WO2022141621A1 - 有机发光器件、发光基板和发光装置 - Google Patents

有机发光器件、发光基板和发光装置 Download PDF

Info

Publication number
WO2022141621A1
WO2022141621A1 PCT/CN2021/070101 CN2021070101W WO2022141621A1 WO 2022141621 A1 WO2022141621 A1 WO 2022141621A1 CN 2021070101 W CN2021070101 W CN 2021070101W WO 2022141621 A1 WO2022141621 A1 WO 2022141621A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting
emitting device
electron
Prior art date
Application number
PCT/CN2021/070101
Other languages
English (en)
French (fr)
Inventor
高荣荣
陈磊
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180000011.8A priority Critical patent/CN115039247A/zh
Priority to US17/626,147 priority patent/US20230232651A1/en
Priority to PCT/CN2021/070101 priority patent/WO2022141621A1/zh
Publication of WO2022141621A1 publication Critical patent/WO2022141621A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/46Oxygen atoms
    • C07D213/50Ketonic radicals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Definitions

  • the present disclosure relates to the technical field of lighting and display, and in particular, to an organic light-emitting device, a light-emitting substrate and a light-emitting device.
  • OLED Organic Light Emitting Diode
  • an organic light-emitting device comprising: a stacked anode, a light-emitting layer and a cathode; a first functional material layer between the light-emitting layer and the anode; and a layer between the light-emitting layer and the cathode
  • the second functional material layer under the same test conditions, the hole mobility of the material of the first functional material layer is at least ten times the electron mobility of the material of the second functional material layer.
  • the second functional material layer includes an electron transport layer and a hole blocking layer; the electron mobility of the material of the electron transport layer is the same as the electron mobility of the material of the hole blocking layer; or , the electron mobility of the material of the electron transport layer is different from the electron mobility of the material of the hole blocking layer, and under the same test conditions, the electron mobility of the material of the hole blocking layer is smaller than the electron mobility of the material of the hole blocking layer The electron mobility of the material of the electron transport layer.
  • the electron mobility of the material of the electron transport layer is 10 ⁇ 5 cm 2 V ⁇ 1 s ⁇ 1 to 10 ⁇ 7 cm 2 V -1 s -1 ; the electron mobility of the material of the hole blocking layer is 10 -7 cm 2 V -1 s -1 to 10 -9 cm 2 V -1 s -1 .
  • the difference between the LUMO energy level of the material of the hole blocking layer and the LUMO energy level of the electron transport layer is greater than or equal to 0.4 eV and less than or equal to 1 eV.
  • the lowest triplet energy of the material of the electron transport layer is greater than the lowest triplet energy of the material of the hole blocking layer.
  • the material of the electron transport layer and the material of the hole blocking layer are each independently selected from compounds comprising at least one heteroaryl group containing at least two N atoms.
  • the material of the electron transport layer is a compound based on a spiro aromatic structure.
  • the material of the electron transport layer is selected from any one or a combination of two or more of the structures represented by the general formula (I);
  • X is selected from any one of C(R) 2 , O, S, N(R) and a single bond
  • Ar 1 to Ar 4 may appear simultaneously or independently, each independently Selected from substituent R 1 substituted or unsubstituted aryl or heteroaryl group with 5 to 30 ring atoms, and at least one of which is selected from any one of the structures represented by the following general formula (II), substituted
  • the group R 1 is selected from any one of tert-butyl, cyano, aryl or heteroaryl with 5 to 30 ring atoms and -Y 1 (Ar) n ;
  • X 1 , X 2 and X 3 are each independently selected from any one of C(R 2 ) and N, and at least two of them are selected from N;
  • Each R 2 is the same or different, and is independently selected from H and any one of aryl or heteroaryl groups with 5 to 30 ring atoms, and R 2 is selected from a group with 5 to 30 ring atoms.
  • the aryl or heteroaryl group may or may not have a substituent R 1 ;
  • the material of the electron transport layer is selected from any one or a combination of two or more of the following compounds:
  • the material of the hole blocking layer is selected from any one or a combination of two or more of the structures represented by the general formula (III);
  • X 4 , X 5 and X 6 are each independently selected from any one of C(R) and N, and at least two are selected from N;
  • Ar 5 , Ar 6 and L 2 Each is independently selected from the substituent R 1 substituted or unsubstituted aryl group with 6-60 carbon atoms, or the substituent R 1 substituted or unsubstituted heteroaryl group with 2-60 carbon atoms;
  • L 1 is selected from single bond, substituent R 1 substituted or unsubstituted divalent aryl group with 6-60 carbon atoms, or substituent R 1 substituted or unsubstituted divalent aryl group with 2-60 carbon atoms valent heteroaryl;
  • R 3 is selected from any of H and methyl, and R is selected from any of H, methyl, aryl and heteroaryl.
  • L 1 is selected from a substituted or unsubstituted bivalent bicyclic aryl group with substituent R 1
  • at least one monocyclic ring in the bivalent bicyclic aryl group has Meta and/or ortho linking groups; in the case that L 1 is selected from a substituted or unsubstituted monocyclic aryl group of substituent R 1 , L 2 and azine are linked at the meta or ortho positions of L 1 .
  • the material of the hole blocking layer is selected from any one or a combination of two or more of the following structures:
  • the first functional material layer includes a hole transport layer and an electron blocking layer; the hole mobility of the material of the hole transport layer is the same as the hole mobility of the material of the electron blocking layer Or, the hole mobility of the material of the hole transport layer is different from the hole mobility of the material of the electron blocking layer, and under the same test conditions, the hole mobility of the material of the electron blocking layer The rate is not less than one tenth of the hole mobility of the material of the hole transport layer.
  • the hole mobility of the material of the hole transport layer is 10 -4 cm 2 V -1 s -1 ⁇ 10 -6 cm 2 V -1 s -1 ; the hole mobility of the material of the electron blocking layer is 10 -4 cm 2 V -1 s -1 to 1 to 10 -7 cm 2 V -1 s -1 .
  • the difference between the HOMO energy level of the material of the hole transport layer and the HOMO energy level of the material of the electron blocking layer is greater than or equal to -0.5 eV and less than or equal to 0.3 eV.
  • the lowest triplet energy of the hole transport layer is greater than the lowest triplet energy of the electron blocking layer.
  • the material of the light-emitting layer includes a host material, and the difference between the HOMO energy level of the hole blocking layer and the HOMO energy level of the host material is greater than or equal to 0.1 eV.
  • the lowest triplet energy of the hole blocking layer is greater than the lowest triplet energy of the host material.
  • the first functional material layer includes an electron blocking layer, and the difference between the HOMO energy level of the host material and the HOMO energy level of the electron blocking layer is less than or equal to 0.3 eV.
  • the lowest triplet energy of the electron blocking layer is greater than the lowest triplet energy of the host material.
  • the material of the hole transport layer and the material of the electron blocking layer are each independently selected from any one of aromatic amine compounds.
  • the organic light-emitting device is a red-emitting light-emitting device, and under the same test conditions, the electron mobility and hole mobility of the host material of the light-emitting layer are approximately the same;
  • the light-emitting device is a light-emitting device that emits green light, and under the same test conditions, the electron mobility of the host material of the light-emitting layer is less than or equal to the hole mobility of the host material of the light-emitting layer; or, the organic light-emitting device
  • the device is a light-emitting device that emits blue light. Under the same test conditions, the electron mobility of the host material of the light-emitting layer is greater than the hole mobility of the host material of the light-emitting layer.
  • the organic light-emitting device when the organic light-emitting device is a red-emitting light-emitting device, under the test condition of an electric field strength of 5000V 1/2 /m 1/2 , the electrons of the host material of the light-emitting layer
  • the mobility is 10 -6 cm 2 V -1 s -1 to 10 -7 cm 2 V -1 s -1 ;
  • the hole mobility of the host material of the light-emitting layer is 10 -6 cm 2 V -1 s - 1 to 10 -7 cm 2 V -1 s -1 ;
  • the organic light-emitting device when the organic light-emitting device is a green light-emitting device, under the test condition of an electric field intensity of 5000 V 1/2 /m 1/2 , all
  • the electron mobility of the host material of the light-emitting layer is 10 -7 cm 2 V -1 s -1 to 10 -8 cm 2 V -1 s -1 ;
  • a light-emitting substrate comprising: a substrate; a plurality of light-emitting devices disposed on the substrate; at least one of the light-emitting devices is selected from the organic light-emitting devices described above.
  • a light-emitting device including the above-mentioned light-emitting substrate.
  • FIG. 1 is a cross-sectional structural view of a light-emitting substrate according to some embodiments
  • FIG. 2 is a distribution diagram of the recombination area of excitons in the light-emitting layer according to some embodiments
  • 3 is a graph of HOMO energy levels and LUMO energy levels of hole transport layers, electron blocking layers, light emitting layers, hole blocking layers, and electron transport layers, according to some embodiments.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes of the drawings due to, for example, manufacturing techniques and/or tolerances, are contemplated.
  • example embodiments should not be construed as limited to the shapes of the regions illustrated herein, but to include deviations from shapes such as those caused by manufacturing. For example, an etched area shown as a rectangle will typically have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • a light emitting device including a light emitting substrate.
  • a circuit for providing electrical signals to the light-emitting substrate to drive the light-emitting substrate to emit light may be called a control circuit, and may include a circuit board and/or IC electrically connected to the light-emitting substrate. (Integrate Circuit, integrated circuit).
  • the light-emitting device may be a lighting device, and in this case, the light-emitting substrate may be a lighting substrate, for example, may be used as a light source to realize a lighting function.
  • the light-emitting substrate may be a backlight module in a liquid crystal display device, a lamp used for internal or external lighting, or various signal lamps, and the like.
  • the light-emitting device may be a display device, and in this case, the light-emitting substrate is a display substrate for realizing the function of displaying an image (ie, a picture).
  • the light emitting device may comprise a display or a product incorporating a display.
  • the display may be a flat panel display (Flat Panel Display, FPD), a microdisplay, and the like.
  • the display can be a transparent display or an opaque display according to whether the user can see the scene behind the display.
  • the display may be a flexible display or a normal display (which may be called a rigid display).
  • products incorporating displays may include: computer monitors, televisions, billboards, laser printers with display capabilities, telephones, cell phones, Personal Digital Assistants (PDAs), laptop computers, digital cameras, camcorders Recorders, viewfinders, vehicles, large walls, theater screens or stadium signage, etc.
  • PDAs Personal Digital Assistants
  • laptop computers digital cameras
  • camcorders Recorders viewfinders
  • vehicles large walls, theater screens or stadium signage, etc.
  • the light-emitting substrate 1 may include a substrate 11 and a plurality of organic light-emitting devices 12 disposed on the substrate 11 .
  • the substrate 11 may be a flexible substrate or a rigid substrate.
  • the material of the substrate 11 may be a PI (Polyimide, polyimide) material.
  • the substrate 11 may be glass.
  • the substrate 11 may be a substrate on which a pixel driving circuit has been formed.
  • the light-emitting substrate 1 can be a top-emitting light-emitting substrate (the light emitted by the organic light-emitting device 12 is emitted from the side away from the substrate 11 ), or a bottom-emitting light-emitting substrate (the light emitted by the organic light-emitting device 12 is emitted from the side of the substrate 11 ) Or double-sided light-emitting light-emitting substrate.
  • the light-emitting substrate 1 may further include: a light-extracting layer 13 disposed on a side of the organic light-emitting device 12 away from the substrate 11 .
  • the light extraction layer 13 is configured to extract the light emitted by each organic light emitting device 12 .
  • the at least one organic light emitting device 12 may include a stacked anode 121, an emission layer (EML) 122 and a cathode 123, and a first functional material layer 124 between the emission layer 122 and the anode 121, and a second functional material layer 125 located between the light emitting layer 122 and the cathode 123 .
  • EML emission layer
  • the first functional material layer 124 may include a hole injection layer (Hole Inject Layer, HIL) 124a and a hole transport layer (Hole Transport Layer, HTL) 124b, and may further include an electron blocking layer (Electron Blocking Layer, EBL) 124c, which is not specifically limited here, as long as the first functional material layer 124 can realize the injection and transport of holes.
  • the second functional material layer 125 may include an electron injection layer (Electron Inject Layer, EIL) 125a and an electron transport layer (Electron Transport Layer, ETL) 125b, and may further include a hole blocking layer (Hole Blocking Layer, HBL) 125c. This is also not specifically limited, as long as the second functional material layer 124 can realize the injection and transmission of electrons.
  • the light-emitting principle of the organic light-emitting device 12 is: when a voltage is applied to the anode 121 and the cathode 123, electrons are injected by electrons.
  • the hole is injected into the layer 125a and transported to the light emitting layer 122 through the electron transport layer 125b and the hole blocking layer 125c, and the holes are injected through the hole injection layer 124a and transported to the light emitting layer 122 through the hole transport layer 124b and the electron blocking layer 124c , electrons and holes recombine in the light-emitting layer 122 to generate singlet excitons and triplet excitons, and emit light through exciton de-excitation radiation.
  • the properties of the materials of each functional material layer, as well as the degree of mobility matching and energy level matching between the functional material layers will affect the injection, transport, and excitation of carriers inside the organic light-emitting device 12 .
  • the formation, quenching and other characteristics of the electrons will be affected, and thus the light-emitting characteristics of the organic light-emitting device 12 will be affected.
  • mobility refers to the average drift velocity of carriers (electrons and holes) under the action of a unit electric field, that is, a measure of the speed of the movement of carriers under the action of an electric field. The faster the movement, the greater the mobility. The movement is slow and the mobility is small.
  • the first functional material layer 124 includes a hole injection layer 124a, a hole transport layer 124b and an electron blocking layer 124c
  • the second functional material layer 125 includes an electron injection layer 125a, an electron transport layer 125b and a hole blocking layer 125c is described as an example.
  • first functional material layer 124 and the second functional material layer 125 are also applicable to the fact that the first functional material layer 124 only includes a hole injection layer. 124a and the hole transport layer 124b, and/or the second functional material layer 125 includes only the electron injection layer 125a and the electron transport layer 125b, the number and number of layers of the first functional material layer 124 and the second functional material layer 125 The thickness of each layer creates a limitation.
  • the light-emitting substrate 1 can also be provided with a driving circuit connected to each organic light-emitting device, and the driving circuit can be connected to the control circuit to drive each organic light-emitting device to emit light according to an electrical signal input by the control circuit.
  • the driving circuit may be an active driving circuit or a passive driving circuit.
  • the light-emitting substrate 1 can emit monochromatic light (single-color light) or color-adjustable light.
  • the light-emitting substrate 1 can emit monochromatic light.
  • a plurality of organic light-emitting devices included in the light-emitting substrate 1 emit monochromatic light (eg, red light).
  • the light-emitting substrate 1 can be used for lighting, that is, it can be applied to a lighting device, and it can also be used to display a single-color image or screen, that is, it can be applied to a display device.
  • the light-emitting substrate 1 can emit light with a tunable color (ie, colored light).
  • the multiple organic light-emitting devices included in the light-emitting substrate 1 have different light-emitting colors. By controlling the brightness of each organic light-emitting device, the color and brightness of the mixed light emitted by the light-emitting substrate 1 can be controlled. Color light can be achieved.
  • the light-emitting substrate can be used to display images or pictures, that is, it can be used in a display device.
  • the light-emitting substrate can also be used in a lighting device.
  • At least three organic light-emitting devices 12 on the light-emitting substrate include a stacked anode 121 , a light-emitting layer 122 and a cathode 123 , and a first functional material layer located between the light-emitting layer 122 and the anode 121 . 124, and taking the second functional material layer 125 between the light-emitting layer 122 and the cathode 123 as an example, the at least three organic light-emitting devices may include a red-emitting light-emitting device R, a green-emitting light-emitting device G, and a blue-emitting light-emitting device device B.
  • the material of the light emitting layer 122 may include a host material and a dopant material.
  • the host material and dopant material of the light-emitting layer 122 may also be different according to the light-emitting color of the light-emitting layer 122 .
  • the hole mobility of the host material of the red light-emitting device R and the hole mobility of the host material of the green light-emitting device G are approximately the same, and the red light is emitted.
  • the electron mobility of the host material of the light-emitting device R is slightly greater than that of the host material of the green-emitting light-emitting device G.
  • the hole mobility of the host material of the blue-emitting light-emitting device B is smaller than the hole mobility of the host material of the red-emitting light-emitting device R, and the electron mobility of the host material of the blue-emitting light-emitting device B is less than that of the green light-emitting device B.
  • the electron mobilities of the host materials of Device G are comparable.
  • the carrier transport speeds of the light emitting layer 122 of the red light emitting device R and the light emitting layer 122 of the green light emitting device G are relatively balanced, and the carrier transport of the host material of the blue light emitting device B is not equal. Balanced, there is a serious problem of hole transport lag.
  • the host material of the light-emitting layer 122 may be a dual-host material, that is, the host material of the light-emitting layer 122 includes both a compound having an electron transport function and a
  • the light-emitting layer 122 may be formed by co-evaporating the dual-host materials, including a single-host material with a hole transport function.
  • the host material of the light-emitting layer 122 may also be a single compound having electron transport function and hole transport function.
  • the SCLC Space-Charge-Limited-Current, space charge (resulting) limited current
  • the electron mobility of the host material of the light-emitting layer may be 10 ⁇ 6 cm 2 V Any value from -1 s -1 to 10 -7 cm 2 V -1 s -1
  • the hole mobility of the host material of the light-emitting layer can be 10 -6 cm 2 V -1 s -1 to 10 -7 Any value in cm 2 V -1 s -1 .
  • the host material of the light-emitting layer 122 may also be a dual-host material, or a single-host material with electron transport function and hole transport function. Under the same test conditions, the electron mobility and hole mobility of the host material of the light-emitting layer 122 are approximately the same.
  • the electron mobility and hole mobility of the host material of the light-emitting layer can also be tested by the SCLC (Space-Charge-Limited-Current, space charge (resulting) limited current) method.
  • the electron mobility of the host material of the light-emitting layer may be 10 ⁇ 7 cm 2 V -1 s -1 ⁇ 10 -8 cm 2 V -1 s -1 any value;
  • the hole mobility of the host material of the light-emitting layer can be 10 -6 cm 2 V -1 s -1 ⁇ 10 -7 Any value in cm 2 V -1 s -1 .
  • the host material of the light-emitting layer 122 is a single host material. At this time, under the same test conditions, the electron mobility of the host material of the light-emitting layer 122 is greater than that of the light-emitting layer. The hole mobility of the host material of 122.
  • the electron mobility and hole mobility of the host material of the light-emitting layer 122 can also be tested by the SCLC (Space-Charge-Limited-Current, space charge (caused) limited current) method.
  • the electron mobility of the host material of the light-emitting layer 122 in the blue light - emitting device B is 10 ⁇ 7 cm 2 V ⁇ Any value from 1 s -1 to 10 -8 cm 2 V -1 s -1 ; the hole mobility of the host material of the light-emitting layer 122 is 10 -8 cm 2 V -1 s -1 to 10 -9 cm Any value in 2 V -1 s -1 .
  • the exciton recombination region of existing organic light-emitting devices (such as blue-emitting light-emitting devices) has been studied and found that, in terms of the material selection of the existing functional material layers, the excitons in the light-emitting layer 122
  • the distribution diagram of the recombination area is shown in FIG. 2 . It can be seen from FIG. 2 that the intensity of the excitons increases as it approaches the electron blocking layer 124 c , which indicates that the recombination area of most excitons is between the electron blocking layer 124 c and the light emitting layer 122 . the interface between.
  • the intensity of excitons is different from the concentration of excitons, and is a measure of the luminescence intensity when the excitons de-excite light.
  • the intensity of excitons is not only related to the concentration of excitons, but also related to other factors such as the lifetime of excitons, etc. However, when other influencing factors are determined, the concentration of excitons is the main factor affecting the intensity of excitons. Therefore, in the whole device, the intensity of excitons and the concentration of excitons have the same or similar trend of change . Based on this, according to Fig. 2, as the light-emitting layer is farther away from the electron blocking layer 124c, the intensity of excitons gradually decreases gradually.
  • the concentration of excitons is also gradient. Gradually decreasing, that is, with a certain number of excitons, the recombination region of most of the excitons is at the interface between the electron blocking layer 124c and the light emitting layer 122 . This indicates that the electron transport rate of the material of the second functional material layer 125 is greater than the hole transport rate of the material of the first functional material layer 124 during the entire transport process of holes and electrons (ie, the entire process from injection to transport).
  • the exciton recombination region is more inclined to the side of the electron blocking layer 124c, which in turn causes electrons to accumulate at the interface between the electron blocking layer 124c and the light-emitting layer 122, resulting in the deterioration of the material by the charge, which in turn affects the performance of the device. .
  • the hole mobility of the material of the first functional material layer 124 is at least ten times higher than the electron mobility of the material of the second functional material layer 125 .
  • the hole transport rate and the second function of the material of the first functional material layer 124 in the organic light emitting device 12 The electron transport rate of the material of the material layer 125 is adjusted, the hole transport rate in the organic light-emitting device 12 is accelerated, the electron transport rate in the organic light-emitting device 12 is reduced, and the recombination area is adjusted so that the recombination area is moved away from the electrons toward the light-emitting layer 122
  • the area of the blocking layer 124c is offset, reducing the accumulation of excitons at the interface between the electron blocking layer 124c and the light-emitting layer 122, preventing electrons from accumulating on the interface between the electron blocking layer 124c and the light-emitting layer 122, so that the accumulation can be slowed down
  • the deterioration of the material by the charge can further improve the stability of the device and increase the life of the device.
  • the hole injection layer 124 including the hole injection layer 124a, the hole transport layer 124b and the electron blocking layer 124c
  • the hole injection layer 124 If the material of the layer 124a is determined, the material of the hole transport layer 124b and the electron blocking layer 124c are the same or different, and if the material of the hole transport layer 124b and the electron blocking layer 124c are the same, the material of the hole transport layer 124b
  • the hole mobility of the hole transport layer 124b is the same as the hole mobility of the material of the electron blocking layer 124c.
  • the hole mobility of the material of the hole transport layer 124b and the material of the electron blocking layer 124b are the same as The hole mobility of the material of the electron blocking layer 124c is different.
  • the hole mobility of the material of the electron blocking layer 124c is generally smaller than that of the material of the hole transport layer 124b.
  • the hole mobility of the material of the electron blocking layer 124c is not less than one tenth of the hole mobility of the material of the hole transport layer 124b.
  • the hole mobility of the material of the hole transport layer 124b is 10 ⁇ 4 cm 2 V ⁇ 1 s ⁇ 1 to 10 under test conditions of an electric field strength of 5000 V 1/2 /m 1/2 -6 cm 2 V -1 s -1 ; the hole mobility of the material of the electron blocking layer 124c is 10 -4 cm 2 V -1 s -1 to 10 -7 cm 2 V -1 s -1 .
  • the hole mobility of the material of the hole transport layer 124b and the material of the electron blocking layer 124c can be tested by using the SCLC (Space-Charge-Limited-Current, space charge (resulting) limited current) method.
  • SCLC Space-Charge-Limited-Current, space charge (resulting) limited current
  • the hole mobility of the material of the first functional material layer 124 is at least ten times the electron mobility of the material of the second functional material layer 125 .
  • the electron mobility of the material of the second functional material layer 125 is less than or equal to 10 -5 cm 2 V -1 s -1 , in the first functional material layer 124
  • the electron mobility of the material of the second functional material layer 125 is less than or equal to 10 -6 cm 2 V -1 s -1
  • the electron mobility of the material of the second functional material layer 125 is less than or equal to 10 ⁇ 6 ⁇ 7 cm 2 V -1 s -1 .
  • the hole mobility of the material of the hole transport layer 124b and the hole mobility of the material of the electron blocking layer 124c is different
  • the hole mobility of the material of the electron blocking layer 124c is generally smaller than that of the material of the hole transport layer 124b
  • the hole mobility of the material of the electron transport layer 124c is not less than that of the material of the hole transport layer 124b.
  • One tenth of the hole mobility it can be known that the hole mobility of the material of the first functional material layer 124 is at least ten times the electron mobility of the material of the second functional material layer 125.
  • the material layer 124 has a larger hole mobility for comparison.
  • the hole mobility of the material of the hole transport layer 124b is 10 ⁇ 4 cm 2 V ⁇ 1 s ⁇ 1
  • the hole mobility of the material of the electron blocking layer 124c is 10 ⁇ 5 cm 2 V ⁇ 1 s ⁇ 1
  • the hole mobility of the material of the hole transport layer 124b in the first functional material layer 124 is at least is ten times the electron mobility of the material of the second functional material layer 125
  • the electron mobility of the material of the second functional material layer 125 is less than or equal to 10 ⁇ 5 cm 2 V ⁇ 1 s ⁇ 1 .
  • the material of the electron injection layer 125a is determined
  • the materials of the electron transport layer 125b and the hole blocking layer 125c may also be the same or different.
  • the electron mobility of the material of the hole blocking layer 125c is smaller than that of the material of the electron transport layer 125b.
  • the one with the larger hole mobility in the first functional material layer 124 shall prevail.
  • the electron mobility of the material of the hole blocking layer 125c is smaller than that of the electron transport layer 125b, therefore, in the second functional material layer 125, the material of the hole blocking layer 125c and the electrons
  • the material of the transport layer 125b is different, when comparing the hole mobility of the material of the first functional material layer 124 and the electron mobility of the material of the second functional material layer 125, the same is true for the second functional material layer 125. Whichever has the larger electron mobility in the middle shall prevail.
  • the hole mobility of the material of the first functional material layer 124 is at least ten times the electron mobility of the material of the second functional material layer 125, which is It means that the hole mobility of the material of the first functional material layer 124 is at least ten times higher than that of the electron transport layer 125b.
  • the first functional material layer 124 includes a hole transport layer 124b and an electron blocking layer 124c.
  • the bifunctional material layer 125 includes an electron transport layer 125b and a hole blocking layer 125c, ie, the hole mobility of the material of the hole transport layer 124b is at least ten times higher than the electron mobility of the electron transport layer 125b.
  • the electron mobility of the material of the hole transport layer 124b is less than or equal to 10 -5 cm 2 V -1 s -1
  • the electron mobility of the material of the hole blocking layer 125c is less than 10 -5 cm 2 V -1 s -1 , such as 10 -6 cm 2 V -1 s -1 .
  • the electron mobility of the material of the electron transport layer 125b is 10 ⁇ 5 cm 2 V ⁇ 1 s ⁇ 1 to 10 ⁇ 7 under the test condition of the electric field strength of 5000 V 1/2 /m 1/2 cm 2 V -1 s -1 ; the electron mobility of the material of the hole blocking layer 125c is 10 -7 cm 2 V -1 s -1 to 10 -9 cm 2 V -1 s -1 .
  • the hole mobility of the material of the hole transport layer 124b is 10 ⁇ 4 cm 2 V ⁇ 1 s ⁇ 1 to 10 ⁇ 6 cm 2 V -1 s -1 ; when the hole mobility of the material of the electron blocking layer 124c is 10 -4 cm 2 V -1 s -1 to 10 -7 cm 2 V -1 s -1 , the electrons
  • the electron mobility of the material of the transport layer 125b is any value between 10 -5 cm 2 V -1 s -1 to 10 -7 cm 2 V -1 s -1 ; the electron mobility of the material of the hole blocking layer 125c It is any value between 10 -7 cm 2 V -1 s -1 to 10 -9 cm 2 V -1 s -1 . It can increase the hole transport rate, reduce the electron transport rate, and improve the device efficiency and life.
  • the hole transport layer 124b and the electron blocking layer 124c are each independently selected from any one of aromatic amine compounds.
  • Aromatic amine compounds have good hole transport properties, and with the increase of the number of aromatic amines, the hole mobility is faster.
  • the material of the hole transport layer 124b may be selected from aromatic amine compounds, such as NPB(N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine,N,n' -Bis(naphthalen-1-yl)-n,n'-bis(phenyl)benzidine), m-MTDATA(4,4',4"-Tris(N-3-methylphenyl-N-phenylamino)triphenylamine, 4,4',4'-Tris(N-3-methylphenyl-N-phenylamino)triphenylamine), TPD((N,NL biphenyl-N,N,_bis-(3-methylpheny1)-1 ,1biphenyl-4,4'-diamine), N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine ) etc.
  • aromatic amine compounds
  • the material of the electron blocking layer 124c can be selected from mCBP(3,3′-Di(9H-carbazol-9-yl)biphenyl, 3,3′-bis(9H-carbazol-9-yl)-1, 1'-bipyridine; 3,3'-bis(9H-carbazol-9-yl)-1,1'-bipyridine), Tris-PCz(3,6-Bis(N-phenyloxazol-3-yl) -N-phenylcarbazole, 3,6-bis(N-phenylcarbazol-3-yl)-N-phenylcarbazole), etc.
  • the hole mobility of the hole transport layer 124b and the electron blocking layer 124c in the above first functional material layer 124 is constant, in order to further increase the hole transport rate, optionally, as shown in FIG.
  • the difference between the HOMO (Highest Occupied Molecular Orbital, the highest occupied molecular orbital) of the transport layer 124b and the HOMO energy level of the electron blocking layer 124c is greater than or equal to -0.5 eV and less than or equal to 0.3 eV.
  • the slow hole transport rate due to the energy level barrier can be eliminated.
  • the material of the hole injection layer 124a may be selected from MoO 3 , F4-TCNQ (2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane, 2,3,5,6 -Tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzoquinone), HAT-CN(dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3, 6,7,10,11-hexacarbonitrile, dipyrazine (2,3-f:2',3'-h)quinoxaline-2,3,6,7,10,11-hexacyano) and the like.
  • the thickness of the hole injection layer 124a may be 5 nm ⁇ 30 nm
  • the thickness of the hole transport layer 124b may be 1000 nm ⁇ 1300 nm
  • the thickness of the electron blocking layer 124c may be 10 nm ⁇ 80 nm.
  • the lowest triplet exciton energy T1 of the material of the hole transport layer 124b is greater than the lowest triplet exciton energy T1 of the material of the electron blocking layer 124c.
  • the electrons pass through the electron blocking layer 124c to cause electron quenching on the surface of the anode.
  • the lowest triplet exciton energy of the material of the electron blocking layer 124c can further block the electrons by the hole transport layer 124b after the electrons pass through the electron blocking layer 124c.
  • the HOMO energy level of the host material and the HOMO of the material of the electron blocking layer 124c is less than or equal to 0.3 eV. It can also eliminate the slow hole transport caused by the energy level barrier.
  • the lowest triplet exciton energy T1 of the material of the electron blocking layer 124c is greater than the lowest triplet exciton energy T1 of the host material.
  • the triplet excitons can be confined in the light emitting layer 122, so that the triplet excitons can be limited to the light emitting layer 122. effective use.
  • the host material of the light-emitting layer 122 may be selected from AND(9,10-di(2-naphthyl)anthracene,9,10-di -(2-naphthyl)anthracene), TBADN(2-(tert-Butyl)-9,10-di(2-naphthalenyl)anthracene, 2-tert-butyl-9,10-bis(2-naphthyl)anthracene ), MADN(2-Methyl-9,10-bis(naphthalen-2-yl)anthracene), TPB3(1,3,5-Tri-(pyren-1-yl)-benzene, 1,3,5-tri (1-pyrenyl)benzene; 1,3,5-tris(1-pyrenyl)benzene) and the like.
  • the dopant material may be selected from Dpvbi(4,4-'bis(2,2-'diphenyl vinyl)-1,1-'biphenyl).
  • the thickness of the light emitting layer 122 may be 20 nm ⁇ 40 nm.
  • the material of the electron transport layer 125b and the material of the hole blocking layer 125c are each independently selected from compounds comprising at least one heteroaryl group containing at least two N atoms.
  • compounds comprising at least one heteroaryl group containing at least two N atoms.
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-Phenanthroline, 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline
  • azine etc.
  • the material of the electron transport layer 125b may be a compound based on a spiro aromatic structure. That is, the material of the electron transport layer 125b is selected from compounds having a spirocyclic aromatic hydrocarbon structure (such as spirofluorene, spirofluorenexanthene, etc.).
  • the spirocyclic aromatic hydrocarbon has good electron withdrawing properties, which can further improve the Electron transport properties of the electron transport layer 125b.
  • the spiro aromatic structure has a higher T1 and is a group with good steric configuration, which can inhibit the crystallization of the material to a certain extent.
  • the triplet excitons can also be limited to the region close to the light-emitting layer 122 to further block electrons and prevent electron quenching extinguish.
  • the material of the electron transport layer 125b is selected from any one or a combination of two or more of the structures represented by the general formula (I):
  • X is selected from any one of C(R) 2 , O, S, N(R) and a single bond, and when X is selected from a single bond, the general formula (I) is Spirofluorene.
  • Ar 1 to Ar 4 may appear simultaneously or independently, and are independently selected from the substituent R 1 substituted or unsubstituted aryl or heteroaryl group with 5 to 30 ring atoms, and at least one of them is selected from the following general In any of the structures represented by formula (II), the substituent R 1 is selected from tert-butyl group, cyano group, aryl or heteroaryl group with 5 to 30 ring atoms, and -Y 1 (Ar) n any of the.
  • X 1 , X 2 and X 3 are each independently selected from any one of C(R 2 ) and N, and at least two are selected from N.
  • Each R 2 is the same or different, and is independently selected from H and any one of aryl or heteroaryl groups with 5 to 30 ring atoms, and R 2 is selected from a group with 5 to 30 ring atoms.
  • the aryl group or the heteroaryl group may or may not have a substituent R 1 .
  • R 3 is selected from any of H and methyl, and
  • X 1 , X 2 and X 3 are each independently selected from any one of C(R 1 ) and N, and at least two of them are selected from N.
  • the general formula (II) is the general formula of azine.
  • Ar 3 is selected from the general formula (II)
  • Ar 4 is selected from the phenyl group substituted by the substituent R 1 , and Ar 1 and Ar 2 do not appear as an example, the structural formula of the general formula (I) It can be expressed as follows.
  • R 2 can be selected from H and any one of aryl or heteroaryl groups with 5 to 30 ring atoms, and in When R 2 is selected from an aryl group or a heteroaryl group having 5 to 30 ring atoms, the aryl group or the heteroaryl group may or may not have a substituent R 1 . It can be known that the general formula (I) can be selected from any one of the following compounds.
  • X can be selected from any one of C(R) 2 , O, S, N(R) and single bond
  • R 1 is independently selected from tert-butyl group, cyano group
  • the number of ring atoms is 5 ⁇
  • -Y 1 (Ar) n it can be known that the general formula (I) can be selected from any one of the following compounds.
  • the material of the electron transport layer can be selected from any one or a combination of two or more of the following compounds.
  • the material of the hole blocking layer 125c is selected from any one or a combination of two or more of the structures represented by the general formula (III);
  • X 4 , X 5 and X 6 are each independently selected from any one of C(R) and N, and at least two are selected from N, Ar 5 , Ar 6 and L 2
  • Each is independently selected from a substituent R 1 substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a substituent R 1 substituted or unsubstituted heteroaryl group having 2 to 60 carbon atoms.
  • L 1 is selected from single bond, substituent R 1 substituted or unsubstituted divalent aryl group with 6-60 carbon atoms, or substituent R 1 substituted or unsubstituted divalent aryl group with 2-60 carbon atoms Valence heteroaryl.
  • Ar 5 , Ar 6 and L 2 are each independently selected from a substituent R 1 substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a substituent R 1 substituted or unsubstituted carbon atoms 2 to 60 heteroaryl groups.
  • Ar 5 , Ar 6 and L 2 can be independently selected from the substituent R 1 substituted or unsubstituted phenyl, biphenyl, naphthyl, anthracenyl, fluorenyl, spiroaryl, thienyl, Any of pyridyl, quinolinyl, imidazolyl, indolyl, benzofuranyl, and benzothienyl.
  • L 1 is selected from single bond, substituent R 1 substituted or unsubstituted divalent aryl group with 6-60 carbon atoms, or substituent R 1 substituted or unsubstituted carbon atom number 2-60 Divalent heteroaryl. It can be known that when L1 is selected from a single bond, the above general formula (III) can be expressed as:
  • L 1 is selected from the substituent R 1 substituted or unsubstituted divalent aryl group with 6-60 carbon atoms, or the substituent R 1 substituted or unsubstituted divalent heterocyclic group with 2-60 carbon atoms
  • L 1 can be selected from the substituent R1 substituted or unsubstituted divalent phenyl group, bivalent biphenyl group, divalent naphthyl group, bivalent anthracenyl group, bivalent fluorenyl group, and bivalent spiro aromatic Any of a divalent thiophene group, a divalent thienyl group, a divalent pyridyl group, a divalent quinolinyl group, a divalent imidazolyl group, a divalent indolyl group, a divalent benzofuran group, and a divalent benzothienyl group.
  • L 1 is selected from a substituted or unsubstituted bivalent bicyclic aryl group with substituent R 1
  • at least one monocyclic ring in the bivalent bicyclic aryl group has Meta and/or ortho linking groups.
  • L 1 is selected from a substituted or unsubstituted monocyclic aryl group of the substituent R 1
  • L 2 and the azine group are attached at the meta or ortho position of L 1 .
  • At least one monocyclic ring in the bivalent bicyclic aryl group has a meta- and/or ortho-position linking group, which means that at least one monocyclic ring in the bivalent bicyclic aryl group has a substituent R in the meta-position and/or ortho-position 1 , or, the other aromatic rings in the bivalent bicyclic aryl group except the monocyclic ring are connected at the meta position and/or ortho position of the monocyclic ring, or, in the bivalent bicyclic aryl group except for the monocyclic ring
  • the remaining aromatic rings and azine groups are connected at the meta and/or ortho positions of the monocyclic ring, or the other aromatic rings and substituents R 1 other than the monocyclic ring in the bivalent bicyclic aryl group are connected at the monocyclic ring
  • the meta and/or ortho positions of, or, the substituent R 1 and the azine group in the bivalent biaryl group are connected to the meta and/or ortho positions of the mono
  • the general formula (III) can be selected from any one of the following structures.
  • the general formula (III) can be selected from any one of the following structures.
  • the general formula (III) can be selected from any one of the following structures.
  • the spatial twist of the molecule can be greatly increased, the degree of conjugation of the molecule can be reduced, and the mobility of the material can be reduced, which helps to slow down the electron transport.
  • compounds with large spatial twist have higher T1, which can confine triplet excitons in the light-emitting layer 122, and can inhibit the crystallization of materials to a certain extent.
  • R 1 is independently selected from any one of tert-butyl, cyano, aryl or heteroaryl with 5 to 30 ring atoms and -Y 1 (Ar) n
  • n is an integer greater than or equal to 1
  • each Ar is the same or different, and is independently selected from aryl or heteroaryl, or Ar and the aryl or heteroaryl group substituted by the substituent R 1 , and/or, in the case where n is an integer greater than or equal to 2, between at least two Ar through a single bond or a second bridging group
  • the groups are connected to form a ring, and the second bridging group is selected from B(R), C
  • R 3 is selected from any of H and methyl, and R is selected from any of H, methyl, aryl and heteroaryl. It can be known that when L 2 is selected from an aryl or heteroaryl group substituted by substituent R 1 with 5 to 30 ring atoms, and R 1 is selected from -Y 1 (Ar) n , the structural formula of L 2 It can be connected to L1 by a dashed line as shown below.
  • A is selected from benzene ring
  • Ar is selected from benzene ring
  • Y 1 is selected from C(R 3 ) 2
  • R 3 is selected from methyl group, in this case, n is equal to 1
  • Ar and A are connected by a single bond to form Taking a ring as an example, the structural formula of L 2 can be represented as follows.
  • L 2 the structural formula of L 2 can be expressed as follows.
  • L 2 the structural formula of L 2 can be represented as follows.
  • L 2 the structural formula of L 2 can be represented as follows.
  • the spatial configuration of the molecule can be increased, and the spatial twist of the molecule can be large, which is beneficial to T1 improvement.
  • the mobility can also be increased by introducing electron withdrawing groups such as boron, nitrogen, sulfur, and phosphorus.
  • the material of the hole blocking layer 125c is selected from any one or a combination of two or more of the following structures:
  • the hole blocking layer 125c Based on the above structure, under the condition that the electron mobility of the electron transport layer 125b and the hole blocking layer 125c in the above second functional material layer 125 is constant, in order to further reduce the electron transport rate, optionally, the hole blocking layer 125c
  • the difference between the LUMO energy level and the LUMO energy level of the electron transport layer 125b is greater than or equal to 0.4 eV and less than or equal to 1 eV.
  • the energy level barrier between the hole blocking layer 125c and the electron transport layer 125b can be increased, so that the electron transport rate can be further reduced.
  • the material of the electron injection layer 125a can be selected from alkali metals or metals, such as LiF, Yb, LiQ (8-hydroxyquionline lithium, 8-hydroxyquionline lithium) and the like.
  • the thickness of the electron injection layer 125a may be 1 nm ⁇ 3 nm
  • the thickness of the electron transport layer 125b may be 20 ⁇ 35 nm
  • the thickness of the hole blocking layer 125c may be 5 nm ⁇ 10 nm.
  • the lowest triplet exciton energy T1 of the material of the electron transport layer 125b is greater than the lowest triplet exciton energy T1 of the material of the hole blocking layer 125c.
  • holes pass through the hole blocking layer 125c to cause holes to be quenched on the cathode surface.
  • the electron energy is greater than the lowest triplet exciton energy of the material of the hole blocking layer 125c. After the holes pass through the hole blocking layer 125c, the holes can be further blocked by the electron transport layer 125b, thereby avoiding hole quenching. extinguish.
  • the difference between the HOMO energy level of the material of the hole blocking layer 125c and the HOMO energy level of the host material of the light emitting layer 122 is greater than or equal to 0.1 eV. Can block holes well.
  • the lowest triplet exciton energy T1 of the material of the hole blocking layer 125c is greater than the lowest triplet exciton energy T1 of the host material.
  • the triplet excitons can be confined in the light emitting layer 122, and the triplet excitons can be limited to the light emitting layer 122. effective use of children.
  • the device structure and device test conditions are the same, wherein the device structure is expressed as: Anode (ITO)/HIL/HTL/EBL/Host+Dopant/HBL/ETL/EIL/Cathode (Al).
  • the material of the hole injection layer 124a is selected from the mixed material of the structural formula shown in the above HTL and the structural formula shown in P Dopant.
  • the material of the electron injection layer 125a is selected from lithium fluoride.
  • Table 1 also shows the test results of driving voltage, current efficiency and device life of Comparative Examples 1 to 5 and Experimental Examples 1 to 4 under the same test conditions.
  • the energy level barrier between the holes can reduce the energy level barrier between the EBL material and the HTL material and the host material of the light-emitting layer, which can reduce the electron transport speed on the whole, speed up the hole transport speed, and reduce the hole density.
  • the recombination region of holes and electrons can be adjusted, so that the recombination region of holes and electrons can be kept away from the electron blocking layer 124c, and the lifespan and efficiency of the device thus obtained are improved to different degrees.
  • the embodiments provided by the present disclosure can solve the problem that the recombination region is located at the interface position between the electron blocking layer 124c and the light emitting layer 122 in the related art, so that electrons accumulate on the interface between the electron blocking layer 124c and the light emitting layer 122 , so that the accumulated charge causes the deterioration of the material, which is not conducive to the improvement of the efficiency and life of the device.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光器件,包括:依次层叠的阳极、发光层和阴极;位于所述发光层和所述阳极之间的第一功能材料层;位于所述发光层和所述阴极之间的第二功能材料层;在同等的测试条件下,所述第一功能材料层的材料的空穴迁移率至少是所述第二功能材料层的材料的电子迁移率的十倍。

Description

有机发光器件、发光基板和发光装置 技术领域
本公开涉及照明和显示技术领域,尤其涉及一种有机发光器件、发光基板和发光装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)具有自发光、广视角、反应时间快、发光效率高、工作电压低、基板厚度薄、可制作大尺寸与可弯曲式基板及制程简单等特性,被誉为下一代的“明星”显示技术。
发明内容
一方面,提供一种有机发光器件,包括:层叠的阳极、发光层和阴极;位于所述发光层和所述阳极之间的第一功能材料层;位于所述发光层和所述阴极之间的第二功能材料层;在同等的测试条件下,所述第一功能材料层的材料的空穴迁移率至少是所述第二功能材料层的材料的电子迁移率的十倍。
在一些实施例中,所述第二功能材料层包括电子传输层和空穴阻挡层;所述电子传输层的材料的电子迁移率与所述空穴阻挡层的材料的电子迁移率相同;或者,所述电子传输层的材料的电子迁移率与所述空穴阻挡层的材料的电子迁移率不同,且在同等的测试条件下,所述空穴阻挡层的材料的电子迁移率小于所述电子传输层的材料的电子迁移率。
在一些实施例中,在电场强度为5000V 1/2/m 1/2的测试条件下,所述电子传输层的材料的电子迁移率为10 -5cm 2V -1s -1~10 -7cm 2V -1s -1;所述空穴阻挡层的材料的电子迁移率为10 -7cm 2V -1s -1~10 -9cm 2V -1s -1
在一些实施例中,所述空穴阻挡层的材料的LUMO能级与所述电子传输层的LUMO能级之差大于或等于0.4eV小于或等于1eV。
在一些实施例中,所述电子传输层的材料的最低三线态能量大于所述空穴阻挡层的材料的最低三线态能量。
在一些实施例中,所述电子传输层的材料和所述空穴阻挡层的材料分别独立地选自包含至少一个含有至少两个N原子的杂芳基的化合物。
在一些实施例中,所述电子传输层的材料是基于螺环芳烃结构的化合物。
在一些实施例中,所述电子传输层的材料选自通式(I)所示结构中的任一个或两个以上的组合;
Figure PCTCN2021070101-appb-000001
在所述通式(I)中,X选自C(R) 2、O、S、N(R)和单键中的任一种,Ar 1~Ar 4可同时或单独出现,分别独立地选自取代基R 1取代或未取代的环原子数为5~30个的芳基或杂芳基,且至少其中之一选自如下通式(II)所示结构中的任一种,取代基R 1选自叔丁基、氰基、环原子数为5~30个的芳基或杂芳基和-Y 1(Ar) n中的任一种;
Figure PCTCN2021070101-appb-000002
在通式(II)中,X 1、X 2和X 3分别独立地选自C(R 2)和N中的任一种,且至少两个选自N;
每个R 2相同或不同,分别独立地选自H和环原子数为5~30个的芳基或杂芳基中的任一种,在R 2选自环原子数为5~30个的芳基或杂芳基的情况下,芳基或杂芳基具有或不具有取代基R 1
其中Y 1选自碳、氮、磷、硅、硼、C(R 3) 2、Si(R 3) 2、C(=O)、C(=NR)、C(=C(R) 2)、S(=O)、S(=O) 2和P(=O)中的任一种,n为大于或等于1的整数,每个Ar相同或不同,分别独立地选自芳基或杂芳基,或者,在n为大于或等于2的整数的情况下,至少两个Ar彼此之间通过单键或第一桥联基团连接成环,第一桥联基团选自B(R)、C(R) 2、Si(R) 2、C(=O)、C(=NR)、C(=C(R) 2)、O、S、S(=O)、S(=O) 2、N(R)、P(R)和P(=O)(R);R 3选自H和甲基中的任一种,R选自H、甲基、芳基或杂芳基中的任一种。
在一些实施例中,所述电子传输层的材料选自如下化合物中的任一个或两个以上的组合:
Figure PCTCN2021070101-appb-000003
Figure PCTCN2021070101-appb-000004
在一些实施例中,所述空穴阻挡层的材料选自如通式(III)所示结构中的任一个或两个以上的组合;
Figure PCTCN2021070101-appb-000005
在通式(III)中,X 4、X 5和X 6分别独立地选自C(R)和N中的任一种,且至少有两个选自N;Ar 5、Ar 6和L 2各自独立地选自取代基R 1取代或未取代 的碳原子数为6~60个的芳基,或者取代基R 1取代或未取代的碳原子数为2~60个的杂芳基;
L 1选自单键、取代基R 1取代或未取代的碳原子数为6~60个的二价芳基,或者取代基R 1取代或未取代的碳原子数为2~60个的二价杂芳基;
R 1分别独立地选自叔丁基、氰基、环原子数为5~30个的芳基或杂芳基和-Y 1(Ar) n中的任一种,Y 1选自碳、氮、磷、硅、硼、C(R 3) 2、Si(R 3) 2、C(=O)、C(=NR)、C(=C(R) 2)、S(=O)、S(=O) 2和P(=O)中的任一种,n为大于或等于1的整数,每个Ar相同或不同,分别独立地选自芳基或杂芳基,或者,Ar和该取代基R 1所取代的芳基或杂芳基之间,和/或,在n大于或等于2的整数的情况下,至少两个Ar之间,通过单键或第二桥联基团连接成环,第二桥联基团选自B(R)、C(R) 2、Si(R) 2、C(=O)、C(=NR)、C(=C(R) 2)、O、S、S(=O)、S(=O) 2、N(R)、P(R)和P(=O)(R);
R 3选自H和甲基中的任一种,R选自H、甲基、芳基和杂芳基中的任一种。
在一些实施例中,在通式(III)中,在L 1选自取代基R 1取代或未取代的二价联环芳基的情况下,二价联环芳基中至少一个单环具有间位和/或邻位连接基团;在L 1选自取代基R 1取代或未取代的单环芳基的情况下,L 2和吖嗪基连接在L 1的间位或邻位。
在一些实施例中,所述空穴阻挡层的材料选自如下结构中的任一种或两种以上的组合:
Figure PCTCN2021070101-appb-000006
Figure PCTCN2021070101-appb-000007
在一些实施例中,所述第一功能材料层包括空穴传输层和电子阻挡层;所述空穴传输层的材料的空穴迁移率与所述电子阻挡层的材料的空穴迁移率相同;或者,所述空穴传输层的材料的空穴迁移率与所述电子阻挡层的材料的空穴迁移率不同,且在同等的测试条件下,所述电子阻挡层的材料的空穴迁移率不小于所述空穴传输层的材料的空穴迁移率的十分之一。
在一些实施例中,在电场强度为5000V 1/2/m 1/2的测试条件下,所述空穴传输层的材料的空穴迁移率为10 -4cm 2V -1s -1~10 -6cm 2V -1s -1;所述电子阻挡层的材料的空穴迁移率为10 -4cm 2V -1s -1~1~10 -7cm 2V -1s -1
在一些实施例中,所述空穴传输层的材料的HOMO能级与所述电子阻挡层的材料的HOMO能级之差大于或等于-0.5eV小于或等于0.3eV。
在一些实施例中,所述空穴传输层的最低三线态能量大于所述电子阻挡层的最低三线态能量。
在一些实施例中,所述发光层的材料包括主体材料,所述空穴阻挡层的HOMO能级与所述主体材料的HOMO能级之差大于或等于0.1eV。
在一些实施例中,所述空穴阻挡层的最低三线态能量大于所述主体材料的最低三线态能量。
在一些实施例中,所述第一功能材料层包括电子阻挡层,所述主体材料的HOMO能级与所述电子阻挡层的HOMO能级之差小于或等于0.3eV。
在一些实施例中,所述电子阻挡层的最低三线态能量大于所述主体材料的最低三线态能量。
在一些实施例中,所述空穴传输层的材料和所述电子阻挡层的材料分别独立地选自芳胺类化合物中的任一种。
在一些实施例中,所述有机发光器件为发红光的发光器件,在同等的测试条件下,所述发光层的主体材料的电子迁移率和空穴迁移率大致相同;或者,所述有机发光器件为发绿光的发光器件,在同等的测试条件下,所述发光层的主体材料的电子迁移率小于或等于所述发光层的主体材料的空穴迁移率;或者,所述有机发光器件为发蓝光的发光器件,在同等的测试条件下,所述发光层的主体材料的电子迁移率大于所述发光层的主体材料的空穴迁移率。
在一些实施例中,在所述有机发光器件为发红光的发光器件的情况下,在电场强度为5000V 1/2/m 1/2的测试条件下,所述发光层的主体材料的电子迁移率为10 -6cm 2V -1s -1~10 -7cm 2V -1s -1;所述发光层的主体材料的空穴迁移率为10 -6cm 2V -1s -1~10 -7cm 2V -1s -1;在所述有机发光器件为发绿光的发光器件的情况下,在电场强度为5000V 1/2/m 1/2的测试条件下,所述发光层的主体材料的电子迁移率为10 -7cm 2V -1s -1~10 -8cm 2V -1s -1;所述发光层的主体材料的空穴迁移率为10 -6cm 2V -1s -1~10 -7cm 2V -1s -1;在所述有机发光器件为发蓝光的发光器件的情况下,在电场强度为5000V 1/2/m 1/2的测试条件下,所述发光层的主体材料的电子迁移率为10 -7cm 2V -1s -1~10 -8cm 2V -1s -1;所述发光层的主体材料的空穴迁移率为10 -8cm 2V -1s -1~10 -9cm 2V -1s -1
另一方面,提供一种发光基板,包括:衬底;设置于所述衬底上的多个发光器件;至少一个所述发光器件选自如上所述的有机发光器件。
又一方面,提供一种发光装置,包括如上所述的发光基板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的发光基板的剖视结构图;
图2为根据一些实施例的激子在发光层中的复合区域分布图;
图3为根据一些实施例的空穴传输层、电子阻挡层、发光层、空穴阻挡层和电子传输层的HOMO能级和LUMO能级的关系图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施 方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开的一些实施例提供一种发光装置,包括发光基板。当然也可以包括其他部件,例如可以包括用于向发光基板提供电信号,以驱动该发光基板发光的电路,该电路可以称为控制电路,可以包括与发光基板电连接的电路板和/或IC(Integrate Circuit,集成电路)。
在一些实施例中,该发光装置可以为照明装置,此时,发光基板可以为照明基板,如可以用作光源,实现照明功能。例如,发光基板可以是液晶显示装置中的背光模组,用于内部或外部照明的灯,或各种信号灯等。
在另一些实施例中,该发光装置可以为显示装置,此时,该发光基板为显示基板,用于实现显示图像(即画面)功能。发光装置可以包括显示器或包含显示器的产品。其中,显示器可以是平板显示器(Flat Panel Display,FPD),微型显示器等。若按照用户能否看到显示器背面的场景划分,显示器可以是透明显示器或不透明显示器。若按照显示器能否弯折或卷曲,显示器可以是柔性显示器或普通显示器(可以称为刚性显示器)。示例的,包含显示器的产品可以包括:计算机显示器,电视,广告牌,具有显示功能的激光打印机,电话,手机,个人数字助理(Personal Digital Assistant,PDA),膝上型计算机,数码相机,便携式摄录机,取景器,车辆,大面积墙壁,剧院的屏幕或体育场标牌等。
在一些实施例中,如图1所示,发光基板1可以包括衬底11,设置于衬底11上的多个有机发光器件12。其中,该衬底11可以为柔性衬底,或者刚性衬底,在衬底11为柔性衬底的情况下,衬底11的材料可以为PI(Polyimide,聚酰亚胺)材料。在衬底11为刚性衬底的情况下,衬底11可以为玻璃。在此,衬底11可以为已经形成有像素驱动电路的衬底。
该发光基板1可以为顶发光式发光基板(有机发光器件12发出的光自远离衬底11一侧出射)、底发光式发光基板(有机发光器件12发出的光自衬底11一侧出射)或双面发光式发光基板。
示例的,如图1所示,以发光基板1为顶发光式发光基板为例,该发光基板1还可以包括:设置于有机发光器件12远离衬底11一侧的取光层13。取光层13被配置为将每个有机发光器件12发出的光取出。
在一些实施例中,至少一个有机发光器件12可以包括层叠的阳极121、 发光层(Emitting Layer,EML)122和阴极123,以及位于发光层122和阳极121之间的第一功能材料层124,和位于发光层122和阴极123之间的第二功能材料层125。
其中,第一功能材料层124可以包括空穴注入层(Hole Inject Layer,HIL)124a和空穴传输层(Hole Transport Layer,HTL)124b,进一步还可以包括电子阻挡层(Electron Blocking Layer,EBL)124c,在此不做具体限定,只要该第一功能材料层124能够实现对空穴的注入和传输即可。第二功能材料层125可以包括电子注入层(Electron Inject Layer,EIL)125a和电子传输层(Electron Transport Layer,ETL)125b,进一步还可以包括空穴阻挡层(Hole Blocking Layer,HBL)125c,在此也不做具体限定,只要该第二功能材料层124能够实现对电子的注入和传输即可。
根据以上第一功能材料层124和第二功能材料层125的组成结构和功能,可以得知,该有机发光器件12的发光原理为:在阳极121和阴极123上施加电压时,电子经电子注入层125a注入,并经电子传输层125b和空穴阻挡层125c传输到发光层122,空穴则经空穴注入层124a注入,并经空穴传输层124b和电子阻挡层124c传输到发光层122,电子和空穴在发光层122中复合,产生单重态激子和三重态激子,通过激子退激辐射发光。
在此过程中,各功能材料层的材料本身的特性、以及各功能材料层之间的迁移率匹配程度和能级匹配程度均会对有机发光器件12内部载流子的注入、传输,以及激子的形成、淬灭等特性产生影响,从而会对有机发光器件12的发光特性产生影响。
其中,迁移率是指载流子(电子和空穴)在单位电场作用下的平均漂移速度,即载流子在电场作用下运动速度的快慢的量度,运动得越快,迁移率越大,运动得慢,迁移率小。
根据以上迁移率与材料本身的特性有关,而与第一功能材料层124和第二功能材料层125的层数和各层的厚度关系不大,可以得知,在本公开提供的实施例中,均是以该第一功能材料层124包括空穴注入层124a、空穴传输层124b和电子阻挡层124c,第二功能材料层125包括电子注入层125a、电子传输层125b和空穴阻挡层125c为例进行的说明,本领域技术人员能够理解的是,以下对第一功能材料层124和第二功能材料层125的材料的说明也适用于第一功能材料层124仅包括空穴注入层124a和空穴传输层124b,和/或第二功能材料层125仅包括电子注入层125a和电子传输层125b的情形,并不对第一功能材料层124和第二功能材料层125的层数和各层的厚度造成限 定。
发光基板1上还可以设置连接各个有机发光器件的驱动电路,驱动电路可以与控制电路连接,以根据控制电路输入的电信号,驱动各个有机发光器件发光。该驱动电路可以为有源驱动电路或者无源驱动电路。
该发光基板1可以发单色光(单一颜色的光)或颜色可调的光等。
在第一种示例中,该发光基板1可以发单色光。在此示例中,发光基板1包含的多个有机发光器件(例如可以是全部的有机发光器件)均发单色光(如红光)。该发光基板1可用于照明,即可以应用于照明装置中,也可以用于显示单一色彩的图像或画面,即可应用于显示装置中。
在第二种示例中,该发光基板1可以发颜色可调的光(即彩色光)。在此示例中,该发光基板1包含的多个有机发光器件的发光颜色不同,通过对各个有机发光器件的亮度进行控制,即可对该发光基板1发出的混合光的颜色和亮度进行控制,可实现彩色发光。
在该示例中,该发光基板可用于显示图像或画面,即可应用于显示装置中,当然,该发光基板也可以用于照明装置中。
在此,如图1所示,以该发光基板上至少三个有机发光器件12包括层叠的阳极121、发光层122和阴极123,以及位于发光层122和阳极121之间的第一功能材料层124,和位于发光层122和阴极123之间的第二功能材料层125为例,至少三个有机发光器件可以包括发红光的发光器件R、发绿光的发光器件G和发蓝光的发光器件B。
在一些实施例中,发光层122的材料可以包括主体材料和掺杂材料。
根据发光层122的发光颜色不同,发光层122的主体材料和掺杂材料也可以不同。
在一些实施例中,在同等的测试条件下,发红光的发光器件R的主体材料的空穴迁移率和发绿光的发光器件G的主体材料的空穴迁移率大致相同,发红光的发光器件R的主体材料的电子迁移率略大于发绿光的发光器件G的主体材料的电子迁移率。发蓝光的发光器件B的主体材料的空穴迁移率小于发红光的发光器件R的主体材料的空穴迁移率,发蓝光的发光器件B的主体材料的电子迁移率与发绿光的发光器件G的主体材料的电子迁移率相当。
也即,发红光的发光器件R的发光层122和发绿光的发光器件G的发光层122的载流子传输速度较为平衡,发蓝光的发光器件B的主体材料的载流子传输不平衡,存在较为严重的空穴传输滞后的问题。
示例的,在有机发光器件12为发红光的发光器件R的情况下,发光层 122的主体材料可以为双主体材料,也即,发光层122的主体材料既包括具有电子传输功能的化合物又包括具有空穴传输功能的单主体材料,此时发光层122可以通过对双主体材料进行共同蒸镀形成。当然,发光层122的主体材料也可以为具有电子传输功能和空穴传输功能的单一化合物。
在此,可以采用SCLC(Space-Charge-Limited-Current,空间电荷(导致的)受限电流)方法对发光层的主体材料的电子迁移率和空穴迁移率进行测试。在一些实施例中,在电场强度为5000V 1/2/m 1/2的测试条件下,发红光的发光器件R中,发光层的主体材料的电子迁移率可以为10 -6cm 2V -1s -1~10 -7cm 2V -1s -1中的任意取值;发光层的主体材料的空穴迁移率可以为10 -6cm 2V -1s -1~10 -7cm 2V -1s -1中的任意取值。
在有机发光器件12为发绿光的发光器件G的情况下,发光层122的主体材料也可以为双主体材料,或者是具有电子传输功能和空穴传输功能的单主体材料,此时,在同等的测试条件下,发光层122的主体材料的电子迁移率和空穴迁移率也大致相同。
在此,发光层的主体材料的电子迁移率和空穴迁移率也可以采用SCLC(Space-Charge-Limited-Current,空间电荷(导致的)受限电流)方法进行测试。在一些实施例中,在电场强度为5000V 1/2/m 1/2的测试条件下,发绿光的发光器件G中,发光层的主体材料的电子迁移率可以为10 -7cm 2V -1s -1~10 -8cm 2V -1s -1中的任意取值;发光层的主体材料的空穴迁移率可以为10 -6cm 2V -1s -1~10 -7cm 2V -1s -1中的任意取值。
在有机发光器件12为发蓝光的发光器件B的情况下,发光层122的主体材料为单主体材料,此时,在同等的测试条件下,发光层122的主体材料的电子迁移率大于发光层122的主体材料的空穴迁移率。
在此,发光层122的主体材料的电子迁移率和空穴迁移率同样可以采用SCLC(Space-Charge-Limited-Current,空间电荷(导致的)受限电流)方法进行测试。在一些实施例中,在电场强度为5000V 1/2/m 1/2的测试条件下,发蓝光的发光器件B中,发光层122的主体材料的电子迁移率为10 -7cm 2V -1s -1~10 -8cm 2V -1s -1中的任意取值;发光层122的主体材料的空穴迁移率为10 -8cm 2V -1s -1~10 -9cm 2V -1s -1中的任意取值。
基于此,针对目前已有的有机发光器件(如发蓝光的发光器件)的激子复合区域进行研究发现,在目前已有的各功能材料层的材料选择上,激子在发光层122中的复合区域分布图如图2所示,由图2可知,随着越靠近电子阻挡层124c,激子的强度越大,这说明大多数激子的复合区域在电子阻挡层 124c和发光层122之间的界面处。
这里,激子的强度不同于激子的浓度,是激子退激发光时的发光强度的量度,激子的强度除与激子的浓度有关之外,还与其他因素如激子的寿命等有关,但是,在其他影响因素确定的情况下,激子的浓度是影响激子的强度的主要因素,因此,在整个器件中,激子的强度和激子的浓度具有相同或相似的变化趋势。基于此,根据在图2中随着发光层越远离电子阻挡层124c,激子的强度呈梯度逐渐递减,可以得知,随着发光层越远离电子阻挡层124c,激子的浓度也呈梯度逐渐递减,也即,在激子数量一定的情况下,大多数激子的复合区域在电子阻挡层124c和发光层122之间的界面处。这表明在空穴和电子的整个传输过程中(也即从注入到传输的整个过程中),第二功能材料层125的材料的电子传输速率大于第一功能材料层124的材料的空穴传输速率,从而导致激子复合区域更偏向于电子阻挡层124c一侧,进而导致电子在电子阻挡层124c和发光层122之间的界面上堆积,结果导致电荷对材料的劣化,进而影响器件的性能。
基于此,在一些实施例中,在同等的测试条件下,第一功能材料层124的材料的空穴迁移率至少是第二功能材料层125的材料的电子迁移率的十倍。
也即,通过对第一功能材料层124的材料和第二功能材料层125的材料进行合理配置,对有机发光器件12中的第一功能材料层124的材料的空穴传输速率和第二功能材料层125的材料的电子传输速率进行调节,加快有机发光器件12中的空穴传输速率,降低有机发光器件12中的电子传输速率,对复合区域进行调节,使复合区域向发光层122远离电子阻挡层124c的区域偏移,减小激子在电子阻挡层124c和发光层122之间的界面处累积,避免电子在电子阻挡层124c和发光层122之间的界面上堆积,从而能够减缓堆积电荷对材料的劣化,进而能够改善器件的稳定性,提高器件寿命。
在一些实施例中,根据以上第一功能材料层124包括空穴注入层124a、空穴传输层124b和电子阻挡层124c,可以得知,对于第一功能材料层124而言,在空穴注入层124a的材料确定的情况下,空穴传输层124b和电子阻挡层124c的材料相同或不同,在空穴传输层124b和电子阻挡层124c的材料相同的情况下,空穴传输层124b的材料的空穴迁移率和电子阻挡层124c的材料的空穴迁移率相同,在空穴传输层124b和电子阻挡层124c的材料不同的情况下,空穴传输层124b的材料的空穴迁移率和电子阻挡层124c的材料的空穴迁移率不同,此时,电子阻挡层124c的材料的空穴迁移率通常小于空穴传输层124b的材料的空穴迁移率,为了尽可能提高空穴的传输速率,可选的, 在同等的测试条件下,电子阻挡层124c的材料的空穴迁移率不小于空穴传输层124b的材料的空穴迁移率的十分之一。
在一些实施例中,在电场强度为5000V 1/2/m 1/2的测试条件下,空穴传输层124b的材料的空穴迁移率为10 -4cm 2V -1s -1~10 -6cm 2V -1s -1;电子阻挡层124c的材料的空穴迁移率为10 -4cm 2V -1s -1~10 -7cm 2V -1s -1
例如,可以采用SCLC(Space-Charge-Limited-Current,空间电荷(导致的)受限电流)方法对空穴传输层124b的材料和电子阻挡层124c的材料的空穴迁移率进行测试。
根据第一功能材料层124的材料的空穴迁移率至少是第二功能材料层125的材料的电子迁移率的十倍,可以得知,在第一功能材料层124的材料的空穴迁移率为10 -4cm 2V -1s -1的情况下,第二功能材料层125的材料的电子迁移率小于或等于10 -5cm 2V -1s -1,在第一功能材料层124的材料的空穴迁移率为10 -5cm 2V -1s -1的情况下,第二功能材料层125的材料的电子迁移率小于或等于10 -6cm 2V -1s -1,依次类推,在第一功能材料层124的材料的空穴迁移率为10 -6cm 2V -1s -1的情况下,第二功能材料层125的材料的电子迁移率小于或等于10 -7cm 2V -1s -1
其中,根据以上第一功能材料层124包括空穴传输层124b和电子阻挡层124c,在空穴传输层124b的材料的空穴迁移率和电子阻挡层124c的材料的空穴迁移率不同的情况下,电子阻挡层124c的材料的空穴迁移率通常小于空穴传输层124b的材料的空穴迁移率,且电子传输层124c的材料的空穴迁移率不小于空穴传输层124b的材料的空穴迁移率的十分之一,可以得知,第一功能材料层124的材料的空穴迁移率至少是第二功能材料层125的材料的电子迁移率的十倍,是以第一功能材料层124中空穴迁移率较大的一者为准进行比较的,示例的,在以上第一功能材料层124中空穴传输层124b的材料的空穴迁移率为10 -4cm 2V -1s -1,电子阻挡层124c的材料的空穴迁移率为10 -5cm 2V -1s -1的情况下,第一功能材料层124中空穴传输层124b的材料的空穴迁移率至少是第二功能材料层125的材料的电子迁移率的十倍,此时,第二功能材料层125的材料的电子迁移率小于或等于10 -5cm 2V -1s -1
此时,根据以上第二功能材料层125包括电子注入层125a、电子传输层125b和空穴阻挡层125c,可以得知,对于第二功能材料层125而言,在电子注入层125a的材料确定的情况下,电子传输层125b和空穴阻挡层125c的材料也可以相同或不同,在电子传输层125b和空穴阻挡层125c的材料相同的情况下,电子传输层125b的材料的电子迁移率和空穴阻挡层125c的材料的 电子迁移率相同,在电子传输层125b和空穴阻挡层125c的材料不同的情况下,电子传输层125b的材料的电子迁移率和空穴阻挡层125c的材料的电子迁移率不同,此时,空穴阻挡层125c的材料的电子迁移率小于电子传输层125b的材料的电子迁移率。
根据以上第一功能材料层124的材料的空穴迁移率与第二功能材料层125的材料的电子迁移率在比较时,以第一功能材料层124中空穴迁移率较大的一者为准,且在第二功能材料层125中,空穴阻挡层125c的材料的电子迁移率小于电子传输层125b的电子迁移率,因此,在第二功能材料层125中空穴阻挡层125c的材料和电子传输层125b的材料不同的情况下,在对第一功能材料层124的材料的空穴迁移率与第二功能材料层125的材料的电子迁移率进行比较时,同样以第二功能材料层125中电子迁移率较大的一者为准。
也即,在以上第一功能材料层124的材料确定的情况下,第一功能材料层124的材料的空穴迁移率至少是第二功能材料层125的材料的电子迁移率的十倍,是指,第一功能材料层124的材料的空穴迁移率至少是电子传输层125b的电子迁移率的十倍,具体到第一功能材料层124包括空穴传输层124b和电子阻挡层124c,第二功能材料层125包括电子传输层125b和空穴阻挡层125c,即为,空穴传输层124b的材料的空穴迁移率至少是电子传输层125b的电子迁移率的十倍。这里,仍然以空穴传输层124b的材料的空穴迁移率为10 -4cm 2V -1s -1为例,电子传输层125b的材料的电子迁移率小于或等于10 -5cm 2V -1s -1,此时,空穴阻挡层125c的材料的电子迁移率小于10 -5cm 2V -1s -1,如可以为10 -6cm 2V -1s -1
在一些实施例中,在电场强度为5000V 1/2/m 1/2的测试条件下,电子传输层125b的材料的电子迁移率为10 -5cm 2V -1s -1~10 -7cm 2V -1s -1;空穴阻挡层125c的材料的电子迁移率为10 -7cm 2V -1s -1~10 -9cm 2V -1s -1。也即,同样在电场强度为5000V 1/2/m 1/2的测试条件下,在空穴传输层124b的材料的空穴迁移率为10 -4cm 2V -1s -1~10 -6cm 2V -1s -1;电子阻挡层124c的材料的空穴迁移率为10 -4cm 2V -1s -1~10 -7cm 2V -1s -1的情况下,电子传输层125b的材料的电子迁移率为10 -5cm 2V -1s -1~10 -7cm 2V -1s -1之间的任意值;空穴阻挡层125c的材料的电子迁移率为10 -7cm 2V -1s -1~10 -9cm 2V -1s -1之间的任意值。能够增大空穴传输速率,降低电子传输速率,提高器件效率和寿命。
在一些实施例中,空穴传输层124b和电子阻挡层124c分别独立地选自芳胺类化合物中的任一种。芳胺类化合物具有良好的空穴传输性能,且随着芳胺的个数的增多,空穴迁移率越快。
示例的,空穴传输层124b的材料可以选自芳胺类化合物,如NPB(N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine,N,n’-二(萘-1-基)-n,n’-二(苯基)联苯胺)、m-MTDATA(4,4',4”-Tris(N-3-methylphenyl-N-phenylamino)triphenylamine,4,4',4'-三(N-3-甲基苯基-N-苯基氨基)三苯胺)、TPD((N,NL biphenyl-N,N,_bis-(3一methylpheny1)一1,1biphenyl-4,4'-diamine),N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺)等。电子阻挡层124c的材料可以选自mCBP(3,3′-Di(9H-carbazol-9-yl)biphenyl,3,3'-二(9H-咔唑-9-基)-1,1'-联吡啶;3,3'-二(9H-咔唑-9-基)-1,1'-联吡啶)、Tris-PCz(3,6-Bis(N-phenyloxazol-3-yl)-N-phenylcarbazole,3,6-双(N-苯基咔唑-3-基)-N-苯基咔唑)等。
在以上第一功能材料层124中的空穴传输层124b和电子阻挡层124c的空穴迁移率一定的情况下,为了进一步增大空穴传输速率,可选的,如图3所示,空穴传输层124b的HOMO(Highest Occupied Molecular Orbital,最高占据分子轨道)与电子阻挡层124c的HOMO能级之差大于或等于-0.5eV小于或等于0.3eV。可以消除由于能级势垒所造成的空穴传输速度慢。
在一些实施例中,空穴注入层124a的材料可以选自MoO 3、F4-TCNQ(2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane,2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯醌)、HAT-CN(dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile,二吡嗪(2,3-f:2',3'-h)喹喔啉-2,3,6,7,10,11-六氰基)等。空穴注入层124a的厚度可以为5nm~30nm,空穴传输层124b的厚度可以为1000nm~1300nm,电子阻挡层124c的厚度可以为10nm~80nm。
在一些实施例中,空穴传输层124b的材料的最低三线态激子能量T1大于电子阻挡层124c的材料的最低三线态激子能量T1。
根据电子和空穴的复合机理,为了避免电子阻挡层124c太薄,电子穿过电子阻挡层124c引起电子在阳极表面淬灭,通过使空穴传输层124b的材料的最低三线态激子能量大于电子阻挡层124c的材料的最低三线态激子能量,在电子穿过电子阻挡层124c之后,还能够通过空穴传输层124b对电子进行进一步阻挡。
在一些实施例中,在以上发光层122的主体材料和掺杂材料确定的情况下,为了进一步增大空穴传输速率,可选的,主体材料的HOMO能级和电子阻挡层124c的材料的HOMO能级之差小于或等于0.3eV。同样能够消除能级 势垒所造成的空穴传输速度慢。
在一些实施例中,电子阻挡层124c的材料的最低三线态激子能量T1大于主体材料的最低三线态激子能量T1。
与以上类似的,通过使电子阻挡层124c的材料的最低三线态激子能量大于主体材料的最低三线态激子能量,能够将三线态激子限制在发光层122中,实现对三线态激子的有效利用。
在此,以该有机发光器件为蓝色发光器件为例,在一些实施例中,发光层122的主体材料可以选自AND(9,10-di(2-naphthyl)anthracene,9,10-二-(2-萘基)蒽)、TBADN(2-(tert-Butyl)-9,10-di(2-naphthalenyl)anthracene,2-叔丁基-9,10-二(2-萘基)蒽)、MADN(2-Methyl-9,10-bis(naphthalen-2-yl)anthracene)、TPB3(1,3,5-Tri-(pyren-1-yl)-benzene,1,3,5-三(1-芘基)苯;1,3,5-三(1-芘基)苯)等。掺杂材料可以选自Dpvbi(4,4-′b is(2,2-′d iphenyl vinyl)-1,1-′b iphenyl)。发光层122的厚度可以为20nm~40nm。
在一些实施例中,电子传输层125b的材料和空穴阻挡层125c的材料分别独立地选自包含有至少一个含有至少两个N原子的杂芳基的化合物。如BCP(2,9-dimethyl-4,7-diphenyl-1,10-Phenanthroline,2,9-二甲基-4,7-联苯-1,10-菲罗啉)、Bphen(1,10-Phenanthroline monohydrate,1,10-邻二氮杂菲)、吖嗪等。这些化合物具有良好的电子传输性能。
在一些实施例中,电子传输层125b的材料可以是基于螺环芳烃结构的化合物。也即,电子传输层125b的材料选自具有螺环芳烃结构(如螺芴、螺芴氧杂蒽等)的化合物,这时,一方面,螺环芳烃具有良好的吸电子特性,能够进一步提高电子传输层125b的电子传输性能。另一方面,螺环芳烃结构具有较高的T1,并且为空间构型好的基团,在一定程度上能够抑制材料的结晶。这样一来,在发光层122的主体材料和空穴阻挡层125c的材料一定的情况下,还能够将三重态激子的限制在靠近发光层122的区域,对电子进行进一步阻挡,防止电子淬灭。
在一些实施例中,电子传输层125b的材料选自通式(I)所示结构中的任一种或两种以上的组合:
Figure PCTCN2021070101-appb-000008
在通式(I)中,X选自C(R) 2、O、S、N(R)和单键中的任一种,在X选自单键的情况下,通式(I)为螺芴。Ar 1~Ar 4可同时或单独出现,分别独立地选自取代基R 1取代或未取代的环原子数为5~30个的芳基或杂芳基,且至少其中之一选自如下通式(II)所示结构中的任一种,取代基R 1选自叔丁基、氰基、环原子数为5~30个的芳基或杂芳基和-Y 1(Ar) n中的任一种。
Figure PCTCN2021070101-appb-000009
在通式(II)中,X 1、X 2和X 3分别独立地选自C(R 2)和N中的任一种,且至少两个选自N。每个R 2相同或不同,分别独立地选自H和环原子数为5~30个的芳基或杂芳基中的任一种,在R 2选自环原子数为5~30个的芳基或杂芳基的情况下,芳基或杂芳基具有或不具有取代基R 1。其中Y 1选自碳、氮、磷、硅、硼、C(R 3) 2、Si(R 3) 2、C(=O)、C(=NR)、C(=C(R) 2)、S(=O)、S(=O) 2和P(=O)中的任一种,n为大于或等于1的整数,每个Ar相同或不同,分别独立地选自芳基或杂芳基,或者,在n为大于或等于2的整数的情况下,至少两个Ar彼此之间通过单键或第一桥联基团连接成环,第一桥联基团选自B(R)、C(R) 2、Si(R) 2、C(=O)、C(=NR)、C(=C(R) 2)、O、S、S(=O)、S(=O) 2、N(R)、P(R)和P(=O)(R)。R 3选自H和甲基中的任一种,R选自H、甲基、芳基或杂芳基中的任一种。
其中,根据以上在通式(II)中,X 1、X 2和X 3分别独立地选自C(R 1)和N中的任一种,且至少两个选自N。可以得知,通式(II)为吖嗪的通式。此时,以通式(I)中Ar 3选自通式(II),Ar 4选自取代基R 1取代的苯基,Ar 1和Ar 2不出现为例,通式(I)的结构式可以表示如下。
Figure PCTCN2021070101-appb-000010
此时,以X 1、X 2和X 3均选自N为例,根据R 2可以选自H和环原子数为5~30个的芳基或杂芳基中的任一种,且在R 2选自环原子数为5~30个的芳基或杂芳基的情况下,芳基或杂芳基具有或不具有取代基R 1。可以得知,通式(I)可以选自如下化合物中的任一种。
Figure PCTCN2021070101-appb-000011
其中,根据X可以选自C(R) 2、O、S、N(R)和单键中的任一种,R 1分别独立地选自叔丁基、氰基、环原子数为5~30个的芳基或杂芳基和-Y 1(Ar) n中的任一种,可以得知,通式(I)可以选自如下化合物中的任一种。此时,该电子传输层的材料即可以选自如下化合物中的任一个或两个以上的组合。
Figure PCTCN2021070101-appb-000012
Figure PCTCN2021070101-appb-000013
Figure PCTCN2021070101-appb-000014
这里,需要说明的是,以上所示的化合物仅为示例,在此,本领域技术人员能够理解的是,并不能对所有的化合物进行穷举,满足以上所描述的所有组合均在本公开的保护范围之内。
在一些实施例中,空穴阻挡层125c的材料选自如通式(III)所示结构中的任一种或两种以上的组合;
Figure PCTCN2021070101-appb-000015
在通式(III)中,X 4、X 5和X 6分别独立地选自C(R)和N中的任一种,且至少有两个选自N,Ar 5、Ar 6和L 2各自独立地选自取代基R 1取代或未取代的碳原子数为6~60个的芳基,或者取代基R 1取代或未取代的碳原子数为2~60个的杂芳基。L 1选自单键、取代基R 1取代或未取代的碳原子数为6~60个的二价芳基,或者取代基R 1取代或未取代的碳原子数为2~60个的二价杂芳基。R 1分别独立地选自叔丁基、氰基、环原子数为5~30个的芳基或杂芳基和-Y 1(Ar) n中的任一种,Y 1选自碳、氮、磷、硅、硼、C(R 3) 2、Si(R 3) 2、C(=O)、 C(=NR)、C(=C(R) 2)、S(=O)、S(=O) 2和P(=O)中的任一种,n为大于或等于1的整数,每个Ar相同或不同,分别独立地选自芳基或杂芳基,或者,Ar和该取代基R 1所取代的芳基或杂芳基之间,和/或,在n大于或等于2的整数的情况下,至少两个Ar之间,通过单键或第二桥联基团连接成环,第二桥联基团选自B(R)、C(R) 2、Si(R) 2、C(=O)、C(=NR)、C(=C(R) 2)、O、S、S(=O)、S(=O) 2、N(R)、P(R)和P(=O)(R)。R 3选自H和甲基中的任一种,R选自H、甲基、芳基和杂芳基中的任一种。
其中,根据以上Ar 5、Ar 6和L 2各自独立地选自取代基R 1取代或未取代的碳原子数为6~60个的芳基,或者取代基R 1取代或未取代的碳原子数为2~60个的杂芳基。可以得知,Ar 5、Ar 6和L 2可以独立地选自取代基R 1取代或未取代的苯基、联苯基、萘基、蒽基、芴基、螺环芳基、噻吩基、吡啶基、喹啉基、咪唑基、吲哚基、苯并呋喃基、苯并噻吩基中的任一种。
根据L 1选自单键、取代基R 1取代或未取代的碳原子数为6~60个的二价芳基,或者取代基R 1取代或未取代的碳原子数为2~60个的二价杂芳基。可以得知,在L1选自单键的情况下,以上通式(III)可以表示为:
Figure PCTCN2021070101-appb-000016
在L 1选自取代基R 1取代或未取代的碳原子数为6~60个的二价芳基,或者取代基R 1取代或未取代的碳原子数为2~60个的二价杂芳基的情况下,L 1可以选自取代基R1取代或未取代的二价苯基、二价联苯基、二价萘基、二价蒽基、二价芴基、二价螺环芳基、二价噻吩基、二价吡啶基、二价喹啉基、二价咪唑基、二价吲哚基、二价苯并呋喃基、二价苯并噻吩基中的任一种。
在一些实施例中,在通式(III)中,在L 1选自取代基R 1取代或未取代的二价联环芳基的情况下,二价联环芳基中至少一个单环具有间位和/或邻位连接基团。在L 1选自取代基R 1取代或未取代的单环芳基的情况下,L 2和吖嗪基连接在L 1的间位或邻位。
其中,二价联环芳基中至少一个单环具有间位和/或邻位连接基团,是指二价联环芳基中至少一个单环的间位和/或邻位具有取代基R 1,或者,该二价联环芳基中除该单环以外的其余芳环连接在该单环的间位和/或邻位,或者,该二价联环芳基中除该单环以外的其余芳环和吖嗪基连接在该单环的间位和/或邻位,或者,该二价联环芳基中除单环以外的其余芳环和取代基R 1连接在 该单环的间位和/或邻位,或者,该二价联芳基中取代基R 1和吖嗪基连接在该单环的间位和/或邻位。
示例的,以L 1选自未取代的二联苯为例,通式(III)可以选自如下结构中的任一种。
Figure PCTCN2021070101-appb-000017
以L 1选自取代基R 1取代的二联苯为例,通式(III)可以选自如下结构中的任一种。
Figure PCTCN2021070101-appb-000018
以L 1选自未取代的单环芳基为例,通式(III)可以选自如下结构中的任一种。
Figure PCTCN2021070101-appb-000019
以L 1选自取代基R 1的单环芳基为例,通式(III)可以选自如下结构中的任一种。
Figure PCTCN2021070101-appb-000020
在以上结构中,通过在基团间设置邻位或间位连接,可以很大程度上增加分子的空间扭转,降低分子的共轭程度,进而降低材料的迁移率,有助于减缓电子的传输。另外,空间扭转大的化合物具有较高的T1,可以将三线态激子限制在发光层122中,并且能够在一定程度上抑制材料的结晶。
根据以上R 1分别独立地选自叔丁基、氰基、环原子数为5~30个的芳基或杂芳基和-Y 1(Ar) n中的任一种,Y 1选自碳、氮、磷、硅、硼、C(R 3) 2、Si(R 3) 2、C(=O)、C(=NR)、C(=C(R) 2)、S(=O)、S(=O) 2和P(=O)中的任一种,n为大于或等于1的整数,每个Ar相同或不同,分别独立地选自芳基或杂芳基,或者,Ar和该取代基R 1所取代的芳基或杂芳基之间,和/或,在n大于或等于2的整数的情况下,至少两个Ar之间,通过单键或第二桥联基团连接成环,第二桥联基团选自B(R)、C(R) 2、Si(R) 2、C(=O)、C(=NR)、C(=C(R) 2)、O、S、S(=O)、S(=O) 2、N(R)、P(R)和P(=O)(R)。R 3选自H和甲基中的任一种,R选自H、甲基、芳基和杂芳基中的任一种。可以得知,在L 2选自取代基R 1取代的环原子数为5~30个的芳基或杂芳基,R 1选自-Y 1(Ar) n的情况下,L 2的结构式可以如下所示,通过虚线与L 1连接。
Figure PCTCN2021070101-appb-000021
其中,以A选自苯环,Ar选自苯环,Y 1选自C(R 3) 2,R 3选自甲基,此时,n等于1,Ar和A之间通过单键连接成环为例,L 2的结构式可以表示如下。
Figure PCTCN2021070101-appb-000022
以A选自苯环,Ar选自苯环,Y 1选自碳,此时n等于3为例,L 2的结构式可以表示如下。
Figure PCTCN2021070101-appb-000023
以A选自苯环,Ar选自苯环,Y 1选自碳,此时n等于3,且一个Ar与A之间通过单键连接成环为例,L 2的结构式可以表示如下。
Figure PCTCN2021070101-appb-000024
以A选自苯环,Y 1选自氮,Ar选自苯环,此时n等于2,且两个Ar之间通过单键连接成环为例,L 2的结构式可以表示如下。
Figure PCTCN2021070101-appb-000025
以A选自苯环,Y 1选自O,Ar选自苯环,此时n等于1,且Ar和A之间通过单键连接成环为例,则通式(IV)的结构式可以表示如下。
Figure PCTCN2021070101-appb-000026
在以上结构式中,通过在通式(III)中引入空间构型较大的原子如硼、磷、硫、硅等,能够增大分子的空间构型,使分子的空间扭转大,有利于T1的提升。另外,通过引入硼、氮、硫、磷等吸电子基团,还能够增大迁移率。
在一些实施例中,空穴阻挡层125c的材料选自如下结构中的任一种或两种以上的组合:
Figure PCTCN2021070101-appb-000027
Figure PCTCN2021070101-appb-000028
基于以上结构,在以上第二功能材料层125中的电子传输层125b和空穴阻挡层125c的电子迁移率一定的情况下,为了进一步降低电子传输速率,可选的,空穴阻挡层125c的LUMO能级与电子传输层125b的LUMO能级之差大于或等于0.4eV小于或等于1eV。可以增大空穴阻挡层125c和电子传输层125b之间的能级势垒,从而可进一步降低电子传输速率。
在一些实施例中,电子注入层125a的材料可以选自碱金属或者金属,如LiF、Yb、LiQ(8-hydroxyquionline lithium,8-羟基喹啉锂)等。电子注入层125a的厚度可以为1nm~3nm,电子传输层125b的厚度可以为20~35nm,空穴阻挡层125c的厚度可以为5nm~10nm。
在一些实施例中,电子传输层125b的材料的最低三线态激子能量T1大于空穴阻挡层125c的材料的最低三线态激子能量T1。
根据电子和空穴的复合机理,为了避免空穴阻挡层125c太薄,空穴穿过空穴阻挡层125c引起空穴在阴极表面淬灭,通过使电子传输层125b的材料的最低三线态激子能量大于空穴阻挡层125c的材料的最低三线态激子能量,在空穴穿过空穴阻挡层125c之后,还能够通过电子传输层125b对空穴进行进一步阻挡,从而避免发生空穴淬灭。
在一些实施例中,为了进一步降低电子传输速率,空穴阻挡层125c的材料的HOMO能级与发光层122的主体材料的HOMO能级之差大于或等于0.1eV。可以很好地阻挡空穴。
在一些实施例中,空穴阻挡层125c的材料的最低三线态激子能量T1大于主体材料的最低三线态激子能量T1。
与以上类似的,通过使空穴阻挡层125c的材料的最低三线态激子能量大于主体材料的最低三线态激子能量,能够将三线态激子限制在发光层122中, 实现对三线态激子的有效利用。
为了对本公开的实施例的技术效果进行客观评价,以下,将通过如下实验例和对比例对本公开所提供的技术方案进行详细地示例性地描述。
在以下的实验例和对比例中,采用器件结构以及器件的测试条件均相同,其中,器件结构表示为:阳极(ITO)/HIL/HTL/EBL/Host+Dopant/HBL/ETL/EIL/阴极(Al)。
分别设置对比例1、对比例2、对比例3、对比例4、对比例5、实验例1、实验例2、实验例3和实验例4,其中,对比例1~对比例5,以及实验例1~实验例4中除ETL和HBL之外,其余各层的材料均相同,分别选自如下所示结构。
Figure PCTCN2021070101-appb-000029
Figure PCTCN2021070101-appb-000030
其中,空穴注入层124a的材料选自以上HTL所示结构式和P Dopant所示结构式的混合材料。电子注入层125a的材料选自氟化锂。
在对比例1~对比例5,以及实验例1~实验例4中,ETL和HBL的材料分别选自如下表1所示的材料,表1所示的材料的HOMO能级、LUMO能级和最低三线态能量T1如下表2所示,表1所示的材料的结构式和各结构式的名称如下所示。
Figure PCTCN2021070101-appb-000031
Figure PCTCN2021070101-appb-000032
表1
Figure PCTCN2021070101-appb-000033
表2
名称 HOMO(eV) LUMO(eV) T1(eV)
ETL1 -6.56 -3.5 2.7
ETL2 -6.50 -3.4 2.75
HBL1 -6.00 -2.71 2.4
HBL2 -5.80 -2.51 2.80
表1还示出了在相同的测试条件下,对比例1~对比例5,以及实验例1~实验例4的驱动电压、电流效率以及器件寿命的测试结果。
由表1和表2可知,通过在发光层122的主体材料、HTL的材料和EBL的材料确定的情况下,选择合适的ETL的材料和HBL的材料,对ETL的材料和HBL的材料的电子迁移率进行调节,适当降低有机发光器件的电子迁移率,并同时对各功能材料层的材料之间的能级进行匹配,增大电子在HBL的材料和ETL的材料以及发光层的主体材料之间的能级势垒,降低空穴在EBL的材料和HTL的材料以及发光层的主体材料之间的能级势垒,能够从总体上降低电子传输速度,加快空穴传输速度,对空穴和电子的复合区域进行调节,从而能够使得空穴和电子的复合区域远离电子阻挡层124c,由此所获得的器件的寿命和效率均具有不同程度的提高。
由此可见,本公开提供的实施例能够解决相关技术中复合区域在电子阻挡层124c和发光层122之间的界面位置处,使得电子在电子阻挡层124c和发光层122之间的界面上堆积,从而使得堆积电荷造成对材料的劣化,不利于器件的效率和寿命提高的缺陷。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种有机发光器件,包括:
    层叠的阳极、发光层和阴极;
    位于所述发光层和所述阳极之间的第一功能材料层;
    位于所述发光层和所述阴极之间的第二功能材料层;
    在同等的测试条件下,所述第一功能材料层的材料的空穴迁移率至少是所述第二功能材料层的材料的电子迁移率的十倍。
  2. 根据权利要求1所述的有机发光器件,其中,
    所述第二功能材料层包括电子传输层和空穴阻挡层;
    所述电子传输层的材料的电子迁移率与所述空穴阻挡层的材料的电子迁移率相同;或者,
    所述电子传输层的材料的电子迁移率与所述空穴阻挡层的材料的电子迁移率不同,且在同等的测试条件下,所述空穴阻挡层的材料的电子迁移率小于所述电子传输层的材料的电子迁移率。
  3. 根据权利要求2所述的有机发光器件,其中,在电场强度为5000V 1/2/m 1/2的测试条件下,所述电子传输层的材料的电子迁移率为10 -5cm 2V -1s -1~10 -7cm 2V -1s -1;所述空穴阻挡层的材料的电子迁移率为10 -7cm 2V -1s -1~10 -9cm 2V -1s -1
  4. 根据权利要求2或3所述的有机发光器件,其中,
    所述空穴阻挡层的材料的LUMO能级与所述电子传输层的LUMO能级之差大于或等于0.4eV小于或等于1eV。
  5. 根据权利要求2~4任一项所述的有机发光器件,其中,
    所述电子传输层的材料的最低三线态能量大于所述空穴阻挡层的材料的最低三线态能量。
  6. 根据权利要求2~5任一项所述的有机发光器件,其中,
    所述电子传输层的材料和所述空穴阻挡层的材料分别独立地选自包含至少一个含有至少两个N原子的杂芳基的化合物。
  7. 根据权利要求6所述的有机发光器件,其中,
    所述电子传输层的材料是基于螺环芳烃结构的化合物。
  8. 根据权利要求7所述的有机发光器件,其中,
    所述电子传输层的材料选自通式(I)所示结构中的任一个或两个以上的组合;
    Figure PCTCN2021070101-appb-100001
    在所述通式(I)中,X选自C(R) 2、O、S、N(R)和单键中的任一种,Ar 1~Ar 4可同时或单独出现,分别独立地选自取代基R 1取代或未取代的环原子数为5~30个的芳基或杂芳基,且至少其中之一选自如下通式(II)所示结构中的任一种,取代基R 1选自叔丁基、氰基、环原子数为5~30个的芳基或杂芳基和-Y 1(Ar) n中的任一种;
    Figure PCTCN2021070101-appb-100002
    在通式(II)中,X 1、X 2和X 3分别独立地选自C(R 2)和N中的任一种,且至少两个选自N;
    每个R 2相同或不同,分别独立地选自H和环原子数为5~30个的芳基或杂芳基中的任一种,在R 2选自环原子数为5~30个的芳基或杂芳基的情况下,芳基或杂芳基具有或不具有取代基R 1
    其中Y 1选自碳、氮、磷、硅、硼、C(R 3) 2、Si(R 3) 2、C(=O)、C(=NR)、C(=C(R) 2)、S(=O)、S(=O) 2和P(=O)中的任一种,n为大于或等于1的整数,每个Ar相同或不同,分别独立地选自芳基或杂芳基,或者,在n为大于或等于2的整数的情况下,至少两个Ar彼此之间通过单键或第一桥联基团连接成环,第一桥联基团选自B(R)、C(R) 2、Si(R) 2、C(=O)、C(=NR)、C(=C(R) 2)、O、S、S(=O)、S(=O) 2、N(R)、P(R)和P(=O)(R);
    R 3选自H和甲基中的任一种,R选自H、甲基、芳基或杂芳基中的任一种。
  9. 根据权利要求8所述的有机发光器件,其中,所述电子传输层的材料选自如下化合物中的任一个或两个以上的组合:
    Figure PCTCN2021070101-appb-100003
    Figure PCTCN2021070101-appb-100004
  10. 根据权利要求6~9任一项所述的有机发光器件,其中,
    所述空穴阻挡层的材料选自如通式(III)所示结构中的任一个或两个以上的组合;
    Figure PCTCN2021070101-appb-100005
    在通式(III)中,X 4、X 5和X 6分别独立地选自C(R)和N中的任一种, 且至少有两个选自N;Ar 5、Ar 6和L 2各自独立地选自取代基R 1取代或未取代的碳原子数为6~60个的芳基,或者取代基R 1取代或未取代的碳原子数为2~60个的杂芳基;
    L 1选自单键、取代基R 1取代或未取代的碳原子数为6~60个的二价芳基,或者取代基R 1取代或未取代的碳原子数为2~60个的二价杂芳基;
    R 1分别独立地选自叔丁基、氰基、环原子数为5~30个的芳基或杂芳基和-Y 1(Ar) n中的任一种,Y 1选自碳、氮、磷、硅、硼、C(R 3) 2、Si(R 3) 2、C(=O)、C(=NR)、C(=C(R) 2)、S(=O)、S(=O) 2和P(=O)中的任一种,n为大于或等于1的整数,每个Ar相同或不同,分别独立地选自芳基或杂芳基,或者,Ar和该取代基R 1所取代的芳基或杂芳基之间,和/或,在n大于或等于2的整数的情况下,至少两个Ar之间,通过单键或第二桥联基团连接成环,第二桥联基团选自B(R)、C(R) 2、Si(R) 2、C(=O)、C(=NR)、C(=C(R) 2)、O、S、S(=O)、S(=O) 2、N(R)、P(R)和P(=O)(R);
    R 3选自H和甲基中的任一种,R选自H、甲基、芳基和杂芳基中的任一种。
  11. 根据权利要求10所述的有机发光器件,其中,
    在通式(III)中,在L 1选自取代基R 1取代或未取代的二价联环芳基的情况下,二价联环芳基中至少一个单环具有间位和/或邻位连接基团;
    在L 1选自取代基R 1取代或未取代的单环芳基的情况下,L 2和吖嗪基连接在L 1的间位或邻位。
  12. 根据权利要求11所述的有机发光器件,其中,
    所述空穴阻挡层的材料选自如下结构中的任一种或两种以上的组合:
    Figure PCTCN2021070101-appb-100006
    Figure PCTCN2021070101-appb-100007
  13. 根据权利要求1~12任一项所述的有机发光器件,其中,
    所述第一功能材料层包括空穴传输层和电子阻挡层;
    所述空穴传输层的材料的空穴迁移率与所述电子阻挡层的材料的空穴迁移率相同;或者,
    所述空穴传输层的材料的空穴迁移率与所述电子阻挡层的材料的空穴迁移率不同,且在同等的测试条件下,所述电子阻挡层的材料的空穴迁移率不小于所述空穴传输层的材料的空穴迁移率的十分之一。
  14. 根据权利要求13所述的有机发光器件,其中,在电场强度为5000V 1/2/m 1/2的测试条件下,所述空穴传输层的材料的空穴迁移率为10 -4cm 2V -1s -1~10 -6cm 2V -1s -1;所述电子阻挡层的材料的空穴迁移率为10 -4cm 2V -1s -1~1~10 -7cm 2V -1s -1
  15. 根据权利要求13或14所述的有机发光器件,其中,
    所述空穴传输层的材料的HOMO能级与所述电子阻挡层的材料的HOMO能级之差大于或等于-0.5eV小于或等于0.3eV。
  16. 根据权利要求13~15任一项所述的有机发光器件,其中,
    所述空穴传输层的最低三线态能量大于所述电子阻挡层的最低三线态能量。
  17. 根据权利要求2~16任一项所述的有机发光器件,其中,
    所述发光层的材料包括主体材料,所述空穴阻挡层的HOMO能级与所述 主体材料的HOMO能级之差大于或等于0.1eV。
  18. 根据权利要求17所述的有机发光器件,其中,
    所述空穴阻挡层的最低三线态能量大于所述主体材料的最低三线态能量。
  19. 根据权利要求17或18所述的有机发光器件,其中,
    所述第一功能材料层包括电子阻挡层,所述主体材料的HOMO能级与所述电子阻挡层的HOMO能级之差小于或等于0.3eV。
  20. 根据权利要求19所述的有机发光器件,其中,
    所述电子阻挡层的最低三线态能量大于所述主体材料的最低三线态能量。
  21. 根据权利要求13~20任一项所述的有机发光器件,其中,
    所述空穴传输层的材料和所述电子阻挡层的材料分别独立地选自芳胺类化合物中的任一种。
  22. 根据权利要求1~21任一项所述的有机发光器件,其中,
    所述有机发光器件为发红光的发光器件,在同等的测试条件下,所述发光层的主体材料的电子迁移率和空穴迁移率大致相同;
    或者
    所述有机发光器件为发绿光的发光器件,在同等的测试条件下,所述发光层的主体材料的电子迁移率小于或等于所述发光层的主体材料的空穴迁移率;
    或者
    所述有机发光器件为发蓝光的发光器件,在同等的测试条件下,所述发光层的主体材料的电子迁移率大于所述发光层的主体材料的空穴迁移率。
  23. 根据权利要求22所述的有机发光器件,其中,
    在所述有机发光器件为发红光的发光器件的情况下,在电场强度为5000V 1/2/m 1/2的测试条件下,所述发光层的主体材料的电子迁移率为10 -6cm 2V -1s -1~10 -7cm 2V -1s -1;所述发光层的主体材料的空穴迁移率为10 -6cm 2V -1s -1~10 -7cm 2V -1s -1
    在所述有机发光器件为发绿光的发光器件的情况下,在电场强度为5000V 1/2/m 1/2的测试条件下,所述发光层的主体材料的电子迁移率为10 -7cm 2V -1s -1~10 -8cm 2V -1s -1;所述发光层的主体材料的空穴迁移率为10 -6cm 2V -1s -1~10 -7cm 2V -1s -1
    在所述有机发光器件为发蓝光的发光器件的情况下,在电场强度为5000V 1/2/m 1/2的测试条件下,所述发光层的主体材料的电子迁移率为10 -7cm 2V -1s -1~10 -8cm 2V -1s -1;所述发光层的主体材料的空穴迁移率为 10 -8cm 2V -1s -1~10 -9cm 2V -1s -1
  24. 一种发光基板,包括:
    衬底;
    设置于所述衬底上的多个发光器件;
    至少一个所述发光器件选自如权利要求1~23任一项所述的有机发光器件。
  25. 一种发光装置,包括如权利要求24所述的发光基板。
PCT/CN2021/070101 2021-01-04 2021-01-04 有机发光器件、发光基板和发光装置 WO2022141621A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180000011.8A CN115039247A (zh) 2021-01-04 2021-01-04 有机发光器件、发光基板和发光装置
US17/626,147 US20230232651A1 (en) 2021-01-04 2021-01-04 Organic light-emitting device, light-emitting substrate and light-emitting apparatus
PCT/CN2021/070101 WO2022141621A1 (zh) 2021-01-04 2021-01-04 有机发光器件、发光基板和发光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070101 WO2022141621A1 (zh) 2021-01-04 2021-01-04 有机发光器件、发光基板和发光装置

Publications (1)

Publication Number Publication Date
WO2022141621A1 true WO2022141621A1 (zh) 2022-07-07

Family

ID=82258822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070101 WO2022141621A1 (zh) 2021-01-04 2021-01-04 有机发光器件、发光基板和发光装置

Country Status (3)

Country Link
US (1) US20230232651A1 (zh)
CN (1) CN115039247A (zh)
WO (1) WO2022141621A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060083946A1 (en) * 2004-10-15 2006-04-20 Samsung Sdi, Co., Ltd. Organic light emitting device
CN103922995A (zh) * 2014-04-08 2014-07-16 上海天马有机发光显示技术有限公司 一种有机电致发光器件及显示装置
CN107394051A (zh) * 2017-08-14 2017-11-24 上海天马有机发光显示技术有限公司 一种发光器件及显示装置
CN108807481A (zh) * 2018-06-13 2018-11-13 上海天马有机发光显示技术有限公司 一种有机发光显示面板及显示装置
CN109103341A (zh) * 2018-08-23 2018-12-28 京东方科技集团股份有限公司 电致发光器件、照明面板及车用灯具组
WO2019174650A1 (zh) * 2018-03-14 2019-09-19 江苏三月光电科技有限公司 一种以均苯为核心的化合物、制备方法及其在有机电致发光器件上的应用
CN110734396A (zh) * 2018-10-31 2020-01-31 广州华睿光电材料有限公司 有机化合物、高聚物、混合物、组合物及有机电子器件
CN111969119A (zh) * 2020-08-28 2020-11-20 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060083946A1 (en) * 2004-10-15 2006-04-20 Samsung Sdi, Co., Ltd. Organic light emitting device
CN103922995A (zh) * 2014-04-08 2014-07-16 上海天马有机发光显示技术有限公司 一种有机电致发光器件及显示装置
CN107394051A (zh) * 2017-08-14 2017-11-24 上海天马有机发光显示技术有限公司 一种发光器件及显示装置
WO2019174650A1 (zh) * 2018-03-14 2019-09-19 江苏三月光电科技有限公司 一种以均苯为核心的化合物、制备方法及其在有机电致发光器件上的应用
CN108807481A (zh) * 2018-06-13 2018-11-13 上海天马有机发光显示技术有限公司 一种有机发光显示面板及显示装置
CN109103341A (zh) * 2018-08-23 2018-12-28 京东方科技集团股份有限公司 电致发光器件、照明面板及车用灯具组
CN110734396A (zh) * 2018-10-31 2020-01-31 广州华睿光电材料有限公司 有机化合物、高聚物、混合物、组合物及有机电子器件
CN111969119A (zh) * 2020-08-28 2020-11-20 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置

Also Published As

Publication number Publication date
US20230232651A1 (en) 2023-07-20
CN115039247A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
KR102108524B1 (ko) 유기전계발광소자
JP6571780B2 (ja) Rgb画素領域を有する有機エレクトロルミネッセンス装置
KR101753428B1 (ko) 발광 소자, 발광 장치, 조명 장치 및 전자 기기
TWI445447B (zh) 發光元件,發光裝置,和電子裝置
CN101297413B (zh) 基于两种发蓝色荧光化合物的激基复合物的有机发白光二极管(oled)
WO2016015395A1 (zh) 有机发光二极管阵列基板及显示装置
WO2016015422A1 (zh) 有机发光二极管阵列基板及显示装置
KR20080086825A (ko) 발광장치 및 전자기기
WO2021227719A1 (zh) 有机电致发光器件、显示面板及显示装置
KR20160019839A (ko) 유기 일렉트로루미네센스 소자용 모노아민 재료 및 이를 사용한 유기 일렉트로루미네센스 소자
CN113555510B (zh) 有机电致发光器件、显示面板及显示装置
KR102237159B1 (ko) 유기화합물 및 이를 이용한 유기발광다이오드소자
CN113889583A (zh) 有机发光二极管和包括其的有机发光装置
WO2022188457A1 (zh) 发光器件、发光基板和发光装置
KR102580803B1 (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치
WO2022141621A1 (zh) 有机发光器件、发光基板和发光装置
WO2015192591A1 (zh) 一种有机电致发光器件、有机电致发光显示装置
CN113725377A (zh) 发光器件、发光基板及发光装置
WO2022199010A1 (zh) 发光器件、发光基板及发光装置
WO2022205947A1 (zh) 发绿光的发光器件、发光基板和发光装置
WO2023201725A1 (zh) 一种发光层、发光器件和显示装置
KR20240105726A (ko) 유기금속 화합물 및 이를 포함하는 유기발광소자
KR20240105149A (ko) 유기금속 화합물 및 이를 포함하는 유기발광소자
KR20240105143A (ko) 유기금속 화합물 및 이를 포함하는 유기발광소자
KR20240105727A (ko) 유기금속 화합물 및 이를 포함하는 유기발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.10.2023).

122 Ep: pct application non-entry in european phase

Ref document number: 21912404

Country of ref document: EP

Kind code of ref document: A1