧壁内侧的凸台上,第三线圈和第四线圈串联或者并联连接。
可选地,储物盒包括:外筒,设置于磁性框围成的空间内,并具有前向开口;以及抽屉,可抽拉地设置在外筒内。
可选地,外筒的后壁上开设有进风口以及回风口,进风口用于连接冰箱的送风风道或者连通冰箱的蒸发器,以将制冷气流引入储物盒;回风口用于连接冰箱的回风风道或者连通冰箱的蒸发器,以将换热后的气流送回所述冰箱的回风风道或所述蒸发器。
可选地,上述具有冷冻储物组件的冰箱还包括:开闭检测器,配置成检测储物盒的开闭状态;储物温度传感器,设置于储物盒内,并用于检测储物盒内的温度;制冷控制器,配置成在储物盒被打开前以及被关闭后的内部温度变化的幅度大于第一设定阈值的情况下启动对储物盒制冷;并且第一供电开关和第二供电开关,还配置成在制冷控制器启动对储物盒制冷时,按照设定周期交替闭合,以使得纵向磁场线圈组和横向磁场线圈组交替产生磁场。
可选地,在纵向磁场线圈组和横向磁场线圈组交替产生磁场的过程中,若储物盒的内部温度冷却至小于第二设定阈值,第一供电开关和第二供电开关中的一个断开,另一个周期性闭合或者持续闭合,使得纵向磁场线圈组和横向磁场线圈组中的一个产生磁场。
可选地,在储物盒的内部温度继续冷却至小于第三设定阈值时,第一供电开关和第二供电开关全部断开,第三设定阈值小于第二设定阈值;在储物盒的内部温度继续冷却至小于第四设定阈值时,制冷控制器停止对储物盒制冷,第四设定阈值小于第三设定阈值。
可选地,在停止对储物盒制冷之后,制冷控制器还配置成按照储物盒预设的制冷启动条件和制冷关闭条件对储物盒进行常规冷冻控制,以维持储物盒的冷冻储物环境;并且第一供电开关和第二供电开关,还配置成在制冷控制器对储物盒进行常规冷冻控制期间,按照预设的开闭策略使纵向磁场线圈组和/或横向磁场线圈组产生磁场。
可选地,上述具有冷冻储物组件的冰箱还包括:多个线圈温度传感器,分别用于检测纵向磁场线圈组的温度和横向磁场线圈组的温度;并且纵向磁场线圈组和横向磁场线圈组交替产生磁场的过程中,若纵向磁场线圈组的温度和/或横向磁场线圈组的温度出现异常,第一供电开关和第二供电开关还配置成断开温度出现异常的磁场线圈的电源。
本发明的具有冷冻储物组件的冰箱,储物盒的外侧设置有磁性框,磁性框的内表面设置可以形成磁极方向呈设定角度的磁场的多组电磁线圈,磁性框对电磁线圈产生的磁场进行导引,并使得电磁线圈可以在冷冻储物空间形成均匀且强度足以满足提高冷冻储物质量的要求的磁场。
进一步地,磁性框还为电磁线圈提供了装配结构,减小了占用的空间,从而提高了实用性。
更进一步地,本发明的具有冷冻储物组件的冰箱,在储物盒出现开闭事件后,获取储物盒被打开前以及被关闭后的内部温度变化,通过储物盒的内部温度变化确定是否有新的食材放入或者食材是否需要重新冻结,在确定内部温度变化的幅度大于第一设定阈值后(也即食材需要进行冻结的情况下),开启对储物盒制冷并通过多组电磁线圈生成交替的磁场,使得食材在磁场环境中冻结,抑制冰晶晶核生长,使得冰晶生长速率高于水分子迁移速率,产生的冰晶偏小,从而减小对细胞造成的损伤,避免汁液流失,保证了食材更好的口感,提高了冷冻储物质量,满足了用户对珍贵食材的储藏质量要求。另外通过多组磁场线圈交替产生磁场,使得冻结过程中磁场方向交替,进一步提高了冷冻质量。
更进一步地,本发明的具有冷冻储物组件的冰箱,对于电磁场的开闭条件进行了改进,在冰晶主要形成的期间施加磁场,提高了磁场的使用效率,一方面减小磁场对于储物盒外部其他部件的影响,另一方面也降低了冰箱的能耗。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将 会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的具有冷冻储物组件的冰箱的示意性透视图;
图2是根据本发明一个实施例的具有冷冻储物组件的冰箱的冷冻储物组件的示意图;
图3是根据本发明一个实施例的具有冷冻储物组件的冰箱中磁性框与储物盒的配合示意图;
图4是根据本发明一个实施例的具有冷冻储物组件的冰箱中磁性框的示意图;
图5是根据本发明一个实施例的具有冷冻储物组件的冰箱中电磁线圈的示意图;
图6是根据本发明一个实施例的具有冷冻储物组件的冰箱的冷冻储物组件中形成的一种磁场的示意图;
图7是根据本发明一个实施例的具有冷冻储物组件的冰箱的冷冻储物组件中形成的另一种磁场的示意图;
图8是根据本发明一个实施例的具有冷冻储物组件的冰箱的控制系统框图;以及
图9是根据本发明一个实施例的具有冷冻储物组件的冰箱的冷冻控制方法的示意图。
具体实施方式
图1是根据本发明一个实施例的具有冷冻储物组件的冰箱10的示意性透视图。本实施例的冰箱10一般性地可以包括箱体120、门体110、制冷系统(图中未示出)。箱体120内可以限定有至少一个前侧敞开的储物间室,通常为多个,如冷藏储物间室、冷冻储物间室、变温储物间室等等。具体的储物间室的数量和功能可以根据预先的需求进行配置。在本实施例的冰箱10至少应具有冷冻储物间室或者温度可达冷冻范围的变温储物间室(也即可用 于实现冷冻储物环境),也即箱体120内设置有实现冷冻储物功能的储物间室。冷冻储物的温度范围一般可以设置为-14℃至-22℃。
本实施例的冰箱10可以为风冷冰箱,在箱体120内设置有风路系统,利用风机将经过换热器换热的制冷气流经送风口送向储物间室,然后经由回风口返回风道。实现制冷。由于此类冰箱的箱体120、门体110、制冷系统本身均是本领域技术人员习知且易于实现的,为了不掩盖和模糊本申请的发明点,后文对箱体120、门体110、制冷系统本身不做赘述。
冷冻储物间室内部设置有一冷冻储物组件200。该冷冻储物组件200形成一个独立封闭的冷冻储物空间,其可以借助于磁场可以提高该冷冻储物空间的储物质量。在一定强度的磁场作用下,在冷冻过程中,可以限制水分子的自由程,表现为水分子蔟中的氢键断裂。由于晶核生长受到抑制,冰晶生长速率高于水分子迁移速率,产生的冰晶偏小,从而对细胞造成的损伤也小,汁液流失率下降,食材的营养和口感保存较好。此外磁场还可以缩短冻结时间,有助于抑制微生物和细菌数量。本实施例的冰箱10进一步对于磁场进行针对性的改进,通过优化磁场方向及启停时间,进一步提高了冷冻储物质量。
图2是根据本发明一个实施例的具有冷冻储物组件200的冰箱10中冷冻储物组件200的示意图;图3是根据本发明一个实施例的具有冷冻储物组件200的冰箱10中磁性框210与储物盒240的配合示意图;图4是根据本发明一个实施例的具有冷冻储物组件200的冰箱10中磁性框210的示意图;图5是根据本发明一个实施例的具有冷冻储物组件200的冰箱10中电磁线圈230的示意图。
如图2-5所示,冷冻储物组件200布置于储物间室内,并且包括:磁性框210、多组电磁线圈230、储物盒240等。
磁性框210由磁性材料制成,在其内壁上分别形成凸台220。磁性材料可以使用软磁材料或者硬磁材料,例如可以使用软磁材料,软磁材料的特点为具有低矫顽力和高磁导率,磁性框210可以用于聚拢磁场,减少磁场向外部释放,减少对冷冻储物组件200外侧的其他部件造成干扰(例如磁化其他部件等)。
多组电磁线圈230分别设置于磁性框210的内表面,用于在所述冷冻储物空间内形成磁极方向呈设定角度的磁场,磁场经过磁性框210完成磁力线 闭环。多组电磁线圈230形成的磁极方向呈设定角度的磁场的冷冻储物效果更好,并且可以保证了整个冷冻储物空间无死角的处于磁场范围内,使得储藏物的结晶过程更加均匀。
电磁线圈230可以为两组。两组电磁线圈230形成的磁场的磁极方向可以正交设置。例如多组电磁线圈230可以包括:纵向磁场线圈组231,232以及横向磁场线圈组233,234。纵向磁场线圈组231,232用于形成磁极方向平行于磁性框210纵向方向的磁场;横向磁场线圈组233,234用于形成磁极方向平行于磁性框210横向方向的磁场。该纵向磁场线圈组231,232以及横向磁场线圈组233,234的磁场布置结构可以满足磁场辅助制冷的各种控制要求,磁场类型更加灵活。
纵向磁场线圈组231,232以及横向磁场线圈组233,234分别有独立的供电开关来控制启停,也即第一供电开关281用于控制纵向磁场线圈组231,232的电源通断,其闭合可使纵向磁场线圈组231,232产生磁场;第二供电开关282用于控制横向磁场线圈组233,234的电源通断,其闭合可使横向磁场线圈组233,234产生磁场。
在一些实施例中,磁性框210可为前后方向具有贯通开口的方形筒体,也即横截面为回形的框体。方形筒体的前端和后端分别具有贯通的开口,以供布置各种类型的储物盒240。磁性框210的顶壁、底壁、以及左右侧壁的内侧分别形成有凸台220。上述凸台220分别用于套接电磁线圈230。
纵向磁场线圈组231,232可以包括:第一线圈231、第二线圈232。第一线圈231套设于磁性框210的顶壁内侧的凸台220上。第二线圈232套设于磁性框210的底壁内侧的凸台220上,第一线圈231和第二线圈232串联或者并联连接,由第一供电开关281控制开闭。
横向磁场线圈组233,234可以包括:第三线圈233、第四线圈234。第三线圈233套设于磁性框210的左侧壁内侧的凸台220上。第四线圈234套设于磁性框210的右侧壁内侧的凸台220上,第三线圈233和第四线圈234串联或者并联连接,由第二供电开关282控制开闭。
通过对第一供电开关281和第二供电开关282的控制,可以使得上述磁场线圈单独或者组合工作,形成各种所需的磁场。
凸台220的横截面可以为方形或者圆形或者椭圆形,在使用方形横截面时,凸台220更便于与箱体120结构配合。并且上述各线圈231、232、233、 234的内周形状与对应凸台220外周相适配,对应地设置为方形或者圆形或者椭圆形。在一些实施例中,第一线圈231和第二线圈232为镜像设置;第三线圈233和第四线圈234为镜像设置。
各电磁线圈231、232、233、234可以设为扁平的方框状,沿周向缠绕,从而使得电磁线圈230通电后产生的磁场磁极方向与凸台220垂直。凸台220的高度可以与电磁线圈230的厚度相适配,从而使得电磁线圈230所在的回形框体的内壁基本平齐,以便布置储物盒240。在另一些实施例中电磁线圈230可以设为扁平的椭圆环状或者圆环状。
图6、7分别是根据本发明一个实施例的具有冷冻储物组件的冰箱的冷冻储物组件中形成的一种磁场的示意图,其中图6的磁场由纵向磁场线圈组231,232生成,第一线圈231、第二线圈232形成的磁场的磁极方向也设置为使得磁力线向朝向同一方向(向上或向下),图7的磁场由横向磁场线圈组233,234生成,第三线圈233和第四线圈234形成的磁场的磁极方向也设置为使得磁力线向朝向同一方向(向左或向右)。第一供电开关281和第二供电开关282分别可以通过改变通入线圈的电流方向来改变磁极的方向。磁场的磁力线贯穿磁性框210的内部空间后经由磁性框210完成闭环,使得磁场分布均匀或减小对储物盒240的外部部件的磁化影响。
磁性框210用于对电磁线圈230产生的磁场进行导引,避免磁场不均匀以及影响储物盒240外部的其他部件,并使得电磁线圈230可以在冷冻储物空间形成均匀且强度足以满足提高冷冻储物质量的要求的磁场。进一步地,磁性框210还为电磁线圈230提供了装配结构,减小了占用的空间,从而提高了实用性。
储物盒240可以形成独立密封的冷冻储物空间,从而专用特定的食材提供更佳的冷冻储物环境。储物盒240设置于磁性框210围成的空间内。
储物盒240可以包括:外筒241和抽屉242。其中外筒241设置于磁性框210内,并具有前向开口。抽屉242可抽拉地设置在外筒241内。抽屉242的前面板可与外筒241形成密封结构。在冰箱10使用风冷进行制冷时,外筒241的后壁上开设有进风口243以及回风口244,进风口243用于连接所述冰箱10的风道送风口或者连通至冰箱10的蒸发器(例如连通至蒸发器的顶部区域),以将制冷气流引入储物盒240;回风口244用于连接冰箱10的风道回风口或者连通至冰箱10的蒸发器(例如连通至蒸发器的底部区域), 以将换热后的气流送回冰箱10的回风风道或者蒸发器。在一些实施例中,进风口243以及回风口244可以设置风门(图中未示出)。风门在进行制冷送风时受控打开。进风口243和回风口244可以根据风冷冰箱的风道、蒸发器的位置和结构进行配置,在另一些实施例中,回风口244也可以设置在外筒241侧壁上。
本实施例的冰箱10将电磁线圈230的磁场控制与制冷控制相结合,保证食物在磁场环境中冻结,实现保鲜冷冻的效果。图8是根据本发明一个实施例的具有冷冻储物组件200的冰箱10的控制系统框图,冰箱10还设置有储物温度传感器250、线圈温度传感器260、开闭检测器270、制冷控制器300。
储物温度传感器250设置于储物盒240的外筒241内,并用于检测抽屉242内的温度。线圈温度传感器260邻近于电磁线圈230的位置设置,并用于检测电磁线圈230处的温度,在一些实施例中线圈温度传感器260可以设置于抽屉242底部的电磁线圈230处。开闭检测器270配置成检测抽屉242的开闭状态。
由于电磁线圈230在产生磁场时,会有一定程度的发热。因此为了避免电磁线圈230的热量影响制冷,电磁线圈230还配置成在线圈温度传感器260检测的温度超过预设的保护温度断电,从而实现过热保护。
开闭检测器270,配置成检测抽屉242的开闭状态。在抽屉242被拉开然后关闭后,借助于储物温度传感器250,可以检测是否放入新的食材,或者原有食材是否需要重新冻结。然后使电磁线圈230和制冷系统配合,可以实现磁场辅助冷冻,提高食材的冷冻保鲜效果。
制冷控制器300包括存储器310以及处理器320。存储器310内存储有控制程序311,控制程序311被处理器320执行时用于对电磁线圈230以及制冷系统进行控制,从而实现相应的冷冻控制方法。而各种传感器,为磁场控制提供了检测手段,从而可以满足控制方法的控制需求。
制冷控制器300可以配置成在储物盒240被打开前以及被关闭后的内部温度变化的幅度大于第一设定阈值的情况下启动对储物盒240制冷。储物盒240的内部温度变化反映了被储藏的食物的状态,如果内部温度变化的幅度较大,则说明储物盒240放入新的食物,或者食物的温度是否已经升高需要重新冻结;如果内部温度变化的幅度较小,则说明食物可能仍处于冻结状态。 若内部温度变化的幅度大于第一设定阈值,则制冷控制器300启动对储物盒240进行冷冻制冷。第一设定阈值可以设置为2~8摄氏度,其可以根据冷冻设定温度灵活进行设置。
第一供电开关281和第二供电开关282在制冷控制器300启动对储物盒240制冷时,按照设定周期交替闭合,以使得纵向磁场线圈组231,232和横向磁场线圈组233,234交替产生磁场。也即储物盒240进行冷冻制冷时,其内部的磁场方向是周期性地纵向、横向交替。经过实际验证这种磁场交替地辅助保鲜冷冻方式相比于方向固定的磁场反向,对储藏物冷冻储藏质量更好,并且其灭菌效果也更好。另外上述启动条件,还可以避免长期形成磁场造成的发热及能耗增加,另一方面还可以避免对储物盒240外部其他部件产生磁化影响。
在纵向磁场线圈组231,232和横向磁场线圈组233,234交替产生磁场的过程中,若储物盒240的内部温度冷却至小于第二设定阈值,第一供电开关281和第二供电开关282中的一个断开,另一个周期性闭合或者持续闭合,使得纵向磁场线圈组231,232和横向磁场线圈组233,234中的一个产生磁场。随着冷冻过程的持续,辅助冷冻所需的磁场可以减小,可以进一步减小能耗。在一些实施例中,在储物盒240的内部温度冷却至达到第二设定阈值时,第一供电开关281断开,而第二供电开关282继续闭合,从而使得纵向磁场线圈组231,232停止产生磁场,而横向磁场线圈组233,234继续工作。第二设定阈值可以设置为-10~12摄氏度,在该温度范围内,储藏物已经大部分完成冻结。
在储物盒240的内部温度继续冷却至小于第三设定阈值时,第一供电开关281和第二供电开关282全部断开,第三设定阈值小于第二设定阈值,其可以设置为-12至-18摄氏度,也即储藏物基本完成冻结的温度;
然后,在储物盒240的内部温度继续冷却至小于第四设定阈值时,制冷控制器300停止对储物盒240制冷,第四设定阈值小于第三设定阈值,其可以根据储物盒240设定的冷冻关机温度设置,一般可以低于设定的冷冻关机温度。也即在磁场线圈完成工作后,冷冻制冷延迟一段时间关闭。由于这次制冷是在储物盒240被打开后进行的,将第四设定阈值设置得更低,可以在一定程度上实现过冷,提高冷冻储物质量。
由于电磁线圈230在产生磁场时,会有一定程度的发热。因此为了避免 电磁线圈230的热量影响制冷,也即在电磁线圈230过热后,可以通过断电实现过热保护。
多个线圈温度传感器260分别用于检测纵向磁场线圈组231,232的温度和所述横向磁场线圈组233,234的温度,其可以在磁性框210的不同侧面设置相应的温度传感器。
纵向磁场线圈组231,232和横向磁场线圈组233,234交替产生磁场的过程中,若纵向磁场线圈组231,232的温度和/或横向磁场线圈组的温度出现异常,第一供电开关281和第二供电开关282还配置成断开温度出现异常的磁场线圈的电源。例如若第一线圈231处温度异常则第一供电开关281断开,而第三线圈233处温度异常则第二供电开关282断开。
判断温度异常的一种方案为:若第一线圈231、第二线圈232、第三线圈233、第四线圈234中任一个温度超出设定保护温度(例如-2至0度),则认为相应的线圈温度异常。
判断温度异常的另一种方案为:若第一线圈231、第二线圈232、第三线圈233、第四线圈234中任一个温度与储物盒240的内部温度温差大于设定的保护温差(例如设置2-4度),则相应的线圈温度异常。由于电磁线圈230本身也位于冷冻储物间室内,电磁线圈230处的温度与储物盒240的内部温度温差更能反映电磁线圈230的发热情况,从而可以避免电磁线圈230影响正常制冷。
制冷控制器300停止对储物盒240制冷之后,还可以进一步配置成:按照储物盒240预设的制冷启动条件和制冷关闭条件对储物盒240进行常规冷冻控制,以维持储物盒240的冷冻储物环境;并且第一供电开关281和第二供电开关282还配置成在制冷控制器300对储物盒240进行常规冷冻控制期间,按照预设的开闭策略使纵向磁场线圈组231,232和/或横向磁场线圈组233,234产生磁场。
在完成磁场辅助冷冻制冷之后,恢复储物盒240正常冷冻控制,也即照储物盒240预设的制冷启动条件和制冷关闭条件对储物盒240进行冷冻控制。制冷启动条件和制冷关闭条件可以同样根据储物盒240的设定温度进行设置,在高于制冷启动温度时开始制冷,在低于制冷关闭温度时停止制冷。
在该按照储物盒240预设的制冷启动条件和制冷关闭条件对储物盒240进行冷冻控制的步骤也可以使用磁场辅助制冷,避免部分冰晶重新生成时导 致储物质量下降。例如第一供电开关281和第二供电开关282的开闭策略可以为:在启停对储物盒240制冷的同时启停磁场,也即磁场与制冷同时启停。另一种替代性的方案为:在启动对储物盒240制冷时启动磁场,并在停止对储物盒240制冷之前关闭磁场,也即磁场仅在制冷的开始阶段启动。经过实际测试,磁场仅在制冷的开始阶段启动的储藏质量并没有与磁场与制冷同时启停的储藏质量明显下降。
另外一种在长期冷冻过程中,第一供电开关281和第二供电开关282的开闭策略可以为:在按照储物盒240预设的制冷启动条件和制冷关闭条件对储物盒240进行冷冻控制的过程中,按照设定的周期启动磁场,也即磁场周期性启动。
在另一实施例中,在储物盒240正常冷冻控制启动磁场时纵向磁场线圈组231,232和横向磁场线圈组233,234交替产生磁场,例如第一次启动纵向磁场线圈组231,232,第二次启动横向磁场线圈组233,234,第三次启动纵向磁场线圈组231,232,第四次启动横向磁场线圈组233,234,如此循环。线圈每次通电后的磁极方向可以配置为与上一次通电后的磁极方向相反,例如纵向磁场线圈组231,232首次磁极方向为从上向下,再次启动时从下向上;又例如横向磁场线圈组233,234首次磁极方向为从左向右,再次启动时从右向左上。通过磁极方向的交替,可以在一定程度上改变冰晶生成条件,达到更好的效果。
在应用于风冷冰箱时,开启对储物盒240制冷的步骤可以包括:打开进风口,并开启向进风口243吹送制冷气流。
图9是根据本发明一个实施例的具有冷冻储物组件的冰箱的冷冻控制方法的示意图。本实施例的流程为冰箱的冷冻控制方法的一个具体应用示例,其中部分步骤的执行顺序可以进行调整。该流程可以包括:
步骤S902,检测储物盒240的开闭状态;
步骤S904,确定储物盒240被打开后又被关闭,也即判断储物盒240是否出现开闭事件;
步骤S906,获取储物盒240被打开前以及被关闭后的内部温度变化,判断内部温度变化的幅度是否大于第一设定阈值,也即判断储物盒240是否放入新的食物,或者食物的温度是否已经升高需要重新冻结,第一设定阈值可以设置为2~8摄氏度,若内部温度变化幅度较小,食物可能无需重新冻结, 则可以进行冷冻储物的制冷常规控制,也即按照设定开机温度阈值和关机温度阈值进行制冷控制。
步骤S908,开启制冷,向储物盒240送风,同时第一供电开关281和第二供电开关282按照设定周期交替闭合,以使得纵向磁场线圈组231,232和横向磁场线圈组233,234交替产生磁场。
步骤S910,持续检测储物盒240的内部温度以及各电磁线圈231,232,233,234处的温度;
步骤S912,判断电磁线圈231,232,233,234中任一线圈是否出现温度异常,也即判断线圈发热是否会影响正常制冷。判断温度异常的一种方案为:若第一线圈231、第二线圈232、第三线圈233、第四线圈234中任一个温度超出设定保护温度(例如-2至0度),则认为相应的线圈温度异常;或者若第一线圈231、第二线圈232、第三线圈233、第四线圈234中任一个温度与储物盒240的内部温度温差大于设定的保护温差(例如设置2-4度),则相应的线圈温度异常。如果出现温度异常则第一供电开关281和第二供电开关282断开温度出现异常的磁场线圈的电源。
步骤S914,判断储物盒240的内部温度是否低于第二设定阈值(例如可以设置为-10~12摄氏度),也即判断是否完成基础冻结阶段;
步骤S916,第一供电开关281和第二供电开关282中的一个断开,另一个周期性闭合或者持续闭合,使得纵向磁场线圈组231,232和横向磁场线圈组233,234中的一个产生磁场;
步骤S920,判断储物盒240的内部温度低于第三设定阈值,第三设定阈值小于第二设定阈值,其可以设置为-12至-18摄氏度,也即储藏物基本完成冻结的温度。
步骤S922,第一供电开关281和第二供电开关282全部断开,停止产生磁场。
步骤S924,判断储物盒240的内部温度是否低于第四设定阈值,第四设定阈值小于第三设定阈值,其可以根据储物盒240设定的冷冻关机温度设置,一般可以低于设定的冷冻关机温度。
步骤S926,停止对储物盒240制冷按照储物盒240预设的制冷启动条件和制冷关闭条件对储物盒240进行常规冷冻控制,以维持储物盒240的冷冻储物环境;并且第一供电开关281和第二供电开关282还配置成在制冷控 制器300对储物盒240进行常规冷冻控制期间,按照预设的开闭策略使纵向磁场线圈组231,232和/或横向磁场线圈组233,234产生磁场。
本实施例的具有冷冻储物组件的冰箱10,使得食材在磁场环境中冻结,并对磁场的方向及启停进行了针对性的控制,优先抑制冰晶晶核生长,减小对细胞造成的损伤,避免汁液流失,保证了食材更好的口感,提高了冷冻储物质量,满足了用户对珍贵食材的储藏质量要求。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种具有冷冻储物组件的冰箱,包括:
    箱体,其内设置有实现冷冻储物功能的储物间室;
    冷冻储物组件,布置于所述储物间室内,并且包括:
    磁性框,由磁性材料制成;
    储物盒,设置于所述磁性框围成的空间内,并限定出冷冻储物空间;以及
    多组电磁线圈,分别设置于所述磁性框的内表面,用于在所述冷冻储物空间内形成磁极方向呈设定角度的磁场,所述磁场经过所述磁性框完成磁力线闭环。
  2. 根据权利要求1所述的具有冷冻储物组件的冰箱,其中
    所述磁性框为前后方向具有贯通开口的方形筒体,
    多组电磁线圈包括:
    纵向磁场线圈组,用于形成磁极方向平行于所述磁性框纵向方向的磁场;
    横向磁场线圈组,用于形成磁极方向平行于所述磁性框横向方向的磁场;并且所述冰箱还包括:
    第一供电开关,用于控制所述纵向磁场线圈组的电源通断;
    第二供电开关,用于控制所述横向磁场线圈组的电源通断。
  3. 根据权利要求2所述的具有冷冻储物组件的冰箱,其中
    所述磁性框的顶壁、底壁、以及左右侧壁的内侧分别形成有凸台,
    所述纵向磁场线圈组包括:
    第一线圈,套设于所述磁性框的顶壁内侧的凸台上,
    第二线圈,套设于所述磁性框的底壁内侧的凸台上,所述第一线圈和所述第二线圈串联或者并联连接;并且
    所述横向磁场线圈组包括:
    第三线圈,套设于所述磁性框的左侧壁内侧的凸台上,
    第四线圈,套设于所述磁性框的右侧壁内侧的凸台上,所述第三线圈和所述第四线圈串联或者并联连接。
  4. 根据权利要求2所述的具有冷冻储物组件的冰箱,其中,所述储物盒包括:
    外筒,设置于所述磁性框围成的空间内,并具有前向开口;以及
    抽屉,可抽拉地设置在所述外筒内。
  5. 根据权利要求4所述的具有冷冻储物组件的冰箱,其中
    所述外筒的后壁上开设有进风口以及回风口,
    所述进风口用于连接所述冰箱的送风风道或者连通所述冰箱的蒸发器,以将制冷气流引入所述储物盒;
    所述回风口用于连接所述冰箱的回风风道或者连通所述冰箱的蒸发器,以将换热后的气流送回所述冰箱的回风风道或所述蒸发器。
  6. 根据权利要求2所述的具有冷冻储物组件的冰箱,还包括:
    开闭检测器,配置成检测所述储物盒的开闭状态;
    储物温度传感器,设置于所述储物盒内,并用于检测所述储物盒内的温度;
    制冷控制器,配置成在所述储物盒被打开前以及被关闭后的内部温度变化的幅度大于第一设定阈值的情况下启动对所述储物盒制冷;并且
    所述第一供电开关和所述第二供电开关,还配置成在所述制冷控制器启动对所述储物盒制冷时,按照设定周期交替闭合,以使得所述纵向磁场线圈组和所述横向磁场线圈组交替产生磁场。
  7. 根据权利要求6所述的具有冷冻储物组件的冰箱,其中
    在所述纵向磁场线圈组和所述横向磁场线圈组交替产生磁场的过程中,若所述储物盒的内部温度冷却至小于第二设定阈值,所述第一供电开关和所述第二供电开关中的一个断开,另一个周期性闭合或者持续闭合,使得所述纵向磁场线圈组和所述横向磁场线圈组中的一个产生磁场。
  8. 根据权利要求7所述的具有冷冻储物组件的冰箱,其中
    在所述储物盒的内部温度继续冷却至小于第三设定阈值时,所述第一供电开关和所述第二供电开关全部断开,所述第三设定阈值小于所述第二设定 阈值;
    在所述储物盒的内部温度继续冷却至小于第四设定阈值时,所述制冷控制器停止对所述储物盒制冷,所述第四设定阈值小于所述第三设定阈值。
  9. 根据权利要求8所述的具有冷冻储物组件的冰箱,其中
    在停止对所述储物盒制冷之后,所述制冷控制器还配置成按照所述储物盒预设的制冷启动条件和制冷关闭条件对所述储物盒进行常规冷冻控制,以维持所述储物盒的冷冻储物环境;并且
    所述第一供电开关和所述第二供电开关,还配置成在所述制冷控制器对所述储物盒进行常规冷冻控制期间,按照预设的开闭策略使所述纵向磁场线圈组和/或所述横向磁场线圈组产生磁场。
  10. 根据权利要求6所述的具有冷冻储物组件的冰箱,还包括:
    多个线圈温度传感器,分别用于检测所述纵向磁场线圈组的温度和所述横向磁场线圈组的温度;并且
    所述纵向磁场线圈组和所述横向磁场线圈组交替产生磁场的过程中,若所述纵向磁场线圈组的温度和/或所述横向磁场线圈组的温度出现异常,所述第一供电开关和所述第二供电开关还配置成断开温度出现异常的磁场线圈的电源。
PCT/CN2021/130607 2020-12-31 2021-11-15 具有冷冻储物组件的冰箱 WO2022142777A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21913520.9A EP4253885A4 (en) 2020-12-31 2021-11-15 FRIDGE WITH FREEZER STORAGE ASSEMBLY
US18/270,458 US20240060703A1 (en) 2020-12-31 2021-11-15 Refrigerator with freezing storage assembly
JP2023539847A JP2024501686A (ja) 2020-12-31 2021-11-15 冷凍収納部材を備えた冷蔵庫

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011640487.1A CN114688799B (zh) 2020-12-31 2020-12-31 具有冷冻储物组件的冰箱
CN202011640487.1 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142777A1 true WO2022142777A1 (zh) 2022-07-07

Family

ID=82136437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130607 WO2022142777A1 (zh) 2020-12-31 2021-11-15 具有冷冻储物组件的冰箱

Country Status (5)

Country Link
US (1) US20240060703A1 (zh)
EP (1) EP4253885A4 (zh)
JP (1) JP2024501686A (zh)
CN (1) CN114688799B (zh)
WO (1) WO2022142777A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333250A (ja) * 2001-05-10 2002-11-22 Matsushita Refrig Co Ltd 核磁気共鳴を利用した急速凍結庫
WO2003038355A1 (fr) * 2001-11-01 2003-05-08 Abi Co.,Ltd. Appareil et procede de congelation de grande efficacite
CN106839581A (zh) * 2015-12-07 2017-06-13 青岛海尔智能技术研发有限公司 冷藏冷冻装置及其冷冻方法
CN107965960A (zh) * 2017-12-12 2018-04-27 江南大学 基于多磁极可控的周期性变化磁场辅助冷冻装置及应用
CN207422749U (zh) * 2017-08-25 2018-05-29 南京韩威南冷制冷集团有限公司 一种基于磁场的蔬菜水果低温冷藏及冷冻装置
CN110074310A (zh) * 2019-06-05 2019-08-02 青岛科技大学 一种磁场冷冻保鲜装置
CN110108076A (zh) * 2019-06-05 2019-08-09 青岛科技大学 一种磁场辅助制冷装置
CN111043826A (zh) * 2018-10-11 2020-04-21 青岛海尔股份有限公司 冷藏冷冻装置及其控制方法
CN214536999U (zh) * 2020-12-31 2021-10-29 青岛海尔特种制冷电器有限公司 冰箱的冷冻储物总成与冰箱

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1090147A (zh) * 1993-01-09 1994-08-03 株式会社金星社 利用磁能使冰箱中的食物或饮水离子结构呈晶化的装置
KR950003761A (ko) * 1993-07-06 1995-02-17 이헌조 냉장고의 신선 보관장치
JP2004044890A (ja) * 2002-07-11 2004-02-12 Glocal:Kk 冷凍装置
CN205262026U (zh) * 2015-12-07 2016-05-25 青岛海尔智能技术研发有限公司 冷藏冷冻装置
CN108662832B (zh) * 2018-06-19 2022-09-13 长虹美菱股份有限公司 一种具有瞬冷功能的保鲜冰箱及其控制方法
CN208332808U (zh) * 2018-06-19 2019-01-04 长虹美菱股份有限公司 一种具有瞬冷功能的保鲜冰箱
CN208579558U (zh) * 2018-07-10 2019-03-05 青岛海尔智能技术研发有限公司 卧式冷柜
CN111043828B (zh) * 2018-10-11 2020-11-20 海尔智家股份有限公司 冷藏冷冻装置及其控制方法
US11576408B2 (en) * 2019-04-15 2023-02-14 Bsh Home Appliances Corporation Ice processing system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333250A (ja) * 2001-05-10 2002-11-22 Matsushita Refrig Co Ltd 核磁気共鳴を利用した急速凍結庫
WO2003038355A1 (fr) * 2001-11-01 2003-05-08 Abi Co.,Ltd. Appareil et procede de congelation de grande efficacite
CN106839581A (zh) * 2015-12-07 2017-06-13 青岛海尔智能技术研发有限公司 冷藏冷冻装置及其冷冻方法
CN207422749U (zh) * 2017-08-25 2018-05-29 南京韩威南冷制冷集团有限公司 一种基于磁场的蔬菜水果低温冷藏及冷冻装置
CN107965960A (zh) * 2017-12-12 2018-04-27 江南大学 基于多磁极可控的周期性变化磁场辅助冷冻装置及应用
CN111043826A (zh) * 2018-10-11 2020-04-21 青岛海尔股份有限公司 冷藏冷冻装置及其控制方法
CN110074310A (zh) * 2019-06-05 2019-08-02 青岛科技大学 一种磁场冷冻保鲜装置
CN110108076A (zh) * 2019-06-05 2019-08-09 青岛科技大学 一种磁场辅助制冷装置
CN214536999U (zh) * 2020-12-31 2021-10-29 青岛海尔特种制冷电器有限公司 冰箱的冷冻储物总成与冰箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4253885A4 *

Also Published As

Publication number Publication date
CN114688799A (zh) 2022-07-01
EP4253885A1 (en) 2023-10-04
EP4253885A4 (en) 2024-04-24
JP2024501686A (ja) 2024-01-15
CN114688799B (zh) 2023-03-17
US20240060703A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
CN214536999U (zh) 冰箱的冷冻储物总成与冰箱
CN216114965U (zh) 磁场保鲜储物容器和冰箱
CN216114964U (zh) 磁场保鲜储物容器和冰箱
JP4781395B2 (ja) 冷蔵庫
WO2023016148A1 (zh) 具有磁场保鲜功能的制冷设备
WO2022142777A1 (zh) 具有冷冻储物组件的冰箱
JP2009293883A (ja) 冷凍保存装置および冷凍保存方法
WO2022142780A1 (zh) 冰箱的冷冻控制方法与冰箱
WO2023109516A1 (zh) 具有磁场保鲜装置的制冷设备
WO2022142778A1 (zh) 具有冷冻储物装置的冰箱
CN114688798B (zh) 冰箱的冷冻控制方法与冰箱
WO2022142779A1 (zh) 具有冷冻储物装置的冰箱
JP5743867B2 (ja) 冷却貯蔵庫
JP7217758B2 (ja) 冷蔵庫
JP2003222453A (ja) 弱冷凍室を配設した冷蔵庫の制御方法
WO2023016224A1 (zh) 磁场保鲜储物容器和冰箱
WO2023015946A1 (zh) 冰箱及其保鲜存储控制方法
WO2023016226A1 (zh) 磁场保鲜储物容器和冰箱
WO2023231979A1 (zh) 设置有磁场保鲜间室的冰箱及其控制方法
WO2023016228A1 (zh) 磁场保鲜储物容器和冰箱
JP7117604B2 (ja) 冷蔵庫
JP4906400B2 (ja) 冷蔵庫
CN117346459A (zh) 一种冰箱的控制方法及冰箱
JP2001091132A (ja) 急速冷凍庫
JP2001116422A (ja) 急速冷凍庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539847

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18270458

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021913520

Country of ref document: EP

Effective date: 20230627

NENP Non-entry into the national phase

Ref country code: DE