WO2023016228A1 - 磁场保鲜储物容器和冰箱 - Google Patents

磁场保鲜储物容器和冰箱 Download PDF

Info

Publication number
WO2023016228A1
WO2023016228A1 PCT/CN2022/107163 CN2022107163W WO2023016228A1 WO 2023016228 A1 WO2023016228 A1 WO 2023016228A1 CN 2022107163 W CN2022107163 W CN 2022107163W WO 2023016228 A1 WO2023016228 A1 WO 2023016228A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
magnetic
storage
magnet
plate
Prior art date
Application number
PCT/CN2022/107163
Other languages
English (en)
French (fr)
Inventor
马坚
朱小兵
李孟成
费斌
张鹏
姬立胜
张育宁
衣尧
曹子林
李涛
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023016228A1 publication Critical patent/WO2023016228A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/06Freezing; Subsequent thawing; Cooling
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves

Definitions

  • the invention relates to refrigeration and freezing equipment, in particular to a magnetic field fresh-keeping storage container and a refrigerator.
  • An object of the present invention is to provide a magnetic field fresh-keeping storage container and a refrigerator that can effectively improve storage quality.
  • a further object of the present invention is to save component costs and facilitate the installation and application of the magnetic field fresh-keeping storage container in the refrigerator.
  • the present invention provides a magnetic field fresh-keeping storage container, which includes:
  • a storage component which defines a storage space for storing objects
  • a magnet assembly which includes a first magnet part and a second magnet part respectively arranged on a group of opposite sides of the storage assembly, and forms a magnetic field in the storage space by using the first magnet part and the second magnet part;
  • a magnetically permeable component which has a first magnetically permeable part corresponding to the first magnet part, a second magnetically permeable part corresponding to the second magnet part, and connected between the first magnetically permeable part and the second magnetically permeable part
  • the magnetically permeable connector, the first magnetically permeable member, the second magnetically permeable member, and the magnetically permeable connector form an annular magnetically permeable path outside the storage space.
  • the first magnet part and the second magnet part respectively include: a permanent magnet plate arranged outside the corresponding side of the storage assembly, and the shape of the permanent magnet plate is consistent with the shape of the corresponding side;
  • the first magnetically permeable part and the second magnetically permeable part respectively include a magnetically permeable plate, and the magnetically permeable plates are respectively arranged opposite to the permanent magnet plates, and the magnetically permeable connector extends from the edge of the magnetically permeable plate along the outside of the storage assembly and is connected to another Magnetic plate on one side.
  • the projection of the storage space on the plane where the magnetic conductive plate is located is located within the range of the magnetic conductive plate, and the size of the permanent magnetic plate is smaller than or equal to its opposite magnetic conductive plate.
  • the first magnet part and the second magnet part further include electromagnetic loops respectively, and the electromagnetic loops are arranged between the permanent magnet plate and the magnetic conduction plate or between the permanent magnet plate and the corresponding side of the storage assembly, An electromagnetic coil is wound inside the electromagnetic ring along the circumferential direction of the ring, and the electromagnetic coil is used to generate an electromagnetic field superimposed on the permanent magnetic field of the corresponding permanent magnet plate after being energized.
  • the size of the electromagnetic ring is less than or equal to the size of its relative permanent magnet plate, and the centers of the permanent magnet plate, the magnetic guide plate, and the electromagnetic ring of the first magnet part are opposite, and the permanent magnet part of the second magnet part The centers of the magnetic plate, the magnetic guide plate and the electromagnetic ring are opposite to each other.
  • the first magnet part is arranged on the top wall of the storage assembly
  • the second magnet part is arranged on the bottom wall of the storage assembly
  • the size of the first magnet part and the second magnet part are substantially the same.
  • the magnetic field direction of the first magnet part and the second magnet part are set to be the same, so that the magnetic field direction in the storage space is from top to bottom or from bottom to top.
  • the magnetically conductive connector includes:
  • the first connecting section extends from the middle part of one lateral side of the first magnet part along one side wall of the storage space to the middle part of the corresponding side of the second magnet part;
  • the second connection section extends from the middle part of the other lateral side of the first magnet part along the other side wall of the storage space to the middle part of the other side of the second magnet part, and
  • the width of the first connecting section and the second connecting section along the front-to-back depth direction is 1/4 to 1/10 of the length of the magnetic permeable assembly along the front-to-back depth direction.
  • the storage components include:
  • the drawer is arranged in the cylinder body in a pull-out manner, and a storage space is formed therein.
  • a refrigerator comprising:
  • the box body defines a storage compartment therein;
  • Any one of the above-mentioned magnetic field fresh-keeping storage containers is arranged inside the storage compartment.
  • the magnetic field fresh-keeping storage container of the present invention uses a magnet assembly to form a magnetic field in the storage space.
  • the magnetic field helps to improve the storage quality, can shorten the freezing time, reduce the food juice loss rate and nutrient loss, reduce the number of microorganisms and bacteria, and prolong the preservation period.
  • the magnetic permeable assembly uses the first magnetic permeable part, the second magnetic permeable part, and the magnetic permeable connector to form a ring-shaped magnetic conduction path outside the storage space, so that a uniform and strong enough to meet the quality requirements of the storage space is formed in the storage space. magnetic field.
  • the first magnet part and the second magnet part are respectively provided with permanent magnet plates, and the permanent magnetic fields of the permanent magnet plates are used as the basic magnetic field of the storage space.
  • the magnetic guide plate is arranged close to the permanent magnet plate to gather the magnetic field of the permanent magnet plate, which can prevent the magnetic field of the permanent magnet plate from leaking outward, enhance the magnetic flux density of the storage space, and improve the utilization efficiency of the magnetic field.
  • the magnetic field fresh-keeping storage container of the present invention may also be provided with an electromagnetic loop.
  • the electromagnetic coil wound in the electromagnetic ring is energized to generate an electromagnetic field superimposed on the permanent magnetic field of the corresponding permanent magnet plate, and the cooperation between the electromagnetic field and the permanent magnetic field enhances the magnetic flux in the storage space on the one hand Density makes the magnetic field distribution more uniform, which is conducive to better preservation of food materials; on the other hand, it can also use the characteristics of easy adjustment of electromagnetic fields to realize the coordinated adjustment of various magnetic fields to meet the storage requirements of different stored objects.
  • the magnetic field fresh-keeping storage container of the present invention makes the structure of the magnetic field fresh-keeping storage container more compact by improving the structure of the magnet assembly and the magnetic conduction assembly, and is especially suitable for structures such as storage boxes and storage drawers. Magnetic field preservation is realized in a relatively flat storage space.
  • the refrigerator of the present invention is equipped with the above-mentioned magnetic field fresh-keeping storage container, so that food materials are stored in a magnetic field environment, and the growth of ice crystal nuclei is inhibited.
  • the growth rate of ice crystals is higher than the migration rate of water molecules, and the generated ice crystals are smaller, thereby reducing Minimize the damage to the cells, avoid the loss of juice, ensure a better taste of the ingredients, improve the quality of frozen storage, and meet the user's storage quality requirements for precious ingredients.
  • the refrigerator of the present invention improves the storage quality through the magnetic field, and can provide a new fresh-keeping function for the smart refrigerator, which meets the user's increasing demand for smart refrigerators, and further satisfies the user's demand for smart homes and smart life. quality requirements.
  • Fig. 1 is a schematic perspective view of a refrigerator with a magnetic field fresh-keeping storage container according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a magnetic field fresh-keeping storage container according to an embodiment of the present invention.
  • Fig. 3 is an exploded view of parts of the magnetic field fresh-keeping storage container shown in Fig. 2;
  • Fig. 4 is a schematic diagram of cooperation between the magnet assembly and the magnetic conduction assembly in the magnetic field fresh-keeping storage container shown in Fig. 2;
  • Fig. 5 is a schematic diagram of the magnetic field direction of the magnetic field fresh-keeping storage container shown in Fig. 2;
  • Fig. 6 is a schematic diagram of the magnetic field direction of a magnetic field fresh-keeping storage container according to another embodiment
  • Fig. 7 is a schematic diagram of cooperation between the magnet assembly and the magnetic conduction assembly in the magnetic field fresh-keeping storage container described in 6;
  • Fig. 8 is a schematic diagram of a magnetic field fresh-keeping storage container according to another embodiment of the present invention.
  • Fig. 9 is an exploded view of parts of the magnetic field fresh-keeping storage container shown in Fig. 8;
  • Fig. 10 is a schematic diagram of cooperation between the magnet assembly and the magnetic conduction assembly in the magnetic field fresh-keeping storage container shown in Fig. 8;
  • Fig. 11 is a schematic diagram of the magnetic field direction of the magnetic field fresh-keeping storage container shown in Fig. 8;
  • Fig. 12 is a schematic diagram of the magnetic field direction of a magnetic field fresh-keeping storage container according to another embodiment of the present invention.
  • Fig. 13 is a schematic diagram of cooperation between the magnet assembly and the magnetic conduction assembly in the magnetic field fresh-keeping storage container described in 12;
  • Fig. 14 is a block diagram of a control system of a refrigerator with a magnetic field fresh-keeping storage container according to an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a refrigerator 10 with a magnetic field fresh-keeping storage container 200 according to an embodiment of the present invention.
  • the refrigerator 10 of this embodiment may generally include a box body 120, a door body 110, and a refrigeration system (not shown in the figure).
  • the box body 120 may define at least one storage compartment with an open front side, usually a plurality of storage compartments, such as a refrigerated storage compartment, a freezer storage compartment, a variable temperature storage compartment, and the like.
  • the number and functions of the specific storage compartments can be configured according to the prior needs.
  • the refrigerator 10 of this embodiment can be an air-cooled refrigerator, and an air duct system is arranged in the box body 120, and the cooling air flow through the heat exchanger (evaporator) is sent to the storage room through the air supply port by a fan, and then Return to the air duct through the air return port. Achieve refrigeration. Since the box body 120, the door body 110, and the refrigeration system of this type of refrigerator are well-known and easy to implement by those skilled in the art, in order not to cover up and obscure the invention points of the present application, the box body 120, the door body 110 , The refrigeration system itself will not be described in detail.
  • One or more storage compartments of the refrigerator 10 may be provided with magnetic field fresh-keeping storage containers 200 .
  • the magnetic field fresh-keeping storage container 200 When the magnetic field fresh-keeping storage container 200 is placed in the frozen storage compartment, it can be used to freeze and keep frozen foodstuffs fresh, inhibit the growth of ice crystal nuclei, make the growth rate of ice crystals higher than the migration rate of water molecules, and produce smaller ice crystals, thereby Reduce the damage to the cells, avoid the loss of juice, accelerate the freezing process, and shorten the freezing time.
  • the magnetic field fresh-keeping storage container 200 When the magnetic field fresh-keeping storage container 200 is placed in the refrigerated storage compartment, it can reduce the oxidation-reduction reaction speed of ingredients, reduce nutrition and water loss, prevent ingredients from discoloring, inhibit bacterial growth, and prolong the shelf life of ingredients.
  • the magnetic field fresh-keeping storage container 200 can be arranged in refrigerated storage compartments, freezer storage compartments, and temperature-variable storage compartments, and magnetic field-assisted fresh-keeping can be performed in the above-mentioned storage compartments, and it can also be used as an independent compartment of the refrigerator 10 .
  • the number of magnetic field fresh-keeping storage containers 200 and the storage compartments arranged therein can be configured according to user requirements.
  • one or more magnetic field fresh-keeping storage containers 200 may be arranged in the refrigerator 10 .
  • the magnetic field fresh-keeping storage container 200 may generally include: a storage assembly 210 , a magnet assembly 220 , and a magnetic conduction assembly 230 .
  • the storage component 210 defines a storage space for placing stored objects
  • the storage component 210 may be in the shape of a box.
  • the storage assembly 210 may be in the shape of an overall flat cuboid (that is, the distance along the height direction is significantly smaller than the distance along the depth direction and the distance along the lateral left and right directions).
  • the storage assembly 210 may be a drawer structure, that is, the storage assembly 210 may include: a barrel and a drawer. Wherein the barrel has a forward opening. The drawer is set in the barrel in a pullable manner. After the drawer is pulled out, the storage space can be revealed, so that the stored items can be accessed. After the drawer is pushed into the barrel, an independent sealed space can be formed.
  • Fig. 2 is a schematic diagram of a magnetic field fresh-keeping storage container 200 according to an embodiment of the present invention
  • Fig. 3 is an exploded view of components of the magnetic field fresh-keeping storage container 200 shown in Fig. 2
  • Fig. 4 is a magnetic field fresh-keeping storage shown in Fig. 2
  • the magnet assembly 220 acts as a generating source of a magnetic field.
  • the magnet assembly 220 may include a first magnet part 221 and a second magnet part 222 respectively disposed on a group of opposite sides of the storage assembly 210, and utilize the first magnet part 221 and the second magnet part 222 to form a magnetic field in the storage space.
  • the opposite sides where the first magnet part 221 and the second magnet part 222 are located can be selected according to the shape of the storage assembly 210 itself and the position in the refrigerator 10, for example, they can be placed on the lateral sides, top and bottom of the storage assembly 210. Both sides, or front and rear sides.
  • the magnetic pole directions of the first magnet part 221 and the second magnet part 222 are both facing the storage space.
  • the first magnet part 221 and the second magnet part 222 can be preferentially arranged on the top and bottom sides of the storage assembly 210 .
  • the first magnet part 221 is disposed on the top wall of the storage assembly 210
  • the second magnet part 222 is disposed on the bottom wall of the storage assembly 210
  • the magnetic field penetrates the storage space from top to bottom or from bottom to top.
  • Such an arrangement structure can reduce the distance between the first magnet part 221 and the second magnet part 222 and improve the strength and uniformity of the magnetic field.
  • the first magnet part 221 and the second magnet part 222 can have substantially the same structure and size, and the positions of the first magnet part 221 and the second magnet part 222 can be set according to the configuration of the sides where they are located. Generally speaking, the centers of the first magnet part 221 and the second magnet part 222 are opposite to the respective sides.
  • the first magnet part 221 and the second magnet part 222 may respectively include: a permanent magnet plate.
  • the permanent magnet plate is disposed outside the corresponding side surface of the storage assembly 210, and the shape of the permanent magnet plate is consistent with the shape of the corresponding side surface.
  • the permanent magnet plates may be arranged in a rectangle corresponding to the corresponding sides of the storage assembly 210 .
  • the permanent magnet plate of the first magnet part 221 can be connected with the storage assembly.
  • the shape of the top wall of the storage assembly 210 is consistent, and the permanent magnet plate of the second magnet part 222 can be consistent with the shape of the bottom wall of the storage assembly 210 .
  • the permanent magnet board needs to ensure that all positions of the storage space can form a uniform magnetic field. That is to say, the storage space is within the range of the magnetic field without any dead angle.
  • the magnetically conductive component 230 includes: a first magnetically conductive part 231 , a second magnetically conductive part 232 , and a magnetically conductive connecting part 233 .
  • the first magnetic conductor 231 is disposed corresponding to the first magnet part 221 .
  • the second magnetic conductor 232 is disposed corresponding to the second magnet part 222 .
  • the magnetically conductive connecting part 233 is connected between the first magnetically conductive part 231 and the second magnetically conductive part 232 .
  • the first magnetically conductive member 231 , the second magnetically conductive member 232 , and the magnetically conductive connecting member 233 form an annular magnetically conductive path outside the storage space.
  • the magnetically permeable component 230 can be made of a material with low coercive force and high magnetic permeability, and the magnetically permeable path formed by it can be used to gather the magnetic field, reduce the release of the magnetic field to the outside, and reduce the damage to other components outside the storage component 210. Interference (e.g. avoid magnetizing other components, etc.).
  • the magnetic permeable component 230 can be made of silicon steel sheets or similar materials.
  • the first magnetically permeable part 231 and the second magnetically permeable part 232 may respectively include a magnetically permeable plate. That is, the first magnetically permeable member 231 and the second magnetically permeable member 232 may respectively be plate-shaped structures of magnetically permeable plates.
  • the magnetic conductive plates are arranged correspondingly to the permanent magnetic plates, and the magnetic conductive connecting member 233 extends from the edge of the magnetic conductive plates along the outer side of the storage assembly 210 and is connected to the magnetic conductive plate on the other side.
  • the magnetic plate of the first magnetic member 231 is attached to the permanent magnet plate of the first magnet part 221
  • the magnetic plate of the second magnetic member 232 is attached to the permanent magnet plate of the second magnet part 222 .
  • the magnetically permeable component 230 can be formed in one piece, that is, the first magnetically permeable part 231 , the second magnetically permeable part 232 , and the magnetically permeable connecting part 233 are integrally formed. In other embodiments, the first magnetically permeable part 231 , the second magnetically permeable part 232 , and the magnetically permeable connecting part 233 may also be fixed by welding or bonding.
  • the magnetic plate of the first magnetic member 231 is arranged on the first magnet above the permanent magnet plate of the component 221
  • the magnetic permeable plate of the second magnetic permeable member 232 is arranged below the permanent magnet plate of the second magnet component 222 .
  • the projection of the storage space on the plane where the magnetic permeable plate is located is located within the range of the magnetic permeable plate, and the size of the permanent magnetic plate is smaller than or equal to its opposite magnetic permeable plate. That is to say, the magnetic conductive plate can be equal to or slightly larger than the corresponding side of the storage assembly 210 .
  • the magnetic conductive plate of the first magnetic conductive part 231 covers the storage space. The top surface, while the magnetic conductive plate of the second magnetic conductive member 232 covers the bottom surface of the storage space.
  • the size of the permanent magnet plate may be smaller than that of the corresponding magnetic permeable plate, and may coincide with the center of the magnetic permeable plate.
  • the magnetic plate can gather the magnetic field of the permanent magnetic plate to make it more uniform.
  • the magnetically conductive connector 233 is used to connect the magnetically conductive plate of the first magnetically permeable member 231 and the magnetically conductive plate of the second magnetically permeable member 232 , and the size of the magnetically conductive connector 233 can be set according to the state of the magnetic field.
  • the magnetically conductive connectors 233 may be strip-shaped, respectively connected to the middle of one side of the magnetically conductive plate.
  • the magnetically conductive connecting member 233 may include: a first connecting section 235 and a second connecting section 236 .
  • first connecting section 235 connects the magnetic conducting plate of the first magnetic conducting member 231 and one side of the magnetic conducting plate of the second magnetic conducting member 232
  • second connecting section 236 connects the magnetic conducting plate of the first magnetic conducting member 231 and the magnetic conducting plate of the second magnetic conducting member 232.
  • the other side of the magnetic conductive plate of the second magnetic conductive member 232 Viewed from a cross-section, the first magnetically conductive member 231 , the second magnetically conductive member 232 , and the magnetically conductive connecting member 233 form a ring located on the outer periphery of the storage assembly 210 .
  • the first connecting section 235 starts from one lateral side (for example, the right side) of the first magnet part 221
  • the middle part of the middle part extends along one side wall of the storage space to the middle part of the corresponding side (for example, the right side) of the second magnet part 222; ) extends along the other side wall of the storage space to the middle part of the other side (for example, the left side) of the second magnet part 222 .
  • the magnetically conductive connector 233 may be strip-shaped, and the width of the first connecting section 235 and the second connecting section 236 along the front-to-back depth direction is one-half to one-tenth of the length of the magnetic-conductive component 230 along the front-to-back depth direction. That is, the magnetically conductive connecting member 233 is disposed in the middle of the storage assembly 210 in the front-to-back direction.
  • the structure of the above-mentioned magnetic permeable component 230 can reduce the use of magnetic permeable materials and magnetic components while meeting the requirements of the magnetic field strength, save the cost of the magnetic field fresh-keeping storage container 200, and can reduce the magnetic field fresh-keeping storage container 200 and the refrigerator. 10
  • the intensity range of the magnetic field can be set to 1Gs-100Gs. In the case of application in the freezing environment, the range of the magnetic field intensity can preferably be 5-60GS, for example, about 20Gs; in the case of application in the refrigerated environment, the range of the magnetic field intensity can be 20-160GS, preferably 40-80Gs, for example about 60Gs.
  • FIG. 5 is a schematic diagram of the direction of the magnetic field of the magnetic field fresh-keeping storage container 200 shown in FIG. 2 .
  • the magnetic field directions of the first magnet part 221 and the second magnet part 222 are set to be the same, so that a uniform magnetic field is formed in the storage space. That is, the N poles of the permanent magnet plates of the first magnet part 221 and the second magnet part 222 face one direction, while the S poles face opposite directions.
  • the direction of the magnetic field in the storage space can be from top to bottom or from bottom to top.
  • the direction of the magnetic field shown in FIG. 5 is from bottom to top. Based on the same technical idea, those skilled in the art can easily realize the magnetic field in the opposite direction by adjusting the direction of the magnetic poles, that is, realize the magnetic field from top to bottom.
  • the permanent magnetic field formed by the above-mentioned permanent magnetic plate is a static magnetic field, which can make the storage space always have a certain strength of the magnetic field.
  • first magnet part 221 and the second magnet part 222 arranged up and down, those skilled in the art can easily realize the left and right arrangement of the first magnet part 221 and the second magnet part 222 in storage assemblies 210 of other shapes, Or arranged front and back.
  • FIG. 6 is a schematic diagram of the direction of the magnetic field of a magnetic field fresh-keeping storage container 200 according to another embodiment
  • FIG. 7 is a schematic diagram of cooperation between the magnet assembly 220 and the magnetic conduction assembly 230 in the magnetic field fresh-keeping storage container 200 described in 6.
  • the left and right arrangement of the first magnet part 221 and the second magnet part 222, the first magnet part 221 (covered in Figures 6 and 7, not shown) is arranged on the right side of the storage assembly 210;
  • the two magnet parts 222 are arranged on the left side of the storage assembly 210 .
  • the magnetically conductive plate of the first magnetically permeable part 231 is located on the right side of the first magnet part 221
  • the second magnetically permeable part 232 is located on the left side of the second magnet part 222
  • the magnetically conductive connecting part 233 connects the first magnetically conductive part 231 and the second magnetically conductive part 232 from the top center and the bottom center of the storage assembly 210 .
  • the direction of the magnetic field shown in FIG. 6 is from right to left. Based on the same technical idea, those skilled in the art can easily realize the magnetic field in the opposite direction by adjusting the direction of the magnetic poles, that is, realize the magnetic field from left to right.
  • first magnet part 221 and the second magnet part 222 are arranged one behind the other.
  • this embodiment also provides a magnetic field fresh-keeping storage container 200 capable of generating an electromagnetic field and coordinating with a permanent magnetic field.
  • Fig. 8 is a schematic diagram of a magnetic field fresh-keeping storage container 200 according to yet another embodiment of the present invention
  • Fig. 9 is an exploded view of components of the magnetic field fresh-keeping storage container 200 shown in Fig. 8
  • Fig. 10 is a magnetic field fresh-keeping storage container shown in Fig. 8
  • the first magnet part 221 and the second magnet part 222 further add an electromagnetic loop 224 on the basis of the permanent magnet plate 223 .
  • the permanent magnet plate 223 is still disposed outside the corresponding side surface of the storage assembly 210, and the shape of the permanent magnet plate 223 is consistent with the shape of the corresponding side surface.
  • the magnetic plates of the first magnetic member 231 and the second magnetic member 232 are arranged opposite to the permanent magnetic plate 223 respectively, and the magnetic connecting member 233 extends from the edge of the magnetic plate along the outside of the storage assembly 210 and is connected to another Side magnetic plates.
  • the projection of the storage space on the plane where the magnetic permeable plate is located is located within the range of the magnetic permeable plate, and the size of the permanent magnetic plate 223 is smaller than or equal to its opposite magnetic permeable plate. That is to say, the magnetic conductive plate can be equal to or slightly larger than the corresponding side of the storage assembly 210 .
  • the magnetic conductive plate of the first magnetic conductive part 231 covers the storage space. The top surface, while the magnetic conductive plate of the second magnetic conductive member 232 covers the bottom surface of the storage space.
  • the size of the permanent magnet plate 223 may be smaller than the corresponding magnetic permeable plate, and may be consistent with the center of the magnetic permeable plate, that is, the permanent magnet plate 223 may be attached to the central area of the magnetic permeable plate.
  • the magnetic conductive plate can gather the magnetic field of the permanent magnetic plate 223 to make it more uniform.
  • the first magnet part 221 and the second magnet part 222 are also respectively provided with electromagnetic loops 224 .
  • the electromagnetic ring 224 is disposed between the permanent magnet plate 223 and the magnetically conductive plate or between the permanent magnet plate 223 and the corresponding side of the storage assembly.
  • An electromagnetic coil is wound in the electromagnetic ring 224 along the circumferential direction of the ring. The electromagnetic coil is used to generate an electromagnetic field superimposed on the permanent magnetic field of the corresponding permanent magnet plate 223 after being energized.
  • the outer contour of the electromagnetic ring 224 and the permanent magnet plate 223 may be substantially the same or slightly smaller than that of the permanent magnet plate 223 , that is to say, the size of the electromagnetic ring 224 is smaller than or equal to the size of its opposite permanent magnet plate 223 .
  • the centers of the permanent magnet plate 223, the magnetic guide plate, and the electromagnetic ring 224 are opposite, that is, the magnetic guide plate can cover the magnetic guide plate and the electromagnetic ring 224, expand the magnetic field coverage space in the storage space, and can make the storage The magnetic field in the space is more uniform.
  • the number of turns of the electromagnetic coil in the electromagnetic loop 224 can be set according to the required magnetic field strength.
  • the direction of the electromagnetic field formed by the electromagnetic loop 224 can be set to be consistent with the direction of the permanent magnetic field of the permanent magnet plate 223.
  • the magnetically conductive plate can also gather the electromagnetic field and improve the uniformity of the magnetic field in the storage space.
  • the electromagnetic field can be set as a static magnetic field with a constant magnetic field direction and/or magnetic field strength, an alternating magnetic field with an alternating magnetic field direction and/or magnetic field strength, and a pulsed magnetic field activated at intervals.
  • the above magnetic field adjustment can be realized by adjusting the current to the electromagnetic coil.
  • the electromagnetic field can be adjusted according to the storage environment in the storage space and the storage state of the stored object. When the electromagnetic field is not activated, the permanent magnetic field of the permanent magnetic plate 223 is used to maintain the basic magnetic field strength.
  • the structure in which the first magnet component 221 and the second magnet component 222 are arranged up and down will be introduced below.
  • Those skilled in the art can easily realize the arrangement of the first magnet part 221 and the second magnet part 222 on the left and right, or the structure of the front and rear arrangement.
  • the first magnet part 221 is disposed on the top wall of the storage assembly 210
  • the second magnet part 222 is disposed on the bottom wall of the storage assembly 210, and may have substantially the same configuration and size.
  • the permanent magnet plate 223 of the first magnet part 221 is consistent with the shape of the top wall of the storage assembly 210
  • the permanent magnet plate 223 of the second magnet part 222 may be consistent with the shape of the bottom wall of the storage assembly 210
  • the size of the magnetic conductive plate may be substantially consistent with the size of the corresponding side of the storage assembly 210 .
  • the magnetic permeable plate of the first magnetic permeable part 231 is arranged above the permanent magnet plate 223 of the first magnet part 221 , and the magnetic permeable plate of the second magnetic permeable part 232 is arranged under the permanent magnet plate 223 of the second magnet part 222 .
  • the size of the magnetic conductive plate is greater than or equal to that of the permanent magnetic plate 223 , and it is placed against the central area of the permanent magnetic plate 223 .
  • the electromagnetic ring 224 of the first magnet component 221 can be sandwiched between the magnetic conductive plate of the first magnetic conductive member 231 and the permanent magnetic plate 223 or between the permanent magnetic plate 223 and the top wall of the storage assembly 210, the second magnet
  • the electromagnetic loop 224 of the component 222 can be interposed between the magnetic conductive plate of the second magnetic conductive member 232 and the permanent magnetic plate 223 or between the permanent magnetic plate 223 and the bottom wall of the storage assembly 210 .
  • the magnetic plate of the first magnetically permeable part 231 can disperse the magnetic field of the electromagnetic loop 224 of the first magnet part 221 evenly
  • the magnetic plate of the second magnetically permeable part 232 can disperse the magnetic field of the electromagnetic loop 224 of the second magnet part 222 evenly. Magnetic field, thereby forming a uniform magnetic field inside the storage space.
  • the first connecting section 235 extends from the middle part of one lateral side (for example, the right side) of the first magnet part 221 along one side wall of the storage space to the middle part of the corresponding side (for example, the right side) of the second magnet part 222;
  • the second connecting segment 236 extends from the middle of the other lateral side (for example, the left side) of the first magnet part 221 along the other side wall of the storage space to the other side (for example, the left side) of the second magnet part 222. middle part.
  • the first connection section 235 and the second connection section 236 may extend from the center of the side end surface of the magnetic conductive plate along the outside of the storage assembly 210 .
  • the magnetically conductive connector 233 can be strip-shaped, and its size can meet the requirements of forming a magnetically conductive path, which saves the use of magnetically conductive materials, saves cost and reduces weight.
  • FIG. 11 is a schematic diagram of the direction of the magnetic field of the magnetic field fresh-keeping storage container 200 shown in FIG. 8 .
  • the directions of the electromagnetic field and the permanent magnetic field of the first magnet part 221 and the second magnet part 222 are set to be the same, so that a uniform magnetic field is formed in the storage space.
  • the direction of the magnetic field in the storage space may be from top to bottom or from bottom to top.
  • the direction of the magnetic field shown in FIG. 11 is from bottom to top. Based on the same technical idea, those skilled in the art can easily realize a magnetic field in the opposite direction, that is, a magnetic field from top to bottom.
  • the magnetic permeable component 230 can improve the uniformity of the magnetic field, and can also guide the magnetic field outside the storage space, so as to prevent the magnetic field from affecting other components other than the storage component 210 .
  • the matching structure of the permanent magnet plate 223, the magnetic guide plate, the electromagnetic ring 224, and the magnetic guide connector 233 has been optimized and improved, which can make the structure compact, save the occupied space, and facilitate assembly to the storage assembly 210, which is beneficial to the refrigerator 10. use.
  • FIG. 12 is a schematic diagram of the direction of the magnetic field of a magnetic field fresh-keeping storage container 200 according to another embodiment
  • FIG. 13 is a schematic diagram of cooperation of the magnet assembly 220 and the magnetic conduction assembly 230 in the magnetic field fresh-keeping storage container 200 described in FIG. 12
  • the first magnet part 221 and the second magnet part 222 are arranged left and right, and the first magnet part 221 and the second magnet part 222 respectively include an electromagnetic ring 224 and a permanent magnet plate 223 .
  • the first magnet part 221 (covered in FIGS. 12 and 13 , not shown) is arranged on the right side of the storage assembly 210 ; the second magnet part 222 is arranged on the left side of the storage assembly 210 .
  • the magnetically conductive plate of the first magnetically permeable part 231 is located on the right side of the first magnet part 221
  • the second magnetically permeable part 232 is located on the left side of the second magnet part 222
  • the magnetically conductive connecting part 233 connects the first magnetically conductive part 231 and the second magnetically conductive part 232 from the top center and the bottom center of the storage assembly 210 .
  • the direction of the magnetic field shown in FIG. 12 is from right to left. Based on the same technical idea, those skilled in the art can easily realize the magnetic field in the opposite direction by adjusting the direction of the magnetic poles, that is, realize the magnetic field from left to right.
  • first magnet part 221 and the second magnet part 222 are arranged one behind the other.
  • Fig. 14 is a block diagram of a control system of a refrigerator 10 with a magnetic field fresh-keeping storage container 200 according to an embodiment of the present invention.
  • the refrigerator 10 of this embodiment can also combine the magnetic field control and the refrigeration control to ensure that the food is frozen in the magnetic field environment and achieve the effect of freshness preservation and freezing.
  • the refrigerator 10 can also optionally be provided with one or more of the storage temperature sensor 330 , the open/close detector 340 , and the refrigeration controller 310 .
  • the storage temperature sensor 330 is used to detect the storage temperature in the storage space
  • the opening and closing detector 340 is used to detect the opening and closing state of the storage space.
  • the storage temperature sensor 330 can detect whether new food is put in, or whether the original food needs to be re-frozen.
  • the electromagnetic ring 224 cooperates with the refrigeration system 320 to realize magnetic field-assisted freezing and improve the freezing and fresh-keeping effect of food materials.
  • the controller 310 is used to control the electromagnetic loop 224 and the refrigeration system 320, so as to realize corresponding refrigeration and magnetic field control.
  • Various sensors including the storage temperature sensor 330 and the opening and closing detector 340 ) provide detection means for the above-mentioned control, thereby meeting the control requirements of the control method.
  • the controller 310 may be configured to control the electromagnetic loop 224 to generate an electromagnetic field according to the temperature of the storage space and the operating state of the refrigerator 10, such as a static magnetic field with a constant magnetic field direction and/or magnetic field strength, an alternating magnetic field direction and/or magnetic field strength Alternating magnetic field, pulsed magnetic field starting at intervals. Considering that the magnetic field is more effective in the specific storage stage of the stored object, the controller 310 can activate the electromagnetic field when a stronger magnetic field is needed; in a normal storage room, the permanent magnetic field is used to maintain the basic magnetic field strength.
  • the controller 310 may be configured to activate the electromagnetic field when a new stored object is placed in the storage space and the temperature of the stored object is within a set temperature threshold range.
  • the above-mentioned temperature threshold range can be set according to the crystallization temperature during the freezing process, so as to increase the magnetic field strength during the crystallization process.
  • the permanent magnetic field maintains a certain magnetic field strength, and the electromagnetic field can be activated periodically to strengthen the magnetic field treatment on the stored objects.
  • the above-mentioned control method can make the stored material freeze in a strong magnetic field environment, preferentially inhibit the growth of ice crystal nuclei, reduce damage to cells, avoid juice loss, ensure a better taste of food materials, improve the quality of frozen storage, and meet It meets the user's storage quality requirements for precious ingredients.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种磁场保鲜储物容器(200)和冰箱(10),磁场保鲜储物容器(200)包括:储物组件(210),其内限定用于放置被储藏物的储物空间;磁体组件(220),包括分别设置于储物组件(210)一组相对侧面的第一磁体部件(221)和第二磁体部件(222),并利用第一磁体部件(221)和第二磁体部件(222)在储物空间形成磁场;导磁组件(230),具有与第一磁体部件(221)对应设置的第一导磁件(231)、与第二磁体部件(222)对应设置的第二导磁件(232),以及连接于第一导磁件(231)和第二导磁件(232)之间的导磁连接件(233),三者在储物空间外部形成环形的导磁通路。储物空间内形成均匀且强度满足提高储物质量要求的磁场,结构紧凑、便于安装,符合智能冰箱使用需求。

Description

磁场保鲜储物容器和冰箱 技术领域
本发明涉及冷藏冷冻设备,特别是涉及一种磁场保鲜储物容器和冰箱。
背景技术
用户对冰箱储藏物的保鲜效果也越来越重视,对于肉类、鱼、虾这类食材,储藏过程中容易出现汁液流失导致口感变差、颜色变暗的问题。特别是某些高档食材,储藏一段时间后的品质会大为降低。
为了提高储物的质量,现有技术中出现了较多的改进方案,例如通过速冻提高食物的冷冻速度或者食品进入过冷却状态,这种方案需要提高冰箱的制冷能力,还会导致冰箱耗能增加。因此更加高效地提高冷冻储物质量成为冰箱研发者亟待解决的技术难题。
理论研究发现磁场对冷冻过程中冰晶的形成有较大的影响。冰箱领域也积极探索将磁场引入保鲜储物,然而在冰箱中实际应用时,磁场辅助保鲜的效果并不能令人满意。
发明内容
本发明的一个目的是要提供一种有效提高储物质量的磁场保鲜储物容器和冰箱。
本发明一个进一步的目的是要节省部件成本,便于磁场保鲜储物容器在冰箱中的安装应用。
特别地,本发明提供了一种磁场保鲜储物容器,其包括:
储物组件,其内限定用于放置被储藏物的储物空间;
磁体组件,其包括分别设置于储物组件一组相对侧面的第一磁体部件和第二磁体部件,并利用第一磁体部件和第二磁体部件在储物空间形成磁场;
导磁组件,其具有与第一磁体部件对应设置的第一导磁件、与第二磁体部件对应设置的第二导磁件,以及连接于第一导磁件和第二导磁件之间的导磁连接件,第一导磁件、第二导磁件、以及导磁连接件在储物空间外部形成环形的导磁通路。
可选地,第一磁体部件以及所述第二磁体部件分别包括:永磁板,设置于储物组件对应的侧面外侧,并且永磁板的形状与其对应的侧面的形状相一 致;
第一导磁件以及第二导磁件分别包括导磁板,导磁板分别与永磁板相对设置,并且导磁连接件从导磁板的边缘沿储物组件的外侧延伸并连接至另一侧的导磁板。
可选地,储物空间在导磁板所在平面上的投影位于导磁板的范围内,永磁板的尺寸小于或等于其相对的导磁板。
可选地,第一磁体部件以及第二磁体部件还分别包括电磁环圈,电磁环圈设置于永磁板和导磁板之间或者设置于永磁板与储物组件对应的侧面之间,电磁环圈内部沿环形周向绕设有电磁线圈,电磁线圈被通电后用于产生与对应的永磁板的永磁磁场相叠加的电磁场。
可选地,电磁环圈的尺寸小于或等于其相对的永磁板的尺寸,并且第一磁体部件的永磁板、导磁板、电磁环圈三者的中心相对,第二磁体部件的永磁板、导磁板、电磁环圈三者的中心相对。
可选地,第一磁体部件设置于储物组件的顶壁,第二磁体部件设置于储物组件的底壁,并且第一磁体部件与第二磁体部件的尺寸大体相同。
可选地,第一磁体部件与第二磁体部件的磁场方向设置为相同,从而使得储物空间内的磁场方向为从顶至底或者从底至顶。
可选地,导磁连接件包括:
第一连接段,从第一磁体部件的横向一侧的中部沿储物空间的一侧侧壁延伸至第二磁体部件的对应一侧的中部;
第二连接段,从第一磁体部件的横向另一侧的中部沿储物空间的另一侧侧壁延伸至第二磁体部件的另一侧的中部,并且
第一连接段和第二连接段沿前后纵深方向的宽度为导磁组件沿前后纵深方向的长度的四分之一至十分之一。
可选地,储物组件包括:
筒体,具有前向开口;以及
抽屉,可抽拉地设置在筒体内,其内形成储物空间。
根据本发明的另一个方面,提供了一种冰箱,其包括:
箱体,其内限定有储物间室;
上述任一种磁场保鲜储物容器,设置于储物间室内部。
本发明的磁场保鲜储物容器,利用磁体组件在储物空间内形成磁场。磁 场有助于提高储物质量,可以缩短冻结时间,减少食物的汁液流失率以及营养流失,降低微生物和细菌数量,延长保鲜周期。导磁组件利用第一导磁件、第二导磁件、以及导磁连接件在储物空间外部形成环形的导磁通路,使得储物空间内形成均匀且强度足以满足达到储物质量要求的磁场。
进一步地,本发明的磁场保鲜储物容器,第一磁体部件和第二磁体部件分别设置有永磁板,利用永磁板的永磁磁场作为储物空间的基础磁场。导磁板贴靠永磁板设置,汇聚永磁板的磁场,可以避免永磁板的磁场向外泄露,增强了储物空间的磁通密度,提高了磁场利用效率。
进一步地,本发明的磁场保鲜储物容器,还可以设置有电磁环圈。电磁环圈内绕设的电磁线圈被通电后用于产生与对应的永磁板的永磁磁场相叠加的电磁场,利用电磁场与永磁磁场进行配合,一方面增强了储物空间内的磁通密度,使得磁场分布更加均匀,有利于更好的保鲜食材;另一方面,还可以利用电磁场便于调整的特点,实现多种磁场的配合调整,满足不同被储藏物的储藏要求。
更进一步地,本发明的磁场保鲜储物容器,通过对磁体组件、导磁组件的构造的改进,使得磁场保鲜储物容器结构更加紧凑,尤其适用于储物盒、储物抽屉这种结构,在相对扁平的储物空间内实现磁场保鲜。
更进一步地,本发明的冰箱,设置有上述磁场保鲜储物容器,使得食材在磁场环境中储藏,抑制冰晶晶核生长,冰晶生长速率高于水分子迁移速率,产生的冰晶偏小,从而减小对细胞造成的损伤,避免汁液流失,保证了食材更好的口感,提高了冷冻储物质量,满足了用户对珍贵食材的储藏质量要求。
更进一步,本发明的冰箱,通过磁场提高了储物质量,可以为智能冰箱提供新的保鲜功能,符合了使用者对智能冰箱日益提高的使用需求,进一步满足了使用者对智慧家庭、智能生活的品质要求。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的具有磁场保鲜储物容器的冰箱的示意性透视图;
图2是根据本发明一个实施例的磁场保鲜储物容器的示意图;
图3是图2所示的磁场保鲜储物容器的部件爆炸图;
图4是图2所示的磁场保鲜储物容器中磁体组件与导磁组件的配合示意图;
图5是图2所示的磁场保鲜储物容器的磁场方向示意图;
图6是根据另一实施例的磁场保鲜储物容器的磁场方向示意图;
图7是6所述的磁场保鲜储物容器中磁体组件与导磁组件的配合示意图;
图8是根据本发明又一实施例的磁场保鲜储物容器的示意图;
图9是图8所示的磁场保鲜储物容器的部件爆炸图;
图10是图8所示的磁场保鲜储物容器中磁体组件与导磁组件的配合示意图;
图11是图8所示的磁场保鲜储物容器的磁场方向示意图;
图12是根据本发明另一实施例的磁场保鲜储物容器的磁场方向示意图;
图13是12所述的磁场保鲜储物容器中磁体组件与导磁组件的配合示意图;以及
图14是根据本发明一个实施例的具有磁场保鲜储物容器的冰箱的控制系统框图。
具体实施方式
图1是根据本发明一个实施例的磁场保鲜储物容器200的冰箱10的示意性透视图。本实施例的冰箱10一般性地可以包括箱体120、门体110、制冷系统(图中未示出)。箱体120内可以限定有至少一个前侧敞开的储物间室,通常为多个,如冷藏储物间室、冷冻储物间室、变温储物间室等等。具体的储物间室的数量和功能可以根据预先的需求进行配置。
本实施例的冰箱10可以为风冷冰箱,在箱体120内设置有风路系统,利用风机将经过换热器(蒸发器)换热的制冷气流经送风口送向储物间室,然后经由回风口返回风道。实现制冷。由于此类冰箱的箱体120、门体110、制冷系统本身均是本领域技术人员习知且易于实现的,为了不掩盖和模糊本申请的发明点,后文对箱体120、门体110、制冷系统本身不做赘述。
冰箱10的一个或多个储物间室内部可以设置有磁场保鲜储物容器200。磁场保鲜储物容器200在放置于冷冻储物间室时,可以用于对冷冻食材进行冷冻保鲜,抑制冰晶晶核生长,使得冰晶生长速率高于水分子迁移速率,产生的冰晶偏小,从而减小对细胞造成的损伤,避免汁液流失,加速冷冻过程,缩短冻结时间。磁场保鲜储物容器200在放置于冷藏储物间室时,可以降低食材氧化还原反应的速度,减少营养、水分损失,阻止食材变色,抑制细菌滋生,延长食材保鲜期。磁场保鲜储物容器200可以布置于冷藏储物间室、冷冻储物间室、变温储物间室当中,在上述储物间室内进行磁场辅助保鲜,也可以作为冰箱10的一个独立间室。
磁场保鲜储物容器200的数量以及布置的储物间室,可以根据用户需求进行配置。例如冰箱10内可以设置一个或多个磁场保鲜储物容器200。
磁场保鲜储物容器200一般性地可以包括:储物组件210、磁体组件220、导磁组件230。其中储物组件210内限定用于放置被储藏物的储物空间,储物组件210可以为盒体状。一些实施例中储物组件210可以为整体扁平的长方体形状(即沿高度方向的距离明显小于沿纵深方向的距离以及沿横向左右方向的距离)。储物组件210可以为抽屉结构,也即储物组件210可以包括:筒体和抽屉。其中筒体具有前向开口。抽屉可抽拉地设置在筒体内。抽屉被拉出后可以显露出储物空间,以便取放被储藏物。抽屉被推入筒体后,可以形成独立的密封空间内。
图2是根据本发明一个实施例的磁场保鲜储物容器200的示意图;图3是图2所示的磁场保鲜储物容器200的部件爆炸图;图4是图2所示的磁场保鲜储物容器200中磁体组件220与导磁组件230的配合示意图。
磁体组件220作为磁场的生成源。磁体组件220可以包括分别设置于储物组件210一组相对侧面的第一磁体部件221和第二磁体部件222,并利用第一磁体部件221和第二磁体部件222在储物空间形成磁场。第一磁体部件221和第二磁体部件222所在的相对侧面可以根据储物组件210的自身形状以及在冰箱10内的位置进行选择,例如可以选择放置在储物组件210的横向两侧、顶底两侧、或者前后两侧。第一磁体部件221和第二磁体部件222的磁极方向均朝向储物空间。
在储物组件210整体为扁平形状,特别是储物组件210为抽屉形式的情况下,第一磁体部件221和第二磁体部件222可以优先布置为设置于储物组 件210的顶底两侧。第一磁体部件221设置于储物组件210的顶壁,第二磁体部件222设置于储物组件210的底壁,磁场从顶至底或者从底至顶贯穿储物空间。这样的布置结构,可以减少第一磁体部件221和第二磁体部件222的距离,提高磁场的强度以及均匀性。
第一磁体部件221与第二磁体部件222可以具有大体相同的构造和尺寸,第一磁体部件221与第二磁体部件222的位置可根据其所在侧面的构造进行设置。一般而言,第一磁体部件221与第二磁体部件222的与各自所在侧面的中心相对。
第一磁体部件221以及第二磁体部件222可以分别包括:永磁板。永磁板设置于储物组件210对应的侧面外侧,并且永磁板的形状与其对应的侧面的形状相一致。例如在储物组件210为长方体形状时,永磁板可以设置为与储物组件210的对应侧面对应的长方形。例如在第一磁体部件221设置于储物组件210的顶壁,第二磁体部件222设置于储物组件210的底壁的实施例中,第一磁体部件221的永磁板可以与储物组件210的顶壁形状相一致,第二磁体部件222的永磁板可以与储物组件210的底壁形状相一致。
永磁板需保证储物空间的所有位置均能形成均匀的磁场。也即储物空间无死角地处于磁场范围内。
导磁组件230包括:第一导磁件231、第二导磁件232、以及导磁连接件233。第一导磁件231与第一磁体部件221对应设置。第二导磁件232与第二磁体部件222对应设置。导磁连接件233连接于第一导磁件231和第二导磁件232之间。第一导磁件231、第二导磁件232、以及导磁连接件233在储物空间外部形成环形的导磁通路。
导磁组件230可以由具有低矫顽力和高磁导率的材料制成,其形成的导磁通路可以用于聚拢磁场,减少磁场向外部释放,减少对储物组件210外侧的其他部件造成干扰(例如避免磁化其他部件等)。导磁组件230可以使用硅钢片或类似材料制成。
第一导磁件231以及第二导磁件232可以分别包括导磁板。也即第一导磁件231以及第二导磁件232可以分别为导磁板的板状结构。导磁板分别与永磁板对应设置,并且导磁连接件233从导磁板的边缘沿储物组件210的外侧延伸并连接至另一侧的导磁板。例如第一导磁件231的导磁板贴靠第一磁体部件221的永磁板,第二导磁件232的导磁板贴靠第二磁体部件222的永 磁板。导磁组件230可以一体件,也即第一导磁件231、第二导磁件232、以及导磁连接件233一体成形。在另一些实施例中第一导磁件231、第二导磁件232、以及导磁连接件233也可以通过焊接、粘接进行固定。
在第一磁体部件221设置于储物组件210的顶壁,第二磁体部件222设置于储物组件210的底壁的实施例中,第一导磁件231的导磁板布置于第一磁体部件221的永磁板的上方,而第二导磁件232的导磁板布置于第二磁体部件222的永磁板的下方。
储物空间在导磁板所在平面上的投影位于导磁板的范围内,永磁板的尺寸小于或等于其相对的导磁板。也就是说导磁板可以等于或略大于储物组件210的相应侧面。在第一磁体部件221设置于储物组件210的顶壁,第二磁体部件222设置于储物组件210的底壁的实施例中,第一导磁件231的导磁板覆盖储物空间的顶面,而第二导磁件232的导磁板覆盖储物空间的底面。
永磁板的尺寸可以小于对应的导磁板,并且可以与导磁板的中心一致。导磁板可以将永磁板的磁场进行聚拢,使其进一步均匀。
导磁连接件233用于连接第一导磁件231的导磁板以及第二导磁件232的导磁板,导磁连接件233的尺寸大小可以根据对磁场的状态进行设置。导磁连接件233可以为长条状,分别连接至导磁板一侧的中部。
导磁连接件233可以包括:第一连接段235、第二连接段236。其中第一连接段235连接第一导磁件231的导磁板以及第二导磁件232的导磁板的一侧,而第二连接段236连接第一导磁件231的导磁板以及第二导磁件232的导磁板的另一侧。从截面上看,第一导磁件231、第二导磁件232、以及导磁连接件233形成位于储物组件210外周的环圈。
在第一磁体部件221和第二磁体部件222分别布置在储物组件210的顶壁、底壁的实施例中,第一连接段235从第一磁体部件221的横向一侧(例如右侧)的中部沿储物空间的一侧侧壁延伸至第二磁体部件222的对应一侧(例如右侧)的中部;第二连接段236从第一磁体部件221的横向另一侧(例如左侧)的中部沿储物空间的另一侧侧壁延伸至第二磁体部件222的另一侧(例如左侧)的中部。
导磁连接件233可以为条状,第一连接段235和第二连接段236沿前后纵深方向的宽度为导磁组件230沿前后纵深方向的长度的二分之一至十分之一。也即导磁连接件233设置在储物组件210前后方向的中部位置。
上述导磁组件230的构造,可以在满足磁场强度要求的情况下,减少导磁材料以及磁性部件的使用,节省磁场保鲜储物容器200的成本,并且可以减小磁场保鲜储物容器200以及冰箱10整机的重量。磁场的强度范围可以设置为1Gs-100Gs,在应用于冷冻环境的情况下,磁场强度范围可以优选采用5~60GS,例如可选择20Gs左右;在应用于冷藏环境的情况下,磁场强度范围可以采用20~160GS,优选地可以采用40~80Gs,例如60Gs左右。
图5是图2所示的磁场保鲜储物容器200的磁场方向示意图。第一磁体部件221与第二磁体部件222的磁场方向设置为相同,使得储物空间内形成均匀的磁场。也就是第一磁体部件221与第二磁体部件222的永磁板的N极朝向一个方向,而S极均朝向相反的方向。在第一磁体部件221和第二磁体部件222分别布置在储物组件210的顶壁、底壁的实施例中,储物空间内的磁场方向可以为从顶至底或者从底至顶。图5中示出的磁场方向为从底至顶,基于相同的技术思路,本领域技术人员易于通过调整磁极方向实现相反方向的磁场,也即实现从顶至底的磁场。
上述永磁板形成的永磁磁场为静态磁场,可以使得储物空间内始终具有一定强度的磁场。
基于上述对上下布置的第一磁体部件221与第二磁体部件222的说明,本领域技术人员易于在其他形状的储物组件210中实现第一磁体部件221和第二磁体部件222的左右布置,或者前后布置。
图6是根据另一实施例的磁场保鲜储物容器200的磁场方向示意图,而图7是6所述的磁场保鲜储物容器200中磁体组件220与导磁组件230的配合示意图。在该实施例中第一磁体部件221和第二磁体部件222的左右布置,第一磁体部件221(图6、7中被遮挡,未能示出)布置于储物组件210的右侧;第二磁体部件222布置于储物组件210的左侧。相应地,第一导磁件231的导磁板位于第一磁体部件221的右侧,第二导磁件232位于第二磁体部件222的左侧。导磁连接件233从储物组件210的顶部中央以及底部中央连接第一导磁件231和第二导磁件232。图6中示出的磁场方向为从右至左,基于相同的技术思路,本领域技术人员易于通过调整磁极方向实现相反方向的磁场,也即实现从左至右的磁场。
相类似地,本领域技术人员应易于实现第一磁体部件221和第二磁体部件222前后布置的实施例。
为了进一步提高磁场强度并使得磁场可调,本实施例还提供了一种能够生成电磁场与永磁场配合的磁场保鲜储物容器200。
图8是根据本发明又一实施例的磁场保鲜储物容器200的示意图;图9是图8所示的磁场保鲜储物容器200的部件爆炸图;图10是图8所示的磁场保鲜储物容器200中磁体组件220与导磁组件230的配合示意图。
在该实施例中,第一磁体部件221和第二磁体部件222在永磁板223的基础上,进一步增加了电磁环圈224。永磁板223仍然设置于储物组件210对应的侧面外侧,并且永磁板223的形状与其对应的侧面的形状相一致。
第一导磁件231以及第二导磁件232的导磁板分别相对永磁板223设置,并且导磁连接件233从导磁板的边缘沿储物组件210的外侧延伸并连接至另一侧的导磁板。
储物空间在导磁板所在平面上的投影位于导磁板的范围内,永磁板223的尺寸小于或等于其相对的导磁板。也就是说导磁板可以等于或略大于储物组件210的相应侧面。在第一磁体部件221设置于储物组件210的顶壁,第二磁体部件222设置于储物组件210的底壁的实施例中,第一导磁件231的导磁板覆盖储物空间的顶面,而第二导磁件232的导磁板覆盖储物空间的底面。
永磁板223的尺寸可以小于对应的导磁板,并且可以与导磁板的中心一致,也即永磁板223可以贴靠于导磁板的中央区域。导磁板可以将永磁板223的磁场进行聚拢,使其进一步均匀。
第一磁体部件221以及第二磁体部件222还分别设置有电磁环圈224。电磁环圈224设置于永磁板223和导磁板之间或者设置于永磁板223与储物组件对应的侧面之间。电磁环圈224内沿环形周向绕设有电磁线圈。电磁线圈被通电后用于产生与对应的永磁板223的永磁磁场相叠加的电磁场。
电磁环圈224的外周轮廓与永磁板223的轮廓可以大体一致或者略小于永磁板223,也就是说所述电磁环圈224的尺寸小于或等于其相对的永磁板223的尺寸。
永磁板223、导磁板、电磁环圈224三者的中心相对,也即导磁板可以覆盖导磁板、电磁环圈224,扩大储物空间内的磁场覆盖空间,并且可以使得储物空间内的磁场更加均匀。
电磁环圈224内电磁线圈的匝数可以根据所需的磁场强度进行设置。电 磁环圈224形成的电磁场的方向可以设置为与永磁板223的永磁磁场的方向一致。在该实施例,导磁板还可以聚拢电磁场,提高储物空间中磁场的均匀性。
通过对电磁线圈的控制,电磁场可以根据需要设置为磁场方向和/或磁场强度恒定的静态磁场、磁场方向和/或磁场强度交变的交变磁场、间隔启动的脉冲磁场。上述磁场调整可以通过调整通向电磁线圈的电流来实现。在一些实施例中,电磁场可以根据储物空间内的储物环境以及被储藏物的储藏状态进行调整。在电磁场不启动的情况下,利用永磁板223的永磁磁场维持基础的磁场强度。
以下以储物组件210为扁平形状的抽屉结构为例,对上下布置第一磁体部件221与第二磁体部件222的结构进行介绍。本领域技术人员易于在此基础上实现第一磁体部件221和第二磁体部件222的左右布置,或者前后布置的结构。
第一磁体部件221设置于储物组件210的顶壁,第二磁体部件222设置于储物组件210的底壁,并且可以具有大体相同的构造及尺寸。第一磁体部件221的永磁板223与储物组件210的顶壁形状相一致,第二磁体部件222的永磁板223可以与储物组件210的底壁形状相一致。且导磁板的尺寸可以与储物组件210的对应侧面的尺寸大体一致。
第一导磁件231的导磁板布置于第一磁体部件221的永磁板223的上方,而第二导磁件232的导磁板布置于第二磁体部件222的永磁板223的下方。导磁板的尺寸大于或等于永磁板223,并且贴靠设置于永磁板223的中央区域。
第一磁体部件221的电磁环圈224可以夹设在第一导磁件231的导磁板以及永磁板223之间或者永磁板223与储物组件210的顶壁之间,第二磁体部件222的电磁环圈224可以夹设在第二导磁件232的导磁板以及永磁板223之间或者永磁板223与储物组件210的底壁之间。第一导磁件231的导磁板可以分散均匀第一磁体部件221的电磁环圈224的磁场,第二导磁件232的导磁板可以分散均匀第二磁体部件222的电磁环圈224的磁场,从而在储物空间内部形成均匀的磁场。
第一连接段235从第一磁体部件221的横向一侧(例如右侧)的中部沿储物空间的一侧侧壁延伸至第二磁体部件222的对应一侧(例如右侧)的中 部;第二连接段236从第一磁体部件221的横向另一侧(例如左侧)的中部沿储物空间的另一侧侧壁延伸至第二磁体部件222的另一侧(例如左侧)的中部。
第一连接段235和第二连接段236可以从导磁板的侧端面的中央沿储物组件210外侧延伸。
导磁连接件233可以为条状,其尺寸能够满足形成导磁通路的要求即可,节省导磁材料的使用,在节省成本的同时,减轻重量。
电磁场的方向可以设置为永磁磁场的方向一致,从而实现磁场的相互叠加,提高磁场强度。图11是图8所示的磁场保鲜储物容器200的磁场方向示意图。第一磁体部件221与第二磁体部件222的电磁场以及永磁磁场的磁场方向均设置为相同,使得储物空间内形成均匀的磁场。储物空间内的磁场方向可以为从顶至底或者从底至顶。图11中示出的磁场方向为从底至顶,基于相同的技术思路,本领域技术人员易于实现相反方向的磁场,也即从顶至底的磁场。
导磁组件230一方面可以提高磁场的均匀程度,还可以对储物空间外侧的磁场进行引导,避免磁场对储物组件210以外的其他部件造成影响。
永磁板223、导磁板、电磁环圈224、导磁连接件233的配合结构经过优化改进,可以使得结构紧凑,节省了占用空间,便于装配至储物组件210,有利于在冰箱10内使用。
图12是根据另一实施例的磁场保鲜储物容器200的磁场方向示意图,而图13是12所述的磁场保鲜储物容器200中磁体组件220与导磁组件230的配合示意图。在该实施例中第一磁体部件221和第二磁体部件222的左右布置,第一磁体部件221和第二磁体部件222分别包括电磁环圈224以及永磁板223。第一磁体部件221(图12、13中被遮挡,未能示出)布置于储物组件210的右侧;第二磁体部件222布置于储物组件210的左侧。相应地,第一导磁件231的导磁板位于第一磁体部件221的右侧,第二导磁件232位于第二磁体部件222的左侧。导磁连接件233从储物组件210的顶部中央以及底部中央连接第一导磁件231和第二导磁件232。图12中示出的磁场方向为从右至左,基于相同的技术思路,本领域技术人员易于通过调整磁极方向实现相反方向的磁场,也即实现从左至右的磁场。
相类似地,本领域技术人员应易于实现第一磁体部件221和第二磁体部 件222前后布置的实施例。
图14是根据本发明一个实施例的具有磁场保鲜储物容器200的冰箱10的控制系统框图。本实施例的冰箱10还可以将磁场控制与制冷控制相结合,保证食物在磁场环境中冻结,实现保鲜冷冻的效果。
冰箱10还可以选择设置储物温度传感器330、开闭检测器340、制冷控制器310中的一项或多项。储物温度传感器330用于检测储物空间内的储物温度,开闭检测器340用于检测储物空间的开闭状态。
开闭检测器340检测到储物空间被打开后,通过储物温度传感器330可以检测是否放入新的食材,或者原有食材是否需要重新冷冻。在制冷过程中,电磁环圈224和制冷系统320配合,可以实现磁场辅助冷冻,提高食材的冷冻保鲜效果。
控制器310用于对电磁环圈224以及制冷系统320进行控制,从而实现相应的制冷以及磁场控制。而各种传感器(包括储物温度传感器330、开闭检测器340),为上述控制提供了检测手段,从而可以满足控制方法的控制需求。
控制器310可以配置成根据储物空间的温度以及冰箱10的运行状态,控制电磁环圈224生成电磁场,例如磁场方向和/或磁场强度恒定的静态磁场、磁场方向和/或磁场强度交变的交变磁场、间隔启动的脉冲磁场。考虑到磁场在被储藏物的特定储藏阶段作用更大,控制器310可以在需要更强磁场时,启动电磁场;在正常储藏室,利用永磁场维持基本磁场强度。
例如利用磁场实现辅助冷冻储物时,控制器310可以配置成在储物空间放入新的被储藏物且储物温度在设定的温度阈值范围内时,启动电磁场。上述温度阈值范围可以根据对冻结过程中结晶时的温度进行设置,从而在完成结晶的过程中加大磁场强度。另外在正常储物过程中,永磁磁场保持一定的磁场强度,电磁场可以周期性地启动,对被储藏物进行加强磁场处理。上述控制方式可以使得被储藏物在强磁场环境中冻结,优先抑制冰晶晶核生长,减小对细胞造成的损伤,避免汁液流失,保证了食材更好的口感,提高了冷冻储物质量,满足了用户对珍贵食材的储藏质量要求。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或 修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种磁场保鲜储物容器,包括:
    储物组件,其内限定用于放置被储藏物的储物空间;
    磁体组件,其包括分别设置于所述储物组件一组相对侧面的第一磁体部件和第二磁体部件,并利用所述第一磁体部件和所述第二磁体部件在所述储物空间形成磁场;
    导磁组件,其具有与所述第一磁体部件对应设置的第一导磁件、与所述第二磁体部件对应设置的第二导磁件,以及连接于所述第一导磁件和所述第二导磁件之间的导磁连接件,所述第一导磁件、所述第二导磁件、以及所述导磁连接件在所述储物空间外部形成环形的导磁通路。
  2. 根据权利要求1所述的磁场保鲜储物容器,其中
    所述第一磁体部件以及所述第二磁体部件分别包括:永磁板,设置于所述储物组件对应的侧面外侧,并且所述永磁板的形状与其对应的侧面的形状相一致;
    所述第一导磁件以及所述第二导磁件分别包括导磁板,所述导磁板分别与所述永磁板相对设置,并且所述导磁连接件从所述导磁板的边缘沿所述储物组件的外侧延伸并连接至另一侧的所述导磁板。
  3. 根据权利要求2所述的磁场保鲜储物容器,其中
    所述储物空间在所述导磁板所在平面上的投影位于所述导磁板的范围内,所述永磁板的尺寸小于或等于其相对的所述导磁板。
  4. 根据权利要求3所述的磁场保鲜储物容器,其中
    所述第一磁体部件以及所述第二磁体部件还分别包括电磁环圈,所述电磁环圈设置于所述永磁板和所述导磁板之间或者设置于所述永磁板与储物组件对应的侧面之间,所述电磁环圈内部沿环形周向绕设有电磁线圈,所述电磁线圈被通电后用于产生与对应的永磁板的永磁磁场相叠加的电磁场。
  5. 根据权利要求4所述的磁场保鲜储物容器,其中
    所述电磁环圈的尺寸小于或等于其相对的所述永磁板的尺寸,并且所述第一磁体部件的所述永磁板、所述导磁板、所述电磁环圈三者的中心相对, 所述第二磁体部件的所述永磁板、所述导磁板、所述电磁环圈三者的中心相对。
  6. 根据权利要求1-5中任一项所述的磁场保鲜储物容器,其中
    所述第一磁体部件设置于所述储物组件的顶壁,所述第二磁体部件设置于所述储物组件的底壁,并且所述第一磁体部件与所述第二磁体部件的尺寸大体相同。
  7. 根据权利要求6所述的磁场保鲜储物容器,其中
    所述第一磁体部件与所述第二磁体部件的磁场方向设置为相同,从而使得所述储物空间内的磁场方向为从顶至底或者从底至顶。
  8. 根据权利要求6所述的磁场保鲜储物容器,其中
    所述导磁连接件包括:
    第一连接段,从所述第一磁体部件的横向一侧的中部沿所述储物空间的一侧侧壁延伸至所述第二磁体部件的对应一侧的中部;
    第二连接段,从所述第一磁体部件的横向另一侧的中部沿所述储物空间的另一侧侧壁延伸至所述第二磁体部件的另一侧的中部,并且
    所述第一连接段和所述第二连接段沿前后纵深方向的宽度为所述导磁组件沿前后纵深方向的长度的二分之一至十分之一。
  9. 根据权利要求1-5中任一项所述的磁场保鲜储物容器,其中所述储物组件包括:
    筒体,具有前向开口;以及
    抽屉,可抽拉地设置在所述筒体内,其内形成所述储物空间。
  10. 一种冰箱,包括:
    箱体,其内限定有储物间室;
    根据权利要求1至9中任一项所述的磁场保鲜储物容器,设置于所述储物间室内部。
PCT/CN2022/107163 2021-08-11 2022-07-21 磁场保鲜储物容器和冰箱 WO2023016228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110919003.5 2021-08-11
CN202110919003.5A CN115704631A (zh) 2021-08-11 2021-08-11 磁场保鲜储物容器和冰箱

Publications (1)

Publication Number Publication Date
WO2023016228A1 true WO2023016228A1 (zh) 2023-02-16

Family

ID=85179718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107163 WO2023016228A1 (zh) 2021-08-11 2022-07-21 磁场保鲜储物容器和冰箱

Country Status (2)

Country Link
CN (1) CN115704631A (zh)
WO (1) WO2023016228A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061729A (ja) * 2003-08-15 2005-03-10 Abi:Kk 急速冷凍・保管庫
US7237400B2 (en) * 2001-11-01 2007-07-03 Abi Co., Ltd Highly-efficient freezing apparatus and highly-efficient freezing method
CN101573574A (zh) * 2007-03-22 2009-11-04 株式会社菱丰冷冻系统 冷冻装置用核心单元以及含有该核心单元的冷冻装置
CN111503985A (zh) * 2020-04-27 2020-08-07 合肥华凌股份有限公司 保鲜抽屉组件和制冷设备
CN111503984A (zh) * 2020-04-27 2020-08-07 合肥华凌股份有限公司 保鲜容器和制冷设备
CN216114964U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 磁场保鲜储物容器和冰箱
CN216114965U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 磁场保鲜储物容器和冰箱
CN216114966U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 磁场保鲜装置和具有其的制冷设备
CN216114967U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 防冷风直吹的磁场保鲜装置和风冷式制冷设备
CN217031741U (zh) * 2021-12-15 2022-07-22 青岛海尔电冰箱有限公司 具有磁场保鲜装置的制冷设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7237400B2 (en) * 2001-11-01 2007-07-03 Abi Co., Ltd Highly-efficient freezing apparatus and highly-efficient freezing method
JP2005061729A (ja) * 2003-08-15 2005-03-10 Abi:Kk 急速冷凍・保管庫
CN101573574A (zh) * 2007-03-22 2009-11-04 株式会社菱丰冷冻系统 冷冻装置用核心单元以及含有该核心单元的冷冻装置
CN111503985A (zh) * 2020-04-27 2020-08-07 合肥华凌股份有限公司 保鲜抽屉组件和制冷设备
CN111503984A (zh) * 2020-04-27 2020-08-07 合肥华凌股份有限公司 保鲜容器和制冷设备
CN216114964U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 磁场保鲜储物容器和冰箱
CN216114965U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 磁场保鲜储物容器和冰箱
CN216114966U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 磁场保鲜装置和具有其的制冷设备
CN216114967U (zh) * 2021-08-11 2022-03-22 青岛海尔电冰箱有限公司 防冷风直吹的磁场保鲜装置和风冷式制冷设备
CN217031741U (zh) * 2021-12-15 2022-07-22 青岛海尔电冰箱有限公司 具有磁场保鲜装置的制冷设备

Also Published As

Publication number Publication date
CN115704631A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
CN216114964U (zh) 磁场保鲜储物容器和冰箱
CN216114965U (zh) 磁场保鲜储物容器和冰箱
CN216114894U (zh) 用于冰箱的保鲜储物容器和冰箱
CN214536999U (zh) 冰箱的冷冻储物总成与冰箱
CN217031740U (zh) 具有磁场保鲜装置的制冷设备
WO2023016148A1 (zh) 具有磁场保鲜功能的制冷设备
WO2023016228A1 (zh) 磁场保鲜储物容器和冰箱
WO2023016224A1 (zh) 磁场保鲜储物容器和冰箱
CN216114893U (zh) 用于冰箱的保鲜储物容器和冰箱
WO2023016226A1 (zh) 磁场保鲜储物容器和冰箱
WO2023016225A1 (zh) 磁场保鲜储物容器和冰箱
WO2023016227A1 (zh) 用于冰箱的保鲜储物容器和冰箱
US8173189B2 (en) Magnetic device and method for treating perishable items such as food or ice
CN219889950U (zh) 一种保鲜储藏容器及冰箱
CN218348975U (zh) 具有磁场的冰箱
CN220959140U (zh) 磁场保鲜储物容器及冰箱
CN220959146U (zh) 磁场保鲜储物容器及冰箱
CN114688800B (zh) 具有冷冻储物装置的冰箱
CN216897963U (zh) 一种真空保鲜装置和冰箱
CN220959139U (zh) 保鲜储物容器及冰箱
CN220959153U (zh) 用于冰箱的保鲜储物容器与冰箱
CN220959143U (zh) 磁场保鲜储物容器及冰箱
WO2024007943A1 (zh) 用于冷藏冷冻装置的磁场保鲜抽屉与冷藏冷冻装置
CN116379676A (zh) 磁场保鲜装置和冰箱
WO2023016079A1 (zh) 磁场保鲜装置和制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022855211

Country of ref document: EP

Effective date: 20240311