WO2023016226A1 - 磁场保鲜储物容器和冰箱 - Google Patents

磁场保鲜储物容器和冰箱 Download PDF

Info

Publication number
WO2023016226A1
WO2023016226A1 PCT/CN2022/107161 CN2022107161W WO2023016226A1 WO 2023016226 A1 WO2023016226 A1 WO 2023016226A1 CN 2022107161 W CN2022107161 W CN 2022107161W WO 2023016226 A1 WO2023016226 A1 WO 2023016226A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
electromagnetic
storage
storage container
keeping
Prior art date
Application number
PCT/CN2022/107161
Other languages
English (en)
French (fr)
Inventor
赵弇锋
朱小兵
李孟成
费斌
张育宁
衣尧
姬立胜
曹子林
李涛
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023016226A1 publication Critical patent/WO2023016226A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/06Freezing; Subsequent thawing; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves

Definitions

  • the invention relates to refrigeration and freezing equipment, in particular to a magnetic field fresh-keeping storage container and a refrigerator.
  • An object of the present invention is to provide a magnetic field fresh-keeping storage container and a refrigerator that can effectively improve storage quality.
  • a further object of the present invention is to make the magnetic field in the storage space more uniform.
  • Another further object of the invention is to reduce component costs.
  • the present invention provides a magnetic field fresh-keeping storage container, which includes:
  • a storage box which defines a storage space for placing stored objects
  • Two homogenization plates are made of magnetically permeable materials, and are respectively arranged corresponding to a set of side walls opposite to the storage box;
  • each set of electromagnetic components are set corresponding to a homogenization plate, and form an electromagnetic field after electrification, and use the homogenization plate to change the magnetic field distribution of the electromagnetic field, so that the electromagnetic field is more evenly distributed in the storage space.
  • each group of electromagnetic components includes one or more electromagnetic rings, and each electromagnetic ring is sleeved on a boss, An electromagnetic coil is wound around the axis along the ring.
  • the shape of the shim plate is adapted to the shape of the side wall of the storage box where it is located, and the projection of the storage space on the plane where the shim plate is located is located within the outer peripheral contour of the shim plate.
  • a boss is provided on each shim plate, and the boss is located in the central area of the shim plate, so that the center of the electromagnetic ring sleeved on the boss is generally opposite to the center of the shim plate.
  • a plurality of bosses are provided at intervals on each shim plate, and an electromagnetic ring is sleeved on each boss.
  • each shim plate covers a partial area of the side wall of the storage box where it is located, and its center is opposite to the center of the side wall, and a protrusion is provided on the side facing the storage box; each group The electromagnetic assembly includes an electromagnetic ring, and a partial section of the inner peripheral wall of the electromagnetic ring abuts against the protrusion.
  • the above-mentioned magnetic field fresh-keeping storage container further includes: a magnetically conductive connecting belt, connected to both sides of the two homogenization plates, and forms a ring-shaped magnetic conduction path with the two homogenization plates outside the storage space.
  • the above-mentioned magnetic field fresh-keeping storage container also includes:
  • the storage box is a drawer, which can be drawn and arranged in the cylinder body, and two shim plates are respectively arranged on the top and bottom of the storage box.
  • the shim plate is arranged on the outside or inside of the barrel, and the minimum distance between the electromagnetic component and the storage area in the storage space is greater than 1 mm.
  • a refrigerator which includes:
  • the box body defines a storage compartment therein;
  • Any one of the above-mentioned magnetic field fresh-keeping storage containers is arranged inside the storage compartment.
  • two homogenization plates and two sets of electromagnetic components are arranged correspondingly to a set of side walls opposite to the storage box.
  • the magnetic field distribution of the electromagnetic field makes the electromagnetic field more evenly distributed in the storage space.
  • the magnetic field helps to improve the storage quality, can shorten the freezing time, reduce the juice loss rate and nutrient loss of food, reduce the number of microorganisms and bacteria, and prolong the fresh-keeping period. Because the magnetic field is more uniform, the stored objects can have a uniform storage quality.
  • the homogenization plate can save the amount of magnetic material used, and avoid the cost increase and weight increase caused by the use of too many or too large magnetic parts.
  • a boss is provided on the side of the magnetization plate facing the storage box, and the boss can be used to limit the position of the electromagnetic assembly on the one hand, and on the other hand, it can also facilitate the collection of the magnetic field into the uniform.
  • the magnetic plate improves the utilization efficiency of the magnetic field.
  • the magnetic field fresh-keeping storage container of the present invention optimizes the structure of the homogenization plate and the electromagnetic assembly, making the structure of the magnetic field fresh-keeping storage container more compact, especially suitable for storage boxes and storage drawers. Magnetic field preservation is realized in a relatively flat storage space.
  • the refrigerator of the present invention is equipped with the above-mentioned magnetic field fresh-keeping storage container, so that food materials are stored in a magnetic field environment, and the growth of ice crystal nuclei is inhibited.
  • the growth rate of ice crystals is higher than the migration rate of water molecules, and the generated ice crystals are smaller, thereby reducing Minimize the damage to the cells, avoid the loss of juice, ensure a better taste of the ingredients, improve the quality of frozen storage, and meet the user's storage quality requirements for precious ingredients.
  • the refrigerator of the present invention improves the storage quality through the magnetic field, and can provide a new fresh-keeping function for the smart refrigerator, which meets the user's increasing demand for smart refrigerators, and further satisfies the user's demand for smart homes, smart quality of life requirements.
  • Fig. 1 is a schematic perspective view of a refrigerator of a magnetic field fresh-keeping storage container according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a magnetic field fresh-keeping storage container with a drawer structure according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a magnetic field fresh-keeping storage container according to an embodiment of the present invention.
  • Fig. 4 is an exploded view of parts of the magnetic field fresh-keeping storage container shown in Fig. 3;
  • Fig. 5 is an exploded view of components of a magnetic field fresh-keeping storage container according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a magnetic field fresh-keeping storage container according to another embodiment of the present invention.
  • Fig. 7 is an exploded view of parts of the magnetic field fresh-keeping storage container shown in Fig. 8;
  • Fig. 8 is a schematic diagram of a magnetic field fresh-keeping storage container with a magnetic connection belt according to an embodiment of the present invention
  • Fig. 9 is a schematic diagram of a magnetic field fresh-keeping storage container with a magnetic connection belt according to another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a magnetic field fresh-keeping storage container with a drawer structure according to another embodiment of the present invention.
  • Fig. 11 is a block diagram of a control system of a refrigerator with a magnetic field fresh-keeping storage container according to an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a refrigerator 10 with a magnetic field fresh-keeping storage container 200 according to an embodiment of the present invention.
  • the refrigerator 10 of this embodiment may generally include a box body 120, a door body 110, and a refrigeration system (not shown in the figure).
  • the box body 120 may define at least one storage compartment with an open front side, usually a plurality of storage compartments, such as a refrigerated storage compartment, a freezer storage compartment, a variable temperature storage compartment, and the like.
  • the number and functions of the specific storage compartments can be configured according to the prior requirements.
  • the refrigerator 10 of this embodiment can be an air-cooled refrigerator, and an air duct system is arranged in the box body 120, and the cooling air flow through the heat exchanger (evaporator) is sent to the storage room through the air supply port by a fan, and then Return to the air duct through the air return port. Achieve cooling. Since the box body 120, the door body 110, and the refrigeration system of this type of refrigerator are well-known and easy to implement by those skilled in the art, in order not to cover up and obscure the invention points of the present application, the box body 120, the door body 110 , The refrigeration system itself will not be described in detail.
  • One or more storage compartments of the refrigerator 10 may be provided with magnetic field fresh-keeping storage containers 200 .
  • the magnetic field fresh-keeping storage container 200 When the magnetic field fresh-keeping storage container 200 is placed in the frozen storage compartment, it can be used to freeze and keep frozen foodstuffs fresh, inhibit the growth of ice crystal nuclei, make the growth rate of ice crystals higher than the migration rate of water molecules, and produce smaller ice crystals, thereby Reduce the damage to the cells, avoid the loss of juice, accelerate the freezing process, and shorten the freezing time.
  • the magnetic field fresh-keeping storage container 200 When the magnetic field fresh-keeping storage container 200 is placed in the refrigerated storage compartment, it can reduce the oxidation-reduction reaction speed of ingredients, reduce nutrition and water loss, prevent ingredients from discoloring, inhibit bacterial growth, and prolong the shelf life of ingredients.
  • the number of magnetic field fresh-keeping storage containers 200 and the storage compartments arranged therein can be configured according to user requirements.
  • one or more magnetic field fresh-keeping storage containers 200 may be arranged in the refrigerator 10 .
  • the magnetic field fresh-keeping storage container 200 can be arranged in a refrigerated storage room, a freezer storage room, or a variable-temperature storage room, and magnetic field-assisted fresh-keeping can be performed in the above-mentioned storage rooms.
  • the magnetic field fresh-keeping storage container 200 can also be used as an independent compartment of the refrigerator 10, and the refrigerator 10 can independently control its temperature.
  • the magnetic field fresh-keeping storage container 200 may include a storage box 210 .
  • a storage space 212 for storing objects is defined in the storage box 210, and the storage box 210 may be in the shape of a box.
  • the storage box 210 may be in the shape of an overall flat cuboid (that is, the distance along the height direction is significantly smaller than the distance along the depth direction and the distance along the lateral left and right directions).
  • Those skilled in the art can configure the structure and size of the storage box 210 according to the required storage space, and the box-shaped, box-shaped configuration can be used to realize the drawer structure in some embodiments.
  • Fig. 2 is a schematic diagram of a magnetic field fresh-keeping storage container 200 with a drawer structure according to an embodiment of the present invention.
  • the storage box 210 may be a drawer structure, that is, the magnetic field fresh-keeping storage container 200 may further include: a cylinder body 211 . Wherein the barrel 211 has a forward opening.
  • the storage box 210 is retractably disposed in the cylinder body 211 . After the storage box 210 is pulled out, the storage space 212 can be revealed, so as to pick and place the stored objects. After the storage box 210 is pushed into the cylinder body 211, an independent sealed space can be formed.
  • the structure of the drawer used in the refrigerator is well known to those skilled in the art, and will not be repeated here.
  • the two homogenization plates 221 of the magnetic field fresh-keeping storage container 200 are made of magnetically permeable materials, and are arranged correspondingly to a set of side walls opposite to the storage box 210 .
  • the shim plate 221 can be made of materials with low coercive force and high magnetic permeability, such as silicon steel sheet or similar materials.
  • the opposite side where the shim plate 221 is located can be selected according to the shape of the storage box 210 itself and the structure of the storage space 212, for example, it can be placed on the lateral sides, top and bottom sides, or front and rear sides of the storage box 210 . That is to say, the two shim plates 221 may be on the left and right sides, the top and bottom sides, or the front and rear sides of the storage box 210 .
  • the two shim plates 221 can be preferentially arranged on the top and bottom sides of the storage box 210 .
  • the magnetic field formed by the magnetic field fresh-keeping storage container 200 runs through the storage space 212 from top to bottom or from bottom to top.
  • the magnetic field fresh-keeping storage container 200 has two sets of electromagnetic components 222 .
  • Each group of electromagnetic components 222 is set correspondingly to a shim plate 221 , and forms an electromagnetic field after electrification, and uses the shim plate 221 to change the magnetic field distribution of the electromagnetic field, so that the electromagnetic field is more evenly distributed in the storage space 212 .
  • the two shim plates 221 can be arranged preferentially on the top and bottom sides of the storage box 210
  • two sets of electromagnetic components 222 are correspondingly arranged on the top and bottom sides of the storage box 210 .
  • two groups of electromagnetic components 222 can be arranged on corresponding side walls with the shim plate.
  • the magnetic field strength range that meets the fresh-keeping requirements can be set to 1Gs-100Gs.
  • the magnetic field strength range can preferably be 5-60GS, for example, about 20Gs can be selected; in the case of a refrigerated environment, the magnetic field strength The range can be 20-160GS, preferably 40-80Gs, such as about 60Gs. That is to say, the shim plate 221 and the electromagnetic assembly 222 can form a fresh-keeping magnetic field that fully covers the above-mentioned magnetic field strength range in the storage space.
  • FIG. 3 is a schematic diagram of a magnetic field fresh-keeping storage container 200 according to an embodiment of the present invention
  • FIG. 4 is an exploded view of components of the magnetic field fresh-keeping storage container 200 shown in FIG. 3 .
  • the storage box 210 is omitted in FIG. 5 , and only the cylinder 211 for placing the storage box 210 is shown.
  • the shape of the shim plate 221 is adapted to the shape of the side wall of the cylinder 211 where it is located, and the projection of the storage space on the plane of the shim plate can be located within the range of the outer peripheral contour of the shim plate.
  • the size of the shim plate 221 may be equal to or slightly larger than the corresponding side of the storage box 210 .
  • the top shim plate 221 can respectively cover the top surface of the storage space 212 ; and the bottom shim plate 221 can respectively cover the bottom surface of the storage space 212 .
  • the shim plate 221 can make the magnetic field cover the storage box 210 without dead angle.
  • Each shim plate 221 is provided with one or more bosses 224 toward the side of the storage box 210; each group of electromagnetic components 222 includes one or more electromagnetic rings 223, and each electromagnetic ring 223 is sleeved on a protrusion.
  • On the platform 224 an electromagnetic coil is wound around the circular axis inside the platform 224 .
  • the top shim plate 221 has a downward facing boss 224
  • the bottom shim plate 221 has an upward facing boss 224 .
  • a boss 224 is arranged on each shim plate 221 , and the boss 224 is located in the central area of the shim plate 221 .
  • An electromagnetic coil is wound inside the electromagnetic ring 223 along the circumferential direction of the ring, and when the electromagnetic coil is energized, an electromagnetic field is formed in the storage space 212 .
  • the electromagnetic field can be set as a static magnetic field with a constant magnetic field direction and/or magnetic field strength, an alternating magnetic field with an alternating magnetic field direction and/or magnetic field strength, and a pulsed magnetic field activated at intervals.
  • the above magnetic field adjustment can be realized by adjusting the current to the electromagnetic coil.
  • the electromagnetic field can be adjusted according to the storage environment in the storage space 212 and the storage state of the stored object.
  • the electromagnetic field may also be a constant magnetic field with a constant magnetic field strength.
  • the electromagnetic ring 223 can be shaped as a flat ring, the top and bottom of both ends (top or bottom) are flat, and the thickness is obviously smaller than the outer circumference.
  • the ratio of the width to the thickness of the electromagnetic loop 223 can be set within a range of 1-10.
  • the electromagnetic ring 223 has a corresponding waterproof structure, such as wrapping and protecting the inner electromagnetic coil by dipping paint, plastic sealing, a sealing ring or a sealed casing, and the overall structure is a flat ring shape.
  • the electromagnetic ring 223 with the above structure can be more conveniently matched with the shim plate 221 and occupies less space.
  • the electromagnetic ring 223 is sheathed on a boss 224 , and an electromagnetic coil is wound inside the ring along the axis.
  • the contour of the boss 224 can be adapted to the shape of the inner peripheral through hole of the electromagnetic ring 223 , so that the electromagnetic ring 223 can be conveniently installed on the boss 224 .
  • the boss 224 can also guide the magnetic field of the electromagnetic ring 223 into the shim plate 221 , and use the shim plate 221 to change the magnetic field distribution of the electromagnetic field.
  • the number of turns of the electromagnetic coil in the electromagnetic loop 223 can be set according to the required magnetic field strength.
  • the electromagnetic field formed by the electromagnetic loop 223 is perpendicular to the sidewall of the storage box 210, and the magnetic pole directions of the electromagnetic loop 223 on the opposite sidewall are set to be consistent, so that a penetrating magnetic field is formed in the storage space. That is, the N poles of the two electromagnetic loops 223 face the same direction, while the S poles face opposite directions.
  • the magnetic field direction can be from top to bottom or from bottom to top. Based on the same technical idea, those skilled in the art can easily realize magnetic fields in opposite directions.
  • the boss 224 is located in the central area of the magnetization plate 221 , so that the center of the electromagnetic ring 223 sleeved on the boss 224 is generally opposite to the center of the magnetization plate 221 .
  • the boss 224 can limit the position of the electromagnetic ring 223, and on the other hand, it can also facilitate the collection of the magnetic field into the homogenization plate 221, thereby improving the utilization efficiency of the magnetic field.
  • the protruding height of the boss 224 can be substantially the same as the thickness of the electromagnetic ring 223 or slightly smaller than the thickness of the electromagnetic ring 223, so that the shim plate 221 and the electromagnetic ring 223 can cooperate with the storage box 210 (or cylinder 211) .
  • the homogenization plate 221 expands the magnetic field range of the electromagnetic ring 223 and makes the electromagnetic field more uniform.
  • the electromagnetic ring 223 and the shim plate 221 are arranged concentrically.
  • the size of the shim plate 221 may be larger than the outer contour of the electromagnetic ring 223, thereby expanding the coverage of the electromagnetic field.
  • Fig. 5 is an exploded view of components of a magnetic field fresh-keeping storage container 200 according to another embodiment of the present invention.
  • the storage box 210 is omitted in FIG. 5 , and only the cylinder 211 for placing the storage box 210 is shown.
  • the two homogenization plates 221 of the magnetic field fresh-keeping storage container 200 are also arranged corresponding to a set of side walls opposite to the storage box 210, and can be placed on the cylinder 211
  • the size of the shim plate 221 may be equal to or slightly larger than the corresponding side of the storage box 210 .
  • the top shim plate 221 can respectively cover the top surface of the storage space 212 ; and the bottom shim plate 221 can respectively cover the bottom surface of the storage space 212 .
  • the shimming plate 221 can make the magnetic field cover the storage space 212 without dead ends.
  • a plurality of bosses 224 are provided at intervals on each shim plate 221 , and an electromagnetic ring 223 is sleeved on each boss 224 .
  • the bosses 224 can be evenly distributed on the shim plate 221 .
  • two or four bosses 224 of the same size may be arranged on the shim plate 221 , and each boss 224 is respectively sleeved with an electromagnetic ring 223 .
  • the distribution of the magnetic field can be dispersed through a plurality of electromagnetic loops 223 to further improve the uniformity of the magnetic field.
  • the number of the above-mentioned bosses 224 and electromagnetic rings 223 can be configured according to the size of the storage space 212, for example, for a storage box 210 with a larger storage space 212, the homogenization plate 221 can arrange a plurality of bosses 224 and a plurality of Electromagnetic ring 223 cooperates.
  • a boss 224 can be arranged on the shim plate to cooperate with an electromagnetic ring 223 .
  • the combination of the shim plate 221 on both sides and the electromagnetic ring 223 may have substantially the same structure, so as to form a penetrating magnetic field in the storage space 212 .
  • the shim plates 221 on the top and bottom of the storage box 210 are distributed with two bosses 224 , and two electromagnetic rings 223 are respectively arranged on the top and bottom of the storage box 210 to cooperate with it. .
  • FIG. 6 is a schematic diagram of a magnetic field fresh-keeping storage container 200 according to another embodiment of the present invention
  • FIG. 7 is an exploded view of components of the magnetic field fresh-keeping storage container 200 shown in FIG. 6 .
  • the storage box 210 is omitted in FIG. 6 and FIG. 7 , and only the cylinder 211 for placing the storage box 210 is shown.
  • the size of the homogenization plate 221 is further reduced, and the weight of the magnetic field fresh-keeping storage container 200 is reduced.
  • the shimming plates 221 are arranged corresponding to a set of side walls opposite to the storage box 210 (or the cylinder 211 ), and each shimming plate 221 covers a part of the side wall of the storage box 210 (or the cylinder 211 ) where it is located. area, and its center is opposite to the center of the side wall, and a protruding portion 225 is provided on the side facing the storage box 210 .
  • Each set of electromagnetic components 222 includes an electromagnetic ring 223 , and a partial section of the inner peripheral wall of the electromagnetic ring 223 abuts against the protruding portion 225 .
  • the projection of the shim plate 221 on the plane corresponding to the side wall of the storage box 210 may be located in the middle area of the storage box 210 .
  • the position of the shim plate 221 may be in the middle of the cylinder 211 in the front-to-back direction above and in the front-to-back middle of the bottom of the cylinder 211 .
  • the inner peripheral wall of the electromagnetic ring 223 can cooperate with the protrusion 225 of the magnetization plate 221 by using the middle section, and the electromagnetic field distribution can be changed by the magnetization plate 221 .
  • FIG. 8 is a schematic diagram of a magnetic field fresh-keeping storage container 200 with a magnetically conductive connecting strip 230 according to an embodiment of the present invention.
  • the magnetic field fresh-keeping storage container 200 may also include a magnetic connection belt 230 connected to both sides of the two homogenization plates 221 and form a ring-shaped magnetic conduction path outside the storage space 212 with the two homogenization plates 221 .
  • the magnetically conductive connecting strip 230 connects the magnetizing plate 221 outside the storage space 212 to form a ring-shaped magnetically conductive path.
  • the magnetically conductive connecting belt 230 can be made of the same material as the magnetization plate 221, and the magnetically conductive path formed by it can be used to gather the magnetic field, improve the uniformity of the magnetic field in the storage space 212, and at the same time reduce the release of the magnetic field to the outside and reduce the impact on the magnetic field.
  • Other components outside the magnetic field fresh-keeping storage container 200 cause interference (for example, avoid magnetizing other components, etc.).
  • the magnetically conductive connecting strip 230 and the homogenization plate 221 can be integrally formed, that is, made of the same material. In some other embodiments, the magnetically conductive connection strip 230 and the magnetization plate 221 may also be spliced to form a ring-shaped magnetically conductive path.
  • a section of the magnetically conductive connecting strip 230 can pass from the top of the shim plate 221 laterally.
  • the middle part of one side (such as the right side) extends along the side wall of the storage space to the middle part of the corresponding side (such as the right side) of the shim plate 221 at the bottom;
  • the middle part of the other lateral side (eg left side) of the plate 221 extends along the other side wall of the storage space 212 to the middle part of the other side (eg left side) of the shim plate 221 at the bottom.
  • the magnetically conductive connecting strip 230 may be strip-shaped, and its width along the front-to-back depth direction is one-half to one-tenth of the length of the magnetization plate 221 along the front-to-back depth direction. That is to say, the magnetically conductive connecting strip 230 can be arranged in the middle of the front-to-back direction of the magnetization plate 221 , and is obviously narrower than the magnetization plate 221 .
  • the structure of the above-mentioned magnetically conductive connecting belt 230 and the uniform magnetization plate 221 can reduce the use of magnetically conductive materials and magnetic components while meeting the requirements of the magnetic field strength, save the cost of the magnetic field fresh-keeping storage container 200, and can reduce the magnetic field fresh-keeping capacity.
  • the weight of the storage container 200 and the refrigerator 10 as a whole.
  • FIG. 9 is a schematic diagram of a magnetic field fresh-keeping storage container 200 with a magnetically conductive connecting strip 230 according to another embodiment of the present invention.
  • the shim plate 221 covers the middle area of the side wall of the storage box 210 where it is located, and its center is opposite to the center of the side wall.
  • the magnetically conductive connecting strip 230 is connected from the end of the magnetically shim plate 221 to the other side of the magnetically conductive plate 221 along the outer side of the cylinder 211 , thereby forming a ring-shaped magnetically conductive path.
  • the magnetic connection belt 230 and the homogenization plate 221 are located at the center of the cylinder body 211 in the front and rear depth direction, so as to form a magnetic conduction path outside the storage space 212 and prevent the magnetic field from leaking outward.
  • the shimming plate 221 can be arranged on the outside of the cylinder 211, for example, the shimming plate 221 and the electromagnetic Component 222.
  • the distance between the electromagnetic component 222 and the stored objects in the storage space can be set to be no less than 1 mm.
  • the shimming plate 221 and the electromagnetic assembly 222 can be arranged on the outside of the cylinder 211, which can reduce the influence of the electromagnetic assembly 222 on the storage temperature of the stored objects in the storage space 212, and is conducive to cooling the electromagnetic assembly 222 by cooling air.
  • Fig. 10 is a schematic diagram of a magnetic field fresh-keeping storage container 200 with a drawer structure according to another embodiment of the present invention.
  • the magnetic field fresh-keeping storage container 200 is a drawer structure
  • the shimming plate 221 and the electromagnetic assembly 222 are arranged inside the cylinder 211, that is, the shimming plate 221 and the electromagnetic ring 223 are arranged on the top of the cylinder 211. surface and the inside of the bottom.
  • a structure for arranging the shim plate 221 and the electromagnetic assembly 222 may be provided on the inner surface of the barrel 211 .
  • the electromagnetic component 222 of this structure is closer to the stored object, which is beneficial for the magnetic field to exert a magnetic field effect on the stored object.
  • the distance between the electromagnetic ring 223 and the stored objects in the storage space 212 can be set to be no less than 1 mm. That is to say, the electromagnetic ring 223 and the object to be stored are provided with a gap not less than 1mm.
  • Fig. 11 is a block diagram of a control system of a refrigerator 10 with a magnetic field fresh-keeping storage container 200 according to an embodiment of the present invention.
  • the refrigerator 10 of this embodiment can also combine the magnetic field control and the refrigeration control to ensure that the food is frozen in the magnetic field environment and achieve the effect of freshness preservation and freezing.
  • the refrigerator 10 can also optionally be provided with one or more of the storage temperature sensor 330 , the open/close detector 340 , and the refrigeration controller 310 .
  • the storage temperature sensor 330 is used to detect the storage temperature in the storage space 212
  • the opening and closing detector 340 is used to detect the opening and closing state of the storage space 212 .
  • the storage temperature sensor 330 can detect whether new food is put in, or whether the original food needs to be re-frozen.
  • the electromagnetic ring 223 cooperates with the refrigeration system 320 to realize magnetic field-assisted freezing and improve the freezing and fresh-keeping effect of food materials.
  • the controller 310 is used to control the electromagnetic loop 223 and the refrigeration system 320, so as to realize corresponding refrigeration and magnetic field control.
  • Various sensors including the storage temperature sensor 330 and the opening and closing detector 340 ) provide detection means for the above-mentioned control, thereby meeting the control requirements of the control method.
  • the controller 310 may be configured to control the electromagnetic loop 221 to generate an electromagnetic field according to the temperature of the storage space and the operating state of the refrigerator 10, such as a static magnetic field with a constant magnetic field direction and/or magnetic field strength, an alternating magnetic field direction and/or magnetic field strength Alternating magnetic field, pulsed magnetic field starting at intervals. Considering that the magnetic field is more effective in the specific storage stage of the stored object, the controller 310 can activate the electromagnetic field when a stronger magnetic field is needed; during normal storage, use the static magnetic field to maintain the basic magnetic field strength.
  • the controller 310 may be configured to activate the electromagnetic field when a new stored object is put into the storage space 212 and the temperature of the stored object is within a set temperature threshold range.
  • the above-mentioned temperature threshold range can be set according to the crystallization temperature during the freezing process, so as to increase the magnetic field strength during the crystallization process.
  • the above-mentioned control method can make the stored material freeze in a strong magnetic field environment, preferentially inhibit the growth of ice crystal nuclei, reduce damage to cells, avoid juice loss, ensure a better taste of food materials, improve the quality of frozen storage, and meet It meets the user's storage quality requirements for precious ingredients.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features, that is, include one or more of the features.
  • plural means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “mounted”, “connected”, “connected” and other terms should be interpreted in a broad sense, for example, it may be a fixed connection, or a detachable connection, or integrated; it may be a mechanical connection , can also be an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, or an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • Those of ordinary skill in the art should be able to understand the specific meanings of the above terms in the present invention according to specific situations.
  • the first feature being “on” or “under” the second feature may include that the first and second features are in direct contact, and may also include that the first and second features are not in direct contact but is through additional feature contacts between them. That is to say, in the description of this embodiment, the first feature being “above”, “above” and “above” the second feature include the first feature being directly above and obliquely above the second feature, or simply indicating the level of the first feature The height is higher than the second feature. "Below”, “beneath” or “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiments,” “examples,” “specific examples,” or “some A specific feature, structure, material, or characteristic described in an embodiment or example is included in at least one embodiment or example of the present invention.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种磁场保鲜储物容器(200)和冰箱(10)。该磁场保鲜储物容器(200)包括:储物盒(210),其内限定用于放置被储藏物的储物空间(212);两块匀磁板(221),由导磁材料制成,并分别与储物盒(210)相对设置的一组侧壁对应设置;两组电磁组件(222),每组电磁组件(222)与一块匀磁板(221)对应设置,并在通电后形成电磁场,并利用匀磁板(221)改变电磁场的磁场分布,使得电磁场在储物空间(212)内分布更加均匀。由于电磁场在储物空间(212)内分布更加均匀,可以使得被储藏物具有统一储藏品质。同时匀磁板(221)可以节省磁性材料的使用量。该冰箱(10)提供了新的保鲜功能,符合了使用者对智能冰箱日益提高的使用需求,进一步满足了使用者对智慧家庭、智能生活的品质要求。

Description

磁场保鲜储物容器和冰箱 技术领域
本发明涉及冷藏冷冻设备,特别是涉及一种磁场保鲜储物容器和冰箱。
背景技术
用户对冰箱储藏物的保鲜效果也越来越重视,对于肉类、鱼、虾这类食材,储藏过程中容易出现汁液流失导致口感变差、颜色变暗的问题。特别是某些高档食材,储藏一段时间后的品质会大为降低。
为了提高储物的质量,现有技术中出现了较多的改进方案,但是有些保鲜储藏效果不够理想,有些实现成本高,不便于在家用冰箱中应用。在上述改进方案中,理论研究发现磁场对冷冻过程中冰晶的形成有较大的影响。冰箱领域也积极探索将磁场引入保鲜储物,然而在冰箱中实际应用时,储物空间内的磁场分布不均,而磁场强度对保鲜效果存在较大的影响,保鲜空间内磁场分布不均导致被储藏物的储藏质量难以保证。
发明内容
本发明的一个目的是要提供一种有效提高储物质量的磁场保鲜储物容器和冰箱。
本发明一个进一步的目的是要使得储物空间内的磁场更加均匀。
本发明另一进一步的目的是要降低部件成本。
特别地,本发明提供了一种磁场保鲜储物容器,其包括:
储物盒,其内限定用于放置被储藏物的储物空间;
两块匀磁板,由导磁材料制成,并分别与储物盒相对设置的一组侧壁对应设置;
两组电磁组件,每组电磁组件与一块匀磁板对应设置,并在通电后形成电磁场,并利用匀磁板改变电磁场的磁场分布,使得电磁场在储物空间内分布更加均匀。
可选地,每块匀磁板朝向储物盒的一侧设置有一个或多个凸台;每组电磁组件包括一个或多个电磁环圈,每个电磁环圈套设于一凸台上,其内部沿环形向轴线绕设有电磁线圈。
可选地,匀磁板的形状与其所在的储物盒的侧壁形状相适配,并且储物 空间在匀磁板所在平面上的投影位于匀磁板的外周轮廓范围内。
可选地,每块匀磁板上设置一个凸台,并且凸台位于匀磁板的中央区域,并使得凸台上套设的电磁环圈的中心与匀磁板的中心大体相对。
可选地,每块匀磁板上设置间隔设置有多个凸台,每个凸台上套设一个电磁环圈。
可选地,每块匀磁板覆盖所在的储物盒的侧壁的部分区域,并且其中心与侧壁的中心相对,并其在朝向储物盒的一侧设置有凸出部;每组电磁组件包括一电磁环圈,电磁环圈的内周壁的部分区段与凸出部抵靠。
可选地,上述磁场保鲜储物容器还包括:导磁连接带,连接于两块匀磁板的两侧,并与两块匀磁板在储物空间外部形成环形的导磁通路。
可选地,上述磁场保鲜储物容器还包括:
筒体,具有前向开口;
储物盒为抽屉,可抽拉地设置在筒体内,并且两块匀磁板分别布置在储物盒的顶部以及底部。
可选地,匀磁板设置于筒体的外侧或者内侧,并且电磁组件与储物空间内被储藏物的放置区域的最小间隔设置大于1mm。
根据本发明的另一个方面,还提供了一种冰箱,其包括:
箱体,其内限定有储物间室;
上述任一种磁场保鲜储物容器,设置于储物间室内部。
本发明的磁场保鲜储物容器,两块匀磁板、两组电磁组件分别与储物盒相对设置的一组侧壁对应设置,匀磁板有导磁材料制成,可以改变电磁组件形成的电磁场的磁场分布,使得电磁场在储物空间内分布更加均匀。磁场有助于提高储物质量,可以缩短冻结时间,减少食物的汁液流失率以及营养流失,降低微生物和细菌数量,延长保鲜周期。由于磁场更加均匀,可以使得被储藏物具有统一储藏品质。同时匀磁板可以节省磁性材料的使用量,避免了使用过多或者过大的磁性件导致的成本上升以及重量增加。
进一步地,本发明的磁场保鲜储物容器,匀磁板朝向储物盒的一侧设置有凸台,利用凸台一方面可以对电磁组件进行限位,另一方面还可以便于磁场汇集进入匀磁板,提高了磁场利用效率。
更进一步地,本发明的磁场保鲜储物容器,通过对匀磁板以及电磁组件的结构进行优化,使得磁场保鲜储物容器结构更加紧凑,尤其适用于储物盒、 储物抽屉这种结构,在相对扁平的储物空间内实现磁场保鲜。
更进一步地,本发明的冰箱,设置有上述磁场保鲜储物容器,使得食材在磁场环境中储藏,抑制冰晶晶核生长,冰晶生长速率高于水分子迁移速率,产生的冰晶偏小,从而减小对细胞造成的损伤,避免汁液流失,保证了食材更好的口感,提高了冷冻储物质量,满足了用户对珍贵食材的储藏质量要求。
更进一步地,本发明的冰箱,通过磁场提高了储物质量,可以为智能冰箱提供新的保鲜功能,符合了使用者对智能冰箱日益提高的使用需求,进一步满足了使用者对智慧家庭、智能生活的品质要求。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的磁场保鲜储物容器的冰箱的示意性透视图;
图2是根据本发明一个实施例的抽屉结构的磁场保鲜储物容器的示意图;
图3是根据本发明一个实施例的磁场保鲜储物容器的示意图;
图4是图3所示的磁场保鲜储物容器的部件爆炸图;
图5是根据本发明另一实施例的磁场保鲜储物容器的部件爆炸图;
图6是根据本发明另一实施例的磁场保鲜储物容器的示意图;
图7是图8所示的磁场保鲜储物容器的部件爆炸图;
图8是根据本发明一个实施例的具有导磁连接带的磁场保鲜储物容器的示意图;
图9是根据本发明另一实施例的具有导磁连接带的磁场保鲜储物容器的示意图;
图10是根据本发明另一实施例的抽屉结构的磁场保鲜储物容器的示意图;以及
图11是根据本发明一个实施例的具有磁场保鲜储物容器的冰箱的控制系统框图。
具体实施方式
图1是根据本发明一个实施例的磁场保鲜储物容器200的冰箱10的示意性透视图。本实施例的冰箱10一般性地可以包括箱体120、门体110、制冷系统(图中未示出)。箱体120内可以限定有至少一个前侧敞开的储物间室,通常为多个,如冷藏储物间室、冷冻储物间室、变温储物间室等等。具体的储物间室的数量和功能可以根据预先的需求进行配置。
本实施例的冰箱10可以为风冷冰箱,在箱体120内设置有风路系统,利用风机将经过换热器(蒸发器)换热的制冷气流经送风口送向储物间室,然后经由回风口返回风道。实现制冷。由于此类冰箱的箱体120、门体110、制冷系统本身均是本领域技术人员习知且易于实现的,为了不掩盖和模糊本申请的发明点,后文对箱体120、门体110、制冷系统本身不做赘述。
冰箱10的一个或多个储物间室内部可以设置有磁场保鲜储物容器200。磁场保鲜储物容器200在放置于冷冻储物间室时,可以用于对冷冻食材进行冷冻保鲜,抑制冰晶晶核生长,使得冰晶生长速率高于水分子迁移速率,产生的冰晶偏小,从而减小对细胞造成的损伤,避免汁液流失,加速冷冻过程,缩短冻结时间。磁场保鲜储物容器200在放置于冷藏储物间室时,可以降低食材氧化还原反应的速度,减少营养、水分损失,阻止食材变色,抑制细菌滋生,延长食材保鲜期。
磁场保鲜储物容器200的数量以及布置的储物间室,可以根据用户需求进行配置。例如冰箱10内可以设置一个或多个磁场保鲜储物容器200。磁场保鲜储物容器200可以布置于冷藏储物间室、冷冻储物间室、变温储物间室当中,在上述储物间室内进行磁场辅助保鲜。磁场保鲜储物容器200也可以作为冰箱10的一个独立间室,由冰箱10对其独立控温。
磁场保鲜储物容器200可以包括储物盒210。储物盒210内限定用于放置被储藏物的储物空间212,储物盒210可以为盒体状。一些实施例中储物盒210可以为整体扁平的长方体形状(即沿高度方向的距离明显小于沿纵深方向的距离以及沿横向左右方向的距离)。本领域技术人员可以根据所需的储物空间配置储物盒210的构造和尺寸,利用配置为盒体状、箱体状、在一些实施例中可以用于实现抽屉结构。
图2是根据本发明一个实施例的抽屉结构的磁场保鲜储物容器200的示 意图。储物盒210可以为抽屉结构,也即磁场保鲜储物容器200还可以包括:筒体211。其中筒体211具有前向开口。储物盒210可抽拉地设置在筒体211内。储物盒210被拉出后可以显露出储物空间212,以便取放被储藏物。储物盒210被推入筒体211后,可以形成独立的密封空间内。用于冰箱的抽屉本身构造为本领域技术人员所习知,在此不做赘述。
磁场保鲜储物容器200的两块匀磁板221,由导磁材料制成,并分别与储物盒210相对设置的一组侧壁对应设置。匀磁板221可以由具有低矫顽力和高磁导率的材料制成,例如可以使用硅钢片或类似材料制成。匀磁板221所在的相对侧面可以根据储物盒210的自身形状以及储物空间212的构造进行选择,例如可以选择放置在储物盒210的横向两侧、顶底两侧、或者前后两侧。也就是说两块匀磁板221可以在储物盒210的横向左右两侧、顶面和底面两侧,或者前后两侧。
在储物盒210整体为扁平形状,特别是储物盒210为抽屉形式的情况下,两块匀磁板221可以优先布置为设置于储物盒210的顶底两侧。磁场保鲜储物容器200形成的磁场从顶至底或者从底至顶贯穿储物空间212。
磁场保鲜储物容器200具有两组电磁组件222。每组电磁组件222与一块匀磁板221对应设置,并在通电后形成电磁场,并利用匀磁板221改变电磁场的磁场分布,使得电磁场在储物空间212内分布更加均匀。在两块匀磁板221可以优先布置为设置于储物盒210的顶底两侧的情况下,两组电磁组件222相应地布置于储物盒210的顶底两侧。在匀磁板布置于储物盒其他相对侧壁的实施例,两组电磁组件222可以与匀磁板布置于相应的侧壁上。
满足保鲜要求的磁场强度范围可以设置为1Gs-100Gs,在应用于冷冻环境的情况下,磁场强度范围可以优选采用5~60GS,例如可选择20Gs左右;在应用于冷藏环境的情况下,磁场强度范围可以采用20~160GS,优选地可以采用40~80Gs,例如60Gs左右。也即匀磁板221以及电磁组件222能够在储物空间内形成全面覆盖的上述磁场强度范围的保鲜磁场。
图3是根据本发明一个实施例的磁场保鲜储物容器200的示意图;图4是图3所示的磁场保鲜储物容器200的部件爆炸图。为了示出匀磁板221与电磁环圈223的配合关系,图5中省略了储物盒210,仅仅示出了用于放置储物盒210的筒体211。匀磁板221的形状与其所在的筒体211的侧壁形状相适配,并且储物空间在匀磁板平面上的投影可以位于匀磁板的外周轮廓范 围内。也即匀磁板221的尺寸可以等于或略大于储物盒210的相应侧面。在匀磁板221设置于筒体211的顶部和底部的情况下,顶部匀磁板221可以分别覆盖储物空间212的顶面;与底部匀磁板221分别覆盖储物空间212的底面。匀磁板221可以使得磁场在储物盒210内实现无死角的覆盖。
每块匀磁板221朝向储物盒210的一侧设置有一个或多个凸台224;每组电磁组件222包括一个或多个电磁环圈223,每个电磁环圈223套设于一凸台224上,其内部沿环形向轴线绕设有电磁线圈。如图3、4所示,顶部的匀磁板221具有朝下设置的凸台224,底部的匀磁板221具有朝上设置的凸台224。每块匀磁板221上设置一个凸台224,并且凸台224位于匀磁板221的中央区域。
电磁环圈223内部沿环形周向绕设有电磁线圈,电磁线圈被通电后使储物空间212中形成电磁场。通过对电磁线圈的控制,电磁场可以根据需要设置为磁场方向和/或磁场强度恒定的静态磁场、磁场方向和/或磁场强度交变的交变磁场、间隔启动的脉冲磁场。上述磁场调整可以通过调整通向电磁线圈的电流来实现。在一些实施例中,电磁场可以根据储物空间212内的储物环境以及被储藏物的储藏状态进行调整。在另一些实施例中,电磁场也可以为磁场强度不变的恒定磁场。
电磁环圈223可以成型为一个扁平环状,两端面(顶面或底面)顶部和底部均为平面状,并且厚度明显小于外周尺寸。电磁环圈223的宽度与厚度的比值范围可以设置为1-10。电磁环圈223具有有相应的防水结构,例如利用浸漆、塑封、密封圈或密封外壳包裹保护内部的电磁线圈,整体构造成扁平的环状。上述结构的电磁环圈223可以更方便地与匀磁板221配合,占用空间更小。电磁环圈223套设于一凸台224上,其内部沿环形向轴线绕设有电磁线圈。凸台224的轮廓可以与电磁环圈223的内周通孔的形状相适配,使得电磁环圈223可以方便地安装在凸台224上。另外凸台224还可以使得电磁环圈223的磁场引导进入匀磁板221,利用匀磁板221改变电磁场的磁场分布。
电磁环圈223内电磁线圈的匝数可以根据所需的磁场强度进行设置。电磁环圈223形成的电磁场垂直于储物盒210的侧壁,并且相对侧壁的电磁环圈223的磁极方向设置为一致,使得储物空间形成贯穿的磁场。也就是两个电磁环圈223的N极朝向同一方向,而S极均朝向相反的方向。例如磁场方 向可以为从顶至底或者从底至顶。基于相同的技术思路,本领域技术人员易于实现相反方向的磁场。
凸台224位于匀磁板221的中央区域,可以使得凸台224上套设的电磁环圈223的中心与匀磁板221的中心大体相对。凸台224一方面可以对电磁环圈223进行限位,另一方面还可以便于磁场汇集进入匀磁板221,提高了磁场利用效率。
凸台224的凸出高度可以与电磁环圈223的的厚度大体一致或者略小于电磁环圈223的厚度,以便匀磁板221和电磁环圈223与储物盒210(或筒体211)配合。
匀磁板221扩大了电磁环圈223的磁场范围,并得电磁场更加均匀。电磁环圈223以及匀磁板221同中心设置。匀磁板221的尺寸可以大于电磁环圈223的外周轮廓,从而扩大电磁场的覆盖范围。
图5是根据本发明另一实施例的磁场保鲜储物容器200的部件爆炸图。为了示出匀磁板221与电磁环圈223的配合关系,图5中省略了储物盒210,仅仅示出了用于放置储物盒210的筒体211。在该实施例的磁场保鲜储物容器200中,磁场保鲜储物容器200的两块匀磁板221也分别与储物盒210相对设置的一组侧壁对应设置,可以选择放置在筒体211的横向两侧、顶底两侧、或者前后两侧。匀磁板221的尺寸可以等于或略大于储物盒210的相应侧面。在匀磁板221设置于筒体211的顶部和底部的情况下,顶部匀磁板221可以分别覆盖储物空间212的顶面;与底部匀磁板221分别覆盖储物空间212的底面。匀磁板221可以使得磁场在储物空间212内实现无死角的覆盖。
每块匀磁板221上设置间隔设置有多个凸台224,每个凸台224上套设一个电磁环圈223。凸台224可以均匀分布于匀磁板221上。例如匀磁板221上可以布置两个或者四个相同的大小的凸台224,每个凸台224分别套设一个电磁环圈223。通过多个电磁环圈223可以分散磁场的分布,进一步提高磁场的均匀性。
上述凸台224以及电磁环圈223的数量可以根据储物空间212的尺寸进行配置,例如对于储物空间212较大的储物盒210,匀磁板221可以布置多个凸台224与多个电磁环圈223配合。对于储物空间212较小的储物盒210,匀磁板可以布置一个凸台224以一个电磁环圈223配合。
两侧的匀磁板221与电磁环圈223的组合可以具有大体相同的构造,从 而在储物空间212内形成贯穿的磁场。图5中示出的实施例,储物盒210顶部和底部的匀磁板221分布具有两个凸台224,并在储物盒210的顶部和底部分别设置两个电磁环圈223与之配合。在该结构的基础上,本领域技术人员易于实现更多个凸台224以及电磁环圈223进行配合。
图6是根据本发明另一实施例的磁场保鲜储物容器200的示意图;图7是图6所示的磁场保鲜储物容器200的部件爆炸图。为了示出匀磁板221与电磁环圈223的配合关系,图6与图7中省略了储物盒210,仅仅示出了用于放置储物盒210的筒体211。本实施例进一步减少了匀磁板221的尺寸,并减少了磁场保鲜储物容器200的重量。匀磁板221分别与储物盒210(或筒体211)相对设置的一组侧壁对应设置,每块匀磁板221覆盖所在的储物盒210(或筒体211)的侧壁的部分区域,并且其中心与侧壁的中心相对,并其在朝向储物盒210的一侧设置有凸出部225。每组电磁组件222包括一电磁环圈223,电磁环圈223的内周壁的部分区段与凸出部225抵靠。匀磁板221在对应储物盒210侧壁所在平面的投影可以位于储物盒210的中部区域。例如对于布置于筒体211顶部和底部的匀磁板221,匀磁板221的位置可以在筒体211上方前后方向的中部以及下方的前后方向的中部。
电磁环圈223的内周壁可以利用中部的区段与匀磁板221的凸出部225相配合,利用匀磁板221改变电磁场分布。
图8是根据本发明一个实施例的具有导磁连接带230的磁场保鲜储物容器200的示意图。磁场保鲜储物容器200还可以包括导磁连接带230,连接于两块匀磁板221的两侧,并与两块匀磁板221在储物空间212外部形成环形的导磁通路。导磁连接带230将匀磁板221在储物空间212外部连接成环形的导磁通路。导磁连接带230可以适用于匀磁板221同样材料制成,其形成的导磁通路可以用于聚拢磁场,提高储物空间212内磁场的均匀性,同时可以减少磁场向外部释放,减少对磁场保鲜储物容器200外部的其他部件造成干扰(例如避免磁化其他部件等)。
导磁连接带230与匀磁板221可以一体件,也即由相同的材料一体成形制成。在另一些实施例中,导磁连接带230与匀磁板221也可以通过拼接形成环形的导磁通路。
在匀磁板221与电磁环圈223分别布置在储物盒210(或筒体211)的顶部和底部的实施例中,导磁连接带230中的一段可以从顶部的匀磁板221 的横向一侧(例如右侧)的中部沿储物空间的一侧侧壁延伸至底部的匀磁板221的对应一侧(例如右侧)的中部;另一段导磁连接带230从顶部的匀磁板221的横向另一侧(例如左侧)的中部沿储物空间212的另一侧侧壁延伸至底部的匀磁板221的另一侧(例如左侧)的中部。
导磁连接带230可以为条状,其沿前后纵深方向的宽度为匀磁板221沿前后纵深方向的长度的二分之一至十分之一。也即导磁连接带230可以设置在匀磁板221前后方向的中部位置,且明显窄于匀磁板221。上述导磁连接带230与匀磁板221的构造,可以在满足磁场强度要求的情况下,减少导磁材料以及磁性部件的使用,节省磁场保鲜储物容器200的成本,并且可以减小磁场保鲜储物容器200以及冰箱10整机的重量。
图9是根据本发明另一实施例的具有导磁连接带230的磁场保鲜储物容器200的示意图。匀磁板221覆盖所在的储物盒210的侧壁的中部区域,并且其中心与侧壁的中心相对。导磁连接带230从匀磁板221的端部沿筒体211的外侧连接至另一侧的匀磁板221,从而形成环形的导磁通路。导磁连接带230以及匀磁板221位于筒体211前后纵深方向的中央位置,从而在储物空间212的外侧形成导磁通路,避免磁场向外泄露。
在磁场保鲜储物容器200为抽屉结构的情况下,匀磁板221可以设置于筒体211的外侧,例如在筒体211顶面的上方以及筒体211底面的下方设置匀磁板221以及电磁组件222。考虑到电磁组件222在通电产生磁场的过程中会发热,电磁组件222与储物空间内被储藏物的距离可以设置为不小于1mm。匀磁板221和电电磁组件222可以设置于筒体211的外侧,可以减少电磁组件222对储物空间212内被储藏物的储藏温度的影响,有利于制冷气流对电磁组件222进行散热。
图10是根据本发明另一实施例的抽屉结构的磁场保鲜储物容器200的示意图。在该实施例中,磁场保鲜储物容器200为抽屉结构,匀磁板221以及电磁组件222设置于筒体211的内部,也即匀磁板221以及电磁环圈223设置于筒体211的顶面以及底面的内侧。筒体211的内表面上可以设置用于布置匀磁板221以及电磁组件222的结构。这种结构电磁组件222距离被储藏物的距离更近,有利于磁场对被储藏物施加磁场影响。考虑到电磁组件222在通电产生磁场的过程中会发热,电磁环圈223与储物空间212内被储藏物的距离可以设置为不小于1mm。也即电磁环圈223与被储藏物设置有不小 于1mm的间隙。
图11是根据本发明一个实施例的具有磁场保鲜储物容器200的冰箱10的控制系统框图。本实施例的冰箱10还可以将磁场控制与制冷控制相结合,保证食物在磁场环境中冻结,实现保鲜冷冻的效果。
冰箱10还可以选择设置储物温度传感器330、开闭检测器340、制冷控制器310中的一项或多项。储物温度传感器330用于检测储物空间212内的储物温度,开闭检测器340用于检测储物空间212的开闭状态。
开闭检测器340检测到储物空间212被打开后,通过储物温度传感器330可以检测是否放入新的食材,或者原有食材是否需要重新冷冻。在制冷过程中,电磁环圈223和制冷系统320配合,可以实现磁场辅助冷冻,提高食材的冷冻保鲜效果。
控制器310用于对电磁环圈223以及制冷系统320进行控制,从而实现相应的制冷以及磁场控制。而各种传感器(包括储物温度传感器330、开闭检测器340),为上述控制提供了检测手段,从而可以满足控制方法的控制需求。
控制器310可以配置成根据储物空间的温度以及冰箱10的运行状态,控制电磁环圈221生成电磁场,例如磁场方向和/或磁场强度恒定的静态磁场、磁场方向和/或磁场强度交变的交变磁场、间隔启动的脉冲磁场。考虑到磁场在被储藏物的特定储藏阶段作用更大,控制器310可以在需要更强磁场时,启动电磁场;在正常储藏时,利用静磁场维持基本磁场强度。
例如利用磁场实现辅助冷冻储物时,控制器310可以配置成在储物空间212放入新的被储藏物且储物温度在设定的温度阈值范围内时,启动电磁场。上述温度阈值范围可以根据对冻结过程中结晶时的温度进行设置,从而在完成结晶的过程中加大磁场强度。上述控制方式可以使得被储藏物在强磁场环境中冻结,优先抑制冰晶晶核生长,减小对细胞造成的损伤,避免汁液流失,保证了食材更好的口感,提高了冷冻储物质量,满足了用户对珍贵食材的储藏质量要求。
在本实施例的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于 描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征,也即包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。当某个特征“包括或者包含”某个或某些其涵盖的特征时,除非另外特别地描述,这指示不排除其它特征和可以进一步包括其它特征。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。本领域的普通技术人员,应该可以根据具体情况理解上述术语在本发明中的具体含义。
此外,在本实施例的描述中,第一特征在第二特征“之上”或“之下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。也即在本实施例的描述中,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”、或“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
除非另有限定,本本实施例的描述中所使用的全部术语(包含技术术语与科学术语)具有与本申请所属的技术领域的普通技术人员所通常理解的相同含义。
在本实施例的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种磁场保鲜储物容器,包括:
    储物盒,其内限定用于放置被储藏物的储物空间;
    两块匀磁板,由导磁材料制成,并分别与所述储物盒相对设置的一组侧壁对应设置;
    两组电磁组件,每组所述电磁组件与一块匀磁板对应设置,并在通电后形成电磁场,并利用所述匀磁板改变电磁场的磁场分布,使得所述电磁场在所述储物空间内分布更加均匀。
  2. 根据权利要求1所述的磁场保鲜储物容器,其中
    每块所述匀磁板朝向所述储物盒的一侧设置有一个或多个凸台;
    每组所述电磁组件包括一个或多个电磁环圈,每个电磁环圈套设于一所述凸台上,其内部沿环形向轴线绕设有电磁线圈。
  3. 根据权利要求2所述的磁场保鲜储物容器,其中,
    所述匀磁板的形状与其所在的储物盒的侧壁形状相适配,并且储物空间在匀磁板所在平面上的投影位于匀磁板的外周轮廓范围内。
  4. 根据权利要求3所述的磁场保鲜储物容器,其中,
    每块所述匀磁板上设置一个所述凸台,并且所述凸台位于所述匀磁板的中央区域,并使得所述凸台上套设的电磁环圈的中心与所述匀磁板的中心大体相对。
  5. 根据权利要求2所述的磁场保鲜储物容器,其中
    每块所述匀磁板上设置间隔设置有多个所述凸台,每个所述凸台上套设一个所述电磁环圈。
  6. 根据权利要求1所述的磁场保鲜储物容器,其中
    每块所述匀磁板覆盖所在的储物盒的侧壁的部分区域,并且其中心与所述侧壁的中心相对,并其在朝向所述储物盒的一侧设置有凸出部;
    每组电磁组件包括一电磁环圈,所述电磁环圈的内周壁的部分区段与所述凸出部抵靠。
  7. 根据权利要求1-6中任一项所述的磁场保鲜储物容器,还包括:
    导磁连接带,连接于所述两块匀磁板的两侧,并与所述两块匀磁板在所述储物空间外部形成环形的导磁通路。
  8. 根据权利要求1-6中任一项所述的磁场保鲜储物容器,还包括:
    筒体,具有前向开口;
    所述储物盒为抽屉,可抽拉地设置在所述筒体内,并且所述两块匀磁板分别布置在所述储物盒的顶部以及底部。
  9. 根据权利要求8所述的磁场保鲜储物容器,其中
    所述匀磁板设置于所述筒体的外侧或者内侧,并且所述电磁组件与所述储物空间内被储藏物的放置区域的最小间隔设置大于1mm。
  10. 一种冰箱,包括:
    箱体,其内限定有储物间室;
    根据权利要求1至9中任一项所述的磁场保鲜储物容器,设置于所述储物间室内部。
PCT/CN2022/107161 2021-08-11 2022-07-21 磁场保鲜储物容器和冰箱 WO2023016226A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110920436.2 2021-08-11
CN202110920436.2A CN115704636A (zh) 2021-08-11 2021-08-11 磁场保鲜储物容器和冰箱

Publications (1)

Publication Number Publication Date
WO2023016226A1 true WO2023016226A1 (zh) 2023-02-16

Family

ID=85180130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107161 WO2023016226A1 (zh) 2021-08-11 2022-07-21 磁场保鲜储物容器和冰箱

Country Status (2)

Country Link
CN (1) CN115704636A (zh)
WO (1) WO2023016226A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294576A (ja) * 1993-01-09 1994-10-21 Gold Star Co Ltd 磁気エネルギによる冷蔵庫内食品または飲料水のイオン構造クリスタル化装置
US20050005611A1 (en) * 2001-11-01 2005-01-13 Norio Owada Highly-efficient freezing apparatus and highly-efficient freezing method
CN203893531U (zh) * 2014-04-17 2014-10-22 合肥美的电冰箱有限公司 冰箱
US20150380157A1 (en) * 2013-02-05 2015-12-31 Conductix-Wampfler Gmbh Coil unit and device for the inductive transfer of electrical energy
CN109028745A (zh) * 2018-06-05 2018-12-18 青岛海尔股份有限公司 一种冰箱及其调整温度和磁场强度的方法
CN208579560U (zh) * 2018-07-10 2019-03-05 青岛海尔智能技术研发有限公司 卧式冷柜
CN110074310A (zh) * 2019-06-05 2019-08-02 青岛科技大学 一种磁场冷冻保鲜装置
CN111503984A (zh) * 2020-04-27 2020-08-07 合肥华凌股份有限公司 保鲜容器和制冷设备
CN113192719A (zh) * 2021-05-11 2021-07-30 英都斯特(无锡)感应科技有限公司 经济实用的嵌入式冷冻冷藏保鲜及保藏弱磁场模块化装置
CN216114964U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 磁场保鲜储物容器和冰箱
CN216114967U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 防冷风直吹的磁场保鲜装置和风冷式制冷设备
CN216114966U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 磁场保鲜装置和具有其的制冷设备
CN216114965U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 磁场保鲜储物容器和冰箱
CN216114894U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 用于冰箱的保鲜储物容器和冰箱

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294576A (ja) * 1993-01-09 1994-10-21 Gold Star Co Ltd 磁気エネルギによる冷蔵庫内食品または飲料水のイオン構造クリスタル化装置
US20050005611A1 (en) * 2001-11-01 2005-01-13 Norio Owada Highly-efficient freezing apparatus and highly-efficient freezing method
US20150380157A1 (en) * 2013-02-05 2015-12-31 Conductix-Wampfler Gmbh Coil unit and device for the inductive transfer of electrical energy
CN203893531U (zh) * 2014-04-17 2014-10-22 合肥美的电冰箱有限公司 冰箱
CN109028745A (zh) * 2018-06-05 2018-12-18 青岛海尔股份有限公司 一种冰箱及其调整温度和磁场强度的方法
CN208579560U (zh) * 2018-07-10 2019-03-05 青岛海尔智能技术研发有限公司 卧式冷柜
CN110074310A (zh) * 2019-06-05 2019-08-02 青岛科技大学 一种磁场冷冻保鲜装置
CN111503984A (zh) * 2020-04-27 2020-08-07 合肥华凌股份有限公司 保鲜容器和制冷设备
CN113192719A (zh) * 2021-05-11 2021-07-30 英都斯特(无锡)感应科技有限公司 经济实用的嵌入式冷冻冷藏保鲜及保藏弱磁场模块化装置
CN216114964U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 磁场保鲜储物容器和冰箱
CN216114967U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 防冷风直吹的磁场保鲜装置和风冷式制冷设备
CN216114966U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 磁场保鲜装置和具有其的制冷设备
CN216114965U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 磁场保鲜储物容器和冰箱
CN216114894U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 用于冰箱的保鲜储物容器和冰箱

Also Published As

Publication number Publication date
CN115704636A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
CN216114965U (zh) 磁场保鲜储物容器和冰箱
CN216114964U (zh) 磁场保鲜储物容器和冰箱
CN216114894U (zh) 用于冰箱的保鲜储物容器和冰箱
CN214536999U (zh) 冰箱的冷冻储物总成与冰箱
CN217031741U (zh) 具有磁场保鲜装置的制冷设备
CN217031740U (zh) 具有磁场保鲜装置的制冷设备
WO2023016148A1 (zh) 具有磁场保鲜功能的制冷设备
WO2023016226A1 (zh) 磁场保鲜储物容器和冰箱
CN216114893U (zh) 用于冰箱的保鲜储物容器和冰箱
WO2023016225A1 (zh) 磁场保鲜储物容器和冰箱
WO2023016228A1 (zh) 磁场保鲜储物容器和冰箱
WO2023016224A1 (zh) 磁场保鲜储物容器和冰箱
CN208579560U (zh) 卧式冷柜
WO2023109516A1 (zh) 具有磁场保鲜装置的制冷设备
WO2023016227A1 (zh) 用于冰箱的保鲜储物容器和冰箱
CN216897971U (zh) 冰箱
CN208579556U (zh) 卧式冷柜
CN220959140U (zh) 磁场保鲜储物容器及冰箱
WO2023109410A1 (zh) 具有磁场保鲜装置的制冷设备
CN220959146U (zh) 磁场保鲜储物容器及冰箱
WO2023016079A1 (zh) 磁场保鲜装置和制冷设备
WO2024007943A1 (zh) 用于冷藏冷冻装置的磁场保鲜抽屉与冷藏冷冻装置
CN216897972U (zh) 电磁保鲜结构以及冰箱
CN220959139U (zh) 保鲜储物容器及冰箱
WO2022142778A1 (zh) 具有冷冻储物装置的冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022855209

Country of ref document: EP

Effective date: 20240311