WO2022142779A1 - 具有冷冻储物装置的冰箱 - Google Patents

具有冷冻储物装置的冰箱 Download PDF

Info

Publication number
WO2022142779A1
WO2022142779A1 PCT/CN2021/130609 CN2021130609W WO2022142779A1 WO 2022142779 A1 WO2022142779 A1 WO 2022142779A1 CN 2021130609 W CN2021130609 W CN 2021130609W WO 2022142779 A1 WO2022142779 A1 WO 2022142779A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
refrigerator
storage
storage box
storage device
Prior art date
Application number
PCT/CN2021/130609
Other languages
English (en)
French (fr)
Inventor
李孟成
朱小兵
费斌
赵斌堂
刘浩泉
王霁昀
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2022142779A1 publication Critical patent/WO2022142779A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/06Stock management

Definitions

  • the present invention relates to a refrigerating and freezing storage device, in particular to a refrigerator with a freezing storage device.
  • Theoretical studies have found that the magnetic field has a great influence on the formation of ice crystals during the freezing process.
  • the field of refrigerators is also actively exploring the introduction of magnetic fields into freezing and fresh-keeping.
  • the electromagnetic coil since the electromagnetic coil generates heat when the magnetic field is generated, a larger magnetic field strength will lead to a larger amount of heat, which will affect the energy consumption of the refrigerator. If the strength of the magnetic field of the electromagnetic coil is reduced, in some special storage states (for example, the storage volume is large), the magnetic field cannot meet the requirements of freezing-assisted preservation. Therefore, in practical application in refrigerators, the effect of magnetic field-assisted freezing is not satisfactory.
  • An object of the present invention is to provide a freezing control method and a refrigerator for a refrigerator that can effectively improve the quality of frozen storage.
  • a further object of the present invention is to adapt the magnetic field to the requirements of refrigeration and preservation.
  • the present invention provides a refrigerator having a freezer storage device.
  • the refrigerator includes:
  • the box body is provided with a storage compartment for realizing the function of freezing storage
  • a refrigerated storage device is arranged in the storage compartment, and the refrigerated storage device includes:
  • the magnetic frame is made of magnetic material, the inner surface of which is provided with at least one boss;
  • a storage box which is arranged in the space enclosed by the magnetic frame and defines a freezer storage space
  • each group of electromagnetic coils includes: a first coil sleeved on the boss and a second coil sleeved on the outer circumference of the first coil, and the first coil and the second coil are set according to the storage in the storage box.
  • the object state determines the connection state and/or the start-stop state to form a magnetic field in the refrigerated storage space that matches the storage state.
  • bosses which are respectively arranged on two opposite inner walls of the magnetic frame
  • the electromagnetic coil includes a first coil group and a second coil group, and the first coil group and the second coil group are respectively arranged on one boss.
  • the two bosses are respectively arranged on the inner side of the top wall and the inner side of the bottom wall of the magnetic frame;
  • the two bosses are respectively arranged on the inner sides of the lateral sides of the magnetic frame.
  • the directions of the magnetic poles generated by the first coil and the second coil are set to be the same.
  • the above-mentioned refrigerator with a freezing storage device further includes:
  • an opening and closing detector configured to detect the opening and closing state of the storage box
  • a temperature field detection device configured to detect a temperature distribution state in the refrigerated storage space
  • the refrigeration controller is configured to start the refrigeration of the storage box when the magnitude of the change of the internal temperature before the storage box is opened and after the storage box is closed is greater than the first set threshold.
  • the first coil and the second coil are further configured to determine the connection state and/or start/stop according to the size of the area where the magnitude of the change in the internal temperature is greater than the first set threshold after the refrigeration controller starts to cool the storage box. state.
  • the first coil is activated independently.
  • the second coil is activated alone
  • the ratio of the area where the magnitude of the internal temperature change is greater than the first set threshold to the detection area of the temperature field detection device is greater than the third set ratio
  • the first coil and the second coil are connected in series and are activated at the same time;
  • the set ratio is smaller than the second set ratio, and the second set ratio is less than the third set ratio.
  • the first coil and/or the second coil is activated, it is further configured to: stop generating the magnetic field after the temperature in the refrigerated storage space is completely cooled to the second set threshold;
  • the refrigeration controller is further configured to stop cooling the storage box if the temperature in the refrigerated storage space is completely cooled to a third set threshold, and the third set threshold is lower than the second set threshold.
  • the storage box includes:
  • the outer cylinder is arranged in the space enclosed by the magnetic frame and has a forward opening
  • the drawer is set in the outer cylinder in a drawable manner.
  • the rear wall of the outer cylinder is provided with an air inlet and a return air outlet
  • the air inlet is used to connect the air supply duct of the refrigerator or the evaporator of the refrigerator, so as to introduce the cooling air into the storage box;
  • the return air outlet is used to connect the return air duct of the refrigerator or the evaporator of the refrigerator, so as to send the heat-exchanged air back to the return air duct or the evaporator of the refrigerator.
  • the freezer storage device is provided with a magnetic frame on the outside of the storage box, and a group of electromagnetic coils is sleeved on the boss provided on the inner surface of the magnetic frame, and the electromagnetic frame is provided through the magnetic frame.
  • a closed path for the magnetic field lines of the coil and provides an assembly structure for the electromagnetic coil, reducing the space occupied.
  • the first coil and the second coil in the electromagnetic coil determine the connection state and/or the start-stop state according to the storage state in the storage box, so as to form a magnetic field matching the storage state in the refrigerated storage space.
  • the magnetic field in the frozen storage space is suitable for the freezing and refrigerating process of different storage states, on the one hand, the quality of the frozen storage is improved, and the user's requirements for the storage quality of precious ingredients are met. On the other hand, the heating of the electromagnetic coil and the effect of magnetization on the outer parts of the refrigerated storage device are also reduced by the targeted adjustment.
  • the internal temperature changes before and after each area of the storage box is opened and closed are obtained, and the change in the internal temperature of each area is determined.
  • the corresponding applied magnetic field mode is turned on to form a suitable magnetic field, so that the ingredients are frozen in the magnetic field environment, and the growth of ice crystal nuclei is inhibited, so that the growth rate of ice crystals is higher than the migration of water molecules.
  • the resulting ice crystals are relatively small, thereby reducing the damage to cells, avoiding the loss of juice, ensuring a better taste of the ingredients, and improving the quality of frozen storage.
  • the refrigerator with the refrigerating storage device of the present invention improves the connection state and start-stop conditions of the first coil and the second coil, and applies a magnetic field during the period when ice crystals are mainly formed, which improves the use efficiency of the magnetic field.
  • the influence of the magnetic field on other components outside the storage box is reduced, and on the other hand, the energy consumption of the refrigerator is also increased.
  • FIG. 1 is a schematic perspective view of a refrigerator with a freezer storage device according to one embodiment of the present invention
  • FIG. 2 is a schematic diagram of a freezer storage device of a refrigerator with a freezer storage device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the cooperation between the inner and outer cylinders and the magnetic frame of a refrigerator with a refrigerating storage device according to an embodiment of the present invention
  • Fig. 4 is the schematic diagram of the magnetic frame in the freezing storage device shown in Fig. 3;
  • Fig. 5 is the schematic diagram of generating magnetic field in the freezing storage device shown in Fig. 3;
  • FIG. 6 is a schematic diagram of a group of electromagnetic coils in a refrigerator with a refrigerating storage device according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of the circuit connection structure of a group of electromagnetic coils in a refrigerator with a refrigerating storage device according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of the cooperation between the inner and outer cylinders and the magnetic frame of a refrigerator with a refrigerating storage device according to another embodiment of the present invention.
  • Fig. 9 is the schematic diagram of the magnetic frame in the refrigerated storage device shown in Fig. 8.
  • Fig. 10 is a schematic diagram of generating a magnetic field in the refrigerated storage device shown in Fig. 8;
  • FIG. 11 is a schematic diagram of an outer cylinder of a storage box in a refrigerator with a freezer storage device according to an embodiment of the present invention
  • FIG. 12 is a block diagram of a control system of a refrigerator with a refrigerated storage device according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a freezing control method of a refrigerator with a freezing storage device according to an embodiment of the present invention.
  • the refrigerator 10 of this embodiment may generally include a box body 120, a door body 110, and a refrigeration system (not shown in the figure).
  • the box body 120 may define at least one storage compartment whose front side is open, usually a plurality of storage compartments, such as a refrigerated storage compartment, a freezing storage compartment, a temperature-changing storage compartment, and the like.
  • the number and function of specific storage compartments can be configured according to pre-requirements.
  • the refrigerator 10 should at least have a refrigerated storage compartment or a temperature-variable storage compartment whose temperature can reach the freezing range (that is, it can be used to realize a refrigerated storage environment), that is, the box body 120 is provided with a refrigerated storage compartment for realizing refrigerated storage.
  • the temperature range for frozen storage can generally be set from -14°C to -22°C.
  • the refrigerator 10 of this embodiment may be an air-cooled refrigerator, and an air duct system is arranged in the box body 120, and the refrigerating air heat exchanged by the evaporator is sent to the storage compartment through the air supply port by the fan, and then the air is returned through the return air port. road. achieve refrigeration. Since the box body 120 , the door body 110 and the refrigeration system of this type of refrigerator are all known to those skilled in the art and are easy to implement, in order not to obscure and obscure the invention point of the present application, the box body 120 , the door body 110 will be discussed in the following text. , The refrigeration system itself will not be described in detail.
  • a refrigerated storage device 200 is arranged inside the refrigerated storage compartment.
  • the refrigerated storage device 200 forms an independently closed refrigerated storage space, which can improve the storage quality of the refrigerated storage space by means of a magnetic field.
  • a magnetic field Under the action of a certain strength of the magnetic field, in the freezing process, the free path of water molecules can be restricted, which is manifested as the breaking of hydrogen bonds in the water molecules. Because the growth of crystal nucleus is inhibited, the growth rate of ice crystals is higher than the migration rate of water molecules, and the resulting ice crystals are small, so the damage to cells is also small, the loss rate of juice is reduced, and the nutrition and taste of ingredients are better preserved.
  • the magnetic field can shorten the freezing time, which helps to suppress the number of microorganisms and bacteria.
  • the refrigerator 10 of this embodiment further improves the magnetic field in a targeted manner, and further improves the quality of frozen storage by optimizing the direction of the magnetic field and the start-stop time.
  • FIG. 2 is a schematic diagram of the freezer storage device 200 of the refrigerator 10 with the freezer storage device 200 according to an embodiment of the present invention
  • FIG. 3 is the inner and outer cylinders 241 of the refrigerator 10 with the freezer storage device 200 according to an embodiment of the present invention Schematic diagram of the cooperation with the magnetic frame 210
  • FIG. 4 is a schematic diagram of the magnetic frame 210 in the refrigerated storage device 200 shown in FIG. 3
  • FIG. 5 is a schematic diagram of a magnetic field generated in the refrigerated storage device 200 shown in FIG. 3
  • a schematic diagram of a group of electromagnetic coils in a refrigerator 10 with a refrigerated storage device 200 according to an embodiment of the present invention as shown in FIGS. 2-6 , the refrigerated storage device 200 is arranged in the storage compartment, and may generally include: Magnetic frame 210 , at least one set of electromagnetic coils, storage box 240 .
  • the magnetic frame 210 is made of magnetic material, and at least one boss 211 is respectively formed on the inner surface thereof.
  • the magnetic material can be a soft magnetic material or a hard magnetic material, for example, a soft magnetic material can be used.
  • the soft magnetic material is characterized by low coercivity and high magnetic permeability.
  • the magnetic frame 210 can be used to gather the magnetic field and reduce the release of the magnetic field to the outside. , reducing interference to other components outside the refrigerated storage assembly 200 (eg, magnetizing other components, etc.).
  • the boss 211 and other parts of the magnetic frame 210 may be an integral piece, or may be fixedly connected by assembly.
  • the cross section of the boss 211 may be square, circular or oval. When a square cross section is used, the boss 211 is more convenient to fit with the box 120 structure.
  • the magnetic frame 210 may be a square cylindrical body with a through opening in the front-rear direction, that is, a frame body with a curved cross-section.
  • the front and rear ends of the square cylinder body respectively have through openings for arranging various types of storage boxes 240 .
  • the storage box 240 can form an independently sealed frozen storage space, so as to provide a better frozen storage environment for specific ingredients.
  • the storage box 240 is disposed in the space enclosed by the magnetic frame 210 .
  • the storage box 240 may include: an outer cylinder 241 and a drawer 242 .
  • the outer cylinder 241 is disposed in the magnetic frame 210 and has a forward opening.
  • the drawer 242 is provided in the outer cylinder 241 in a drawable manner.
  • the front panel of the drawer 242 may form a sealing structure with the outer cylinder 241 .
  • the rear wall of the outer cylinder 241 is provided with an air inlet 243 and an air return port 244, and the air inlet 243 is used to connect to the air duct air supply port of the refrigerator 10 or to the evaporator of the refrigerator 10 (for example, connected to the top area of the evaporator) to introduce the cooling airflow into the storage box 240;
  • the air return port 244 is used to connect to the air duct return air port of the refrigerator 10 or to the evaporator of the refrigerator 10 (for example, to the bottom area of the evaporator) , so as to send the heat-exchanged airflow back to the return air duct or the evaporator of the refrigerator 10 .
  • the air inlet 243 and the air return port 244 may be provided with dampers (not shown in the figure). Controlled opening of the damper during cooling supply.
  • the air inlet 243 and the air return port 244 can be configured according to the air duct of the air-cooled refrigerator, and the position and structure of the evaporator.
  • the refrigerated storage device 200 is provided with one or more sets of electromagnetic coils, each set of electromagnetic coils includes: a first coil 233 sleeved on the boss 211 and a second coil 234 sleeved on the outer circumference of the first coil 233, and the first coil
  • the coil 233 and the second coil 234 determine the connection state and/or the start-stop state according to the storage state in the storage box 240, so as to form a magnetic field matching the storage state in the refrigerated storage space.
  • the number of turns of the first coil 233 may be smaller than that of the second coil 234 , and since the coverage area of the second coil 234 is larger than that of the first coil 233 , the magnetic field strength of the first coil 233 is smaller than that of the second coil 234 . In some usage scenarios where the storage volume is large and the freezing speed is slow.
  • the first coil 233 and the second coil 234 may be connected in series to further increase the magnetic field strength.
  • the shape of the inner circumference of the first coil 233 is adapted to the outer circumference of the boss 211 , and is correspondingly set in a square, circular or elliptical shape.
  • the first coil 233 and the second coil 234 can be set in a flat box shape, and are wound in the circumferential direction, so that the direction of the magnetic pole of the magnetic field generated after power-on is perpendicular to the boss 211 .
  • the thicknesses of the first coil 233 and the second coil 234 are adapted to the height of the boss 211 , so that the inner walls of the magnetic frame 210 are substantially flush, so that the storage box 240 is arranged.
  • the first coil 233 and the second coil 234 may be formed as flat elliptical rings or circular rings.
  • the first coil 233 and the second coil 234 can have the following magnetic field generating states: all off; the first coil 233 is activated alone; the second coil 234 is activated alone; the first coil 233 and the second coil 234 are activated in series.
  • a structure with two bosses 211 is preferably used. That is, there are two bosses 211 , which are respectively disposed on two opposite inner walls of the magnetic frame 210 . In the embodiment shown in FIGS. 3-6 , the two bosses 211 are respectively disposed on the inner side of the top wall and the inner side of the bottom wall of the magnetic frame 210 .
  • the electromagnetic coil includes a first coil group 231 and a second coil group 232 , and the first coil group 231 and the second coil group 232 are respectively disposed on one boss 211 .
  • the first coil group 231 is disposed at the top of the storage box 240
  • the second coil group 232 is disposed at the bottom of the storage box 240 .
  • the first coil group 231 and the second coil group 232 respectively have a first coil 233 and a second coil 234 which are nested with each other.
  • the directions of the magnetic poles generated by the first coil 233 and the second coil 234 in each coil group are set to be the same.
  • the directions of the magnetic poles generated by the first coil 233 and the second coil 234 of the first coil group 231 are set to be consistent with the directions of the magnetic poles generated by the first coil 233 and the second coil 234 of the second coil group 232, so that the A uniform magnetic field is formed in the frozen storage space, and the magnetic field lines of the magnetic field are closed through the magnetic frame 210 .
  • the magnetic field states of the first coil group 231 and the second coil group 232 can be set to be synchronized, that is, the magnetic field application method of the first coil group 231 and the magnetic field application method of the second coil group 232 can also be set to be the same.
  • the direction of the magnetic poles shown in FIG. 5 is from bottom to top, which is only an example. In this embodiment, the direction of the magnetic poles can be flexibly adjusted to be from top to bottom as required.
  • FIG. 7 is a schematic diagram of the circuit connection structure of a group of electromagnetic coils in a refrigerator with a refrigerating storage device according to an embodiment of the present invention.
  • the first coil 233 has a first joint J1-1 and a second joint J1-2
  • the second coil 234 has a third joint J2-1 and a fourth joint J2-2.
  • a switch assembly is connected between the above connector and the power supply for supplying power to the first coil 233 and the second coil 234, wherein the first switch K1 is connected between the first connector J1-1 and the positive pole of the power supply, and the second switch K2 is connected between the second joint J1-2 and the negative pole of the power supply, the third switch K3 is connected between the third joint J2-1 and the positive pole of the power supply, and the fourth switch K4 is connected between the fourth joint J2-2 and the negative pole of the power supply;
  • the fifth switch K5 is connected between the second joint J1-2 and the third joint J2-1.
  • the first coil 233 and the second coil 234 can realize various magnetic fields of different intensities, so as to meet the fresh-keeping requirements of different storage states. Since the applied magnetic field mode can be flexibly adjusted, the magnetic field in the frozen storage space can be made suitable for the freezing and refrigeration process.
  • FIG. 8 is a schematic diagram of the cooperation between the outer cylinder 241 and the magnetic frame 210 in the refrigerator 10 with the refrigerated storage device 200 according to another embodiment of the present invention
  • FIG. 9 is a schematic diagram of the magnetic frame 210 in the refrigerated storage device 200 shown in FIG. 8
  • 10 is a schematic diagram of a magnetic field generated in the refrigerated storage device 200 shown in FIG. 8 .
  • the two bosses 211 are respectively disposed on the inner sides of the lateral sides of the magnetic frame 210 .
  • the first coil group 231 is disposed on the right side of the storage box 240
  • the second coil group 232 is disposed on the left side of the storage box 240
  • the first coil group 231 and the second coil group 232 respectively have a first coil 233 and a second coil 234 which are nested with each other.
  • the directions of the magnetic poles generated by the first coil 233 and the second coil 234 of the first coil group 231 are set to be consistent with the directions of the magnetic poles generated by the first coil 233 and the second coil 234 of the second coil group 232, so that the refrigerated storage can be stored.
  • a uniform magnetic field is formed in the object space, and the magnetic field lines of the magnetic field are closed through the magnetic frame 210 .
  • the direction of the magnetic poles shown in FIG. 10 is from left to right, which is only an example. In this embodiment, the direction of the magnetic poles can be flexibly adjusted from right to left as required.
  • the magnetic field adjustment structures of the first coil 233 and the second coil 234 are the same as those shown in FIG. 7 , and will not be repeated here.
  • the specific position of the boss 211 can be selected according to the structure of the storage box 240 and the refrigerated storage compartment. For example, for the storage box 240 with a larger width, a structure that generates a longitudinal magnetic field can be used (as shown in FIG. 5 ); For the storage box 240 with a larger height, a structure for generating a magnetic field in a transverse direction may be adopted (as shown in FIG. 10 ).
  • the temperature field detection device 250 is disposed in the storage box 240 and configured to detect the temperature distribution state in the frozen storage space.
  • the temperature field detection device 250 can be an infrared detection device that can scan the temperature distribution in the refrigerated storage space of the storage box 240, or can be a plurality of independent infrared sensors or other temperature detection devices (each infrared sensor or temperature detection device is used for Detects the temperature of an area within the refrigerated storage space).
  • the temperature field detection device 250 can obtain the internal temperature change of each position in the refrigerated storage space by detecting.
  • the temperature field detection device 250 may be disposed inside the top wall of the outer cylinder 241 .
  • the refrigerator 10 of this embodiment combines the magnetic field control of the electromagnetic coil with the refrigeration control, so as to ensure that the food is frozen in the magnetic field environment and achieve the effect of fresh-keeping and freezing.
  • 12 is a block diagram of a control system of a refrigerator 10 with a freezing storage device 200 according to an embodiment of the present invention, the refrigerator 10 is further provided with a temperature field detection device 250 , an opening and closing detector 270 , and a refrigeration controller 300 .
  • the temperature field detection device 250 is disposed in the outer cylinder 241 of the storage box 240 and is used to detect the temperature distribution state in the refrigerated storage space in the drawer 242 .
  • the detection area of the temperature field detection device 250 may be the entire refrigerated storage space or at least most of the refrigerated storage space (considering that there may be a detection dead angle).
  • the opening/closing detector 270 is configured to detect the opening/closing state of the drawer 242 . After the drawer 242 is pulled open and then closed, with the aid of the temperature field detection device 250, it can be detected whether new ingredients are put in or whether the original ingredients need to be refrozen, and the volume of the ingredients to be frozen can be determined. Then, the electromagnetic coil and the refrigeration system are cooperated to realize the magnetic field-assisted freezing and improve the freezing and fresh-keeping effect of the ingredients.
  • the refrigeration controller 300 includes a memory 310 and a processor 320 .
  • a control program 311 is stored in the memory 310. When the control program 311 is executed by the processor 320, the control program 311 is used to control the electromagnetic coil and the refrigeration system, thereby realizing the corresponding refrigeration control method.
  • Various sensors provide detection means for magnetic field control, so as to meet the control requirements of the control method.
  • the refrigeration controller 300 may be configured to start the refrigeration of the storage box 240 when the magnitude of the change in the internal temperature before the storage box 240 is opened and after the storage box 240 is closed is greater than the first set threshold. If the magnitude of the temperature change before the storage box 240 is opened and after it is closed is greater than the first set threshold, it means that the storage box 240 is loaded with new food, or whether the temperature of the food has risen and needs to be re-frozen; if the internal temperature Smaller changes indicate that the food may still be frozen.
  • the first set threshold can be set to 2-8 degrees Celsius, which can be flexibly set according to the freezing set temperature.
  • the first coil 233 and the second coil 234 are also configured to determine the connection state and/or start/stop according to the size of the area where the magnitude of the change in the internal temperature is greater than the first set threshold after the refrigeration controller 300 starts to cool the storage box 240 state.
  • the first coil 233 is activated alone; In the case where the ratio of the area where the magnitude of the internal temperature change is greater than the first set threshold to the detection area of the temperature field detection device 250 is greater than the second set ratio and less than the third set ratio, the second coil 234 is activated alone; In the case where the ratio of the area where the magnitude of the internal temperature change is greater than the first set threshold to the detection area of the temperature field detection device 250 is greater than the third set ratio, the first coil 233 and the second coil 234 are connected in series and activated at the same time; The first set ratio is smaller than the second set ratio, and the second set ratio is less than the third set ratio.
  • the first set ratio, the second set ratio, and the third set ratio can be configured according to the specific specifications and structures of the freezer storage space, the first coil 233, and the second coil 234.
  • the first set ratio can be set to One-quarter
  • the second set ratio can be set to one-half
  • the third set ratio can be set to three-quarters
  • the specific value can be configured according to the magnetic field strength.
  • the auxiliary effect of the magnetic field can be used to achieve better freezing and storage quality of the stored items, and its sterilization effect is also better.
  • the above-mentioned starting conditions can also avoid the increase in heat generation and energy consumption caused by the long-term formation of the magnetic field, and on the other hand, it can also avoid the magnetization effect on other components outside the storage box 240 .
  • the second set threshold can be set to -10 to -12 degrees Celsius, within this temperature range, most of the stored items have been frozen.
  • the refrigeration controller 300 stops refrigerating the storage box 240 , and the third set threshold is smaller than the second set threshold, which can be determined according to the The freezer shutdown temperature setting can generally be lower than the set freezer shutdown temperature. That is to say, after the electromagnetic coil completes its work, the refrigeration is delayed for a period of time and turned off. Since this cooling is performed after the storage box 240 is opened, setting the third set threshold to a lower value can achieve supercooling to a certain extent and improve the quality of frozen storage.
  • the refrigeration controller 300 After the refrigeration controller 300 stops refrigerating the storage box 240 , it may be further configured to: perform conventional refrigeration control on the storage box 240 according to the preset refrigeration start-up conditions and refrigeration shutdown conditions of the storage box 240 , so as to maintain the storage box 240
  • the electromagnetic coil 230 may be configured to generate a magnetic field according to a preset opening and closing strategy during the conventional freezing control of the storage box 240 by the refrigeration controller 300 .
  • the normal freezing control of the storage box 240 is restored, that is, the freezing control of the storage box 240 is performed according to the preset cooling start condition and cooling shutdown condition of the storage box 240.
  • the cooling start condition and the cooling off condition can also be set according to the set temperature of the storage box 240 , and the cooling starts when the temperature is higher than the cooling start temperature, and the cooling is stopped when the temperature is lower than the cooling off temperature.
  • a magnetic field may also be used to assist refrigeration, so as to avoid the deterioration of the storage quality when some ice crystals are regenerated.
  • An opening and closing strategy may be: the magnetic field is turned on and off at the same time as the cooling of the storage box 240 is turned on and off, that is, the magnetic field and the cooling are turned on and off at the same time. For example, only the first coil 233 or the second coil 234 can be activated.
  • Another alternative solution is to activate the magnetic field when starting the cooling of the storage box 240, and turn off the magnetic field before stopping the cooling of the storage box 240, that is, the magnetic field is only activated at the beginning of cooling. After the actual test, the storage quality of the magnetic field only started at the beginning of the cooling stage did not decrease significantly compared with the storage quality of the magnetic field and the cooling started and stopped at the same time.
  • another opening and closing strategy may be: in the process of performing freezing control on the storage box 240 according to the preset refrigeration start-up conditions and refrigeration shutdown conditions of the storage box 240, according to the set Periodically activate the magnetic field, that is, the magnetic field is activated periodically.
  • the first coil 233 and the second coil 234 may be alternately generated to generate magnetic fields, for example, the first coil 233 is activated for the first time, and the second coil is activated for the second time. Coil 234, and so on.
  • the step of turning on cooling the storage box 240 may include: opening an air inlet, and turning on a cooling airflow to the air inlet 243 .
  • FIG. 13 is a schematic diagram of a freezing control method of a refrigerator with a freezing storage device according to an embodiment of the present invention.
  • the process of this embodiment is a specific application example of the freezing control method for a refrigerator, in which the execution order of some steps can be adjusted.
  • the process can include:
  • Step S902 detecting the opening and closing state of the storage box 240;
  • Step S904 it is determined that the storage box 240 is closed after being opened, that is, it is determined whether an opening and closing event occurs in the storage box 240;
  • Step S906 acquire the internal temperature changes before and after the storage box 240 is opened, and determine whether the magnitude of the internal temperature change is greater than the first set threshold, that is, determine whether the storage box 240 is filled with new food, or whether food is placed in the storage box 240.
  • the first set threshold can be set to 2 to 8 degrees Celsius. If the change in the internal temperature is small, the food may not need to be re-frozen, and the refrigeration of the frozen storage can be routinely controlled, that is, Refrigeration control is performed according to the set startup temperature threshold and shutdown temperature threshold.
  • step S908 the cooling is turned on, and air is supplied to the storage box 240,
  • Step S910 judging whether the ratio of the area where the magnitude of the internal temperature change is greater than the first set threshold to the detection area of the temperature field detection device is greater than the third set ratio, that is, whether the ratio of the area with a large temperature rise range is greater than the third set ratio.
  • the proportion of food that needs to be frozen is determined to be large and occupy most of the frozen storage space;
  • Step S912 the first coil 233 and the second coil 234 are connected in series and activated simultaneously, that is, the strongest magnetic field is released;
  • Step S920 judging whether the ratio of the area where the magnitude of the internal temperature change is greater than the first set threshold to the detection area of the temperature field detection device is greater than the second set ratio, that is, whether the ratio of the area with a large temperature rise range is greater than the second set ratio.
  • the proportion of food to be frozen is determined to be large and occupy about half of the frozen storage space;
  • Step S922 the second coil 234 is activated, that is, a strong magnetic field is released;
  • Step S930 judging whether the ratio of the area where the magnitude of the internal temperature change is greater than the first set threshold to the detection area of the temperature field detection device is greater than the first set ratio, that is, whether the ratio of the area with a large temperature rise range is greater than the first set ratio. ratio, so as to determine the volume of food that needs to be frozen occupies a part of the frozen storage space;
  • Step S932 the first coil 233 is activated, that is, a weaker magnetic field is released;
  • Step S940 continuously detect the internal temperature of the storage box 240;
  • Step S942 judging whether the internal temperature of the storage box 240 is lower than the second set threshold (for example, it can be set to -10-12 degrees Celsius), that is, judging whether the freezing stage is basically completed;
  • the second set threshold for example, it can be set to -10-12 degrees Celsius
  • Step S944 turning off the magnetic field
  • Step S946 judging whether the internal temperature of the storage box 240 is lower than the third set threshold value, the third set threshold value is less than the second set threshold value, which can be set according to the freezer shutdown temperature set by the storage box 240, generally it can be lower. at the set freezer shutdown temperature.
  • Step S948 stop refrigerating the storage box 240 and perform conventional refrigeration control on the storage box 240 according to the preset refrigeration start condition and refrigeration close condition of the storage box 240, so as to maintain the refrigerated storage environment of the storage box 240;
  • the magnetic field is activated according to a preset on-off strategy.
  • the refrigerator 10 with the refrigerating storage device in this embodiment makes the food frozen in the magnetic field environment, and the direction and start and stop of the magnetic field are controlled in a targeted manner to preferentially inhibit the growth of ice crystal nuclei and reduce damage to cells. , to avoid the loss of juice, to ensure a better taste of the ingredients, to improve the quality of frozen storage, and to meet the user's storage quality requirements for precious ingredients.

Abstract

一种具有冷冻储物装置的冰箱,其包括:箱体,其内设置有实现冷冻储物功能的储物间室;冷冻储物装置,布置于储物间室内,并且包括:磁性框,其内表面设置有至少一个凸台,凸台由永磁材料制成;储物盒,设置于磁性框围成的空间内,并限定出冷冻储物空间;以及至少一组电磁线圈,每组电磁线圈包括:套设在凸台上的第一线圈以及套设在第一线圈外周的第二线圈,并且第一线圈以及第二线圈根据储物盒内的储物状态确定连接状态和/或启停状态,以在冷冻储物空间内形成与储物状态相匹配的磁场。本发明的方案,在冷冻储物空间内形成与储物状态相匹配的磁场,提高了冷冻储物质量,减小了电磁线圈发热以及对外部部件的磁化影响。

Description

具有冷冻储物装置的冰箱 技术领域
本发明涉及冷藏冷冻储物装置,特别是涉及一种具有冷冻储物装置的冰箱。
背景技术
用户对储藏物的保鲜效果也越来越重视,现有技术中的保鲜储藏大多将重点聚焦于冷藏保鲜,对冷冻保鲜有所忽视。但是对于肉类、鱼、虾这类需冷冻的食材,在冷冻后往往会出现汁液流失导致口感变差、颜色变暗的问题,特别是某些需冷冻的高档食材,冷冻后的品质大为降低,这也影响了用户的使用体验。
为了提高冷冻储物的质量,现有技术中出现了较多的改进方案,例如通过速冻提高食物的冷冻速度或者食品进入过冷却状态,这种方案需要提高冰箱的制冷能力,还会导致冰箱耗能增加。因此实现更加高效地提高冷冻储物质量成为冰箱研发者亟待解决的技术难题。
理论研究发现磁场对冷冻过程中冰晶的形成有较大的影响。冰箱领域也积极探索将磁场引入冷冻保鲜中,然而由于电磁线圈在生成磁场时本身会发热,较大的磁场强度会导致发热量较大,影响冰箱能耗。如果降低电磁线圈的磁场强度,又会导致在某些特殊储物状态下(例如储藏物体积较大),磁场无法满足冷冻辅助保鲜的要求。因此在冰箱中实际应用时,磁场辅助冷冻的效果并不能令人满意。
发明内容
本发明的一个目的是要提供一种有效提高冷冻储物质量的冰箱的冷冻控制方法与冰箱。
本发明一个进一步的目的是要使得磁场与冷冻制冷保鲜的要求相适配。
特别地,本发明提供了一种具有冷冻储物装置的冰箱。该冰箱包括:
箱体,其内设置有实现冷冻储物功能的储物间室;
冷冻储物装置,布置于储物间室内,并且该冷冻储物装置包括:
磁性框,由磁性材料制成,其内表面设置有至少一个凸台;
储物盒,设置于磁性框围成的空间内,并限定出冷冻储物空间;以及
至少一组电磁线圈,每组电磁线圈包括:套设在凸台上的第一线圈以及套设在第一线圈外周的第二线圈,并且第一线圈以及第二线圈根据储物盒内的储物状态确定连接状态和/或启停状态,以在冷冻储物空间内形成与储物状态相匹配的磁场。
可选地,凸台为两个,分别设置于磁性框相对的两个内壁上;
电磁线圈包括第一线圈组和第二线圈组,第一线圈组和第二线圈组分别设置在一个凸台上。
可选地,两个凸台分别设置在磁性框的顶壁内侧以及底壁内侧;或者
两个凸台分别设置在磁性框的横向两侧的侧壁内侧。
可选地,第一线圈以及第二线圈产生的磁极的方向设置为一致。
可选地,上述具有冷冻储物装置的冰箱还包括:
开闭检测器,配置成检测储物盒的开闭状态;
温度场检测装置,配置成探测冷冻储物空间内的温度分布状态;以及
制冷控制器,配置成在出现储物盒被打开前以及被关闭后的内部温度变化的幅度大于第一设定阈值的情况后,启动对储物盒制冷。
可选地,第一线圈以及第二线圈,还配置成在制冷控制器启动对储物盒制冷后,根据内部温度变化的幅度大于第一设定阈值的区域大小确定连接状态和/或启停状态。
可选地,在内部温度变化的幅度大于第一设定阈值的区域占温度场检测装置的探测区域的比值大于第一设定比例且小于第二设定比例的情况下,第一线圈单独启动;
在内部温度变化的幅度大于第一设定阈值的区域占温度场检测装置的探测区域的比值大于第二设定比例且小于第三设定比例的情况下,第二线圈单独启动;
在内部温度变化的幅度大于第一设定阈值的区域占温度场检测装置的探测区域的比值大于第三设定比例的情况下,第一线圈与第二线圈串联连接,并且同时启动;第一设定比例小于第二设定比例,第二设定比例小于第三设定比例。
可选地,第一线圈和/或第二线圈在启动之后还配置成:在冷冻储物空间内的温度全部冷却至第二设定阈值后,停止生成磁场;
制冷控制器还配置成:若冷冻储物空间内的温度全部冷却至第三设定阈 值,停止对储物盒制冷,第三设定阈值低于第二设定阈值。
可选地,储物盒包括:
外筒,设置于磁性框围成的空间内,并具有前向开口;以及
抽屉,可抽拉地设置在外筒内。
可选地,外筒的后壁上开设有进风口以及回风口,
进风口用于连接冰箱的送风风道或者连通冰箱的蒸发器,以将制冷气流引入储物盒;
回风口用于连接冰箱的回风风道或者连通冰箱的蒸发器,以将换热后的气流送回冰箱的回风风道或蒸发器。
本发明的具有冷冻储物装置的冰箱,冷冻储物装置在储物盒的外侧设置磁性框,将一组电磁线圈套设在磁性框内表面设置的凸台上,通过磁性框,提供了电磁线圈的磁力线的闭合路径,并为电磁线圈提供了装配结构,减小了占用的空间。电磁线圈中的第一线圈和第二线圈根据储物盒内的储物状态确定连接状态和/或启停状态,以在冷冻储物空间内形成与储物状态相匹配的磁场。从而冷冻储物空间内磁场适合于不同储物状态的冷冻制冷过程,一方面提高了冷冻储物质量,满足了用户对珍贵食材的储藏质量要求。另一方面,通过有针对性的调整也减小了电磁线圈发热以及对冷冻储物装置外部部件的磁化影响。
更进一步地,本发明的具有冷冻储物装置的冰箱,在储物盒出现开闭事件后,获取储物盒各区域被打开前以及被关闭后的内部温度变化,通过各区域内部温度变化确定是否有新的食材放入或者食材是否需要重新冻结,从而开启对应的施加磁场模式,形成合适的磁场,使得食材在磁场环境中冻结,抑制冰晶晶核生长,使得冰晶生长速率高于水分子迁移速率,产生的冰晶偏小,从而减小对细胞造成的损伤,避免汁液流失,保证了食材更好的口感,提高了冷冻储物质量。
更进一步地,本发明的具有冷冻储物装置的冰箱,对于第一线圈和第二线圈的连接状态和启停条件进行了改进,在冰晶主要形成的期间施加磁场,提高了磁场的使用效率,一方面减小磁场对于储物盒外部其他部件的影响,另一方面也提高了冰箱的能耗。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的具有冷冻储物装置的冰箱的示意性透视图;
图2是根据本发明一个实施例的具有冷冻储物装置的冰箱的冷冻储物装置的示意图;
图3是根据本发明一个实施例的具有冷冻储物装置的冰箱中外筒与磁性框的配合示意图;
图4是图3所示的冷冻储物装置中磁性框的示意图;
图5是图3所示的冷冻储物装置中生成磁场的示意图;
图6是本发明一个实施例的具有冷冻储物装置的冰箱中一组电磁线圈的示意图;
图7是本发明一个实施例的具有冷冻储物装置的冰箱中一组电磁线圈的电路连接构造示意图;
图8是根据本发明另一实施例的具有冷冻储物装置的冰箱中外筒与磁性框的配合示意图;
图9是图8所示的冷冻储物装置中磁性框的示意图;
图10是图8所示的冷冻储物装置中生成磁场的示意图;
图11是根据本发明一个实施例的具有冷冻储物装置的冰箱中储物盒的外筒的示意图;
图12是根据本发明一个实施例的具有冷冻储物装置的冰箱的控制系统框图;以及
图13是根据本发明一个实施例的具有冷冻储物装置的冰箱的冷冻控制方法的示意图。
具体实施方式
图1是根据本发明一个实施例的具有冷冻储物装置的冰箱10的示意性透视图。本实施例的冰箱10一般性地可以包括箱体120、门体110、制冷系统(图中未示出)。箱体120内可以限定有至少一个前侧敞开的储物间室, 通常为多个,如冷藏储物间室、冷冻储物间室、变温储物间室等等。具体的储物间室的数量和功能可以根据预先的需求进行配置。在本实施例的冰箱10至少应具有冷冻储物间室或者温度可达冷冻范围的变温储物间室(也即可用于实现冷冻储物环境),也即箱体120内设置有实现冷冻储物功能的储物间室。冷冻储物的温度范围一般可以设置为-14℃至-22℃。
本实施例的冰箱10可以为风冷冰箱,在箱体120内设置有风路系统,利用风机将经过蒸发器换热的制冷气流经送风口送向储物间室,然后经由回风口返回风道。实现制冷。由于此类冰箱的箱体120、门体110、制冷系统本身均是本领域技术人员习知且易于实现的,为了不掩盖和模糊本申请的发明点,后文对箱体120、门体110、制冷系统本身不做赘述。
冷冻储物间室内部设置有一冷冻储物装置200。该冷冻储物装置200形成一个独立封闭的冷冻储物空间,其可以借助于磁场可以提高该冷冻储物空间的储物质量。在一定强度的磁场作用下,在冷冻过程中,可以限制水分子的自由程,表现为水分子蔟中的氢键断裂。由于晶核生长受到抑制,冰晶生长速率高于水分子迁移速率,产生的冰晶偏小,从而对细胞造成的损伤也小,汁液流失率下降,食材的营养和口感保存较好。此外磁场还可以缩短冻结时间,有助于抑制微生物和细菌数量。本实施例的冰箱10进一步对于磁场进行针对性的改进,通过优化磁场方向及启停时间,进一步提高了冷冻储物质量。
图2是根据本发明一个实施例的具有冷冻储物装置200的冰箱10的冷冻储物装置200的示意图;图3是根据本发明一个实施例的具有冷冻储物装置200的冰箱10中外筒241与磁性框210的配合示意图;图4是图3所示的冷冻储物装置200中磁性框210的示意图;图5是图3所示的冷冻储物装置200中生成磁场的示意图;图6是本发明一个实施例的具有冷冻储物装置200的冰箱10中一组电磁线圈的示意图;如图2-6所示,冷冻储物装置200布置于储物间室内,并且一般性地可以包括:磁性框210、至少一组电磁线圈、储物盒240。
磁性框210由磁性材料制成,在其内表面上分别形成至少一个凸台211。磁性材料可以使用软磁材料或者硬磁材料,例如可以使用软磁材料,软磁材料的特点为具有低矫顽力和高磁导率,磁性框210可以用于聚拢磁场,减少磁场向外部释放,减少对冷冻储物组件200外侧的其他部件造成干扰(例如 磁化其他部件等)。凸台211与磁性框210的其他部分可以为一体件,也可以通过装配固定连接。凸台211的横截面可以为方形或者圆形或者椭圆形,在使用方形横截面时,凸台211更便于与箱体120结构配合。
在一些实施例中,磁性框210可为前后方向具有贯通开口的方形筒体,也即横截面为回形的框体。方形筒体的前端和后端分别具有贯通的开口,以供布置各种类型的储物盒240。
储物盒240可以形成独立密封的冷冻储物空间,从而专用特定的食材提供更佳的冷冻储物环境。储物盒240设置于磁性框210围成的空间内。
储物盒240可以包括:外筒241和抽屉242。其中外筒241设置于磁性框210内,并具有前向开口。抽屉242可抽拉地设置在外筒241内。抽屉242的前面板可与外筒241形成密封结构。在冰箱10使用风冷进行制冷时,外筒241的后壁上开设有进风口243以及回风口244,进风口243用于连接冰箱10的风道送风口或者连通至冰箱10的蒸发器(例如连通至蒸发器的顶部区域),以将制冷气流引入储物盒240;回风口244用于连接冰箱10的风道回风口或者连通至冰箱10的蒸发器(例如连通至蒸发器的底部区域),以将换热后的气流送回冰箱10的回风风道或者蒸发器。在一些实施例中,进风口243以及回风口244可以设置风门(图中未示出)。风门在进行制冷送风时受控打开。进风口243和回风口244可以根据风冷冰箱的风道、蒸发器的位置和结构进行配置,在另一些实施例中,回风口244也可以设置在外筒241侧壁上。
冷冻储物装置200设置有一组或多组电磁线圈,每组电磁线圈包括:套设在凸台211上的第一线圈233以及套设在第一线圈233外周的第二线圈234,并且第一线圈233以及第二线圈234根据储物盒240内的储物状态确定连接状态和/或启停状态,以在冷冻储物空间内形成与储物状态相匹配的磁场。第一线圈233的匝数可以小于第二线圈234,并且由于第二线圈234的覆盖面积大于第一线圈233,因此第一线圈233的磁场强度小于第二线圈234的磁场强度。在一些储藏物体积较大,冻结速度较慢的使用场景中。第一线圈233和第二线圈234可以串联连接,从而进一步提高磁场强度。
上述第一线圈233内周形状与凸台211的外周相适配,对应地设置为方形或者圆形或者椭圆形。第一线圈233和第二线圈234可以设为扁平的方框状,沿周向缠绕,从而使得在通电后产生的磁场磁极方向与凸台211垂直。 第一线圈233和第二线圈234的厚度与凸台211的高度相适配,从而使得磁性框210的内壁基本平齐,以便布置储物盒240。在另一些实施例中第一线圈233和第二线圈234可以设为扁平的椭圆环状或者圆环状。
因此第一线圈233以及第二线圈234可以具有以下磁场生成状态:全部关闭;第一线圈233单独启动;第二线圈234单独启动;第一线圈233和第二线圈234串联启动。
在本实施例中,为了提高冷冻储物空间内磁场的稳定性,使得磁场分布更加均匀,优选采用两个凸台211的结构。也即凸台211为两个,分别设置于磁性框210相对的两个内壁上。在图3-6所示的实施例中两个凸台211分别设置在磁性框210的顶壁内侧以及底壁内侧。
相对应地,电磁线圈包括第一线圈组231和第二线圈组232,第一线圈组231和第二线圈组232分别设置在一个凸台211上。第一线圈组231设置于储物盒240的顶部,第二线圈组232设置于储物盒240的底部。第一线圈组231和第二线圈组232分别具有互相套设的第一线圈233和第二线圈234。每个线圈组中第一线圈233以及第二线圈234产生的磁极的方向设置为一致。也即第一线圈组231的第一线圈233以及第二线圈234产生的磁极的方向与第二线圈组232的第一线圈233以及第二线圈234产生的磁极的方向设置为一致,从而可以在冷冻储物空间内形成均匀的磁场,磁场的磁力线经由磁性框210闭合。第一线圈组231和第二线圈组232的磁场状态可以设置为同步,也即在第一线圈组231的磁场施加方式也可以与第二线圈组232的磁场施加方式设置为相同。
图5所示的磁极方向为从下至上,其仅为举例,在本实施例中,可以根据需要灵活调整为磁极方向为从上至下。
图7是本发明一个实施例的具有冷冻储物装置的冰箱中一组电磁线圈的电路连接构造示意图。
第一线圈233具有第一接头J1-1和第二接头J1-2,第二线圈234具有第三接头J2-1和第四接头J2-2。一开关组件连接于上述接头与用于向第一线圈233和第二线圈234供电的电源之间,其中,第一开关K1连接于第一接头J1-1与电源正极之间,第二开关K2连接于第二接头J1-2与电源负极之间,第三开关K3连接于第三接头J2-1与电源正极之间,第四开关K4连接于第四接头J2-2与电源负极之间;第五开关K5连接于第二接头J1-2与第三接头 J2-1之间。
在第一线圈233单独启动时,第一开关K1、第二开关K2闭合,其他开关断开;第二线圈234单独启动时,第三开关K3、第四开关K4闭合,其他开关断开;第一线圈233和第二线圈234串联启动时,第一开关K1、第四开关K4、第五开关K5闭合,其他开关断开。利用上述电路开关结构,可以使得第一线圈233以及第二线圈234实现多种不同强度的磁场,满足不同储物状态的保鲜要求。由于施加磁场模式可以灵活调整,可以使得冷冻储物空间内磁场适合于冷冻制冷过程,一方面提高了冷冻储物质量,满足了用户对珍贵食材的储藏质量要求。
图8是根据本发明另一实施例的具有冷冻储物装置200的冰箱10中外筒241与磁性框210的配合示意图;图9是图8所示的冷冻储物装置200中磁性框210的示意图;图10是图8所示的冷冻储物装置200中生成磁场的示意图。如图8-10所示,两个凸台211分别设置在磁性框210的横向两侧的侧壁内侧。
相对应地,第一线圈组231设置于储物盒240的右侧,第二线圈组232设置于储物盒240的左侧。第一线圈组231和第二线圈组232分别具有互相套设的第一线圈233和第二线圈234。第一线圈组231的第一线圈233以及第二线圈234产生的磁极的方向与第二线圈组232的第一线圈233以及第二线圈234产生的磁极的方向设置为一致,从而可以在冷冻储物空间内形成均匀的磁场,磁场的磁力线经由磁性框210闭合。
图10所示的磁极方向为从左至右,其仅为举例,在本实施例中,可以根据需要灵活调整为磁极方向为从右至左。其中第一线圈233以及第二线圈234的磁场调节构造与图7一致,在此不做赘述。
凸台211的具体位置可以根据储物盒240以及冷冻储物间室的结构进行选择,例如对于宽度较大的储物盒240,可以采用生成纵向方向磁场的构造(如图5所示);而对于高度较大的储物盒240,可以采用生成横向方向磁场的构造(如图10所示)。
图11是根据本发明一个实施例的具有冷冻储物装置的冰箱中储物盒的外筒的示意图。温度场检测装置250设置于储物盒240内,并配置成探测冷冻储物空间内的温度分布状态。温度场检测装置250可以为可以扫描储物盒240冷冻储物空间内温度分布的红外探测装置,也可以为多个独立的红外传 感器或其他温度检测装置(每个红外传感器或温度检测装置用于检测冷冻储物空间内某一区域的温度情况)。温度场检测装置250通过检测可以得到冷冻储物空间中各位置的内部温度变化。在一些实施例中,温度场检测装置250可以设置在外筒241的顶壁内侧。
本实施例的冰箱10将电磁线圈的磁场控制与制冷控制相结合,保证食物在磁场环境中冻结,实现保鲜冷冻的效果。图12是根据本发明一个实施例的具有冷冻储物装置200的冰箱10的控制系统框图,冰箱10还设置有温度场检测装置250、开闭检测器270、制冷控制器300。
温度场检测装置250设置于储物盒240的外筒241内,并用于检测抽屉242内冷冻储物空间内的温度分布状态。温度场检测装置250的探测区域可以为整个冷冻储物空间或者至少大部分冷冻储物空间(考虑到可能存在探测死角的情况)。
开闭检测器270,配置成检测抽屉242的开闭状态。在抽屉242被拉开然后关闭后,借助于温度场检测装置250,可以检测是否放入新的食材或者原有食材是否需要重新冻结,并且可以确定需要冻结的食材的体积。然后使电磁线圈和制冷系统配合,可以实现磁场辅助冷冻,提高食材的冷冻保鲜效果。
制冷控制器300包括存储器310以及处理器320。存储器310内存储有控制程序311,控制程序311被处理器320执行时用于对电磁线圈以及制冷系统进行控制,从而实现相应的冷冻控制方法。而各种传感器,为磁场控制提供了检测手段,从而可以满足控制方法的控制需求。
制冷控制器300可以配置成出现储物盒240被打开前以及被关闭后的内部温度变化的幅度大于第一设定阈值的情况后,启动对储物盒240制冷。如果储物盒240被打开前以及被关闭后出现温度变化的幅度大于第一设定阈值则说明储物盒240放入新的食物,或者食物的温度是否已经升高需要重新冻结;如果内部温度变化的幅度较小,则说明食物可能仍处于冻结状态。第一设定阈值可以设置为2~8摄氏度,其可以根据冷冻设定温度灵活进行设置。
第一线圈233以及第二线圈234,还配置成在制冷控制器300启动对储物盒240制冷后,根据内部温度变化的幅度大于第一设定阈值的区域大小确定连接状态和/或启停状态。例如在内部温度变化的幅度大于第一设定阈值的区域占温度场检测装置250的探测区域的比值大于第一设定比例且小于第二 设定比例的情况下,第一线圈233单独启动;在内部温度变化的幅度大于第一设定阈值的区域占温度场检测装置250的探测区域的比值大于第二设定比例且小于第三设定比例的情况下,第二线圈234单独启动;在内部温度变化的幅度大于第一设定阈值的区域占温度场检测装置250的探测区域的比值大于第三设定比例的情况下,第一线圈233与第二线圈234串联连接,并且同时启动;第一设定比例小于第二设定比例,第二设定比例小于第三设定比例。第一设定比例、第二设定比例、第三设定比例可以根据冷冻储物空间、第一线圈233、第二线圈234的具体规格以及构造进行配置,例如第一设定比例可设为四分之一、第二设定比例可设置为二分之一、第三设定比例可设置为四分之三,具体的数值可以根据磁场强度进行配置。
储物盒240进行冷冻制冷时,利用磁场的辅助作用,可以对储藏物冷冻储藏质量更好,并且其灭菌效果也更好。另外上述启动条件,还可以避免长期形成磁场造成的发热及能耗增加,另一方面还可以避免对储物盒240外部其他部件产生磁化影响。
在电磁线圈启动之后,若冷冻储物空间内的温度全部冷却至第二设定阈值后,停止生成磁场,随着冷冻过程的持续,辅助冷冻所需的磁场相应减小,关闭电磁线圈可以进一步减小能耗,第二设定阈值可以设置为-10~-12摄氏度,在该温度范围内,储藏物已经大部分完成冻结。
然后,冷冻储物空间继续冷却至第三设定阈值后,制冷控制器300停止对储物盒240制冷,第三设定阈值小于第二设定阈值,其可以根据储物盒240设定的冷冻关机温度设置,一般可以低于设定的冷冻关机温度。也即在电磁线圈完成工作后,冷冻制冷延迟一段时间关闭。由于这次制冷是在储物盒240被打开后进行的,将第三设定阈值设置得更低,可以在一定程度上实现过冷,提高冷冻储物质量。
制冷控制器300停止对储物盒240制冷之后,还可以进一步配置成:按照储物盒240预设的制冷启动条件和制冷关闭条件对储物盒240进行常规冷冻控制,以维持储物盒240的冷冻储物环境;电磁线圈230可以配置成在制冷控制器300对储物盒240进行常规冷冻控制期间,按照预设的开闭策略产生磁场。
在完成磁场辅助冷冻制冷之后,恢复储物盒240正常冷冻控制,也即照储物盒240预设的制冷启动条件和制冷关闭条件对储物盒240进行冷冻控 制。制冷启动条件和制冷关闭条件可以同样根据储物盒240的设定温度进行设置,在高于制冷启动温度时开始制冷,在低于制冷关闭温度时停止制冷。
在该按照储物盒240预设的制冷启动条件和制冷关闭条件对储物盒240进行冷冻控制的步骤也可以使用磁场辅助制冷,避免部分冰晶重新生成时导致储物质量下降。一种开闭策略可以为:在启停对储物盒240制冷的同时启停磁场,也即磁场与制冷同时启停。例如可以仅仅启动第一线圈233或者第二线圈234。另一种替代性的方案为:在启动对储物盒240制冷时启动磁场,并在停止对储物盒240制冷之前关闭磁场,也即磁场仅在制冷的开始阶段启动。经过实际测试,磁场仅在制冷的开始阶段启动的储藏质量并没有与磁场与制冷同时启停的储藏质量明显下降。
另外一种在长期冷冻过程中,另一种开闭策略可以为:在按照储物盒240预设的制冷启动条件和制冷关闭条件对储物盒240进行冷冻控制的过程中,按照设定的周期启动磁场,也即磁场周期性启动。
在另一实施例中,在储物盒240正常冷冻控制启动磁场时,可以使第一线圈233和第二线圈234交替产生磁场,例如第一次启动第一线圈233,第二次启动第二线圈234,如此循环。
在应用于风冷冰箱时,开启对储物盒240制冷的步骤可以包括:打开进风口,并开启向进风口243吹送制冷气流。
图13是根据本发明一个实施例的具有冷冻储物装置的冰箱的冷冻控制方法的示意图。本实施例的流程为冰箱的冷冻控制方法的一个具体应用示例,其中部分步骤的执行顺序可以进行调整。该流程可以包括:
步骤S902,检测储物盒240的开闭状态;
步骤S904,确定储物盒240被打开后又被关闭,也即判断储物盒240是否出现开闭事件;
步骤S906,获取储物盒240被打开前以及被关闭后的内部温度变化,判断内部温度变化的幅度是否大于第一设定阈值,也即判断储物盒240是否放入新的食物,或者食物的温度是否已经升高需要重新冻结,第一设定阈值可以设置为2~8摄氏度,若内部温度变化幅度较小,食物可能无需重新冻结,则可以进行冷冻储物的制冷常规控制,也即按照设定开机温度阈值和关机温度阈值进行制冷控制。
步骤S908,开启制冷,向储物盒240送风,
步骤S910,判断内部温度变化的幅度大于第一设定阈值的区域占温度场检测装置的探测区域的比值是否大于第三设定比例,也即升温幅度大的区域范围比例是否大于第三设定比例,从而确定出需要冻结的食物体积很大,占用了大部分冷冻储物空间的情况;
步骤S912,第一线圈233和第二线圈234串联同时启动,也即释放最强的磁场;
步骤S920,判断内部温度变化的幅度大于第一设定阈值的区域占温度场检测装置的探测区域的比值是否大于第二设定比例,也即升温幅度大的区域范围比例是否大于第二设定比例,从而确定出需要冻结的食物体积较大,占用了一半左右冷冻储物空间的情况;
步骤S922,第二线圈234启动,也即释放较强的磁场;
步骤S930,判断内部温度变化的幅度大于第一设定阈值的区域占温度场检测装置的探测区域的比值是否大于第一设定比例,也即升温幅度大的区域范围比例是否大于第一设定比例,从而确定出需要冻结的食物体积占用了一部分冷冻储物空间的情况;
步骤S932,第一线圈233启动,也即释放较弱的磁场;
步骤S940,持续检测储物盒240的内部温度;
步骤S942,判断储物盒240的内部温度是否低于第二设定阈值(例如可以设置为-10~12摄氏度),也即判断是否基本完成冻结阶段;
步骤S944,关闭磁场;
步骤S946,判断储物盒240的内部温度是否低于第三设定阈值,第三设定阈值小于第二设定阈值,其可以根据储物盒240设定的冷冻关机温度设置,一般可以低于设定的冷冻关机温度。
步骤S948,停止对储物盒240制冷按照储物盒240预设的制冷启动条件和制冷关闭条件对储物盒240进行常规冷冻控制,以维持储物盒240的冷冻储物环境;并且在常规冷冻控制期间,按照预设的开闭策略启动磁场。
本实施例的具有冷冻储物装置的冰箱10,使得食材在磁场环境中冻结,并对磁场的方向及启停进行了针对性的控制,优先抑制冰晶晶核生长,减小对细胞造成的损伤,避免汁液流失,保证了食材更好的口感,提高了冷冻储物质量,满足了用户对珍贵食材的储藏质量要求。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明 的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种具有冷冻储物装置的冰箱,包括:
    箱体,其内设置有实现冷冻储物功能的储物间室;
    冷冻储物装置,布置于所述储物间室内,并且包括:
    磁性框,由磁性材料制成,其内表面设置有至少一个凸台;
    储物盒,设置于所述磁性框围成的空间内,并限定出冷冻储物空间;以及
    至少一组电磁线圈,每组电磁线圈包括:套设在所述凸台上的第一线圈以及套设在所述第一线圈外周的第二线圈,并且所述第一线圈以及所述第二线圈根据所述储物盒内的储物状态确定连接状态和/或启停状态,以在所述冷冻储物空间内形成与所述储物状态相匹配的磁场。
  2. 根据权利要求1所述的具有冷冻储物装置的冰箱,其中
    所述凸台为两个,分别设置于所述磁性框相对的两个内壁上;
    所述电磁线圈包括第一线圈组和第二线圈组,所述第一线圈组和所述第二线圈组分别设置在一个所述凸台上。
  3. 根据权利要求2所述的具有冷冻储物装置的冰箱,其中
    两个所述凸台分别设置在所述磁性框的顶壁内侧以及底壁内侧;或者
    两个所述凸台分别设置在所述磁性框的横向两侧的侧壁内侧。
  4. 根据权利要求1所述的具有冷冻储物装置的冰箱,其中
    所述第一线圈以及所述第二线圈产生的磁极的方向设置为一致。
  5. 根据权利要求1所述的具有冷冻储物装置的冰箱,还包括:
    开闭检测器,配置成检测所述储物盒的开闭状态;
    温度场检测装置,配置成探测所述冷冻储物空间内的温度分布状态;以及
    制冷控制器,配置成在出现所述储物盒被打开前以及被关闭后的内部温度变化的幅度大于第一设定阈值的情况后,启动对所述储物盒制冷。
  6. 根据权利要求5所述的具有冷冻储物装置的冰箱,其中
    所述第一线圈以及所述第二线圈,还配置成在所述制冷控制器启动对所述储物盒制冷后,根据所述内部温度变化的幅度大于第一设定阈值的区域大小确定连接状态和/或启停状态。
  7. 根据权利要求6所述的具有冷冻储物装置的冰箱,其中
    在所述内部温度变化的幅度大于第一设定阈值的区域占所述温度场检测装置的探测区域的比值大于第一设定比例且小于第二设定比例的情况下,所述第一线圈单独启动;
    在所述内部温度变化的幅度大于第一设定阈值的区域占所述温度场检测装置的探测区域的比值大于所述第二设定比例且小于第三设定比例的情况下,所述第二线圈单独启动;
    在所述内部温度变化的幅度大于第一设定阈值的区域占所述温度场检测装置的探测区域的比值大于所述第三设定比例的情况下,所述第一线圈与所述第二线圈串联连接,并且同时启动;所述第一设定比例小于所述第二设定比例,所述第二设定比例小于所述第三设定比例。
  8. 根据权利要求7所述的具有冷冻储物装置的冰箱,其中
    所述第一线圈和/或所述第二线圈在启动之后还配置成:在所述冷冻储物空间内的温度全部冷却至第二设定阈值后,停止生成磁场;
    所述制冷控制器还配置成:若所述冷冻储物空间内的温度全部冷却至第三设定阈值,停止对所述储物盒制冷,所述第三设定阈值低于所述第二设定阈值。
  9. 根据权利要求1所述的具有冷冻储物装置的冰箱,其中所述储物盒包括:
    外筒,设置于所述磁性框围成的空间内,并具有前向开口;以及
    抽屉,可抽拉地设置在所述外筒内。
  10. 根据权利要求9所述的具有冷冻储物装置的冰箱,其中
    所述外筒的后壁上开设有进风口以及回风口,
    所述进风口用于连接所述冰箱的送风风道或者连通所述冰箱的蒸发器, 以将制冷气流引入储物盒;
    所述回风口用于连接所述冰箱的回风风道或者连通所述冰箱的蒸发器,以将换热后的气流送回所述冰箱的回风风道或所述蒸发器。
PCT/CN2021/130609 2020-12-31 2021-11-15 具有冷冻储物装置的冰箱 WO2022142779A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011640500.3 2020-12-31
CN202011640500.3A CN114688801B (zh) 2020-12-31 2020-12-31 具有冷冻储物装置的冰箱

Publications (1)

Publication Number Publication Date
WO2022142779A1 true WO2022142779A1 (zh) 2022-07-07

Family

ID=82135424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130609 WO2022142779A1 (zh) 2020-12-31 2021-11-15 具有冷冻储物装置的冰箱

Country Status (2)

Country Link
CN (1) CN114688801B (zh)
WO (1) WO2022142779A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333250A (ja) * 2001-05-10 2002-11-22 Matsushita Refrig Co Ltd 核磁気共鳴を利用した急速凍結庫
WO2003038355A1 (fr) * 2001-11-01 2003-05-08 Abi Co.,Ltd. Appareil et procede de congelation de grande efficacite
CN106839581A (zh) * 2015-12-07 2017-06-13 青岛海尔智能技术研发有限公司 冷藏冷冻装置及其冷冻方法
CN107965960A (zh) * 2017-12-12 2018-04-27 江南大学 基于多磁极可控的周期性变化磁场辅助冷冻装置及应用
CN207422749U (zh) * 2017-08-25 2018-05-29 南京韩威南冷制冷集团有限公司 一种基于磁场的蔬菜水果低温冷藏及冷冻装置
CN110074310A (zh) * 2019-06-05 2019-08-02 青岛科技大学 一种磁场冷冻保鲜装置
CN110108076A (zh) * 2019-06-05 2019-08-09 青岛科技大学 一种磁场辅助制冷装置
CN111043826A (zh) * 2018-10-11 2020-04-21 青岛海尔股份有限公司 冷藏冷冻装置及其控制方法
CN214536999U (zh) * 2020-12-31 2021-10-29 青岛海尔特种制冷电器有限公司 冰箱的冷冻储物总成与冰箱

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150786A (ja) * 1987-12-08 1989-06-13 Matsushita Refrig Co Ltd 開扉装置つき箱体
CN104990358B (zh) * 2015-06-26 2019-03-12 青岛海尔股份有限公司 冰箱冷藏室的分区制冷控制方法和分区制冷控制装置
CN111043829B (zh) * 2018-10-11 2020-11-24 青岛海尔股份有限公司 冷藏冷冻装置及其控制方法
CN209893723U (zh) * 2019-02-19 2020-01-03 青岛海尔电冰箱有限公司 冷藏冷冻装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333250A (ja) * 2001-05-10 2002-11-22 Matsushita Refrig Co Ltd 核磁気共鳴を利用した急速凍結庫
WO2003038355A1 (fr) * 2001-11-01 2003-05-08 Abi Co.,Ltd. Appareil et procede de congelation de grande efficacite
CN106839581A (zh) * 2015-12-07 2017-06-13 青岛海尔智能技术研发有限公司 冷藏冷冻装置及其冷冻方法
CN207422749U (zh) * 2017-08-25 2018-05-29 南京韩威南冷制冷集团有限公司 一种基于磁场的蔬菜水果低温冷藏及冷冻装置
CN107965960A (zh) * 2017-12-12 2018-04-27 江南大学 基于多磁极可控的周期性变化磁场辅助冷冻装置及应用
CN111043826A (zh) * 2018-10-11 2020-04-21 青岛海尔股份有限公司 冷藏冷冻装置及其控制方法
CN110074310A (zh) * 2019-06-05 2019-08-02 青岛科技大学 一种磁场冷冻保鲜装置
CN110108076A (zh) * 2019-06-05 2019-08-09 青岛科技大学 一种磁场辅助制冷装置
CN214536999U (zh) * 2020-12-31 2021-10-29 青岛海尔特种制冷电器有限公司 冰箱的冷冻储物总成与冰箱

Also Published As

Publication number Publication date
CN114688801B (zh) 2023-07-14
CN114688801A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN214536999U (zh) 冰箱的冷冻储物总成与冰箱
CN216114965U (zh) 磁场保鲜储物容器和冰箱
CN216114964U (zh) 磁场保鲜储物容器和冰箱
CN106839581A (zh) 冷藏冷冻装置及其冷冻方法
CN111043826B (zh) 冷藏冷冻装置及其控制方法
CN216114894U (zh) 用于冰箱的保鲜储物容器和冰箱
CN103954092A (zh) 冰箱
WO2020073741A1 (zh) 冷藏冷冻装置及其控制方法
WO2023016148A1 (zh) 具有磁场保鲜功能的制冷设备
WO2022142779A1 (zh) 具有冷冻储物装置的冰箱
CN111043829B (zh) 冷藏冷冻装置及其控制方法
JPH04369375A (ja) 冷蔵庫
WO2022142778A1 (zh) 具有冷冻储物装置的冰箱
WO2022142777A1 (zh) 具有冷冻储物组件的冰箱
WO2022142780A1 (zh) 冰箱的冷冻控制方法与冰箱
WO2023109516A1 (zh) 具有磁场保鲜装置的制冷设备
CN114688798B (zh) 冰箱的冷冻控制方法与冰箱
CN216897975U (zh) 冰箱抽屉以及冰箱
WO2023016224A1 (zh) 磁场保鲜储物容器和冰箱
WO2023016226A1 (zh) 磁场保鲜储物容器和冰箱
WO2023016228A1 (zh) 磁场保鲜储物容器和冰箱
WO2023016225A1 (zh) 磁场保鲜储物容器和冰箱
WO2023016227A1 (zh) 用于冰箱的保鲜储物容器和冰箱
JPH06101949A (ja) 冷蔵庫
WO2024007943A1 (zh) 用于冷藏冷冻装置的磁场保鲜抽屉与冷藏冷冻装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913522

Country of ref document: EP

Kind code of ref document: A1