WO2024007943A1 - 用于冷藏冷冻装置的磁场保鲜抽屉与冷藏冷冻装置 - Google Patents

用于冷藏冷冻装置的磁场保鲜抽屉与冷藏冷冻装置 Download PDF

Info

Publication number
WO2024007943A1
WO2024007943A1 PCT/CN2023/103840 CN2023103840W WO2024007943A1 WO 2024007943 A1 WO2024007943 A1 WO 2024007943A1 CN 2023103840 W CN2023103840 W CN 2023103840W WO 2024007943 A1 WO2024007943 A1 WO 2024007943A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
drawer
refrigeration
fresh
keeping
Prior art date
Application number
PCT/CN2023/103840
Other languages
English (en)
French (fr)
Inventor
衣尧
张育宁
刘浩泉
曹子林
姬立胜
李孟成
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2024007943A1 publication Critical patent/WO2024007943A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • F25D25/024Slidable shelves
    • F25D25/025Drawers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/015Preserving by irradiation or electric treatment without heating effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to refrigeration and freezing equipment, and specifically provides a magnetic field fresh-keeping drawer and a refrigeration and freezing device for the refrigeration and freezing device.
  • magnetic fields can inhibit the growth of microorganisms and mold and extend the storage period of food. Therefore, magnetic fields can be used to assist in the storage of food ingredients, thereby extending the storage period of food ingredients.
  • the magnetic field limits the free path of water molecules to a certain extent, which is manifested in the breaking of hydrogen bonds in the clusters of water molecules.
  • the growth of crystal nuclei is inhibited.
  • the growth rate of ice crystals is higher than the migration rate of water molecules.
  • the resulting ice crystals are smaller, causing less damage to cells and reducing the loss rate of juice in food.
  • the nutrition and taste of the ingredients can be better preserved.
  • the magnetic field strength attenuates with the distance of the magnetic field components. Therefore, in order to meet the requirements of preservation and storage, the magnetic field strength of the magnetic field components on the cavity wall of the storage space needs to be increased. On the one hand, the cost is increased, and on the other hand, the magnetic field components will also Increases the overall weight of the product.
  • An object of the present invention is to provide a magnetic field fresh-keeping drawer and a refrigeration and freezing device that fully utilize the magnetic field fresh-keeping capability.
  • a further object of the invention is to improve the efficiency of magnetic field use.
  • the present invention provides a magnetic field fresh-keeping drawer and a refrigeration and freezing device for a refrigeration and freezing device, wherein the magnetic field fresh-keeping drawer includes:
  • the outer barrel is used to be placed in the refrigeration room of the refrigeration and freezing device;
  • the drawer is pullably arranged in the outer barrel
  • the first magnetic field generating element is fixedly arranged on the bottom plate of the drawer and is configured to apply a first magnetic field to the storage objects placed in the drawer.
  • the first magnetic field generating element includes a first electromagnetic coil
  • the magnetic field fresh-keeping drawer also includes: a power supply element for controllably supplying power to the first electromagnetic coil, so that the first electromagnetic coil applies the first magnetic field accordingly.
  • power supply components include:
  • the slide rail routing mechanism is provided with a cable that expands and contracts as the drawer slides. One end of the cable is used to connect the first The other end of the electromagnetic coil is used to connect the power supply provided by the refrigeration and freezing device.
  • the power supply components also include:
  • the energy storage device is arranged on the drawer and is used to use the stored electric energy to supply power to the first electromagnetic coil.
  • the above-mentioned magnetic field fresh-keeping drawer for refrigeration and freezing devices also includes:
  • the second magnetic field generating element is arranged on the outer barrel and configured to apply the second magnetic field to the inner space of the drawer.
  • the second magnetic field generating element is disposed on the top or bottom wall of the outer tub, and when the drawer is pushed into the outer tub, the second magnetic field generating element is disposed opposite to the first magnetic field generating element.
  • the above-mentioned magnetic field fresh-keeping drawer for refrigeration and freezing devices also includes:
  • An annular magnetic conductive member is provided around the wall of the outer barrel, which includes:
  • the first magnetic equalizing plate is arranged on the top wall of the outer barrel
  • the second magnetic equalization plate is arranged on the bottom wall of the outer barrel
  • Two sections of guide tape are respectively arranged on both side walls of the outer barrel, and are respectively connected to the first magnetic distribution plate and the second magnetic distribution plate from one side.
  • an air inlet and a return air outlet are formed at the rear of the outer barrel, respectively used to communicate with the refrigeration air duct of the refrigeration and freezing device;
  • the top wall of the outer barrel has a top air duct connected to the air inlet
  • the front wall of the drawer has a front air duct connected to the top air duct when the drawer is pushed into the outer barrel
  • the bottom plate of the drawer is connected to the bottom of the outer barrel.
  • Wind channel
  • the magnetic field intensity range applied by the first magnetic field generating element is configured to be 1-10 mT.
  • a refrigeration and freezing device which includes:
  • the magnetic field fresh-keeping drawer is installed in the storage room, and the magnetic field fresh-keeping drawer is any one of the above magnetic field fresh-keeping drawers.
  • the magnetic field fresh-keeping drawer used in the refrigeration and freezing device is installed in the storage compartment of the refrigeration and freezing device, and a pull-out structure is used to facilitate access to items.
  • the existing magnetic field fresh-keeping drawer generally arranges the magnetic field generating element on a fixed barrel, the storage items are separated from the barrel body by the drawer, so that there is a certain distance between the stored items and the magnetic field generating element. The magnetic field strength will rapidly attenuate as the distance increases.
  • the magnetic field generating element installed on the barrel needs to increase its own magnetic field strength, which will lead to an increase in costs and an increase in the weight of the product.
  • increasing the magnetic field intensity of the magnetic field generating element on the barrel will also produce a magnetic field effect on the space outside the magnetic field preservation space, which may affect the function of the refrigeration and freezing device itself, or cause other inconvenience and trouble to the user.
  • the first magnetic field generating element is fixedly arranged on the bottom plate of the drawer and applies the first magnetic field to the storage items placed in the drawer.
  • the first magnetic field generating element is connected to The distance between storage objects is greatly reduced, which avoids the attenuation of magnetic field strength, makes the use of magnetic field more efficient, and reduces the impact on the surrounding space.
  • the magnetic field fresh-keeping drawer for refrigeration and freezing devices can use an electromagnetic coil as the first magnetic field generating element, so that the magnetic field can be started in a controlled manner, further reducing the impact on the surrounding space, and compared with Permanent magnetic components are lighter in weight and can also avoid problems such as demagnetization that may occur during long-term use, improving the reliability of long-term use and making them more suitable for refrigeration and freezing devices such as refrigerators.
  • the magnetic field fresh-keeping drawer for refrigeration and freezing devices proposed by the present invention supplies power to the electromagnetic coil through a slide rail routing mechanism, an energy storage device, etc., thereby solving the problem of electromagnetic coil movement.
  • the magnetic field fresh-keeping drawer used in the refrigeration and freezing device according to the present invention is also provided with a second magnetic field generating element that cooperates with the first magnetic field generating element on the drawer to make the magnetic field intensity in the fresh-keeping space more uniform.
  • Figure 1 is a schematic diagram of a refrigeration and freezing device according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of a magnetic field fresh-keeping drawer for a refrigeration and freezing device according to one embodiment of the present invention
  • Figure 3 is a schematic diagram of the magnetic field fresh-keeping drawer shown in Figure 2 from another angle;
  • Figure 4 is an exploded view of a magnetic field fresh-keeping drawer for a refrigeration and freezing device according to one embodiment of the present invention
  • Figure 5 is a schematic block diagram of electrical components in a magnetic field fresh-keeping drawer used in a refrigeration and freezing device according to one embodiment of the present invention
  • Figure 6 is a schematic structural diagram of a magnetically conductive component in a magnetic field fresh-keeping drawer used in a refrigeration and freezing device according to one embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of the air duct of a magnetic field fresh-keeping drawer used in a refrigeration and freezing device according to one embodiment of the present invention.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • the refrigeration and freezing device of the present invention may include household refrigeration and freezing devices used for refrigeration and storage of stored items, such as refrigerators, freezers, and freezers.
  • household refrigeration and freezing devices used for refrigeration and storage of stored items, such as refrigerators, freezers, and freezers.
  • the form of a refrigerator is taken as an example for introduction.
  • Those skilled in the art can implement other refrigeration and freezing devices such as freezers and freezers based on the introduction of this embodiment.
  • the refrigeration and freezing device of the present invention will be described in detail below with reference to the accompanying drawings.
  • Figure 1 is a schematic diagram of a refrigeration and freezing device 10 according to an embodiment of the present invention
  • the refrigeration and freezing device 10 can be a refrigerator and includes: a box 110, a door 120, and a refrigeration system (not shown in the figure).
  • the box 110 may define at least one storage compartment 130 with an open front side, usually multiple storage compartments, such as refrigerated storage compartments, frozen storage compartments, variable temperature storage compartments, and so on.
  • the number and functions of specific storage compartments 130 can be configured according to predetermined requirements.
  • the refrigeration and freezing device 10 can use air cooling to cool the storage compartment 130 . That is, an air duct system is provided in the box 110, and the fan 160 is used to send the cooling air flow that has been heat exchanged by the heat exchanger 150 (evaporator) to the storage compartment 130 through the air supply port, and then returns to the air duct through the return air port. Achieve refrigeration.
  • a refrigeration air duct 140 for providing refrigeration air flow is provided at the back of the storage compartment 130.
  • the heat exchanger 150 can be disposed in the refrigeration air duct 140 to exchange heat with the air flow passing through.
  • a fan 160 may also be provided in the refrigeration air duct 140 to promote the formation of the above-mentioned circulating refrigeration air flow.
  • a heat exchanger 150 can be configured for one storage compartment, or a heat exchanger 150 can be configured for two or more storage compartments. Heater 150.
  • the magnetic field fresh-keeping drawer 20 is arranged in a storage compartment 130 and is provided with a magnetic field assembly for applying a magnetic field to the magnetic field fresh-keeping space 23 inside the drawer.
  • the intensity range of the magnetic field can be set from 1-10mT.
  • the refrigeration mode of the magnetic field fresh-keeping drawer 20 can be configured as follows: the set temperature of the internal storage of the magnetic field fresh-keeping drawer 20 can be controlled between -1°C and 4°C, and the temperature fluctuation is controlled within ⁇ 1°C.
  • the cooling process for beef reaches It begins to freeze at -1.7°C and cannot maintain the supercooling state; and using the magnetic field fresh-keeping drawer 20 of this embodiment, the beef can be stabilized at the supercooling temperature of -3.3°C for a long time without freezing.
  • the juice loss rate can be less than 1%, and the sensory evaluation has good elasticity, bright color and no peculiar smell. This allows the food to be kept in a low-temperature supercooled state without freezing, allowing the food to be stored for a longer period with fewer microorganisms and without nutrient loss due to ice crystals produced by low-temperature freezing.
  • Figure 2 is a schematic diagram of the magnetic field fresh-keeping drawer 20 for the refrigeration and freezing device 10 according to an embodiment of the present invention
  • Figure 3 is a schematic diagram of the magnetic field fresh-keeping drawer 20 shown in Figure 2 from another angle
  • Figure 4 is a schematic diagram of the magnetic field fresh-keeping drawer 20 according to an embodiment of the present invention.
  • the magnetic field freshness drawer 20 may include an outer barrel 22 , a drawer 21 , and a first magnetic field generating element 31 .
  • An air inlet 231 and a return air outlet 232 are formed at the rear of the outer tub 22 to communicate with the cooling air duct 140 .
  • the drawer 21 is pullably disposed in the outer barrel 22 and defines a preservation storage space 23 therein. That is, the magnetic field preservation space 23 in the drawer 21 can realize the magnetic field preservation function through magnetic field and temperature control.
  • the first magnetic field generating element 31 is fixedly provided on the bottom plate 216 of the drawer 21 and is configured to apply a first magnetic field to the storage objects placed in the drawer 21 .
  • the storage items must be placed on the bottom plate 216 of the drawer 21.
  • the first magnetic field generating element 31 can directly apply a magnetic field to the adjacent storage items, thus avoiding the attenuation of the magnetic field intensity to the greatest extent and making full use of the magnetic field.
  • the first magnetic field generating element 31 may use permanent magnet components such as permanent magnet plates and permanent magnet sheets.
  • the first magnetic field generating element 31 can use electromagnetic components, so that the magnetic field can be controlled to start, further reducing the impact on the surrounding space, and compared with permanent magnet elements, it is lighter in weight and can also be avoided. Demagnetization and other problems improve the reliability of long-term use and are more suitable for refrigeration and freezing devices such as refrigerators.
  • Figure 5 is a schematic block diagram of the electrical components in the magnetic field freshness drawer 20 used in the refrigeration and freezing device 10 according to one embodiment of the present invention.
  • the first magnetic field generating element 31 may include a first electromagnetic coil 311.
  • the magnetic field freshness drawer 20 may also include a power supply component 33 .
  • the power supply element 33 is used to controlly supply power to the first electromagnetic coil 311, so that the first electromagnetic coil 311 applies the first magnetic field accordingly.
  • the power supply voltage of the power supply component 33 can be between 5-24V, and the power can be between 1-20W.
  • the specific power supply parameters of the power supply element 33 can be set according to the specifications of the first electromagnetic coil 311 and the magnetic field strength requirements.
  • the first magnetic field generating element 31 is fixedly arranged on the bottom plate 216 of the drawer 21. During the drawing process of the drawer 21, the first magnetic field generating element 31 is displaced relative to the outer barrel 22.
  • the routing of the power supply element 33 brings certain Difficulties.
  • the magnetic field fresh-keeping drawer 20 of this embodiment can use a slide rail routing mechanism or an energy storage device to solve the problem.
  • the power supply component 33 may include a slide rail routing mechanism.
  • the slide rail wiring mechanism is provided with cables that expand and contract as the drawer 21 slides. One end of the cable is used to connect to the first electromagnetic coil 311 , and the other end is used to connect to the power supply provided by the refrigeration and freezing device 10 .
  • the slide rail cable routing mechanism is provided with a cable box for storing cables on the outer barrel 22 and/or the drawer 21, and a part of the cable can expand and contract accordingly as the drawer 21 is pulled out. One end of the cable located in the drawer 21 is used to connect the first electromagnetic coil 311 .
  • the cable extends from the drawer to the outer tub 22 and is connected to the power supply provided by the refrigeration and freezing device 10 .
  • the slide rail routing mechanism can avoid cable extrusion and wear by setting a telescopic structure for the cable. Since the structure of the slide rail routing mechanism itself is well known to those skilled in the art, the structure of the slide rail routing mechanism will not be described in detail here.
  • the improvement of this embodiment is to use a slide rail wiring mechanism to guide the power supply of the magnetic field fresh-keeping drawer 20 to the inside of the drawer 21 .
  • the power supply can be controllably switched on and off as needed to provide power to the first electromagnetic coil 311 when a magnetic field is required.
  • the power supply component 33 further includes: an energy storage device 331 .
  • the energy storage device 331 is provided on the drawer 21 and is used to supply power to the first electromagnetic coil 311 using stored electrical energy.
  • the energy storage device 331 can use a battery, a supercapacitor, or other device that can store electrical energy.
  • the energy storage device 331 can be detachably installed on the drawer 21 and can be easily replaced when the power is insufficient.
  • the energy storage device 331 may also be a chargeable and dischargeable electrical energy storage device.
  • the energy storage device 331 can be connected to an external power source using a slide rail wiring mechanism for charging; alternatively, the energy storage device 331 can also be charged using a non-contact method, such as wireless power supply using electromagnetic induction, Photoelectric conversion wireless power supply method to obtain charging power.
  • a non-contact method such as wireless power supply using electromagnetic induction, Photoelectric conversion wireless power supply method to obtain charging power.
  • the magnetic field fresh drawer 20 may further include: a second magnetic field generating element 32 .
  • the second magnetic field generating element 32 is disposed on the outer barrel 22 and is configured to apply a second magnetic field to the internal space of the drawer 21 .
  • the second magnetic field generating element 32 may be disposed on the top or bottom wall of the outer tub 22 , and when the drawer 21 is pushed into the outer tub 22 , the second magnetic field generating element 32 is disposed opposite to the first magnetic field generating element 31 .
  • the second magnetic field generating element 32 is disposed on the outer barrel, and can be activated in usage scenarios that require an increased magnetic field. For example, when storage has just been put into the magnetic field fresh-keeping space 23 and the magnetic field fresh-keeping drawer 20 starts cooling, the second magnetic field is generated. Element 32 is activated and the magnetic field intensity is appropriately increased. During long-term storage, the first magnetic field generating element 31 maintains the basic magnetic field intensity required for preservation.
  • One control method of the first magnetic field generating element 31 and the second magnetic field generating element 32 is: detecting that the magnetic field fresh-keeping drawer 20 is closed, confirming that new storage items are put in, the refrigeration and freezing device 10 starts to cool the magnetic field fresh-keeping drawer 20, and after opening After cooling, the second magnetic field generating element 32 is activated, so that the stored items receive the effect of the magnetic field during the accelerated cooling stage.
  • the first magnetic field generating element 31 is activated continuously or periodically to maintain a basic magnetic field inside the magnetic field preservation space 23, especially in the area where the stored items are located, so that the stored items can be kept fresh for a longer period of time.
  • the refrigeration process of the refrigeration and freezing device 10 can also assist the heat of the magnetic field generating element 32 to ensure that the temperature of the magnetic field fresh-keeping space 23 is stable.
  • Figure 6 is a schematic structural diagram of the magnetic conductive components in the magnetic field fresh-keeping drawer 20 used in the refrigeration and freezing device 10 according to one embodiment of the present invention.
  • the magnetic field freshness drawer 20 may also include an annular magnetic conductive member 320 .
  • the annular magnetically conductive member 320 is arranged around the outer barrel 22 and includes: a first magnetically uniform plate 321 , a second magnetically conductive plate 322 , and two sections of conductive tape 323 .
  • the first magnetic equalizing plate 321 can be disposed on the top wall of the outer barrel 22; the second magnetic equalizing plate 322 can be disposed on the bottom wall of the outer barrel; two sections of guide tapes 323 are respectively disposed on both side walls of the outer barrel, and can be viewed from one side respectively.
  • the first magnetic distribution plate 321 and the second magnetic distribution plate 322 are connected.
  • the first magnetic distribution plate 321 , the second magnetic distribution plate 322 , and the two sections of conductive tape 323 together form an annular magnetic conductive path surrounding the drawer 21 .
  • the annular magnetic conductive path can be made of materials with low coercivity and high magnetic permeability, such as silicon steel sheets or similar materials.
  • the magnetic conductive path formed by it can be used to gather the magnetic field and improve the uniformity of the magnetic field in the storage space. sex, At the same time, the release of the magnetic field to the outside can be reduced and interference with other components outside the magnetic field fresh-keeping drawer 20 can be reduced (for example, other components can be prevented from being magnetized).
  • the first magnetic equalization plate 321 and the second magnetic equalizing plate 322 cover the top and bottom of the magnetic field preservation space 23 respectively, which can expand the coverage of the magnetic field and make the magnetic field more uniform.
  • the second magnetic field generating element 32 may be close to the first magnetic equalizing plate 321 .
  • the second magnetic field generating element 32 may be wound by an electromagnetic coil to form an electromagnetic ring.
  • the shape may be circular, elliptical, or square, and may be flat, with the top and bottom being planar, and the thickness may be significantly smaller than the peripheral size.
  • the top of the second magnetic field generating element 32 is disposed against the first uniform magnetic plate 321 .
  • FIG. 7 is a schematic structural diagram of the air channel of the magnetic field fresh-keeping drawer 20 used in the refrigeration and freezing device 10 according to one embodiment of the present invention.
  • An air inlet 231 and a return air outlet 232 are formed at the rear of the outer tub 22 , respectively used to communicate with the refrigeration air duct 140 of the refrigeration and freezing device 10 .
  • the top wall of the outer tub 22 has a top air duct 233 connected with the air inlet 231, and the front wall of the drawer 21 has a front air duct 234 connected with the top air duct 233 when the drawer 21 is pushed into the outer tub 22.
  • the above-mentioned air flow forms an air path surrounding the magnetic field fresh-keeping space 23 from the front and rear directions, and can prevent the air flow from directly blowing the stored items and preventing the temperature from being too low, effectively achieving uniform cooling.
  • the barrel wall of the outer barrel 22 may be provided with micro-holes connected to the ventilation passages, so that cold air can enter the magnetic field fresh-keeping drawer 20 through the micro-holes, thereby achieving rapid cooling without blowing the stored items directly. Cool down evenly.
  • the return air outlet 232 may be disposed in the middle of the rear wall of the outer tub 22 .
  • the top end of the rear wall of the outer tub 22 extends obliquely toward the rear end of the top wall of the outer tub 22 , and the air inlet 231 is provided on the inclined extending surface.
  • the positions of the above-mentioned air inlet 231 and return air outlet 232 make the magnetic field fresh-keeping drawer 20 and the refrigeration air duct 140 of the refrigeration and freezing device 10 cooperate more smoothly, thereby improving the air supply efficiency.
  • the air inlet 231 is set at the top of the rear side of the drawer 21 and is arranged at an angle, which reduces the occupation of the magnetic field preservation space 23 by the air supply structure, and can also better cooperate with the cooling air duct 140, making the structure more compact and effective.
  • All or part of the top air duct 233, the front air duct 234, and the bottom air duct 235 may be provided with air guide ribs (not shown in the figure) to guide the air flow so that the air flow can flow through evenly. .
  • the air guide ribs can also cooperate with seals so that the airflow can pass smoothly.
  • the outer barrel 22 can be used as an inner barrel that is split up and down, or left and right, and is fixed by special buckles or screws, or can also be used as an integrally formed barrel.
  • the inner side of the side wall of the outer barrel 22 is provided with a corresponding installation structure, slide rail or slideway for the drawer 21 .
  • the outer barrel 22 is provided with an insulating member (not shown in the figure) on the outer side of the air duct surrounding the air duct to prevent the cooling energy of the cooling air flow from dissipating, thereby improving the refrigeration efficiency.
  • Thermal insulation parts can be made of thermal insulation materials (foam, PE or VIP, etc.).
  • the thermal insulation member can be disposed on the top wall of the outer tub 22 , the bottom wall of the outer tub 22 , and the front panel of the drawer 21 .
  • One or more temperature detection components can also be installed in the magnetic field fresh-keeping drawer 20 to respectively detect the temperature of different areas in the magnetic field fresh-keeping space, thereby providing a control basis for accurate temperature control.
  • One way of arranging the temperature detection components is to provide a first temperature detection component and a second temperature detection component in the top air duct 233 and the bottom air duct 235 respectively. part.
  • the first temperature detection component is located upstream of the air flow, and the second temperature detection component is located downstream of the air flow.
  • An optional temperature control strategy is: when the temperature sensing value of the first temperature detection component is higher than the preservation set temperature, Turn on the air supply to the magnetic field fresh-keeping drawer 20. When the temperature sensing value of the second temperature detection component is lower than the required freshness temperature of the food, the air supply to the magnetic field freshness drawer is stopped.
  • the first magnetic field generating element 31 is fixedly arranged on the bottom plate of the drawer 21 and applies the first magnetic field to the storage items placed in the drawer 21.
  • the first magnetic field generates The distance between the element 31 and the storage object is greatly reduced, which avoids the attenuation of the magnetic field intensity, makes the magnetic field usage more efficient, and reduces the impact on the surrounding space.
  • the second magnetic field generating element 32 on the outer barrel 22 and the annular magnetic conductive member 320 the preservation effect of the magnetic field can be further improved, meeting the preservation and storage requirements of the refrigeration and freezing devices 10 such as refrigerators, and improving the user experience. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

提供了一种用于冷藏冷冻装置(10)的磁场保鲜抽屉(20)与冷藏冷冻装置(10),其中磁场保鲜抽屉(20)包括:外桶(22),用于布置在冷藏冷冻装置(10)的储物间室(130)内;抽屉(21),可抽拉地设置于外桶(22)内;第一磁场发生元件(31),固定设置在抽屉(21)的底板(216)上,并配置成对放置在抽屉(21)内的储藏物施加第一磁场。第一磁场发生元件(31)与储藏物之间的距离大大降低,避免了磁场强度衰减,磁场使用效率更高,对周围空间的影响降低。

Description

用于冷藏冷冻装置的磁场保鲜抽屉与冷藏冷冻装置 技术领域
本发明涉及冷藏冷冻设备,具体提供了一种用于冷藏冷冻装置的磁场保鲜抽屉与冷藏冷冻装置。
背景技术
现有的冷藏冷冻装置(包括冰箱、冰柜、冷柜等)在存储肉类、鱼、虾等食材时,容易使肉类发生汁液流失,进而使鱼肉、虾肉发生变质,导致其营养流失、口感变差。
现在研究发现,磁场能够抑制微生物和霉菌的生长,延长食材的储藏周期。因此,可以使用磁场来辅助储藏食材,进而达到延长食材储藏周期的目的。使用磁场辅助储藏食材时,磁场在一定程度上限制了水分子的自由程,具体表现为水分子蔟中的氢键断裂。使得水在相变过程中,晶核生长受到抑制,冰晶的生长速率高于水分子的迁移速率,产生的冰晶偏小,从而对细胞造成的损伤较小,降低了食材中汁液的流失率,使食材的营养和口感能够得到更好的保存。
磁场强度随磁场元件的距离而衰减,因此为了满足磁场强度满足保鲜储藏的要求,需要增大储物空间的腔壁上磁场部件的磁场强度,一方面增加了成本,另一方面磁场元件也会增大了产品整体重量。
发明内容
本发明的一个目的是要提供一种充分使用磁场保鲜能力的磁场保鲜抽屉与冷藏冷冻装置。
本发明一个进一步的目的是提高磁场的使用效率。
为实现上述目的,本发明提供了一种用于冷藏冷冻装置的磁场保鲜抽屉与冷藏冷冻装置,其中磁场保鲜抽屉包括:
外桶,用于布置在冷藏冷冻装置的制冷间室内;
抽屉,可抽拉地设置于外桶内;
第一磁场发生元件,固定设置在抽屉的底板上,并配置成对放置在抽屉内的储藏物施加第一磁场。
可选地,第一磁场发生元件包括第一电磁线圈;并且
磁场保鲜抽屉还包括:供电元件,用于受控地向第一电磁线圈供电,以使得第一电磁线圈相应施加第一磁场。
可选地,供电元件包括:
滑轨走线机构,其设置有随抽屉滑动而伸缩的线缆,线缆的一端用于连接第一 电磁线圈,另一端用于连接冷藏冷冻装置提供的电源。
可选地,供电元件还包括:
储能装置,设置在抽屉上,用于利用存储的电能向第一电磁线圈供电。
可选地,上述用于冷藏冷冻装置的磁场保鲜抽屉,还包括:
第二磁场发生元件,设置在外桶上,并配置成向抽屉内部空间施加第二磁场。
可选地,第二磁场发生元件设置在外桶的顶壁或底壁上,并且在抽屉在推入外桶的情况下,第二磁场发生元件与第一磁场发生元件相对设置。
可选地,上述用于冷藏冷冻装置的磁场保鲜抽屉,还包括:
环形导磁构件,围绕外桶的筒壁设置,其包括:
第一均磁板,设置在外桶的顶壁上;
第二均磁板,设置在外桶的底壁上;
两段导磁带,分别设置在外桶的两侧壁上,并分别从一侧连接第一均磁板和第二均磁板。
可选地,外桶的后部形成进风口及回风口,分别用于连通冷藏冷冻装置的制冷风道;并且
外桶的顶壁具有与进风口连通的顶部风道,抽屉的前壁具有在抽屉在推入外桶的情况下与顶部风道相连通的前部风道,抽屉的底板与外桶的底壁之间具有间隙,以利用间隙形成底部风道;并使得来自制冷风道的制冷气流从进风口进入后依次流经顶部风道、前部风道、底部风道,最终通过回风口返回制冷风道。
可选地,第一磁场发生元件施加的磁场强度范围配置为1-10mT。
根据本发明的另一个方面,还提供了一种冷藏冷冻装置,其包括:
箱体,其内限定有储物间室;
磁场保鲜抽屉,安装在储物间室内,并且磁场保鲜抽屉为上述任一种磁场保鲜抽屉。
基于前文的描述,本领域技术人员能够理解的是,在本发明前述的技术方案中,用于冷藏冷冻装置的磁场保鲜抽屉安装在冷藏冷冻装置的储物间室内,利用抽拉结构便于取物储藏物,并形成相对密闭的保鲜空间,利用自身形成的第一磁场提高储物质量,延长保鲜周期。由于现有磁场保鲜抽屉一般将磁场发生元件布置在固定设置的桶体上,储藏物与桶体之间被抽屉所间隔,使得储藏物与磁场发生元件之间具有一定的距离。而磁场强度会随距离的增加而快速衰减,设置于桶体上的磁场发生元件为了维持储藏物所在位置的磁场强度,需要增加自身的磁场强度,这会导致成本上升以及产品的重量增加。另一方面增大桶体上的磁场发生元件磁场强度,还会对磁场保鲜空间之外的空间产生磁场作用,可能影响冷藏冷冻装置自身的功能,或给用户带来其他不便和困扰。
本发明方案的用于冷藏冷冻装置的磁场保鲜抽屉,第一磁场发生元件固定设置在抽屉的底板上,并对放置在抽屉内的储藏物施加第一磁场,第一磁场发生元件与 储藏物之间的距离大大降低,避免了磁场强度衰减,磁场使用效率更高,对周围空间的影响降低。
更进一步地,本发明方案的用于冷藏冷冻装置的磁场保鲜抽屉,可以使用电磁线圈作为第一磁场发生元件,使得磁场可以受控启动,进一步减小了对周围空间的影响,并且相比与永磁元件,重量更轻,也可以避免长期使用可能存在的退磁等问题,提高了长期使用的可靠性,更加适用于冰箱等冷藏冷冻装置。
更进一步地,本发明方案的用于冷藏冷冻装置的磁场保鲜抽屉,通过滑轨走线机构、储能装置等实现对电磁线圈进行供电,解决了电磁线圈移动的问题。
更进一步地,本发明方案的用于冷藏冷冻装置的磁场保鲜抽屉,还设置了第二磁场发生元件,与抽屉上的第一磁场发生元件进行配合,使得保鲜空间的磁场强度更加均匀。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
为了更清楚地说明本发明的技术方案,后文将参照附图来描述本发明的部分实施例。本领域技术人员应当理解的是,同一附图标记在不同附图中所标示的部件或部分相同或类似;本发明的附图彼此之间并非一定是按比例绘制的。附图中:
图1是根据本发明一个实施例的冷藏冷冻装置的示意图;
图2是根据本发明一个实施例的用于冷藏冷冻装置的磁场保鲜抽屉的示意图;
图3是图2所示的磁场保鲜抽屉另一视图角度的示意图;
图4是根据本发明一个实施例的用于冷藏冷冻装置的磁场保鲜抽屉的部件分解图;
图5根据本发明一个实施例的用于冷藏冷冻装置的磁场保鲜抽屉中电气部件示意框图;
图6是根据本发明一个实施例的用于冷藏冷冻装置的磁场保鲜抽屉中导磁部件示意结构图;以及
图7是根据本发明一个实施例的用于冷藏冷冻装置的磁场保鲜抽屉中风道的示意结构图。
具体实施方式
本领域技术人员应当理解的是,下文所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,该一部分实施例旨在用于解释本发明的技术原理,并非用于限制本发明的保护范围。基于本发明提供的实施例,本领域普通技术人员在没有付出创造性劳动的情况下所获得的其它所有实施例,仍应落入到本发明的保护范围之内。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“顶部” “底部”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”、“主”、“副”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
本发明的冷藏冷冻装置可以包括冰箱、冰柜和冷柜等用于对储藏物进行制冷储存的家用冷藏冷冻装置。在本实施例的附图中以冰箱的形态为例进行介绍,本领域技术人员能够根据本实施例介绍,实现冰柜、冷柜等其他冷藏冷冻装置。下面参照附图来对本发明的冷藏冷冻装置进行详细说明。
图1是根据本发明一个实施例的冷藏冷冻装置10的示意图;该冷藏冷冻装置10可以为冰箱,并包括:箱体110、门体120、制冷系统(图中未示出)。箱体110内可以限定有至少一个前侧敞开的储物间室130,通常为多个,如冷藏储物间室、冷冻储物间室、变温储物间室等等。具体的储物间室130的数量和功能可以根据预先的需求进行配置。
冷藏冷冻装置10可以使用风冷制冷的方式对储物间室130进行制冷。也即箱体110内设置有风路系统,利用风机160将经过换热器150(蒸发器)换热的制冷气流经送风口送向储物间室130,然后经由回风口返回风道。实现制冷。在一些实施例中,储物间室130的背部开设有用于提供制冷气流的制冷风道140,换热器150可以设置在制冷风道140内,与流经的气流进行换热。制冷风道140内还可以设置风机160,促使形成上述循环制冷气流。
可选地,储藏间室可以为多个,并且多个储藏间室中的至少一个放置有磁场保鲜抽屉20。本领域技术人员可以根据需要,为储藏间室分别配置一个制冷系统以及风路,例如可以为一个储藏间室配置一个换热器150,也可以为两个及以上数量的储藏间室配置一个换热器150。
由于此类冰箱的箱体、门体、制冷系统本身均是本领域技术人员习知且易于实现的,本领域技术人员可以根据需要选择制冷系统、风路系统,为了不掩盖和模糊本申请的发明点,后文对箱体110、门体120、制冷系统本身不做赘述。
磁场保鲜抽屉20布置于一个储物间室130内,并设置有用于对自身内部的磁场保鲜空间23施加磁场的磁场组件。磁场的强度范围可以设置为1-10mT。磁场保鲜抽屉20制冷方式可以配置为:磁场保鲜抽屉20内部储物设定温度可以控制在-1℃至4℃,温度波动控制在±1℃之内。
通过对试制产品的验证,在无磁场作用的情况下,对于牛肉,降温过程达到 -1.7℃时开始结冰冻结,无法维持过冷状态;而使用本实施例的磁场保鲜抽屉20,牛肉可长期稳定在-3.3℃的过冷温度下而不产生冻结,经过7天的储存,汁液流失率可以在1%以下,感官评价弹性好,鲜亮无异味。从而实现了食材处于低温过冷却状态不冻结,使食材存储周期更久,微生物更少,且不会因为低温冻结产生冰晶造成营养流失。
图2是根据本发明一个实施例的用于冷藏冷冻装置10的磁场保鲜抽屉20的示意图;图3是图2所示的磁场保鲜抽屉20另一视图角度的示意图,图4是根据本发明一个实施例的用于冷藏冷冻装置10的磁场保鲜抽屉20的部件分解图。
磁场保鲜抽屉20可以包括外桶22、抽屉21、第一磁场发生元件31。外桶22的后部形成与制冷风道140相连通的进风口231及回风口232。抽屉21可抽拉地设置于外桶22内,其内限定出保鲜储物空间23,也即抽屉21内的磁场保鲜空间23可以通过磁场以及温度控制,实现磁场保鲜功能。
第一磁场发生元件31,固定设置在抽屉21的底板216上,并配置成对放置在抽屉21内的储藏物施加第一磁场。储藏物必然放置在抽屉21的底板216上,第一磁场发生元件31可以直接对贴靠的储藏物施加磁场,最大程度上避免了磁场强度的衰减,可以充分利用磁场。
第一磁场发生元件31可以使用永磁板、永磁片等永磁部件。在另一些实施例中,第一磁场发生元件31可以使用电磁部件,使得磁场可以受控启动,进一步减小了对周围空间的影响,并且相比与永磁元件,重量更轻,也可以避免退磁等问题,提高了长期使用的可靠性,更加适用于冰箱等冷藏冷冻装置。
图5根据本发明一个实施例的用于冷藏冷冻装置10的磁场保鲜抽屉20中电气部件示意框图。
第一磁场发生元件31可以包括第一电磁线圈311。磁场保鲜抽屉20还可以包括供电元件33。供电元件33用于受控地向第一电磁线圈311供电,以使得第一电磁线圈311相应施加第一磁场。供电元件33的供电电压可以在5-24V,功率在1-20W之间。供电元件33的具体供电参数可以根据第一电磁线圈311规格以及磁场强度需求进行设置。
第一磁场发生元件31固定设置在抽屉21的底板216上,在抽屉21的抽拉过程中,第一磁场发生元件31相对与外桶22存在位移,这个供电元件33的走线带来了一定的困难。针对这一问题,本实施例的磁场保鲜抽屉20可以采用滑轨走线机构或者储能装置进行解决。
在一种实施例中,供电元件33可以包括:滑轨走线机构。滑轨走线机构设置有随抽屉21滑动而伸缩的线缆。线缆的一端用于连接第一电磁线圈311,另一端用于连接冷藏冷冻装置10提供的电源。滑轨走线机构在外桶22和/或抽屉21上设置收纳线缆的线盒,线缆的一部分可随抽屉21的抽拉而相应伸缩。线缆位于抽屉21内的一端用于连接第一电磁线圈311。线缆从抽屉内延伸至外桶22,连接冷藏冷冻装置10提供的电源。滑轨走线机构可以通过设置线缆的伸缩结构避免线缆挤压磨损。 由于滑轨走线机构的构造自身是本领域技术人员所习知的,因此在此不对滑轨走线机构的构造进行赘述。本实施例的改进在于使用滑轨走线机构将磁场保鲜抽屉20的电源引至抽屉21的内部。电源可以根据需要受控地开闭,从而在需要提供磁场时,向第一电磁线圈311供电。
在另一种实施例中,供电元件33还包括:储能装置331。储能装置331设置在抽屉21上,用于利用存储的电能向第一电磁线圈311供电。储能装置331可以使用电池、超级电容等可以储藏电能的装置。例如储能装置331可以可拆卸地安装在抽屉21上,在电量不足时,方便地进行更换。又例如储能装置331还可以为可充放电的电能储藏装置。在一种实施例中储能装置331可以利用滑轨走线机构连接至外部电源实现充电;可替代地,储能装置331也可以使用非接触的方式进行充电,例如使用电磁感应的无线供电、光电转换的无线供电方式来获取充电电源。
在第一磁场发生元件31的基础上,为了保证磁场更加均匀,并提高磁场强度。在另一些实施例中,磁场保鲜抽屉20还可以包括:第二磁场发生元件32。第二磁场发生元件32设置在外桶22上,并配置成向抽屉21内部空间施加第二磁场。
第二磁场发生元件32可以设置在外桶22的顶壁或底壁上,并且在抽屉21在推入外桶22的情况下,第二磁场发生元件32与第一磁场发生元件31相对设置。
第二磁场发生元件32设置在外桶上,其可以在需要加大磁场的使用场景中启动,例如在储藏物刚刚放入磁场保鲜空间23,磁场保鲜抽屉20启动制冷的情况下,第二磁场发生元件32启动,适当提高磁场强度。在长期储藏的过程中,由第一磁场发生元件31维持保鲜所需的基本磁场强度。
第一磁场发生元件31和第二磁场发生元件32的一种控制方式为:检测到磁场保鲜抽屉20闭合,确定放入新的储藏物,冷藏冷冻装置10启动对磁场保鲜抽屉20制冷,在开启制冷后第二磁场发生元件32启动,使得储藏物在被加速制冷的阶段收到磁场的作用。在制冷完毕后,第一磁场发生元件31持续启动或者周期性启动,在磁场保鲜空间23内部特别是储藏物所在的区域维持基本的磁场,使得储藏物可以更长时间地实现保鲜存储。冷藏冷冻装置10制冷过程还可以辅助磁场发生元件32的热量,保证磁场保鲜空间23的温度稳定。
图6是根据本发明一个实施例的用于冷藏冷冻装置10的磁场保鲜抽屉20中导磁部件示意结构图。磁场保鲜抽屉20还可以包括环形导磁构件320。
环形导磁构件320围绕外桶22设置,并且包括:第一均磁板321、第二均磁板322、两段导磁带323。第一均磁板321可以设置在外桶22的顶壁上;第二均磁板322设置在外桶的底壁上;两段导磁带323分别设置在外桶的两侧壁上,并分别从一侧连接第一均磁板321和第二均磁板322。第一均磁板321、第二均磁板322、两段导磁带323共同形成环绕抽屉21的环形导磁通路。
环形导磁通路可以由具有低矫顽力和高磁导率的材料制成,例如硅钢片或类似材料制成,其形成的导磁通路可以用于聚拢磁场,提高储物空间内磁场的均匀性, 同时可以减少磁场向外部释放,减少对磁场保鲜抽屉20外侧的其他部件造成干扰(例如避免磁化其他部件等)。第一均磁板321和第二均磁板322分别覆盖磁场保鲜空间23的顶部以及底部,可以扩大磁场的覆盖范围,并且使得磁场更加均匀。
在一些实施例中,第二磁场发生元件32可以贴靠第一均磁板321。例如第二磁场发生元件32可由电磁线圈缠绕而成电磁环圈,形状可以为圆形、椭圆形或方形,并且为扁平状,顶部和底部均为平面状,并且厚度明显小于外周尺寸。第二磁场发生元件32的顶部贴靠设置第一均磁板321。
图7是根据本发明一个实施例的用于冷藏冷冻装置10的磁场保鲜抽屉20中风道的示意结构图。外桶22的后部形成进风口231及回风口232,分别用于连通冷藏冷冻装置10的制冷风道140。并且外桶22的顶壁具有与进风口231连通的顶部风道233,抽屉21的前壁具有在抽屉21在推入外桶22的情况下与顶部风道233相连通的前部风道234,抽屉21的底板与外桶22的底壁之间具有间隙,以利用间隙形成底部风道235;并使得来自制冷风道140的制冷气流从进风口231进入后依次流经顶部风道233、前部风道234、底部风道235,最终通过回风口232返回制冷风道140。
上述气流形成从前后方向围绕磁场保鲜空间23的风路,并且可以避免气流直吹储藏物,避免温度过低,有效实现了均匀降温。在一些实施例中,外桶22的桶壁上可以设置有连通风路的微孔,使得冷风可以经由微孔进入磁场保鲜抽屉20内,在避免制冷气流直吹储藏物的前提下,实现快速均匀降温。
回风口232可以设置于外桶22的后壁中部。外桶22的后壁顶端向外桶22的顶壁后端倾斜延伸,进风口231设置于该倾斜延伸面上。上述进风口231和回风口232的位置使得磁场保鲜抽屉20与冷藏冷冻装置10的制冷风道140配合更加顺畅,提高了送风效率。另外,进风口231设置在抽屉21的后侧顶端,倾斜设置,减少了送风结构对磁场保鲜空间23的占用,还可以更好的与制冷风道140配合,结构更加紧凑有效。
顶部风道233、前部风道234、底部风道235中的全部或部分风道内可以设置有导风筋(图中未示出),以对的气流进行导引,使得气流均匀地流过。在顶部风道233、前部风道234、底部风道235之间的过渡部分,导风筋还可以与密封件配合,使得气流可以顺畅地通过。
外桶22为了成型加工简单,可作为上下、或左右分体拼接内桶,由专门的卡扣或螺钉等等固定方式固定,也可作为一体成型桶。外桶22的侧壁内侧设置有相应的抽屉21安装结构,滑轨或滑道。
外桶22在环绕风道的外侧风别设置保温件(图中未示出),避免制冷气流冷量外散,提高了制冷效率。保温件可由保温隔热材料(泡棉、PE或VIP等)制成。保温件可以设置在外桶22的顶壁、外桶22的底壁、以及抽屉21的前面板等位置。
磁场保鲜抽屉20内还可以设置一个或多个温度检测部件,分别检测磁场保鲜空间内不同区域的温度,为准确地控温提供了控制依据。温度检测部件的一种布置方式为,在顶部风道233和底部风道235分别设置第一温度检测部件和第二温度检测 部件。第一温度检测部件位于气流的上游,而第二温度检测部件位于气流的下游,一种可选的控温策略为:当第一温度检测部件的温度感测值高于保鲜设定温度时,开启对磁场保鲜抽屉20送风。当第二温度检测部件的温度感测值低于食材所需的保鲜温度后,停止对磁场保鲜抽屉送风。
上述实施例的用于冷藏冷冻装置10的磁场保鲜抽屉20,第一磁场发生元件31固定设置在抽屉21的底板上,并对放置在抽屉21内的储藏物施加第一磁场,第一磁场发生元件31与储藏物之间的距离大大降低,避免了磁场强度衰减,磁场使用效率更高,对周围空间的影响降低。进一步通过外桶22上的第二磁场发生元件32以及环形导磁构件320的配合,可以进一步提高磁场的保鲜效果,满足了冰箱等冷藏冷冻装置10的保鲜储物要求,提高了用户的使用体验。
至此,已经结合前文的多个实施例描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围并不仅限于这些具体实施例。在不偏离本发明技术原理的前提下,本领域技术人员可以对上述各个实施例中的技术方案进行拆分和组合,也可以对相关技术特征作出等同的更改或替换,凡在本发明的技术构思和/或技术原理之内所做的任何更改、等同替换、改进等都将落入本发明的保护范围之内。

Claims (10)

  1. 一种用于冷藏冷冻装置的磁场保鲜抽屉,包括:
    外桶,用于布置在所述冷藏冷冻装置的制冷间室内;
    抽屉,可抽拉地设置于所述外桶内;
    第一磁场发生元件,固定设置在所述抽屉的底板上,并配置成对放置在所述抽屉内的储藏物施加第一磁场。
  2. 根据权利要求1所述的用于冷藏冷冻装置的磁场保鲜抽屉,其中
    所述第一磁场发生元件包括第一电磁线圈;并且
    所述磁场保鲜抽屉还包括:供电元件,用于受控地向所述第一电磁线圈供电,以使得所述第一电磁线圈相应施加所述第一磁场。
  3. 根据权利要求2所述的用于冷藏冷冻装置的磁场保鲜抽屉,其中所述供电元件包括:
    滑轨走线机构,其设置有随所述抽屉滑动而伸缩的线缆,所述线缆的一端用于连接所述第一电磁线圈,另一端用于连接所述冷藏冷冻装置提供的电源。
  4. 根据权利要求2所述的用于冷藏冷冻装置的磁场保鲜抽屉,其中所述供电元件还包括:
    储能装置,设置在所述抽屉上,用于利用存储的电能向所述第一电磁线圈供电。
  5. 根据权利要求1所述的用于冷藏冷冻装置的磁场保鲜抽屉,还包括:
    第二磁场发生元件,设置在所述外桶上,并配置成向所述抽屉内部空间施加第二磁场。
  6. 根据权利要求5所述的用于冷藏冷冻装置的磁场保鲜抽屉,其中
    所述第二磁场发生元件设置在所述外桶的顶壁或底壁上,并且在所述抽屉在推入所述外桶的情况下,所述第二磁场发生元件与所述第一磁场发生元件相对设置。
  7. 根据权利要求6所述的用于冷藏冷冻装置的磁场保鲜抽屉,还包括:
    环形导磁构件,围绕所述外桶的筒壁设置,其包括:
    第一均磁板,设置在所述外桶的顶壁上;
    第二均磁板,设置在所述外桶的底壁上;
    两段导磁带,分别设置在所述外桶的两侧壁上,并分别从一侧连接所述第一均磁板和所述第二均磁板。
  8. 根据权利要求1所述的用于冷藏冷冻装置的磁场保鲜抽屉,其中
    所述外桶的后部形成进风口及回风口,分别用于连通所述冷藏冷冻装置的制冷风道;并且
    所述外桶的顶壁具有与所述进风口连通的顶部风道,所述抽屉的前壁具有在所述抽屉在推入所述外桶的情况下与所述顶部风道相连通的前部风道,所述抽屉的底板与所述外桶的底壁之间具有间隙,以利用所述间隙形成底部风道;并使得来自所述制冷风道的制冷气流从所述进风口进入后依次流经所述顶部风道、所述前部风道、所述底部风道,最终通过所述回风口返回所述制冷风道。
  9. 根据权利要求1所述的用于冷藏冷冻装置的磁场保鲜抽屉,其中
    所述第一磁场发生元件施加的磁场强度范围配置为1-10mT。
  10. 一种冷藏冷冻装置,包括:
    箱体,其内限定有储物间室;
    磁场保鲜抽屉,安装在所述储物间室内,并且所述磁场保鲜抽屉为根据权利要求1至9中任一项所述的磁场保鲜抽屉。
PCT/CN2023/103840 2022-07-05 2023-06-29 用于冷藏冷冻装置的磁场保鲜抽屉与冷藏冷冻装置 WO2024007943A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210794554.8 2022-07-05
CN202210794554.8A CN117387295A (zh) 2022-07-05 2022-07-05 用于冷藏冷冻装置的磁场保鲜抽屉与冷藏冷冻装置

Publications (1)

Publication Number Publication Date
WO2024007943A1 true WO2024007943A1 (zh) 2024-01-11

Family

ID=89454261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103840 WO2024007943A1 (zh) 2022-07-05 2023-06-29 用于冷藏冷冻装置的磁场保鲜抽屉与冷藏冷冻装置

Country Status (2)

Country Link
CN (1) CN117387295A (zh)
WO (1) WO2024007943A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215074A (ja) * 2000-02-01 2001-08-10 Daiwa Industries Ltd 業務用冷蔵庫
CN109780805A (zh) * 2018-12-27 2019-05-21 青岛海尔股份有限公司 具有滑轨走线机构的冰箱
WO2020140709A1 (zh) * 2019-01-04 2020-07-09 海尔智家股份有限公司 加热装置及具有该加热装置的冰箱
CN113669996A (zh) * 2021-09-15 2021-11-19 珠海格力电器股份有限公司 一种保鲜抽屉及具有该保鲜抽屉的冰箱、温湿度控制方法
CN216114894U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 用于冰箱的保鲜储物容器和冰箱
CN216114967U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 防冷风直吹的磁场保鲜装置和风冷式制冷设备
CN114279141A (zh) * 2021-12-28 2022-04-05 Tcl家用电器(合肥)有限公司 电磁保鲜结构及冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215074A (ja) * 2000-02-01 2001-08-10 Daiwa Industries Ltd 業務用冷蔵庫
CN109780805A (zh) * 2018-12-27 2019-05-21 青岛海尔股份有限公司 具有滑轨走线机构的冰箱
WO2020140709A1 (zh) * 2019-01-04 2020-07-09 海尔智家股份有限公司 加热装置及具有该加热装置的冰箱
CN216114894U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 用于冰箱的保鲜储物容器和冰箱
CN216114967U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 防冷风直吹的磁场保鲜装置和风冷式制冷设备
CN113669996A (zh) * 2021-09-15 2021-11-19 珠海格力电器股份有限公司 一种保鲜抽屉及具有该保鲜抽屉的冰箱、温湿度控制方法
CN114279141A (zh) * 2021-12-28 2022-04-05 Tcl家用电器(合肥)有限公司 电磁保鲜结构及冰箱

Also Published As

Publication number Publication date
CN117387295A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
CN217031741U (zh) 具有磁场保鲜装置的制冷设备
CN216114967U (zh) 防冷风直吹的磁场保鲜装置和风冷式制冷设备
CN217031740U (zh) 具有磁场保鲜装置的制冷设备
WO2020140709A1 (zh) 加热装置及具有该加热装置的冰箱
WO2023016148A1 (zh) 具有磁场保鲜功能的制冷设备
CN110186241A (zh) 一种风冷冰箱
WO2024007943A1 (zh) 用于冷藏冷冻装置的磁场保鲜抽屉与冷藏冷冻装置
CN113494809B (zh) 冰箱
CN113494808B (zh) 冰箱
WO2023109516A1 (zh) 具有磁场保鲜装置的制冷设备
CN214371196U (zh) 冰箱
WO2023109410A1 (zh) 具有磁场保鲜装置的制冷设备
WO2023231976A1 (zh) 磁场保鲜冰箱及其制冷控制方法
CN117387294A (zh) 磁场保鲜抽屉与冷藏冷冻装置
CN220959139U (zh) 保鲜储物容器及冰箱
CN220959146U (zh) 磁场保鲜储物容器及冰箱
CN106052256A (zh) 一种冰箱恒温间室
WO2023016227A1 (zh) 用于冰箱的保鲜储物容器和冰箱
CN117387296A (zh) 磁场保鲜抽屉与冷藏冷冻装置
WO2023016226A1 (zh) 磁场保鲜储物容器和冰箱
WO2023016095A1 (zh) 防冷风直吹的磁场保鲜装置和风冷式制冷设备
CN113531988B (zh) 冰箱
CN111397277A (zh) 冰箱
CN220959140U (zh) 磁场保鲜储物容器及冰箱
CN219810096U (zh) 制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834710

Country of ref document: EP

Kind code of ref document: A1