WO2022142780A1 - 冰箱的冷冻控制方法与冰箱 - Google Patents

冰箱的冷冻控制方法与冰箱 Download PDF

Info

Publication number
WO2022142780A1
WO2022142780A1 PCT/CN2021/130610 CN2021130610W WO2022142780A1 WO 2022142780 A1 WO2022142780 A1 WO 2022142780A1 CN 2021130610 W CN2021130610 W CN 2021130610W WO 2022142780 A1 WO2022142780 A1 WO 2022142780A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage box
refrigerator
electromagnetic coil
storage
control method
Prior art date
Application number
PCT/CN2021/130610
Other languages
English (en)
French (fr)
Inventor
李孟成
朱小兵
费斌
刘浩泉
赵斌堂
王霁昀
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011638006.3A external-priority patent/CN114688798B/zh
Priority claimed from CN202023323501.3U external-priority patent/CN214536999U/zh
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2022142780A1 publication Critical patent/WO2022142780A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves

Definitions

  • the invention relates to a refrigerating and freezing storage device, in particular to a freezing control method of a refrigerator and a refrigerator.
  • the user's requirements for various functions of the refrigerator are not limited to prolonging the storage time, and more and more attention is paid to the preservation effect of the stored goods.
  • foods that need to be frozen such as meat, fish, and shrimp, there are often problems with loss of juice after freezing, resulting in poor taste and darker color.
  • An object of the present invention is to provide a freezing control method and a refrigerator for a refrigerator that can effectively improve the quality of frozen storage.
  • a further object of the present invention is to reduce the energy consumption of the refrigerator.
  • Another object of the present invention is to provide a freezer storage assembly and a refrigerator for a refrigerator that can improve the quality of freezer storage.
  • Another further object of the present invention is to simplify the structure of the freezer storage assembly.
  • the present invention provides a freezing control method of a refrigerator.
  • a storage box is arranged in the freezer storage compartment of the refrigerator, and at least one group of electromagnetic coils is arranged outside the storage box, and the freezing control method includes: detecting the opening and closing state of the storage box; After the closed opening and closing event, the internal temperature changes before and after the storage box is opened and closed are obtained; if the amplitude of the internal temperature change is greater than the first set threshold, the storage box is turned on to cool and energize the electromagnetic coil to energize the storage box.
  • the electromagnetic coil is used to generate a magnetic field in the storage box; after the internal temperature of the storage box is lower than the second set threshold value, electricity is stopped to the electromagnetic coil.
  • the freezing control method further includes: detecting the temperature at the electromagnetic coil; after the temperature at the electromagnetic coil exceeds the third set threshold, stopping the electromagnetic coil. Power on to avoid the solenoid coils from affecting the cooling.
  • the freezing control method further includes: detecting the temperature at the electromagnetic coil; the temperature difference between the temperature at the electromagnetic coil and the internal temperature of the storage box is greater than the fourth setting. After the threshold is set, stop energizing the solenoid.
  • the freezing control method further includes: after the internal temperature of the storage box is lower than the fifth set threshold, stopping the cooling of the storage box; The refrigerating start condition and refrigerating off condition are controlled to freeze the storage box to maintain the refrigerated storage environment of the storage box, and the fifth set threshold is smaller than the second set threshold.
  • the step further includes: starting and stopping the refrigeration of the storage box and energizing the electromagnetic coil at the same time; Or start energizing the electromagnetic coil when starting to cool the storage box, and stop energizing the electromagnetic coil before stopping cooling the storage box.
  • the step further includes: turning on power to the electromagnetic coil according to a set period.
  • the magnetic pole direction of the electromagnetic coil after each energization is configured to be opposite to the magnetic pole direction after the last energization.
  • two sets of electromagnetic coils which are respectively disposed on two opposite sides outside the storage box, and the directions of the magnetic poles generated by the two sets of electromagnetic coils after being energized are set to be the same.
  • the refrigerator is an air-cooled refrigerator
  • the rear wall of the storage box is provided with an air inlet and a return air outlet for connecting the air duct of the air-cooled refrigerator
  • the step of opening the storage box for cooling includes: opening the air inlet, and opening the Blows cooling air to the air inlet.
  • a refrigerator which includes: a box body, which at least defines a freezer storage compartment; a storage box, which is arranged in the freezer storage compartment of the refrigerator, and at least A set of electromagnetic coils; and a controller, which includes a memory and a processor, where a control program is stored in the memory, and when the control program is executed by the processor, the control program is used to implement any one of the above-mentioned refrigeration control methods for refrigerators.
  • a freezer storage assembly for a refrigerator which includes: a magnetically conductive outer frame, which is made of a magnetic material, and bosses are respectively formed on its opposite inner walls; two sets of electromagnetic coils , respectively sleeved on a boss, and configured to generate a magnetic field after power-on, the magnetic field lines of the magnetic field penetrate the inner space of the magnetically conductive outer frame and complete the closed loop through the magnetically conductive outer frame.
  • the storage box is installed on the magnetically conductive outer frame.
  • the inner space is used to form a frozen storage space, so that the frozen storage space is within the range of the magnetic field.
  • the magnetic conductive outer frame is a circular frame body, the front end and the rear end of the circular frame body respectively have through openings, and the boss is formed on the inner side of the top wall and the bottom wall of the circular frame body; or the boss is It is formed on the inner side of the two side walls of the ring-shaped frame body.
  • the cross section of the boss is square, circular or oval, and the shape of the inner circumference of the electromagnetic coil is adapted to the outer circumference of the boss.
  • the magnetic pole directions of the two sets of electromagnetic coils are set to be the same.
  • the storage box includes: an outer cylinder, which is arranged in the magnetically conductive outer frame and has a forward opening; and a drawer, which is detachably arranged in the outer cylinder.
  • an air inlet and an air return port are opened on the rear wall of the outer cylinder, and the air inlet is used to connect the air supply port of the refrigerator or the evaporator of the refrigerator to introduce the refrigerating air into the storage box; the air return port is used to connect the refrigerator. Return air outlet to return the heat exchanged air to the return air duct or evaporator of the refrigerator.
  • the freezer storage assembly of the above-mentioned refrigerator further includes: a storage temperature sensor, which is arranged in the outer cylinder and is used for detecting the temperature in the drawer; and a coil temperature sensor, which is arranged adjacent to the position of the electromagnetic coil and is used for detecting temperature at the solenoid.
  • the electromagnetic coil is further configured to power off when the temperature detected by the coil temperature sensor exceeds a preset protection temperature.
  • the freezer storage assembly of the refrigerator further includes: a drawer open/close detector configured to detect the open/close state of the drawer.
  • a refrigerator includes: a box body, which at least defines a freezer storage compartment; and a freezer storage assembly of any of the above refrigerators, which is arranged in the freezer storage compartment indoor.
  • the internal temperature changes before and after the storage box is opened and closed are obtained, and the internal temperature change of the storage box is obtained through the storage box. Determine whether new ingredients are put in or whether the ingredients need to be refrozen.
  • the storage box After determining that the magnitude of the change in the internal temperature is greater than the first set threshold (that is, when the ingredients need to be frozen), turn on the storage box to refrigerate and pass the electromagnetic
  • the coil generates a magnetic field, which makes the food freeze in the magnetic field environment, inhibits the growth of ice crystal nuclei, makes the ice crystal growth rate higher than the migration rate of water molecules, and produces small ice crystals, thereby reducing damage to cells and avoiding juice loss.
  • the better taste of the ingredients improves the quality of frozen storage and meets the user's storage quality requirements for precious ingredients.
  • the refrigerator and the freezing control method of the present invention improve the opening and closing conditions of the electromagnetic field, apply the magnetic field during the main formation of ice crystals, improve the use efficiency of the magnetic field, and on the one hand prevent the magnetic field from affecting other components outside the storage box. On the other hand, it also reduces the energy consumption of the refrigerator.
  • the refrigerator and the freezing control method thereof of the present invention can also be started regularly during the normal refrigeration period of the storage box, so as to ensure the long-term freezing and fresh-keeping effect of the stored objects.
  • a magnetically conductive outer frame is arranged on the outside of the storage box, and the magnetically conductive outer frame is used to guide the magnetic field generated by the electromagnetic coil, so as to avoid uneven magnetic field and affect the frozen storage.
  • Other components outside the assembly so that the electromagnetic coil can form a uniform and strong magnetic field in the refrigerated storage space to meet the requirements of improving the quality of the refrigerated storage.
  • the magnetic conductive outer frame also provides an assembly structure for the electromagnetic coil, which reduces the occupied space and improves the practicability.
  • freezer storage assembly and refrigerator of the present invention are especially suitable for a drawer-type freezer space, and meet the user's requirements for the storage quality of precious ingredients.
  • freezer storage assembly and refrigerator of the present invention provide detection means for magnetic field control by setting temperature sensors in the drawer and at the electromagnetic coil, so as to meet the control requirements of the corresponding control method.
  • FIG. 1 is a schematic perspective view of a refrigerator according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a storage box of a refrigerator according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a magnetically conductive outer frame in a storage box of a refrigerator according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an electromagnetic coil in a storage box of a refrigerator according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a magnetic field formed in a storage box of a refrigerator according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another magnetic field formed in a storage box of a refrigerator according to an embodiment of the present invention.
  • FIG. 7 is a block diagram of a control system of a refrigerator according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a freezing control method of a refrigerator according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a freezing control method for a refrigerator according to an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a refrigerator 10 according to one embodiment of the present invention.
  • the refrigerator 10 of this embodiment may generally include a box body 120, a door body 110, and a refrigeration system (not shown in the figure).
  • the box body 120 may define at least one storage compartment whose front side is open, usually a plurality of storage compartments, such as a refrigerated storage compartment, a freezing storage compartment, a temperature-changing storage compartment, and the like.
  • the number and function of specific storage compartments can be configured according to pre-requirements.
  • the refrigerator 10 should at least have a refrigerated storage compartment or a temperature-variable storage compartment whose temperature can reach the freezing range (that is, it can be used to realize a refrigerated storage environment).
  • the temperature range for frozen storage can generally be set from -14°C to -22°C.
  • the refrigerator 10 in this embodiment may be an air-cooled refrigerator, and an air duct system is arranged in the box body 120 , and a fan is used to send the refrigerating air that has been exchanged by the heat exchanger to the storage compartment through the air supply port, and then returns to the storage compartment through the air return port. air duct. achieve refrigeration. Since the box body 120 , the door body 110 and the refrigeration system of this type of refrigerator are all known to those skilled in the art and are easy to implement, in order not to obscure and obscure the invention point of the present application, the box body 120 , the door body 110 will be discussed in the following text. . The refrigeration system itself will not be described in detail.
  • a storage box 200 is arranged inside the freezer storage compartment.
  • the storage box 200 forms an independently closed refrigerated storage space, which can improve the storage quality of the refrigerated storage space by means of a magnetic field.
  • a magnetic field Under the action of a certain strength of the magnetic field, in the freezing process, the free path of water molecules can be restricted, which is manifested as the breaking of hydrogen bonds in the water molecules.
  • the growth rate of ice crystals is higher than the migration rate of water molecules, and the resulting ice crystals are small, so the damage to cells is also small, the loss rate of juice is reduced, and the nutrition and taste of ingredients are better preserved.
  • the magnetic field can shorten the freezing time, which helps to suppress the number of microorganisms and bacteria.
  • FIG. 2 is a schematic diagram of the storage box 200 of the refrigerator 10 according to one embodiment of the present invention.
  • the storage box 200 may include: a magnetically conductive outer frame 210, an electromagnetic coil 230, and the like.
  • the magnetic conductive outer frame 210 , the electromagnetic coil 230 and the storage box 200 form a freezer storage assembly of the refrigerator 10 . That is to say, the refrigerated storage assembly may include: a magnetically conductive outer frame 210, an electromagnetic coil 230, a storage box 200, and the like.
  • FIG. 3 is a schematic diagram of the magnetically conductive outer frame 210 in the storage box 200 of the refrigerator 10 according to an embodiment of the present invention.
  • the magnetic conductive outer frame 210 is made of magnetic material, and bosses 220 are respectively formed on the opposite inner walls thereof.
  • the magnetic material can be a soft magnetic material or a hard magnetic material, for example, a soft magnetic material can be used.
  • the soft magnetic material is characterized by low coercivity and high magnetic permeability.
  • the outer wall of the storage box 200 is released to avoid interference with other components outside the storage box 200 (eg, magnetic attraction to other components, etc.).
  • At least one set of electromagnetic coils 230 cooperates with the magnetic conductive outer frame 210 and is configured to generate a magnetic field after being energized.
  • the electromagnetic coils 230 may be in two groups.
  • the magnetic conductive outer frame 210 may be a circular frame body, that is, a square tube.
  • the front end and the rear end of the ring-shaped frame body respectively have through openings.
  • the bosses 220 may be formed on the inner sides of the top and bottom walls of the ring-shaped frame body.
  • the bosses 220 are formed on the inner sides of the two side walls of the ring-shaped frame body. Considering the structure of the refrigerated storage compartment, its upper and lower longitudinal dimensions are smaller than its left and right lateral dimensions, and the dimensions of the top and bottom walls are larger, which is more conducive to arranging the electromagnetic coil 230.
  • a boss 220 is formed on the inner side of the bottom wall. The shape of the inner circumference of the coil is adapted to the outer circumference of the boss 220 .
  • the cross-section of the boss 220 may be square, circular or oval. When a square cross-section is used, the boss 220 is more convenient for structural matching with the box body 120 .
  • the shape of the inner circumference of the electromagnetic coil 230 is adapted to the outer circumference of the boss 220, and is correspondingly set in a square, circular or elliptical shape.
  • the two sets of electromagnetic coils 230 are respectively sleeved on a boss 220 and configured to generate a magnetic field after being energized.
  • the electromagnetic coil 230 can be set in a flat box shape, and is wound in the circumferential direction, so that the magnetic pole direction of the magnetic field generated after the electromagnetic coil 230 is energized is perpendicular to the boss 220 .
  • the height of the boss 220 can be adapted to the thickness of the electromagnetic coil 230, so that the inner wall of the ring-shaped frame body where the electromagnetic coil 230 is located is substantially flush, so that the storage box can be arranged.
  • the electromagnetic coil 230 may be a flat elliptical ring or a circular ring.
  • two sets of electromagnetic coils 230 may be used to be opposite to each other.
  • the two sets of electromagnetic coils 230 may be mirror images of each other, and the magnetic pole directions of the generated magnetic fields are set to be the same.
  • 5 and 6 are respectively schematic diagrams of the magnetic field formed in the storage box 200 of the refrigerator 10 according to an embodiment of the present invention, in order to show the internal structure, the drawer 242 is hidden.
  • the directions of the magnetic poles are also set so that the lines of magnetic force are directed in the same direction.
  • the two sets of electromagnetic coils 230 can change the direction of the magnetic poles by adjusting the direction of the incoming current, but the two sets of electromagnetic coils 230 are transformed at the same time to form a magnetic field similar to FIG. 5 or FIG. 6 .
  • the magnetic field lines of the magnetic field penetrate through the inner space of the magnetically conductive outer frame 210 to complete a closed loop through the magnetically conductive outer frame 210 , so as to avoid uneven distribution of the magnetic field or influence on the external components of the storage box 200 .
  • the magnetically conductive outer frame 210 is used to guide the magnetic field generated by the electromagnetic coil 230, so as to avoid uneven magnetic field and affect other components outside the storage box 200, and enable the electromagnetic coil 230 to form a uniform and strong enough in the refrigerated storage space. Magnetic fields required to increase the quality of frozen storage. Further, the magnetically conductive outer frame 210 also provides an assembly structure for the electromagnetic coil 230, which reduces the occupied space and improves the practicability.
  • the storage box 200 is installed in the inner space of the magnetically conductive outer frame 210, and is used to form a frozen storage space, so that the frozen storage space is within the range of the magnetic field.
  • the storage box 200 can form an independently sealed frozen storage space, so as to provide a better frozen storage environment for specific ingredients.
  • the storage box 200 may include: an outer cylinder 241 and a drawer 242 .
  • the outer cylinder 241 is disposed in the magnetic conductive outer frame 210 and has a forward opening.
  • the drawer 242 is provided in the outer cylinder 241 in a drawable manner.
  • the front panel of the drawer 242 may form a sealing structure with the outer cylinder 241 .
  • the rear wall of the outer cylinder 241 is provided with an air inlet 243 and an air return port 244 , and the air inlet 243 is used to connect to the air duct air outlet of the refrigerator 10 or to the evaporator of the refrigerator 10 .
  • the air return port 244 is used to connect to the air duct return port of the refrigerator 10 or to the evaporator of the refrigerator 10 (for example, to the bottom area of the evaporator) ) to return the heat-exchanged airflow to the return air duct or the evaporator of the refrigerator 10 .
  • the air inlet 243 and the air return port 244 may be provided with dampers (not shown in the figure). Controlled opening of the damper during cooling supply.
  • the air inlet 243 and the air return port 244 can be configured according to the air duct of the air-cooled refrigerator, and the position and structure of the evaporator.
  • the refrigerator 10 of this embodiment can also combine the magnetic field control of the electromagnetic coil 230 with the refrigeration control to ensure that the food is frozen in the magnetic field environment and achieve the effect of keeping fresh and freezing.
  • 7 is a block diagram of a control system of the refrigerator 10 according to an embodiment of the present invention.
  • the refrigerator 10 is further provided with a storage temperature sensor 250 , a coil temperature sensor 260 , a drawer opening and closing detector 270 , and a controller 300 .
  • the storage temperature sensor 250 is disposed in the outer cylinder 241 of the storage box 200, and is used to detect the temperature in the drawer 242.
  • the coil temperature sensor 260 is disposed adjacent to the position of the electromagnetic coil 230 and is used to detect the temperature at the electromagnetic coil 230 . In some embodiments, the coil temperature sensor 260 may be disposed at the electromagnetic coil 230 at the bottom of the drawer 242 .
  • the drawer open/close detector 270 is configured to detect the open/close state of the drawer 242 .
  • the electromagnetic coil 230 When the electromagnetic coil 230 generates a magnetic field, it will generate heat to a certain extent. Therefore, in order to prevent the heat of the electromagnetic coil 230 from affecting cooling, the electromagnetic coil 230 is further configured to power off when the temperature detected by the coil temperature sensor 260 exceeds a preset protection temperature, thereby realizing overheat protection.
  • the drawer opening/closing detector 270 is configured to detect the opening/closing state of the drawer 242 . After the drawer 242 is pulled open and then closed, with the help of the storage temperature sensor 250, it can be detected whether new ingredients are put in, or whether the original ingredients need to be re-frozen. Then, the electromagnetic coil 230 is cooperated with the refrigeration system, so that the magnetic field-assisted freezing can be realized, and the effect of freezing and fresh-keeping of the ingredients can be improved.
  • the controller 300 includes a memory 310 and a processor 320 .
  • a control program 311 is stored in the memory 310, and the control program 311 is used to control the electromagnetic coil 230 and the refrigeration system when executed by the processor 320, so as to realize the freezing control method of the refrigerator provided in this embodiment.
  • Various sensors provide detection means for magnetic field control, so as to meet the control requirements of corresponding control methods.
  • FIG. 8 is a schematic diagram of a freezing control method for a refrigerator according to an embodiment of the present invention, the freezing control method includes:
  • Step S802 detecting the opening and closing state of the storage box 200 .
  • step S804 it is determined that an opening and closing event of the storage box 200 being opened and then closed occurs.
  • step S806 the internal temperature changes before and after the storage box 200 is opened and closed are obtained.
  • the internal temperature changes of the storage box 200 reflect the state of the stored food. New food is placed in the box 200, or whether the temperature of the food has risen and needs to be refrozen; if the change in the internal temperature is small, it means that the food may still be in a frozen state.
  • Step S808 if the magnitude of the change in the internal temperature is greater than the first set threshold, the storage box 200 is refrigerated and the electromagnetic coil 230 is energized, so as to use the electromagnetic coil 230 to generate a magnetic field in the storage box 200;
  • the first set threshold It can be set to 2 to 8 degrees Celsius, which can be flexibly set according to the freezing set temperature.
  • the electromagnetic coil 230 generates a magnetic field when the magnitude of the change in the internal temperature is greater than the first set threshold, so that the food is affected by the magnetic field during the freezing process, thereby improving the preservation effect.
  • the activation condition of the electromagnetic coil 230 on the one hand, energy consumption is reduced, and on the other hand, the influence of the magnetic field on other components outside the storage box 200 can be avoided.
  • Step S810 after the internal temperature of the storage box 200 is lower than the second set threshold, stop energizing the electromagnetic coil 230.
  • the second set threshold may be set to the temperature at which the food is frozen, for example, may be set to -12 to -18 degrees Celsius.
  • the electromagnetic coil 230 When the electromagnetic coil 230 generates a magnetic field, it will generate heat to a certain extent. Therefore, in order to prevent the heat of the electromagnetic coil 230 from affecting cooling, that is, after the electromagnetic coil 230 is overheated, the overheating protection is realized by powering off.
  • One solution for overheating protection is: after the step of refrigerating the storage box 200 and energizing the electromagnetic coil 230, it further includes: detecting the temperature at the electromagnetic coil 230; after the temperature at the electromagnetic coil 230 exceeds the third set threshold , stop energizing the electromagnetic coil 230 to prevent the electromagnetic coil 230 from affecting the cooling.
  • the third set threshold may be set to -2 to 0 degrees. This overheating protection scheme can ensure that the electromagnetic coil 230 can be protected once the temperature is too high.
  • An alternative to overheating protection is to also detect the temperature at the solenoid 230 after the step of turning on the cooling of the storage box 200 and energizing the solenoid 230; After the temperature difference is greater than the fourth set threshold, the energization to the electromagnetic coil 230 is stopped.
  • the fourth set threshold may be set to 2-4 degrees Celsius. Since the electromagnetic coil 230 itself is also located in the refrigerated storage compartment, the temperature difference between the temperature of the electromagnetic coil 230 and the internal temperature of the storage box 200 can better reflect the heating condition of the electromagnetic coil 230, thereby preventing the electromagnetic coil 230 from affecting normal cooling.
  • the method further includes: after the internal temperature of the storage box 200 is lower than the fifth set threshold, stopping the cooling of the storage box 200; and starting the cooling according to the preset cooling of the storage box 200
  • the condition and the cooling off condition perform freezing control on the storage box 200 to maintain the freezing storage environment of the storage box 200, and the fifth set threshold is smaller than the second set threshold.
  • the fifth set threshold can be set according to the set temperature of the storage box 200 , which can also be lower than the shutdown point temperature of normal freezing control, for example, can be set to be 2-4 degrees Celsius lower than the set temperature.
  • the cooling start condition and the cooling off condition can also be set according to the set temperature of the storage box 200 , and the cooling starts when the temperature is higher than the cooling start temperature, and the cooling is stopped when the temperature is lower than the cooling off temperature.
  • the normal freezing control of the storage box is restored, that is, the freezing control of the storage box 200 is performed according to the preset cooling start condition and cooling shutdown condition of the storage box 200 .
  • a magnetic field can also be used to assist refrigeration, so as to avoid the deterioration of the quality of the storage when some ice crystals are regenerated.
  • the electromagnetic coil 230 can be powered on and off while the storage box 200 is refrigerated, that is, the magnetic field and the cooling can be turned on and off at the same time.
  • Another alternative is to start energizing the electromagnetic coil 230 when starting to cool the storage box 200, and stop energizing the electromagnetic coil 230 before stopping the cooling of the storage box 200, that is, the magnetic field is only at the beginning of cooling Phase start. After the actual test, the storage quality of the magnetic field only started at the beginning of the cooling stage did not decrease significantly compared with the storage quality of the magnetic field and the cooling started and stopped at the same time.
  • Another method for activating the magnetic field in the long-term freezing process is as follows: in the process of performing the freezing control of the storage box 200 according to the preset refrigeration activation conditions and refrigeration closing conditions of the storage box 200, open the magnetic field according to a set period.
  • the electromagnetic coil 230 is energized, that is, the electromagnetic coil 230 is periodically activated.
  • the magnetic pole direction of the electromagnetic coil 230 after each energization may be configured to be opposite to the magnetic pole direction after the last energization.
  • the alternation of the magnetic pole directions can be achieved by adjusting the direction of the energization current of the electromagnetic coil 230 .
  • the step of turning on the cooling of the storage box 200 may include: opening an air inlet, and turning on a cooling airflow to the air inlet 243 .
  • FIG. 9 is a schematic flowchart of a freezing control method for a refrigerator according to an embodiment of the present invention.
  • the process of this embodiment is a specific application example of the freezing control method for a refrigerator, in which the execution order of some steps can be adjusted.
  • the process can include:
  • Step S902 detecting the opening and closing state of the storage box 200 .
  • Step S904 it is determined that the storage box 200 is opened and then closed again, that is, it is determined whether an opening and closing event occurs in the storage box 200 .
  • Step S906 Obtain the internal temperature changes before and after the storage box 200 is opened, and determine whether the magnitude of the internal temperature change is greater than the first set threshold, that is, determine whether the storage box 200 is filled with new food or food. Whether the temperature of the food has risen and needs to be re-frozen, the first set threshold can be set to 2 to 8 degrees Celsius. If the change in the internal temperature is small, the food may not need to be re-frozen, and the refrigeration of the frozen storage can be routinely controlled, that is, Refrigeration control is performed according to the set startup temperature threshold and shutdown temperature threshold.
  • the first set threshold can be set to 2 to 8 degrees Celsius.
  • step S908 the refrigeration is turned on, air is supplied to the storage box 200, and the electromagnetic coil 230 is energized at the same time, so as to generate a magnetic field in the storage box 200, and the magnetic field is used to assist the freezing.
  • step S910 the internal temperature of the storage box 200 and the temperature at the electromagnetic coil 230 are continuously detected.
  • step S912 it is determined whether the heating of the electromagnetic coil 230 exceeds the limit, that is, it is determined whether the heating of the electromagnetic coil 230 will affect normal cooling.
  • the judgment basis for exceeding the limit may include: the temperature at the electromagnetic coil 230 exceeds a preset third set threshold (for example, it may be set to -2 to 0 degrees Celsius); or the temperature at the electromagnetic coil 230 and the internal temperature of the storage box 200 The temperature difference is greater than a fourth set threshold (for example, it may be set to 2 to 4 degrees Celsius).
  • Step S914 judging whether the internal temperature of the storage box 200 is lower than a second set threshold (for example, it can be set to -12 to -18 degrees Celsius), that is, judging whether the freezing stage is completed.
  • a second set threshold for example, it can be set to -12 to -18 degrees Celsius
  • Step S916 stop energizing the electromagnetic coil 230.
  • Step S920 judging that the internal temperature of the storage box 200 is lower than the fifth set threshold, the fifth set threshold can be set according to the set temperature of the storage box 200, and it can also be lower than the shutdown point temperature of normal freezing control, For example, it can be set to 2-4 degrees Celsius lower than the set temperature.
  • step S922 the refrigeration of the storage box 200 is stopped, and the normal freezing control of the storage box 200 is restored.
  • the magnetic field is activated according to a set strategy, and the set strategy may include: the magnetic field is activated and deactivated simultaneously with the cooling, the magnetic field is activated only in the initial stage of the cooling, or is activated periodically.
  • the refrigerator 10 of the present embodiment and the freezing control method thereof can freeze the ingredients in a magnetic field environment, inhibit the growth of ice crystal nuclei, reduce damage to cells, avoid juice loss, ensure better taste of ingredients, and improve frozen storage.
  • the material quality meets the user's requirements for the storage quality of precious ingredients, and through the optimization of the control method, the use efficiency of the magnetic field is improved. energy consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种冰箱的冷冻控制方法与冰箱。冰箱的冷冻储物间室内设置有储物盒,储物盒外侧设置有至少一组电磁线圈,并且冷冻控制方法包括:检测储物盒的开闭状态;确定出现储物盒被打开后又被关闭的开闭事件后,获取储物盒被打开前以及被关闭后的内部温度变化;若内部温度变化的幅度大于第一设定阈值,则开启对储物盒制冷并向电磁线圈通电,以利用电磁线圈在储物盒内产生磁场;在储物盒的内部温度低于第二设定阈值后,停止向电磁线圈通电。本发明的方案提高了冷冻储物质量,满足了用户对珍贵食材的储藏质量要求。

Description

冰箱的冷冻控制方法与冰箱 技术领域
本发明涉及冷藏冷冻储物装置,特别是涉及一种冰箱的冷冻控制方法与冰箱。
背景技术
用户对冰箱各种功能的要求已经不局限于延长保存时间,对储藏物的保鲜效果也越来越重视。对于肉类、鱼、虾这类需冷冻的食材,在冷冻后往往会出现汁液流失导致口感变差、颜色变暗的问题。
为了提高冷冻储物的质量,现有技术中出现了较多的改进方案,例如通过速冻提高食物的冷冻速度或者食品进入过冷却状态,这种方案需要提高冰箱的制冷能力,还会导致冰箱耗能增加。因此实现更加高效地提高冷冻储物质量是冰箱研发者亟待解决的技术难题。
理论研究发现磁场对冷冻过程中冰晶的形成有较大的影响。冰箱领域也积极探索将磁场引入冷冻保鲜中。近期研究发现,磁场在一定程度上限制了水分子的自由程,表现为水分子蔟中的氢键断裂。在相变过程中,晶核生长受到抑制,冰晶生长速率高于水分子迁移速率,产生的冰晶偏小,从而对细胞造成的损伤也小,汁液流失率下降,食材的营养和口感保存较好。上述结论在实验室中得到充分的验证,然而在冰箱中实际应用时,磁场辅助冷冻的效果并不能令人满意。
发明内容
本发明的一个目的是要提供一种有效提高冷冻储物质量的冰箱的冷冻控制方法与冰箱。
本发明一个进一步的目的是要使得降低了冰箱的能耗。
本发明的另一个目的是要提供一种提高冷冻储物质量的冰箱的冷冻储物总成与冰箱。
本发明的另一个进一步的目的是要简化冷冻储物总成的结构。
特别地,根据本发明的一方面,本发明提供了一种冰箱的冷冻控制方法。冰箱的冷冻储物间室内设置有储物盒,储物盒外侧设置有至少一组电磁线圈,并且冷冻控制方法包括:检测储物盒的开闭状态;确定出现储物盒被打 开后又被关闭的开闭事件后,获取储物盒被打开前以及被关闭后的内部温度变化;若内部温度变化的幅度大于第一设定阈值,则开启对储物盒制冷并向电磁线圈通电,以利用电磁线圈在储物盒内产生磁场;在储物盒的内部温度低于第二设定阈值后,停止向电磁线圈通电。
可选地,在开启对储物盒制冷并向电磁线圈通电的步骤之后冷冻控制方法还包括:检测电磁线圈处的温度;在电磁线圈处的温度超出第三设定阈值后,停止向电磁线圈通电,以避免电磁线圈影响制冷。
可选地,在开启对储物盒制冷并向电磁线圈通电的步骤之后冷冻控制方法还包括:检测电磁线圈处的温度;在电磁线圈处的温度与储物盒的内部温度温差大于第四设定阈值后,停止向电磁线圈通电。
可选地,在开启对储物盒制冷的步骤之后冷冻控制方法还包括:在储物盒的内部温度低于第五设定阈值后,停止对储物盒制冷;并按照储物盒预设的制冷启动条件和制冷关闭条件对储物盒进行冷冻控制,以维持储物盒的冷冻储物环境,第五设定阈值小于第二设定阈值。
可选地,在按照储物盒预设的制冷启动条件和制冷关闭条件对储物盒进行冷冻控制的步骤中,还包括:在启停对储物盒制冷的同时启停向电磁线圈通电;或者在启动对储物盒制冷时启动向电磁线圈通电,并在停止对储物盒制冷之前停止向电磁线圈通电。
可选地,在按照储物盒预设的制冷启动条件和制冷关闭条件对储物盒进行冷冻控制的步骤中,还包括:按照设定的周期开启向电磁线圈通电。
可选地,电磁线圈每次通电后的磁极方向配置为与上一次通电后的磁极方向相反。
可选地,电磁线圈为两组,分别设置于储物盒外侧相对的两个侧面上,并且两组电磁线圈通电后产生的磁极方向设置为相同。
可选地,冰箱为风冷冰箱,储物盒的后壁上开设有用于连接风冷冰箱风道的进风口以及回风口,并且开启对储物盒制冷的步骤包括:打开进风口,并开启向进风口吹送制冷气流。
根据本发明的另一个方面,还提供了一种冰箱,其包括:箱体,其至少限定有冷冻储物间室;储物盒,设置于冰箱的冷冻储物间室内,其外侧设置有至少一组电磁线圈;以及控制器,其包括存储器以及处理器,存储器内存储有控制程序,控制程序被处理器执行时用于实现上述任一种冰箱的冷冻控 制方法。
根据本发明的又一个方面,还提供了一种冰箱的冷冻储物总成,其包括:导磁外框,由磁性材料制成,在其相对的内壁上分别形成凸台;两组电磁线圈,分别套设于一凸台上,并配置成在通电后产生磁场,磁场的磁力线贯穿导磁外框的内部空间后经由导磁外框完成闭环,储物盒,安装于导磁外框的内部空间内,并用于形成冷冻储物空间,从而冷冻储物空间处于磁场范围内。
可选地,导磁外框为回形框体,回形框体的前端和后端分别具有贯通的开口,并且凸台形成于回形框体的顶壁和底壁的内侧;或者凸台形成于回形框体的两侧侧壁的内侧。
可选地,凸台的横截面为方形或者圆形或者椭圆形,并且电磁线圈的内周形状与凸台外周相适配。
可选地,两组电磁线圈的磁极方向设置为相同。
可选地,储物盒包括:外筒,设置于导磁外框内,并具有前向开口;抽屉,可抽拉地设置在外筒内。
可选地,外筒的后壁上开设有进风口以及回风口,进风口用于连接冰箱的送风口或者连通冰箱的蒸发器,以将制冷气流引入储物盒;回风口用于连接冰箱的回风口,以将换热后的气流送回冰箱的回风风道或蒸发器。
可选地,上述冰箱的冷冻储物总成还包括:储物温度传感器,设置于外筒内,并用于检测抽屉内的温度;以及线圈温度传感器,邻近于电磁线圈的位置设置,并用于检测电磁线圈处的温度。
可选地,电磁线圈还配置成在线圈温度传感器检测的温度超过预设的保护温度断电。
可选地,上述冰箱的冷冻储物总成还包括:抽屉开闭检测器,配置成检测抽屉的开闭状态。
根据本发明的再一个方面,还提供了一种冰箱,冰箱包括:箱体,其至少限定有冷冻储物间室;以及上述任一种冰箱的冷冻储物总成,布置于冷冻储物间室内。
本发明的冰箱及其冷冻控制方法,在冷冻储物间室内的储物盒出现开闭事件后,获取储物盒被打开前以及被关闭后的内部温度变化,通过储物盒的内部温度变化确定是否有新的食材放入或者食材是否需要重新冻结,在确定内部温度变化的幅度大于第一设定阈值后(也即食材需要进行冻结的情况 下),开启对储物盒制冷并通过电磁线圈生成磁场,使得食材在磁场环境中冻结,抑制冰晶晶核生长,使得冰晶生长速率高于水分子迁移速率,产生的冰晶偏小,从而减小对细胞造成的损伤,避免汁液流失,保证了食材更好的口感,提高了冷冻储物质量,满足了用户对珍贵食材的储藏质量要求。
进一步地,本发明的冰箱及其冷冻控制方法,对于电磁场的开闭条件进行了改进,在冰晶主要形成的期间施加磁场,提高了磁场的使用效率,一方面避免磁场对于储物盒外部其他部件的影响,另一方面也降低了冰箱的能耗。
更进一步地,本发明的冰箱及其冷冻控制方法,在储物盒的正常制冷期间,还可以有规律地启动,保证储藏物的长期冷冻保鲜效果。
本发明的冰箱的冷冻储物总成与冰箱,在储物盒的外侧设置导磁外框,导磁外框用于对电磁线圈产生的磁场进行导引,避免磁场不均匀以及影响冷冻储物总成外部的其他部件,并使得电磁线圈可以在冷冻储物空间形成均匀且强度足以满足提高冷冻储物质量的要求的磁场。进一步地,导磁外框还为电磁线圈提供了装配结构,减小了占用的空间,从而提高了实用性。
进一步地,本发明的冰箱的冷冻储物总成与冰箱,尤其适用于抽屉式的冷冻空间,满足了用户对珍贵食材的储藏质量要求。
更进一步地,本发明的冰箱的冷冻储物总成与冰箱,通过对抽屉内以及电磁线圈处分别设置温度传感器,为磁场控制提供了检测手段,从而可以满足相应控制方法的控制需求。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性透视图;
图2是根据本发明一个实施例的冰箱的储物盒的示意图;
图3是根据本发明一个实施例的冰箱的储物盒中导磁外框的示意图;
图4是根据本发明一个实施例的冰箱的储物盒中电磁线圈的示意图;
图5是根据本发明一个实施例的冰箱的储物盒中形成的一种磁场的示意图;
图6是根据本发明一个实施例的冰箱的储物盒中形成的另一种磁场的示意图;
图7是根据本发明一个实施例的冰箱的控制系统框图;
图8是根据本发明一个实施例的冰箱的冷冻控制方法的示意图;以及
图9是根据本发明一个实施例的冰箱的冷冻控制方法的示意流程图。
具体实施方式
图1是根据本发明一个实施例的冰箱10的示意性透视图。本实施例的冰箱10一般性地可以包括箱体120、门体110、制冷系统(图中未示出)。箱体120内可以限定有至少一个前侧敞开的储物间室,通常为多个,如冷藏储物间室、冷冻储物间室、变温储物间室等等。具体的储物间室的数量和功能可以根据预先的需求进行配置。在本实施例的冰箱10至少应具有冷冻储物间室或者温度可达冷冻范围的变温储物间室(也即可用于实现冷冻储物环境)。冷冻储物的温度范围一般可以设置为-14℃至-22℃。
本实施例的冰箱10可以为风冷冰箱,在箱体120内设置有风路系统,利用风机将经过换热器换热的制冷气流经送风口送向储物间室,然后经由回风口返回风道。实现制冷。由于此类冰箱的箱体120、门体110、制冷系统本身均是本领域技术人员习知且易于实现的,为了不掩盖和模糊本申请的发明点,后文对箱体120、门体110、制冷系统本身不做赘述。
冷冻储物间室内部设置有一储物盒200。该储物盒200形成一个独立封闭的冷冻储物空间,其可以借助于磁场可以提高该冷冻储物空间的储物质量。在一定强度的磁场作用下,在冷冻过程中,可以限制水分子的自由程,表现为水分子蔟中的氢键断裂。由于晶核生长受到抑制,冰晶生长速率高于水分子迁移速率,产生的冰晶偏小,从而对细胞造成的损伤也小,汁液流失率下降,食材的营养和口感保存较好。此外磁场还可以缩短冻结时间,有助于抑制微生物和细菌数量。
图2是根据本发明一个实施例的冰箱10的储物盒200的示意图。该储物盒200可以包括:导磁外框210、电磁线圈230等。导磁外框210、电磁线圈230与储物盒200形成冰箱10的一冷冻储物总成。也即是说,冷冻储 物总成可以包括:导磁外框210、电磁线圈230、储物盒200等。
图3是根据本发明一个实施例的冰箱10的储物盒200中导磁外框210的示意图。导磁外框210由磁性材料制成,在其相对的内壁上分别形成凸台220。磁性材料可以使用软磁材料或者硬磁材料,例如可以使用软磁材料,软磁材料的特点为具有低矫顽力和高磁导率,导磁外框210可以用于聚拢磁场,避免磁场向储物盒200的外壁释放,避免对储物盒200外侧的其他部件造成干扰(例如对其他部件产生磁力吸引等)。
至少一组电磁线圈230与导磁外框210配合,配置成在通电后产生磁场,磁场的磁力线贯穿导磁外框210的内部空间后经由导磁外框210完成闭环。
在一些优选实施例中,电磁线圈230可以为两组。导磁外框210可为回形框体,也即为方形筒。回形框体的前端和后端分别具有贯通的开口。如图3所示,在一些实施例中,凸台220可以形成于回形框体的顶壁和底壁的内侧。在另一些实施例中,凸台220形成于回形框体的两侧侧壁的内侧。考虑到冷冻储物间室的结构,其上下纵向尺寸小于左右横向尺寸,且顶壁和底壁的尺寸较大,更利于布置电磁线圈230,本实施例优选在回形框体的顶壁和底壁的内侧形成凸台220。线圈的内周形状与凸台220外周相适配。
凸台220的横截面可以为方形或者圆形或者椭圆形,在使用方形横截面时,凸台220更便于与箱体120结构配合。电磁线圈230的内周形状与凸台220外周相适配,对应地设置为方形或者圆形或者椭圆形。
两组电磁线圈230,分别套设于一凸台220上,并配置成在通电后产生磁场,磁场的磁力线贯穿导磁外框210的内部空间后经由导磁外框210完成闭环。
图4是根据本发明一个实施例的冰箱10的储物盒200中电磁线圈230的示意图。电磁线圈230可以设为扁平的方框状,沿周向缠绕,从而使得电磁线圈230通电后产生的磁场磁极方向与凸台220垂直。凸台220的高度可以与电磁线圈230的厚度相适配,从而使得电磁线圈230所在的回形框体的内壁基本平齐,以便布置储物盒。在另一些实施例中电磁线圈230可以设为扁平的椭圆环状或者圆环状。
为了保证磁场强度均匀,可以采用两组电磁线圈230相对设置。两组电磁线圈230可以互为镜像,并且产生的磁场磁极方向设置为相同。图5和图6分别是根据本发明一个实施例的冰箱10的储物盒200中形成的磁场的示意 图,为了示出内部结构,隐去了抽屉242。磁极的方向也设置为使得磁力线向朝向同一方向。在一些实施例中,两组电磁线圈230可以通过调整通入电流的方向改变磁极的方向,但是两组电磁线圈230同时进行变换,形成类似于图5或图6磁场。磁场的磁力线贯穿导磁外框210的内部空间后经由导磁外框210完成闭环,避免磁场分布不匀或影响储物盒200的外部部件。
导磁外框210用于对电磁线圈230产生的磁场进行导引,避免磁场不均匀以及影响储物盒200外部的其他部件,并使得电磁线圈230可以在冷冻储物空间形成均匀且强度足以满足提高冷冻储物质量的要求的磁场。进一步地,导磁外框210还为电磁线圈230提供了装配结构,减小了占用的空间,从而提高了实用性。
储物盒200安装于导磁外框210的内部空间内,并用于形成冷冻储物空间,从而冷冻储物空间处于所述磁场范围内。储物盒200可以形成独立密封的冷冻储物空间,从而专用特定的食材提供更佳的冷冻储物环境。
储物盒200可以包括:外筒241和抽屉242。其中外筒241设置于导磁外框210内,并具有前向开口。抽屉242可抽拉地设置在外筒241内。抽屉242的前面板可与外筒241形成密封结构。在冰箱10使用风冷进行制冷时,外筒241的后壁上开设有进风口243以及回风口244,进风口243用于连接所述冰箱10的风道送风口或者连通至冰箱10的蒸发器(例如连通至蒸发器的顶部区域),以将制冷气流引入储物盒;回风口244用于连接冰箱10的风道回风口或者连通至冰箱10的蒸发器(例如连通至蒸发器的底部区域),以将换热后的气流送回冰箱10的回风风道或者蒸发器。在一些实施例中,进风口243以及回风口244可以设置风门(图中未示出)。风门在进行制冷送风时受控打开。进风口243和回风口244可以根据风冷冰箱的风道、蒸发器的位置和结构进行配置,在另一些实施例中,回风口244也可以设置在外筒241侧壁上。
本实施例的冰箱10,特别是其冷冻储物总成,还可以将电磁线圈230的磁场控制与制冷控制相结合,保证食物在磁场环境中冻结,实现保鲜冷冻的效果。图7是根据本发明一个实施例的冰箱10的控制系统框图,冰箱10还设置有储物温度传感器250、线圈温度传感器260、抽屉开闭检测器270、控制器300。
储物温度传感器250设置于储物盒200的外筒241内,并用于检测抽屉 242内的温度。线圈温度传感器260邻近于电磁线圈230的位置设置,并用于检测电磁线圈230处的温度,在一些实施例中线圈温度传感器260可以设置于抽屉242底部的电磁线圈230处。抽屉开闭检测器270配置成检测抽屉242的开闭状态。
由于电磁线圈230在产生磁场时,会有一定程度的发热。因此为了避免电磁线圈230的热量影响制冷,电磁线圈230还配置成在线圈温度传感器260检测的温度超过预设的保护温度断电,从而实现过热保护。
抽屉开闭检测器270,配置成检测抽屉242的开闭状态。在抽屉242被拉开然后关闭后,借助于储物温度传感器250,可以检测是否放入新的食材,或者原有食材是否需要重新冻结。然后使电磁线圈230和制冷系统配合,可以实现磁场辅助冷冻,提高食材的冷冻保鲜效果。
控制器300包括存储器310以及处理器320。存储器310内存储有控制程序311,控制程序311被处理器320执行时用于对电磁线圈230以及制冷系统进行控制,从而实现本实施例提供的冰箱的冷冻控制方法。而各种传感器,为磁场控制提供了检测手段,从而可以满足相应控制方法的控制需求。
图8是根据本发明一个实施例的冰箱的冷冻控制方法的示意图,该冷冻控制方法包括:
步骤S802,检测储物盒200的开闭状态。
步骤S804,确定出现储物盒200被打开后又被关闭的开闭事件。
步骤S806,获取储物盒200被打开前以及被关闭后的内部温度变化,储物盒200的内部温度变化反映了被储藏的食物的状态,如果内部温度变化的幅度较大,则说明储物盒200放入新的食物,或者食物的温度是否已经升高需要重新冻结;如果内部温度变化的幅度较小,则说明食物可能仍处于冻结状态。
步骤S808,若内部温度变化的幅度大于第一设定阈值,则开启对储物盒200制冷并向电磁线圈230通电,以利用电磁线圈230在储物盒200内产生磁场;第一设定阈值可以设置为2~8摄氏度,其可以根据冷冻设定温度灵活进行设置。电磁线圈230在内部温度变化的幅度大于第一设定阈值的情况下产生磁场,可以使得食材在被冻结的过程中受到磁场的影响,提高保鲜效果。另外通过设置电磁线圈230的启动条件,一方面降低了能耗,另一方面还可以避免磁场对储物盒200外部其他部件产生影响。
步骤S810,在储物盒200的内部温度低于第二设定阈值后,停止向电磁线圈230通电。第二设定阈值可以设置为食材完成冻结的温度,例如可以设置为-12至-18摄氏度。
电磁线圈230在产生磁场时,会有一定程度的发热。因此为了避免电磁线圈230的热量影响制冷,也即在电磁线圈230过热后,通过断电实现过热保护。
过热保护的一种方案为:在开启对储物盒200制冷并向电磁线圈230通电的步骤之后还包括:检测电磁线圈230处的温度;在电磁线圈230处的温度超出第三设定阈值后,停止向电磁线圈230通电,以避免电磁线圈230影响制冷。第三设定阈值可以设定为-2至0度。该种过热保护方案可以保证电磁线圈230一旦出现温度过高,即实现保护。
过热保护的一种替代方案为:在开启对储物盒200制冷并向电磁线圈230通电的步骤之后还可以检测电磁线圈230处的温度;在电磁线圈230处的温度与储物盒200的内部温度温差大于第四设定阈值后,停止向电磁线圈230通电。第四设定阈值可以设定为2-4摄氏度。由于电磁线圈230本身也位于冷冻储物间室内,电磁线圈230处的温度与储物盒200的内部温度温差更能反映电磁线圈230的发热情况,从而可以避免电磁线圈230影响正常制冷。
在开启对储物盒200制冷的步骤之后还包括:在储物盒200的内部温度低于第五设定阈值后,停止对储物盒200制冷;并按照储物盒200预设的制冷启动条件和制冷关闭条件对储物盒200进行冷冻控制,以维持储物盒200的冷冻储物环境,第五设定阈值小于第二设定阈值。第五设定阈值可以根据储物盒200的设定温度进行设置,其还可以低于正常冷冻控制的关机点温度,例如可以设置为低于设定温度2-4摄氏度。由于这次制冷是在储物盒200被打开后进行的,将第五设定阈值设置得更低,可以在一定程度上实现过冷,提高冷冻储物质量。制冷启动条件和制冷关闭条件可以同样根据储物盒200的设定温度进行设置,在高于制冷启动温度时开始制冷,在低于制冷关闭温度时停止制冷。
在完成磁场辅助冷冻制冷之后,恢复储物盒正常冷冻控制,也即按照储物盒200预设的制冷启动条件和制冷关闭条件对储物盒200进行冷冻控制。在该按照储物盒200预设的制冷启动条件和制冷关闭条件对储物盒200进行 冷冻控制的步骤也可以使用磁场辅助制冷,避免部分冰晶重新生成时导致储物质量下降。例如可以在启停对储物盒200制冷的同时启停向电磁线圈230通电,也即磁场与制冷同时启停。另一种替代性的方案为:在启动对储物盒200制冷时启动向电磁线圈230通电,并在停止对储物盒200制冷之前停止向电磁线圈230通电,也即磁场仅在制冷的开始阶段启动。经过实际测试,磁场仅在制冷的开始阶段启动的储藏质量并没有与磁场与制冷同时启停的储藏质量明显下降。
另外一种在长期冷冻过程中,启动磁场的方法为:在按照储物盒200预设的制冷启动条件和制冷关闭条件对储物盒200进行冷冻控制的过程中,按照设定的周期开启向电磁线圈230通电,也即电磁线圈230周期性启动。
在另一实施例中,电磁线圈230每次通电后的磁极方向可以配置为与上一次通电后的磁极方向相反。通过磁极方向的交替,可以在一定程度上改变冰晶生成条件,达到更好的效果。磁极方向的交替可以通过调整电磁线圈230的通电电流的方向来实现。
在应用于风冷冰箱时,开启对储物盒200制冷的步骤可以包括:打开进风口,并开启向进风口243吹送制冷气流。
图9是根据本发明一个实施例的冰箱的冷冻控制方法的示意流程图。本实施例的流程为冰箱的冷冻控制方法的一个具体应用示例,其中部分步骤的执行顺序可以进行调整。该流程可以包括:
步骤S902,检测储物盒200的开闭状态。
步骤S904,确定储物盒200被打开后又被关闭,也即判断储物盒200是否出现开闭事件。
步骤S906,获取储物盒200被打开前以及被关闭后的内部温度变化,判断内部温度变化的幅度是否大于第一设定阈值,也即判断储物盒200是否放入新的食物,或者食物的温度是否已经升高需要重新冻结,第一设定阈值可以设置为2~8摄氏度,若内部温度变化幅度较小,食物可能无需重新冻结,则可以进行冷冻储物的制冷常规控制,也即按照设定开机温度阈值和关机温度阈值进行制冷控制。
步骤S908,开启制冷,向储物盒200送风,同时向电磁线圈230通电,以在储物盒200内产生磁场,利用磁场辅助冷冻。
步骤S910,持续检测储物盒200的内部温度以及电磁线圈230处的温 度。
步骤S912,判断电磁线圈230的发热是否超限,也即判断电磁线圈230的发热是否会影响正常制冷。超限的判断依据可以包括:电磁线圈230处的温度超过预设的第三设定阈值(例如可以设置为-2至0摄氏度);或者电磁线圈230处的温度与储物盒200的内部温度温差大于第四设定阈值(例如可以设置为2至4摄氏度)。
步骤S914,判断储物盒200的内部温度是否低于第二设定阈值(例如可以设置为-12至-18摄氏度),也即判断是否完成冻结阶段。
步骤S916,停止向电磁线圈230通电。
步骤S920,判断储物盒200的内部温度低于第五设定阈值,第五设定阈值可以根据储物盒200的设定温度进行设置,其还可以低于正常冷冻控制的关机点温度,例如可以设置为低于设定温度2-4摄氏度。
步骤S922,停止对储物盒200制冷,恢复储物盒200正常冷冻控制。
步骤S924,按照设定策略启动磁场,设定策略可以包括:磁场与制冷同时启停、磁场仅在制冷的开始阶段启动、或者周期性启动。
本实施例的冰箱10及其冷冻控制方法,使得食材在磁场环境中冻结,抑制冰晶晶核生长,减小对细胞造成的损伤,避免汁液流失,保证了食材更好的口感,提高了冷冻储物质量,满足了用户对珍贵食材的储藏质量要求,并且通过控制方法的优化,提高了磁场的使用效率,一方面避免磁场对于储物盒200外部其他部件的影响,另一方面也降低了冰箱的能耗。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冰箱的冷冻控制方法,所述冰箱的冷冻储物间室内设置有储物盒,所述储物盒外侧设置有至少一组电磁线圈,并且所述冷冻控制方法包括:
    检测所述储物盒的开闭状态;
    确定出现所述储物盒被打开后又被关闭的开闭事件后,获取所述储物盒被打开前以及被关闭后的内部温度变化;
    若所述内部温度变化的幅度大于第一设定阈值,则开启对所述储物盒制冷并向所述电磁线圈通电,以利用所述电磁线圈在所述储物盒内产生磁场;
    在所述储物盒的内部温度低于第二设定阈值后,停止向所述电磁线圈通电。
  2. 根据权利要求1所述的冰箱的冷冻控制方法,其中,
    在开启对所述储物盒制冷并向所述电磁线圈通电的步骤之后,所述方法还包括:
    检测所述电磁线圈处的温度;
    在所述电磁线圈处的温度超出第三设定阈值后,停止向所述电磁线圈通电,以避免所述电磁线圈影响制冷。
  3. 根据权利要求1所述的冰箱的冷冻控制方法,其中,
    在开启对所述储物盒制冷并向所述电磁线圈通电的步骤之后,所述方法还包括:
    检测所述电磁线圈处的温度;
    在所述电磁线圈处的温度与所述储物盒的内部温度温差大于第四设定阈值后,停止向所述电磁线圈通电。
  4. 根据权利要求1所述的冰箱的冷冻控制方法,其中,
    在开启对所述储物盒制冷的步骤之后,所述方法还包括:
    在所述储物盒的内部温度低于第五设定阈值后,停止对所述储物盒制冷;并按照所述储物盒预设的制冷启动条件和制冷关闭条件对所述储物盒进行冷冻控制,以维持所述储物盒的冷冻储物环境,所述第五设定阈值小于所述第二设定阈值。
  5. 根据权利要求4所述的冰箱的冷冻控制方法,其中,
    在所述按照所述储物盒预设的制冷启动条件和制冷关闭条件对所述储物盒进行冷冻控制的步骤中,还包括:
    在启停对所述储物盒制冷的同时启停向所述电磁线圈通电;或者
    在启动对所述储物盒制冷时启动向所述电磁线圈通电,并在停止对所述储物盒制冷之前停止向所述电磁线圈通电。
  6. 根据权利要求4所述的冰箱的冷冻控制方法,其中,
    在所述按照所述储物盒预设的制冷启动条件和制冷关闭条件对所述储物盒进行冷冻控制的步骤中,还包括:
    按照设定的周期开启向所述电磁线圈通电。
  7. 根据权利要求5或6所述的冰箱的冷冻控制方法,其中,
    所述电磁线圈每次通电后的磁极方向配置为与上一次通电后的磁极方向相反。
  8. 根据权利要求1所述的冰箱的冷冻控制方法,其中,
    所述电磁线圈为两组,分别设置于所述储物盒外侧相对的两个侧面上,并且两组所述电磁线圈通电后产生的磁极方向设置为相同。
  9. 根据权利要求1所述的冰箱的冷冻控制方法,其中,
    所述冰箱为风冷冰箱,所述储物盒的后壁上开设有用于连接所述风冷冰箱风道的进风口以及回风口,并且
    所述开启对所述储物盒制冷的步骤包括:打开所述进风口,并开启向所述进风口吹送制冷气流。
  10. 一种冰箱,包括:
    箱体,其至少限定有冷冻储物间室;
    储物盒,设置于所述冰箱的冷冻储物间室内,其外侧设置有至少一组电磁线圈;以及
    控制器,其包括存储器以及处理器,所述存储器内存储有控制程序,所 述控制程序被所述处理器执行时用于实现根据权利要求1至9中任一项所述的冰箱的冷冻控制方法。
PCT/CN2021/130610 2020-12-31 2021-11-15 冰箱的冷冻控制方法与冰箱 WO2022142780A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011638006.3 2020-12-31
CN202011638006.3A CN114688798B (zh) 2020-12-31 2020-12-31 冰箱的冷冻控制方法与冰箱
CN202023323501.3U CN214536999U (zh) 2020-12-31 2020-12-31 冰箱的冷冻储物总成与冰箱
CN202023323501.3 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142780A1 true WO2022142780A1 (zh) 2022-07-07

Family

ID=82259016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130610 WO2022142780A1 (zh) 2020-12-31 2021-11-15 冰箱的冷冻控制方法与冰箱

Country Status (1)

Country Link
WO (1) WO2022142780A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333250A (ja) * 2001-05-10 2002-11-22 Matsushita Refrig Co Ltd 核磁気共鳴を利用した急速凍結庫
WO2003038355A1 (fr) * 2001-11-01 2003-05-08 Abi Co.,Ltd. Appareil et procede de congelation de grande efficacite
CN106839581A (zh) * 2015-12-07 2017-06-13 青岛海尔智能技术研发有限公司 冷藏冷冻装置及其冷冻方法
CN107965960A (zh) * 2017-12-12 2018-04-27 江南大学 基于多磁极可控的周期性变化磁场辅助冷冻装置及应用
CN207422749U (zh) * 2017-08-25 2018-05-29 南京韩威南冷制冷集团有限公司 一种基于磁场的蔬菜水果低温冷藏及冷冻装置
CN110074310A (zh) * 2019-06-05 2019-08-02 青岛科技大学 一种磁场冷冻保鲜装置
CN110108076A (zh) * 2019-06-05 2019-08-09 青岛科技大学 一种磁场辅助制冷装置
CN111043826A (zh) * 2018-10-11 2020-04-21 青岛海尔股份有限公司 冷藏冷冻装置及其控制方法
CN214536999U (zh) * 2020-12-31 2021-10-29 青岛海尔特种制冷电器有限公司 冰箱的冷冻储物总成与冰箱

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333250A (ja) * 2001-05-10 2002-11-22 Matsushita Refrig Co Ltd 核磁気共鳴を利用した急速凍結庫
WO2003038355A1 (fr) * 2001-11-01 2003-05-08 Abi Co.,Ltd. Appareil et procede de congelation de grande efficacite
CN106839581A (zh) * 2015-12-07 2017-06-13 青岛海尔智能技术研发有限公司 冷藏冷冻装置及其冷冻方法
CN207422749U (zh) * 2017-08-25 2018-05-29 南京韩威南冷制冷集团有限公司 一种基于磁场的蔬菜水果低温冷藏及冷冻装置
CN107965960A (zh) * 2017-12-12 2018-04-27 江南大学 基于多磁极可控的周期性变化磁场辅助冷冻装置及应用
CN111043826A (zh) * 2018-10-11 2020-04-21 青岛海尔股份有限公司 冷藏冷冻装置及其控制方法
CN110074310A (zh) * 2019-06-05 2019-08-02 青岛科技大学 一种磁场冷冻保鲜装置
CN110108076A (zh) * 2019-06-05 2019-08-09 青岛科技大学 一种磁场辅助制冷装置
CN214536999U (zh) * 2020-12-31 2021-10-29 青岛海尔特种制冷电器有限公司 冰箱的冷冻储物总成与冰箱

Similar Documents

Publication Publication Date Title
CN214536999U (zh) 冰箱的冷冻储物总成与冰箱
EP2578973B1 (en) Refrigerator and control method thereof
JP4595972B2 (ja) 冷蔵庫
JP4827788B2 (ja) 冷蔵庫
CN216114964U (zh) 磁场保鲜储物容器和冰箱
CN216114965U (zh) 磁场保鲜储物容器和冰箱
JP4253775B2 (ja) 冷蔵庫
JP4775340B2 (ja) 冷蔵庫
WO2023016148A1 (zh) 具有磁场保鲜功能的制冷设备
JP4845930B2 (ja) 冷凍保存装置および冷凍保存方法
WO2022142780A1 (zh) 冰箱的冷冻控制方法与冰箱
WO2022142778A1 (zh) 具有冷冻储物装置的冰箱
WO2022142777A1 (zh) 具有冷冻储物组件的冰箱
CN114688798B (zh) 冰箱的冷冻控制方法与冰箱
WO2022142779A1 (zh) 具有冷冻储物装置的冰箱
JP5743867B2 (ja) 冷却貯蔵庫
WO2023015946A1 (zh) 冰箱及其保鲜存储控制方法
WO2023016224A1 (zh) 磁场保鲜储物容器和冰箱
JPWO2020144791A1 (ja) 冷蔵庫
WO2023231979A1 (zh) 设置有磁场保鲜间室的冰箱及其控制方法
JP7185000B2 (ja) 冷蔵庫及び冷蔵庫の温度制御方法
WO2023016226A1 (zh) 磁场保鲜储物容器和冰箱
CN115704631A (zh) 磁场保鲜储物容器和冰箱
JP4906400B2 (ja) 冷蔵庫
CN117346459A (zh) 一种冰箱的控制方法及冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913523

Country of ref document: EP

Kind code of ref document: A1